
Real-Time Data-Predictive Attack-Recovery

for Complex Cyber-Physical Systems

Lin Zhang∗, Kaustubh Sridhar†, Mengyu Liu∗, Pengyuan Lu†,

Xin Chen‡, Fanxin Kong∗, Oleg Sokolsky†, Insup Lee†

∗Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY
†Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA

‡Department of Computer Science, University of Dayton, Dayton OH

lzhan120@syr.edu, ksridhar@seas.upenn.edu, mliu71@syr.edu, pelu@seas.upenn.edu,

xchen4@udayton.edu, fkong03@syr.edu, sokolsky@cis.upenn.edu, lee@cis.upenn.edu

Abstract—Cyber-physical systems (CPSs) leverage computa-
tions to operate physical objects in real-world environments, and
increasingly more CPS-based applications have been designed
for life-critical applications. Therefore, any vulnerability in such
a system can lead to severe consequences if exploited by ad-
versaries. In this paper, we present a data predictive recovery
system to safeguard the CPS from sensor attacks, assuming that
we can identify compromised sensors from data. Our recovery
system guarantees that the CPS will never encounter unsafe states
and will smoothly recover to a target set within a conservative
deadline. It also guarantees that the CPS will remain within the
target set for a specified period. Major highlights of our paper
include (i) the recovery procedure works on nonlinear systems,
(ii) the method leverages uncorrupted sensors to relieve uncer-
tainty accumulation, and (iii) an extensive set of experiments on
various nonlinear benchmarks that demonstrate our framework’s
performance and efficiency.

Index Terms—cyber-physical systems, security, real-time re-
covery, nonlinear systems

I. INTRODUCTION

Cyber-Physical Systems (CPSs) tightly integrate compu-

tational components and physical processes, which interact

in a feedback loop with the help of sensors, actuators, and

networking. The integration empowers critical applications and

services in various domains, such as transportation, health

care, the power grid, and industrial control [1]–[3]. Meanwhile,

new vulnerabilities in CPSs are emerging due to the transition

from isolated control architectures to open and autonomous

systems [4]–[9]. Different malicious attacks targeted at these

vulnerabilities are springing up, causing severe personal casu-

alties, social harm, and economic losses [10]–[12].

Sensor attacks, which corrupt sensor measurements, are

widely recognized as critical threats in CPSs for the fol-

lowing reasons. First, sensor attack surfaces are increasingly

expanding as CPSs become more and more complex and

open. For instance, there are more than 100 sensors in some

modern vehicles, and the number is growing with time. To

achieve high-level driving automation, vehicles rely on not

only more complicated sensors, such as cameras, LiDAR,

and IMU sensors, but also on traffic data through vehicle-to-

vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-

everything (V2X) communication [13]. Second, attackers can

launch sensor attacks without expensive equipment or solid

domain knowledge. For example, attackers are able to pretend

to be road workers and install dirty road patches to compro-

mise the lane keeping system, causing the vehicle to leave the

road [14]. Another example is that an attacker without prior-

knowledge of perception algorithms can project pure light

onto the stereo cameras to inject a fake obstacle depth [15].

Third, traditional defense mechanisms for cyber systems are

inadequate to identify and respond to sensor attacks. Attackers

can non-invasively manipulate physical properties in the en-

vironment to corrupt sensor data, also known as transduction

attacks. For example, an attacker, without physical or cyber

access to GPS sensors, can use a radio transmitter broadcasting

fake GPS signals to steer a yacht off course [16]. Since all

components of CPSs are intact, traditional mechanisms are

unable to respond to such attacks. Fourth, a physical system

might already have considerably deviated from the desired

state before attacks are detected. This is because there is a

detection delay from the onset of an attack to its detection.

During the time interval, the deviation caused by the above

sensor attacks is a devastating repercussion for CPSs.

The urgent need to combat sensor attacks motivates many

attack recovery approaches. These recovery approaches mit-

igate the negative impacts of sensor attacks by correcting

deviations of physical states. For example, Fig. 1 illustrates

a recovery process for an autonomous vehicle. The vehicle

deviates from the center of lanes under a GPS spoofing

attack, and even goes towards the oncoming lane. A recovery

approach can drive the vehicle back to its own lane, and the

green line shows the recovery trajectory. Recovery approaches

can be divided into two threads. The first thread is the virtual-

sensor-based attack recovery [12], [17], which replaces the

corrupted sensor data with the virtual sensor data predicted

by the system model. On the basis of such predicted data, the

system relies on the original controller to steer the physical

states back to the desired states. The other thread is safety-

controller-based attack recovery [18], [19], which creates a

new dedicated controller to generate a recovery control se-

quence under attacks. The controller can be formulated as an

optimization problem with time and safety constraints.

However, these two existing recovery threads face several

challenges when applied to real systems. First, the virtual-

209

2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS)

979-8-3503-2176-0/23/$31.00 ©2023 IEEE
DOI 10.1109/RTAS58335.2023.00024

2
0
2
3
 I

E
E

E
 2

9
th

 R
ea

l-
T

im
e

an
d
 E

m
b
ed

d
ed

 T
ec

h
n
o
lo

g
y
 a

n
d
 A

p
p
li

ca
ti

o
n
s

S
y
m

p
o
si

u
m

 (
R

T
A

S
)

| 9
7
9
-8

-3
5
0
3
-2

1
7
6
-0

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/R

T
A

S
5
8
3
3
5
.2

0
2
3
.0

0
0
2
4

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Attack Recovery Demonstration on a Vehicle

sensor-based attack recovery relies on the original nominal

controller to recover the system, but nominal controllers are

not designed to handle attacks, lacking timing or safety guar-

antees. Second, real CPSs are complex and usually nonlinear,

so the recovery computational overhead on such systems is

extremely large. These methods reduce the complexity by

working on a linear model, which can be obtained by the

linearization of nonlinear systems around an equilibrium point,

or by system identification. Nevertheless, the linear model only

works well around the equilibrium point or in a small range.

Out of this range, there is a large modeling error, making

these methods fail to find a recovery solution. Third, uncer-

tainties, including noise and external disturbances, accumulate

over time. This happens because, after detecting the attack,

the existing methods assume that all sensors are attacked,

and, therefore, stop receiving feedback from physical sensors.

Without feedback, uncertainties cannot be rejected anymore

and accumulate, affecting the effectiveness of recovery.

To overcome these challenges, this paper proposes a new

real-time recovery method against senor attacks for nonlin-

ear CPSs. Once the detector identifies a sensor attack, the

proposed method takes over the nominal controller, efficiently

removing the negative impact caused by the attack and steering

the system to the desired states in real time.

Our main contributions are summarized as follows.

• For nonlinear CPSs, we propose an attack recovery system

with four components. The state predictor performs nonlinear

reachability analyses, making it possible to reconstruct the

initial state set of recovery. Based on that, the time oracle

computes a safety deadline online, after which the system

states may become unsafe and cause severe consequences

under current control inputs. Throughout the recovery, the

model adaptor keeps approximating the nonlinear system to

linear discrete-time models, enabling the generator to effi-

ciently obtain the recovery control sequence that can drive

the CPS to a target state before the safety deadline.

• The proposed method computes timing requirements,

online, in terms of recovery time. Sensor attacks deviate the

system’s physical states away from the desired states, and it is

impossible to anticipate this impact in advance. If the actual

physical state after an attack is closer to the unsafe set, a

shorter deadline should be chosen, and vice versa [20]. Thus,

the proposed method computes the safety deadline online

using the time oracle to better respond to different attacks.

• The proposed method makes full use of the uncompro-

mised sensor data, if any, to alleviate the accumulation of un-

certainty. The recovery control sequence generator uses good

sensor measurements as feedback at each activation, which

prevents the uncertainty from exploding in the uncorrupted

dimensions. Moreover, it leverages good sensor measurements

during state reconstruction also, which further relieves the

impact caused by uncertainties.

• The proposed method has low computational overhead.

First, the state predictor adopts a tool, Flow*, to perform

fast nonlinear reachability analysis. Second, the model adaptor

approximates the nonlinear and even nonconvex dynamics

into linear discrete-time models. Thus, the recovery controller

can solve optimization problems for linear systems instead

of nonlinear ones, reducing computational overhead. Also,

the linear approximation is kept updated with the current

state estimate and control input during recovery, and the

approximation is quite accurate within a small range. Thus,

accuracy is only minimally affected by the approximation.

• The proposed method checks the system safety before im-

plementing the recovery control sequence. The state predictor

performs the safety checking through reachability analysis for

the nonlinear system to guarantee a safe recovery. There is

a small probability that the recovery control fails to pass the

check; then a fail-safe method takes over.

• The paper evaluates the proposed method with several

numerical and high-fidelity simulators. The results show the

effectiveness of the proposed method, whereas the baseline

methods may fail to recover the physical states.

The rest of this paper is organized as follows. Section II

provides background and discussion of related work. Sec-

tion III gives preliminaries of our system’s recovery algorithm.

Section IV details the design of system components. Section V

validates our recovery system. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Current Research Focus. With the rise of CPS autonomy,

sensors are increasingly deployed to measure system states and

to perceive surroundings. However, new security vulnerabili-

ties in sensors come along, and sensor attacks spring up, such

as transduction attacks. Moreover, the launch of such attacks

becomes much easier, as the attack requires lower and lower

costs [21]–[23]. The urgent defense needs motivated many

attack detection works. The detectors leverage the system

model [24]–[29] or sensor correlations [11], [30]–[33] to find

anomalies compared to expected data. Note that, there usually

is a detection delay before the attacks are detected, and the

physical states have already considerably deviated from the

system’s desired states, even will reach the unsafe states in

the future. Thus, it is important to extend the benefits of

attack detection and remove the negative impact caused by

CPS attacks in time. Researchers place great expectations on

attack recovery techniques to achieve this goal.

Attack Recovery Works. CPS recovery is a sprouting field

that specifically researches how to correct a CPS’s behaviors

upon adversarial attacks. We divide these recovery techniques

into two main categories: shallow and deep recovery, with

210

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

the latter providing higher safety guarantees but having few

publications in the current state of the art.

We use the term shallow recovery for methods that aim to

fix affected CPS behaviors under attacks but have little to no

requirement on system states. One basic solution is to simply

restart the corrupted component while switching to a substitute

component to maintain system stability [34], [35]. Another

example of shallow recovery is to leverage redundancy, using

multiple components with the same functionality and taking

actions collectively, such as fusion on redundant sensors. Then,

upon a detected attack on some of these components, the

CPS isolates them from decision making [36]. Moreover,

specifically upon sensor attacks, the current state measurement

is corrupted but some system designs allow state estimation

via built-in software. For example, the system can use a

checkpointer to memorize the last trustworthy state and roll-

forward on its model to predict what the current actual state

should be [12], [17], [37]–[40].

On the other hand, deep recovery leverages prerequisite

knowledge of system states and aims at guiding the attacked

system back to pre-defined target states, which satisfy de-

sirable properties, such as safety, and maintain the system

there. For example, [18] designs a linear programming re-

covery controller to accomplish this goal, while a succeeding

work [19] replaces the control method with linear quadratic

regulator and achieves smoother trajectories on multiple linear

system benchmarks. This approach has been applied to real-

world scenarios such as power grids, where safe and unsafe

are defined by different levels of thermal loading [41], [42].

More than traditional controllers, machine learning researchers

have proposed learned control policies for deep recovery,

such as rescuing an attacked drone by control policies trained

via reinforcement learning [43]. The paper proposes a deep

recovery approach for non-linear systems.

Closest Related Work. The closest related work to this

paper is [18] and [19], identified as deep recovery. The

recovery system proposed in [18] provides an initial solution

to real-time recovery for CPS under sensor attacks. It builds a

linear-programming-based recovery controller that generates a

recovery control sequence bringing a physical system under

sensor attacks back to a target set in real-time. Then, the

LQR-based recovery system in [19] improves it by smoothing

the recovery state trajectory, maintaining physical states after

recovery, and considering a larger computational overhead.

However, several key aspects are overlooked in both works.

First, they assume that they recover the physical state of linear

time-invariant systems. However, most real-world systems are

nonlinear, and it is hard to find a linear approximation during

the entire recovery process. Second, they abandon sensor

measurements of all sensors once a sensor attack is detected,

even when only part of the sensors is corrupted. However,

the use of these uncompromised sensors could improve the

possibility of successful recovery and recovery performance.

This paper addresses these key aspects.

Scope of this Paper. To address the challenges, we pursue

real-time attack recovery, which steers a nonlinear physical

TABLE I: Nomenclature

Symbols Description

n dimension of state space

m dimension of control space

xt system state estimate at the time t

ut control input at the time t

Xt overapproximation of xt
T target state set ⊂ R

n

F unsafe state set ⊂ R
n, F ∩ T = ∅

tw time when the last trustworthy state is cached

ta unknown time when the attack begins

tf time when attack is detected and recovery begins

tr time when the first recovery control is implemented

td deadline by which the system is in target set

tm time such that the system is maintained in target set
in [td, tm]

δ granularity of time; length of one control step

T number of control steps within which one optimiza-
tion computation is guaranteed to finish

J quadratic cost function of each optimization problem

Fig. 2: Real-time Data Predictive Recovery Overview

system back to a target state set before the recovery deadline

and maintains the state in the set for a while. Recovery

provides a time cushion for compromised parts to be reset, and

then the normal controller can retake control of the system.

Note that the recovery addressed in this work is different

from the recovery concept in computer systems. The latter is

to recover computing tasks, e.g., variables’ values, and thus

is limited to the cyber part [44]–[49]. In contrast, this paper

focuses on recovering the state of the physical system or the

physical state, e.g., the speed of a vehicle.

III. PRELIMINARIES AND SYSTEM OVERVIEW

This section explains the preliminaries of the real-time data

predictive attack-recovery system, including the system model

and the threat model. Then we summarize the overview of

system design, which will be discussed further in Section IV,

and give the problem statement and assumptions.

A. System Model

We aim to recover cyber-physical systems shown at the

bottom of Fig. 2, including a physical plant, a nominal

controller, sensors, and actuators. The system works at every

control step δ in a periodic manner. First, the sensors mea-

sure the physical plant states. The controller then calculates

the state estimate based on the sensor measurements. Next,

211

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

the controller generates the control inputs u according to a

control algorithm and sends them to the actuators. Finally, the

actuators implement the control inputs u and drive the system

towards the desired or reference states. The state estimate x is a

vector of size n determined by the number of physical system

state variables (such as velocity, pressure, voltage, etc.); the

control input u is a vector of size m determined by the number

of control signals (such as throttle, steering angle, etc.).

The system plant follows the physical laws that can be

modeled as a continuous nonlinear system using an ordinary

differential equation in the form of Equation (1).

ẋ = f(x, u) + d (1)

where d is the disturbance term due to uncertainties. For

concise presentation, we assume that the system states are

fully observable, i.e., they can be directly determined from

sensor measurements, or x = y. However, in more general

cases, the state estimates x need to be calculated from sensor

measurements y by an observer, given an output equation

y = h(x) + v, where v is the sensor noise. We discuss how to

extend the system with an observer in Section IV-C1.

B. Threat Model

The CPS suffers from sensor attacks, where sensor attacks

aim at compromising the integrity or availability of sensor

data. The controller then generates inappropriate control inputs

based on malicious sensor data. We list some possible sensor

attack scenarios, but are not limited to these. For compromis-

ing integrity, (i) bias attacks change the value of sensor data

by adding a bias to them; (ii) replay attacks replace the current

sensor data with historical state ones. For compromising

availability, (iii) delay attacks defer the update of sensor data,

leading to stale state estimates. There is no assumption on

the number of compromised sensors. Our method, similar

to [18], [19], can operate when all sensors are compromised

but is the only framework that can leverage measurements

from uncompromised sensors. That is, measurements from

good sensors, if any, can only help to improve recovery

performance. We demonstrate the same in our experimental

results in Section V.

C. Problem Statement

We consider a nonlinear CPS described in Section III-A

under the sensor attacks shown in Section III-B. The physical

states deviate from the reference states under the influence of

such attacks. A recovery controller is triggered after the attack

diagnosis identifies the compromised sensors. The problem is

to design a recovery controller that can smoothly guide the

nonlinear system’s physical states to a target set T before

they reach the unsafe state set F . Note that it should leverage

uncompromised sensor data during recovery if possible.

D. Recovery Controller Overview

Our real-time data predictive recovery system is shown in

Fig. 2. The target CPS is in the bottom part of the figure,

and our system extends the original system to secure the

Fig. 3: Illustration of Recovery Timeline

system under sensor attacks. The paper focuses on the recovery

controller shown in the blue shaded box, which includes (i)

adaptive recovery sequence generator, (ii) model adaptor, (iii)

state predictor, and (iv) time oracle.

When does the recovery controller take effect? The system

runs in two possible modes - normal mode and recovery mode.

Fig. 3 illustrates the timeline of how our recovery system

works. In normal mode, the system runs the original nominal

controller, and the system states follow the target states (also

known as reference states) without attacks. At an unknown

time ta, a sensor attack is launched, so the actual system states

begin deviating from the target states. There is a detection

delay (tf − ta) needed for the attack diagnosis to identify the

attack. At the time tf , the detector raises an alert indicating

the attack, and the system switches from normal to recovery

mode. In recovery mode, our recovery controller is activated.

Note that the recovery controller is designed to handle attacked

sensors, only running after detecting attacks.

How does the recovery controller work? The adaptive

recovery sequence generator draws upon the idea of model

predictive control. It formulates the recovery problem as an

optimization problem with time and safety constraints, but

only implements the first several recovery control inputs and

then optimizes again, repeatedly. Each optimization requires

the help of supporting components (Section IV-C) for updating

the formulation: the model adaptor provides the linear model

working on current states, reducing the modeling error; the

state predictor provides an accurate initial state for recovery,

relieving the uncertainty accumulation; the time oracle adjusts

the optimization horizon and time constraints, making a recov-

ery before the system states become unsafe. Note that, through

nonlinear reachability analysis, the initial state for recovery is

obtained from a trustworthy state provided by checkpointer,

and no measurements from attacked sensors are used.

E. Assumptions

We list our assumptions in this subsection. Note that the

assumptions about checkpointer, attack diagnosis, and target

set are fulfilled by the previous work, so they are outside the

scope of this paper.

We assume that the system operates a closed-loop control

process, and the plant can be nonlinear. Moreover, the system

is perturbed by noise. This assumption is detailed in Sec-

212

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

tion III-A. Also, sensor attacks make the nominal controller

generate inappropriate control inputs that lead to the deviation

from desired physical states, detailed in Section III-B.

For the CPS components, we assume that there is a

checkpointer that can record historical data, including state

estimations and control inputs. The data cover at least one

time step before the attack occurs. Such a checkpointer has

been described in detail in [12], [18], [19], [37]. Under the

assumption of fully observable states at the end of Section

III-A, this checkpointer caches the physical state xt at every

time step. In a general case, it records sensor measurement y.

Also, we assume a detection/diagnosis module that is able to

correctly locate the corrupted component before the system is

driven into an undesirable unsafe state. In our recovery system,

it can identify which sensors are compromised. The attack

diagnosis works give several solutions, such as the sensor

attack detectors proposed by [23], [27]. Note our method also

applies when all sensors are compromised. Uncompromised

sensors, if any, help improve recovery performance.

Furthermore, we assume that the recovery target state set

is within the control invariant set of the original nominal

controller, so that the nominal controller can take over when

it is available after recovery. The control invariant set can be

computed through [50]. We assume that the recovery control

sequence can be implemented to actuators, or we need a

redundant actuator in the systems.

IV. MODEL PREDICTIVE RECOVERY CONTROLLER

In this section, we provide an in-depth explanation of our

recovery controller, including the adaptive recovery sequence

generator and the supportive components: model adaptor, state

predictor, and time oracle.

A. Data Predictive Recovery Algorithm

The blue shaded box in Fig. 2 illustrates the data predictive

recovery controller. The controller consists of four components

that cooperate with each other. The adaptive recovery sequence

generator (Section IV-B), the core component, generates the

recovery control sequence and guides the physical state of

the CPS back to a target state. It formulates and solves an

optimization problem opti with safety and time constraints in

every T control steps. During recovery, its input, an initial

reachable set X0 and a horizon N , comes from the state

predictor (Section IV-C1) and the time oracle (Section IV-C3),

respectively. In addition, the model adapter (Section IV-C2)

updates the linear approximation of the nonlinear dynamics

before formulating each optimization problem.

Algorithm 1 shows the real-time attack-recovery procedure,

and the critical time is reflected in the timeline (Fig. 3):

(i) Lines 3-4: Before the attack is detected at tf , the system

runs the original nominal controller in normal mode. The state

estimate may be corrupted by sensor attacks, while the actual

physical state may deviate from the desired state.

(ii) Lines 5-11: At detection time tf , the system switches from

normal mode to recovery mode, where the recovery controller

takes over. Since the state estimate is compromised, the state

Algorithm 1 Extended Data Predictive Recovery

Input: historical data from checkpointer, attack detection/

diagnosis result, nonlinear system dynamics

Output: real-time control signal ut for 0 ≤ t ≤ tm
1: while t ≥ 0 do

2: switch t do

3: case t < tf
4: Run with normal control

5: case t = tf
6: td, tm ← time oracle ⊲ deadline computing

7: Xtr ← state predictor ⊲ state reconstruction

8: syst ← model adaptor ⊲ model adaptation

9: opt0(syst, Xtr , tm − tr) ⊲ first opt.

10: ut, . . . ,utr−δ ← ut ⊲ from nominal control

11: Run with ut ⊲ implement control input

12: case tf < t < tr
13: Run with utf+δ, . . . ,utr−δ ⊲ cached control

14: case tr ≤ t ≤ tm
15: if t = tr +KTδ with integer K ≥ 0 then

16: ut, . . . ,ut+(T−1)δ ← optK ⊲ opt. result

17: Xt+Tδ ← state predictor ⊲ reachability

18: syst ← model adaptor ⊲ model adapt.

19: optK+1(syst, Xt+Tδ, tm − (t+ Tδ))
20: end if

21: Run with ut ⊲ implement control input

22: end while

predictor (Section IV-C1) performs a non-linear reachability

analysis and reconstructs the state estimate reachable set at tr
from a trustworthy state at time tw provided by checkpointer,

meanwhile, it uses good sensor data from tw to tf to improve

prediction accuracy. Also, the algorithm calculates a safety

deadline td and a maintainable time tm using the time oracle

(Section IV-C3). Then, the model adaptor (Section IV-C2)

computes an updated linear approximation around current

states and control input from nonlinear dynamics. Based on

them, the adaptive recovery sequence generator (Section IV-B)

formulates the first optimization problem opt0 and begins to

solve it. Since the result of opt0 is not ready, it prepares the

control sequence for the preparation period [tf , tr) using the

last cached control input ut from the nominal controller.

(iii) Lines 12-13: During period (tf , tr), the system runs with

the prepared control sequence, meanwhile solving opt0.

(iv) Lines 14-21: From tr to tm, for every T control step,

the state predictor predicts the initial reachable set of the

next optimization problem, i.e., Xt+Tδ . In this process, intact

sensor data, if any, can improve prediction accuracy. Also, the

model adaptor updates the linear approximation of dynamics.

The recovery sequence generator starts to formulate and solve

a new optimization problem optK+1. Consequently, the recov-

ery control sequence from optK will be ready in T control

steps, but only the first T control input will be implemented.

Note that finding a solution within δ is not necessary, since

optimization runs every T control step.

213

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

B. Adaptive Recovery Sequence Generator

Our core component, adaptive recovery sequence genera-

tor, aims to recover the physical states into a target set T
before they touch an unsafe set F . We consider continuous-

time and nonlinear systems in the form of Equation (1).

To efficiently compute recovery control inputs, we perform

local linearization and discretization online using the model

adaptor (Section IV-C2), and encode the linearized-discretized

model into the optimization problem. We use the subscript to

represent variables at a certain time hereinafter. For example,

ut represents the control input at time t. Note that our

approach also applies if we consider a discrete model from

the beginning.

1) Basic Data Predictive Recovery Formulation: After the

attack diagnosis identifies the corrupted sensors, the generator

formulates the recovery problem as a quadratic programming

problem with dynamics, time, and safety constraints. By

solving this problem, we get a recovery control sequence,

but we only implement the first control input and then repeat

this process in subsequent steps. Each optimization problem

updates the parameters, including the model from the model

adaptor, the initial state of recovery from the state predictor,

and the deadline from the time oracle.

The objective of these quadratic programming problems

guides the state steer towards reference state fast and smoothly:

J = (xN − x∗)TQN (xN − x∗)

+
N−1∑

k=0

(xk − x∗)TQ(xk − x∗) + uT
kRuk

(2)

where xi and ui are the system state and control input variables

at ith control step; x∗ is the reference state; Q,QN ∈
R

m×m,R ∈ R
n×n are semi-definite symmetric matrices that

represent the state, the final state, and the control input cost

weight; N = D + M is the optimization horizon length,

where recovery time D = (td − t)/δ and maintainable time

M = (tm − t)/δ at the time t. A fast recovery steers states

to the reference state fast, and tends to achieve a small state

penalty, represented by the first two terms; A smooth recovery

uses small control effort, and tends to achieve a small control

penalty, represented by the third term.

The constraints are formulated as follows.

xi+1 = Axi +Bui + c ∀i (3a)

ui ∈ U ∀i (3b)

Xi ∩ F = ∅ ∀i ∈ [0,M] (3c)

xi ∈ T ∀i ∈ [D,M] (3d)

Notice that Eq. (3a) is the discrete linearized dynamic con-

straint provided by the model adapter as in Equation (7), with

parameters A, B and c. It is used to predict the plant’s future

evolution; Eq. (3b) limits our control inputs according to the

actuator’s capacity; Eq. (3c) ensures that all recovery states are

safe; Eq. (3d) makes sure that the system state goes back into

the target state set before the safe deadline td and maintains it

in the set for the rest of the optimization horizon until tm. Note

Fig. 4: Illustration of Extended Model Predictive Recovery. i©

denotes solving the ith optimization problem, and i denotes

implementing the recovery control inputs computed from ith

optimization problem.

that the optimization horizon is receding over time, thus the

computational overhead is also decreasing during the recovery.

However, there are some limitations in the standard data

predictive recovery formulation: (i) we did not consider the

computational overhead of optimization problems. It usually

takes more than one control step to solve this problem. Thus,

this recovery method may not be applied to complex systems

because the computational overhead is large. (ii) we did not

consider the uncertainty in the constraints in Eq. (3), such

as linearization error and estimation noises due to overap-

proximated reachable sets. Thus, some constraints are not

guaranteed to be met in real applications.

2) Extended Data Predictive Recovery Formulation: To

overcome the limitations above, we extend the basic formula-

tion by considering computational overhead and uncertainties,

shown in Fig. 4.

Considering that the computational overhead may be greater

than the control sampling time, the recovery sequence genera-

tor optimizes every T control steps instead of every step. Note

that the T control steps can cover computational overhead

and can be determined in advance. At time tf , the attack

diagnosis identifies the attack, and the generator begins to

formulate and solve the first optimization problem. Before

time tr = tf + Tδ, the generator can obtain the result of

the first optimization problem. From time tr, while it starts

to implement the first T control inputs computed by the first

optimization problem, it begins to formulate and solve the

second optimization problem. Similarly, at time tr + Tδ, it

implements the first T control inputs computed by the second

optimization problem and begins to formulate the third one.

The recovery sequence generator repeats this process until time

tm in such a pipeline manner.

To formulate each optimization problem, the generator

requires (i) the initial state x0 and the uncertainty interval I0
provided by the state predictor. Since x0 contains good sensor

data, it can be seen as feedback, helping alleviate the accu-

mulation of uncertainty in uncompromised state dimensions.

(ii) the system model provided by the model adaptor, i.e. A,

B, and c matrix. Since the linear model works well in a small

214

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

state range, the model adaptor keeps linearizing the nonlinear

dynamics around current states. The time-variant model helps

to reduce modeling errors. (iii) safe deadline td provided by the

time oracle. The time oracle performs nonlinear reachability

analysis to compute a conservative deadline by which the

system may become unsafe. The deadline helps to guarantee

the safety of CPS. The detailed design of these supporting

components is described in Section IV-C. The constraints of

the optimization problem are reformulated as follows.

x0 ∈ X0 = x0 ⊕ I0 from state predictor (4a)

xi+1 = Axi +Bui + c ∀i (4b)

ui ∈ U ∀i (4c)

xi ∩ (F ⊕AiI0) = ∅ ∀i ∈ [0,M] (4d)

xi ∈ T ⊖AiI0 ∀i ∈ [D,M] (4e)

where at Eq. (4a), x0 is the initial state of recovery with

uncertainty interval I0 that can be obtained from the state

predictor; Eq. (4d) and (4e) consider the effect of uncertainty

I0, so the unsafe set is larger and the target set is smaller than

those of the basic data predictive recovery. Here, ⊕ is the

Minkowski sum defined as X ⊕ Y = {x+ y |x ∈ X, y ∈ Y }
for any set X and Y ; ⊖ is the Minkowski difference such that

X ⊖ Y =
⋂

y∈Y {x− y |x ∈ X}.

Furthermore, it is noted that the optimization horizon re-

duces T for every optimization problem. For example, the

horizon of the first optimization is (tm − tr)/δ, and the

horizon of the second becomes (tm− tr)/δ−T . The reducing

horizon also leads to a reduction in the number of optimization

variables in optimization problems, so computational resources

are saved without hurting recovery performance. Note that

we can still guarantee safe and time constraints, although the

optimization horizon is reduced.

C. Supportive Components

The formulation of optimization problems requires the pa-

rameters of the supporting components, including the state pre-

dictor, the model adaptor, and the time oracle. This subsection

introduces each component in detail.

1) State Predictor: The state predictor performs nonlinear

reachability analysis to get the reachable set of states based

on historical data.

Input. It relies on (i) attack diagnosis result. The result indi-

cates which sensors are compromised and which sensors are

intact. (ii) historical states and control inputs from checkpoint.

The state at time tw is the trustworthy state, and is not affected

by sensor attacks. The intact states during sensor attack can

also be used to relieve uncertainty accumulation. The control

inputs are used for reachability analysis. Since it does not use

compromised sensor data as input, the result is not affected

by sensor attacks.

Overview. Fig. 5 illustrates the process of successive calcu-

lation of reachable states. The gray-shaded area highlights a

fragment at time t. At time t, the reachable states (X ′

t, marked

in green) are obtained from the previous reachable analysis.

Fig. 5: A fragment of successive calculation of reachable states

using the state predictor

Also, current state estimates are obtained from the system

observer, but some state estimates are affected by sensor

attacks, marked in orange. We replace those compromised

ones with the corresponding reachable states, forming sensor-

adjusted reachable states Xt, which other components require.

From this set, we perform a nonlinear reachability analysis

and get the next reachable states. The state predictor repeats

the above steps to calculate the multiple-step reachable state.

The sensor-adjusted reachable state Xt will be used as X0

in equation (4a). In this process, the state predictor uses good

sensor measurements as feedback, preventing uncertainty from

exploding in the uncompromised dimension.

Reachability Analysis Given a historical state, we can use

the Taylor model-based reachability computation to obtain

an overapproximate estimation of the state at a later time.

Taylor models are originally proposed as overapproximate

representations for smooth functions [51], and are later used

in verified integration of nonlinear ODEs [52] and to compute

reachable set overapproximations for hybrid systems [53]–

[55]. To do so, we may directly use the state-of-the-art tool,

Flow* [56]. Since we only use the tool to compute an interval

reachable set overapproximation, our framework does not need

to handle Taylor models from scratch. For example, it can

compute a conservative estimation of the system state at tf
when an attack is detected, which is also known as state

reconstruction. It takes the ODE (1), the latest trustworthy

state xw as the initial state and the historical control sequence

that is used from tw to tf , and computes an interval set (or

box) X that is guaranteed to contain the system state at tf .

Fig. 6 illustrates the use of Flow*.

Considering Observer. As stated at the end of Section III-A,

this algorithm assumes that states are fully observable for

concision, since computing state estimates is not our main

contribution. However, for more general cases, the above state

predictor can be extended and work with existing nonlinear

observers, which compute state estimates with good sensor

measurements. The observer operates in both normal and

recovery modes. As shown in Fig. 3, the observer uses the

original measurement function y = h(x) + v before tw,

since all sensor measurements are reliable. In contrast, the

observer dynamic should be adjusted in the presence of the

215

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Illustration of the use of Flow*.

attack to avoid the impact of attacks. After time tw, some

sensor measurements could be compromised. The algorithm

trims the original measurement function to y′ = h′(x) + v,

excluding the compromised sensor measurements indicated by

the attack diagnosis. The observer, for example the extended

Kalman filter, predicts state and covariance estimates with

checkpointed previous estimates and control input, and updates

the estimates with good sensor measurements. In this way, the

observer obtains state estimate X ′′

t unaffected by attacks.

Since the observer requires a certain period for the state

estimates to converge during the start phase, we need to discuss

the impact of convergence time on recovery timing. For most

cases, since the observer also runs in the normal mode, the

trustworthy state estimate xw calculated by the observer is

converged. When the attack is detected at time tf , the observer

needs to reconstruct the state estimates xf with the trimed

measurement function from converged xw. The computational

overhead of the reconstruction may enlarge the preparation

period from tf to tr (marked in orange in Fig. 3), where

tr is when the first recovery control input is implemented.

Moreover, it is undeniable that there exists an extremely rare

case that the system is attacked shortly after it starts operating,

and the trustworthy state estimate xw has not yet converged.

In this case, the state estimate reconstruction must wait for

convergence, further extending the preparation period.

Tasks. There are four tasks for the state predictor:

(i) State reconstruction. At time tf , the system state estimates

cannot reflect the actual system states because of sensor

attacks. Thus, the predictor needs to reconstruct the current

state reachable set Xf from a trustworthy state xw provided

by the checkpointer. This process is demonstrated in the

reachability analysis above. (Line 7 of Algorithm 1)

(ii) Initial state calculation. The optimization problems for-

mulated by the adaptive recovery sequence generator require

an initial state of recovery. The state predictor can provide

sensor-adjusted reachable states as the initial state set X0 =
x0 ⊕ I0, where x0 is the center of reachable states, and I0 is

the uncertainty interval. (Lines 7 and 17 of Algorithm 1)

(iii) Helper function. The state predictor is called by the

model adaptor and the time oracle. The model adaptor needs to

linearize and discretize the nonlinear system at current states,

which is provided by the state predictor. The time oracle

performs reachability analysis to find a safe deadline td, after

which the system may touch the unsafe set.

(iv) Safety checker. Before implementing the recovery control

input, we use the state predictor to compute the reachable

states. If there is no intersection between the reachable states

and unsafe set F , the recovery is safe.

2) Model Adaptor: Optimizing using the nonlinear dy-

namic is time-consuming, and can hardly be solved online. To

reduce time overhead, linearized models can be used to ap-

proximate the original nonlinear system. However, a linearized

model from a nonlinear system only works well around the

operation or equilibrium point. The state deviation from the

point may cause a large modeling error. Also, the recovery

effectiveness depends on the model’s accuracy. Therefore, the

model adaptor keeps linearizing the nonlinear system during

recovery to obtain accurate linear models.

The following model adaptor has been widely used to

linearize and discretize a nonlinear continuous ODE to provide

the dynamics constraint for each optimization problem, which

is later formalized as Eq. (4b). Given a continuous nonlinear

system described as Eq. (1) and denoted as ϕc, the adaptor

calculates a linear approximation from its first order Taylor

expansion around the point of interest x̄t and ūt:

ẋt = ϕc(xt, ut)

≈ ϕc(x̄t, ūt) +
∂ϕc

∂xt

|x̄t,ūt
·(xt − x̄t) +

∂ϕc

∂ut

|x̄t,ūt
·(ut − ūt)

= A′xt +B′ut + c′

(5)

where A′ = ∂ϕc

∂xt
|x̄t,ūt

, B′ = ∂ϕc

∂ut
|x̄t,ūt

, and c′ = ϕc(x̄t, ūt)−
∂ϕc

∂xt
|x̄t,ūt

·x̄t −
∂ϕc

∂ut
|x̄t,ūt

·ūt. In the implementation, the

point x̄t is obtained from the center of the reachable set

at time t, calculated by the state predictor. The point ūt

is the last control signal cached by the checkpointer. Since

discrete-time dynamics are required in optimization problems,

the model adaptor discretizes the linear approximation into

a discrete-time equation with a granular time step δ > 0.

This discretization step is a direct result of integrating the

continuous time equation (5) and is given as follows.

xt+δ = eδA
′

xt + (A′)
−1

(eδA
′

− I)B′ut + δc′

≈ (I+ δA′)xt + δB′ut + δc′
(6)

where I is the identity matrix with proper dimensions, and

δ is the sampling time or the control interval. Thus, we ap-

proximate the nonlinear dynamics to the form of Equation (7),

where A = I+ δA′, B = δB′, and c = δc′.

xt+δ = Axt +But + c (7)

For example, on a simple control system ẋt = x2
t + ut with

one-dimensional xt and ut, we compute centers x̄t and ūt from

the state predictor and perform Taylor expansion around this

point following Eq. (5).

ẋt = x2t + ut ≈ x̄t + ūt + 2x̄t · (xt − x̄t) + 1 · (ut − ūt)

= 2x̄txt + ut − 2x̄2
t + x̄t

(8)

That is, A′ = 2x̄t, B′ = 1 and c′ = −2x̄2t + x̄t. the

discretization can be done by calling Eq. (6) with some time

step such as δ = 0.01.

216

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

3) Time Oracle: The time oracle provides the horizon of

MPC problems by computing a conservative deadline td by

which the system should be recovered and a maintainable

deadline tm by which the system states can be maintained

in the target state set once they are recovered into the set.

This component is first used in [19] for linear systems, and

this paper extends it to nonlinear systems.

At the time tf , it leverages the state predictor and calculates

the reachable state set of each following control step as if the

norminal controller was running. If the upper or lower bound

falls into the unsafe set, then there is a possibility that a severe

consequence may happen. Thus, we choose the last time step

before unsafe as our safety deadline td. Note that this analysis

assumes that we do not take any recovery actions, so it is a

conservative deadline. Then, it adds a constant maintenance

period M to obtain the maintainable deadline tm = td +M .

V. EVALUATION

In this section, we validate our method using three non-

linear system simulators and highlight its effectiveness with

observations and result analysis.

A. Experiment Environment

We implement a nonlinear system simulation tool using

Python. We write these benchmarks’ ODE and sensor attack

scenarios in a configuration file. Then, the tool can run each

configuration one by one. In this process, the necessary data,

including system states, sensor values, and control input, are

recorded to plot the results. The experiments are implemented

on a 64-CPU server, where each one is an Intel(R) Xeon(R)

Gold 6248R CPU @ 3.00GHz. The optimizations are solved

by the cvxpy library with OSQP solver. Pyinterval library is

applied for the interval arithmetic of the MPC.

B. Non-linear systems benchmark

We consider three nonlinear system benchmarks: the con-

tinuously stirred tank reactor (CSTR), the quadrotor, and the

naval vessel. They are representative CPSs, used in many

works, from different domains. The CSTR benchmark study

presents an interesting setup for industrial sabotage, the vessel

benchmark has very long control steps, and the quadrotor

with its large number of states tests the scalability of each

component in the proposed recovery controller.

CSTR: In CSTR [58] dynamics, the exothermic reaction

of the species A → B is considered with the concentration

of A (CA) and the reactor temperature (T) as states. The

control input is given by the temperature of the cooling jacket

(TC). The exact dynamics given various system parameters

(k0, Caf , q, V, E,R, ρ, Cp, Tf ,∆H,UA) is as follows,

V ĊA = q (Caf − CA)− k0 exp

(

−E

RT

)

V CA

ρCpV Ṫ = ρCpq (Tf − T) + ∆Hk0 exp

(

−E

RT

)

V CA

+ UA (TC − T)

(9)

We utilize a PID controller to stabilize the temperature T .

Furthermore, we consider a bias sensor attack scenario for

CSTR where the temperature sensor values are compromised

like in [59], and the bias parameter is shown in TABLE II.

Quadrotor: The quadrotor dynamics [23], [60]–[62] de-

scribe the evolution of its attitude and position with 12 states:

roll (φ), pitch (θ), yaw (ψ), roll rate (wθ), pitch rate (wφ),

yaw rate (wψ), 3D positions and 3D velocities. The control

input includes that for thrust, roll, pitch, and yaw represented

by Ut, Uθ, Uφ, Uψ . Given inertias (Ix, Iy, Iz), mass (m) and

acceleration of gravity (g), it is given as,

φ̇ = wφ, ẇφ =
Uφ

Ix
+ θ̇ψ̇

(

Iy−Iz
Ix

)

θ̇ = wθ, ẇθ = Uθ

Iy
+ φ̇ψ̇

(

Iz−Ix
Iy

)

ψ̇ = wψ, ẇψ =
Uψ

Iz
+ φ̇θ̇

(

Ix−Iy
Iz

)

ẋ = vx, v̇x = Ut

m
(cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)

ẏ = vy, v̇y = Ut

m
(cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))

ż = vz, v̇z = Ut

m
cos(φ) cos(θ)− g

(10)

The state-space model is abstracted from a high-fidelity simu-

lator AirSim that Microsoft developed using the Unreal engine

as shown in Fig. 7b. A PID controller is used to maintain the

quadrotor at a certain height. Here, we consider the sensor

bias attack scenario in which the attacker compromises height

sensors resulting in incorrect feedback (see [18], [19]).

Vessel: The vessel dynamics describe the generic ship with

3 DoF [57], [63]. The state-space model is adapted from

the lecture notes of Marine Cybernetics and the high-fidelity

simulator developed from NTNU AUR-lab which implements

the Matlab scripts in the VESSELS catalogue of the MSS

toolbox. The simulator simulates the vessel shown in Fig. 7c.

The model implements the basic components of the ship such

as engine, propeller, rudder, etc., and considers the whole

model as a system. There are 8 states in the system, which are

the east and north positions, yaw, their velocities, the angular

shaft speed of the propeller, and the current of the DC motor.

Two PID controllers are used to maintain the surge speed

of the vessel and the yaw of the vessel. Here, we consider the

bias sensor attack scenario where the attacker compromises

speed sensor, resulting in over speeding.

C. Experiment Settings

All experiment settings are given in Table II. We chose

our CSTR settings, including reference, frequencies (dt, MPC

frequency), delay, safe/target sets based on previous work in

[58]. We tuned a PID controller to stabilize the model within

control limits determined by the physical properties of the

CSTR system [58]. For the quadrotor, we build on the settings

for the linearized model [19], while increasing the system

frequency to 100Hz (dt=0.01s). We tune a PID controller for

this increased speed and broader control limits (as given in

Table II’s second column). Finally, for the Naval Vessel, we

adapt reference, frequency, safe/target set settings from [57],

and tune two PID controllers to stabilize the reference speed.

Our control limits are again chosen based on the actuator

properties of the vessel [57]. In all three benchmarks, we chose

asymmetric positive noise to clearly observe the performance

of the recovery algorithms. Symmetric noises, on the other

217

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

(a) CSTR (b) Drone from AirSim (c) Vessel model 1:70 scale [57]

Fig. 7: Numerical and High-Fidelity CPS Simulators

Fig. 8: Performance of our method (MPC recovery control) compared to the baselines (no recovery, LP recovery control, LQR

recovery control, and Software Sensor Recovery or SSR) on three benchmarks: continuous stirred tank reactor (CSTR) control

[left], quadrotor altitude control [middle], naval vessel control [right].

Fig. 9: Sensitivity analysis to bias values of {−25,−30,−35} on the CSTR benchmark.

Fig. 10: Sensitivity analysis to detection delay values of {0.5, 1.0, 1.4} on the CSTR benchmark.

hand, have little impact on recovery, since the negative and

positive noises offset each other. Our implementation can be

found at https://github.com/CPSEC/nonlinear-recovery.

D. Baselines

We compare the proposed data-predictive recovery method

approach (mpc) with four baselines. We also add an observer

to our method and include it in the comparisons as mpc obs.

(i) no recovery (none). This baseline does not take any

recovery countermeasures after the detection of sensor attacks.

(ii) software-sensor-based recovery (ssr) [12], [17]. After

the detection of sensor attacks, the baseline replaces the

corrupted physical sensor data with the software sensor data

predicted by the linear system model.

CSTR Quadrotor Naval Vessel

attacked state Temp. Altitude Speed
reference 300 K 5 m 0.55 m/s
dt 0.1 s 0.01 s 1 s
noise unif[0, 0.1] unif[0, 2e-4] unif[0, .015]
detetection delay 1 s 0.2 s 10 s
bias -30 K -1 m -0.5 m/s
safe set (250, 360) K (0, 200) m (0, 150) m/s
target set (299, 301) K (4.8, 5.2) m (0.5, 0.9) m/s
control limits (250, 350) K (-10,100) N [(0, 2), (-1, 1)]
MPC freq. 10 Hz 10 Hz 1 Hz

Orig Controller

P=0.50
I=1.33

D=-0.05

P=100
I=0

D=-19

P=0.45, 0.1
I=0.05, 0
D=0, -3.5

TABLE II: Settings used in each benchmark.

218

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Sensitivity analysis to noise with upper bounds of {0.4, 0.1, 0.6} on the CSTR benchmark.

Fig. 12: Sensitivity analysis of recovery with an observer to increasing noise with upper bounds of {0.05, 0.1, 0.25} ×10−3

on the Quadrotor benchmark.

(iii) linear-programming-based recovery (lp) [18]. The base-

line formulates the recovery problem as a linear programming

optimization problem. By solving this problem, it gets a

recovery control sequence that can steer the system states back

to the target set before a safe deadline.

(iv) linear-quadratic-regulator-based recovery (lqr) [19].

The baseline extends the LP-based recovery by considering

state and control input penalty in the objective, and also can

maintain the system states in the target set for a while.

Given that all of the above baselines are designed for linear

systems. To apply them to our nonlinear benchmarks, we

obtain linear models by linearizing the nonlinear systems over

the equilibrium point or the operating point.

E. Recovery Effect

We compared the proposed method with four baselines for

the three benchmarks. We plot the actual system physical

states in Fig. 8, which shows the recovery process targeting

sensor attacks. The red line shows the physical states under

attacks without any recovery. The cyan, blue, and orange

curves are actual physical states that use linear-programming-

based recovery, linear-quadratic-regulator-based recovery, and

software-sensor-based recovery benchmarks.

We can get the following observations from them: Without

recovery, the system states deviate from the target states,

even reaching the unsafe states. When there is a bias

attack, i.e., adding a bias to sensor measurement, the controller

computes an error between state estimate and reference state.

This error makes the controller generate a control input to

eliminate this error, resulting in deviating from the reference

state. For example, in the CSTR benchmark, the red curve

goes out of the figure, i.e., reaching the unsafe set. For other

benchmarks, although the system states do not reach the unsafe

set with any countermeasures, the performance of the CPSs

is affected. The system states keep deviating from the target

states. If we choose a larger bias, the system states may also

reach the unsafe set.

The linear model based recovery method may fail to find

a recovery control sequence. For lp and lqr baselines, we do

not use the original deadline estimator, because they often give

a short deadline, resulting in failure to find a recovery control

sequence. The short deadline comes from the modeling error.

When the error is large, the reachability analysis may quickly

touch the unsafe set and get a short deadline.

The proposed method steers the system states closest

to the reference states. For the CSTR benchmark, ssr and

lp do not drive the system state to the target set before the

deadline. For the quadrotor benchmark, the lqr baseline does

not drive the physical states to the deadline eventually, and the

final recovered states of the proposed method are closer to the

reference state than other baselines. This may be caused by

uncertainty accumulation. The baseline methods assume that

all sensors are not reliable, and do not get any feedback from

sensors. Thus, they cannot reject the external disturbance, and

cause an inaccurate recovery eventually.

F. Sensitivity Analysis.

In order to clearly show how different parameters affect the

methods’ performance, it is ideal to choose a benchmark that

has small inertia. Therefore, we perform sensitivity analyses

on the CSTR benchmark, and observe changes to variation

in attack intensity, detection delay, and noise intensity. We

compare all methods by their ability to recover to the target set

without encountering the unsafe set within the deadline, their

time of recovery, and their maintainable time in the target set.

Impact of Attack Intensity. The experiment changes the value

of bias added to the sensor measurement, and the biases in

the experiments are -25, -30, and -35K. There are two main

observations from Fig. 9: First, the SSR baseline and the

proposed method performed well if the bias is set to -25.

219

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Both can drive the system to the target set and maintain it

before the deadline. The LQR and LP baseline cannot achieve

it. Furthermore, the proposed method can drive the system to

the target set and maintain it even when the bias is set to -

30 and -35K since the proposed MPC-based method recovery

takes less time to recover the system to the target set. A lower

attack bias situates the system state closer to the target set

at detection time. Yet, we see that methods using linearized

models struggle to overcome the accumulation of uncertainty

even from a state with a lower bias. SSR, enabled by a

nonlinear model in state reconstruction, but with only a linear

model during recovery is seen to recover with a large delay

compared to our approach. With higher bias, and hence a state

further away from the target set at detection time, all other

methods struggle to recover and maintain in the target set.

Impact of Detection Delay. Fig. 10 shows the recovery

results under different detection delays. There are two main

observations: First, both SSR and the proposed method can

drive the system to the target set and maintain it before

the deadline if the detection delay is 0.5s. LQR and LP

cannot achieve recovery before the deadline. Secondly, the

SSR baseline cannot achieve recovery before the deadline if

the detection delay increased to 1s and 1.4s since there is

less recovery time. A decrease in detection delay prevents the

significant drift from the target state during attack time. Yet,

again, only SSR is able to recover but is unable to maintain in

the target state without a controller that optimizes for maintain

time. On the other hand, a longer detection delay pushes the

system further away from the target set and prevents any other

method from recovering within the deadline.

Impact of Uncompromised Sensors. Across all three simula-

tors in Fig. 8 and analyses in Figs. 9, 10, 9, our method lever-

ages the uncompromised sensor information, while LQR and

LP cannot do so. Thus, LQR and LP consistently take longer

to recover (sometimes after the deadline), and are unable to

maintain states in the target set even with these requirements

encoded in the optimization problem formulations.

Impact of an observer. We identify the impact of an observer

on the quadrotor benchmark (instead of the CSTR benchmark).

The CSTR benchmark only has two directly measured state

elements. Hence, adding an observer does not create any

measurable change. On the other hand, the quadrotor sensors

only measure four (out of twelve) elements of the state –

height, roll rate, pitch rate, and yaw rate. Height is obtained

from an ultrasonic sensor below the quadrotor. The attitude

rates are obtained from an onboard inertial measurement unit.

We use an extended Kalman filter (EKF) to estimate the full

state (with twelve elements). This additional observer step

increases the computational overhead minimally (see Fig. 13).

Moreover, as seen in the left plot of Fig. 12, the observer does

not significantly affect recovery at lower noise thresholds. With

increased noise, as seen in the right plot of Fig. 12, there is

an increased deviation from the tracked state after recovery.

And hence, reduced maintainability in the recovered state.

Thus, with an increase in noise, while recovery to the desired

region is not affected, maintainability over a long horizon in

Fig. 13: Computational overhead (in seconds) for all methods

on the Quadrotor benchmark. For both LP and LQR, the

outlier point on top represents the overhead in formulating

and solving the problem at time step tf .

the desired region may be affected.

Impact of Noise intensity. Two types of noise were imple-

mented on the sensors, uniform noise, and white noise. The

lower bound of these noises is 0, and we tested our method

with different levels of upper bounds for the noises. Fig. 11

shows that the proposed method can drive the system to the

target set and maintain it when the noise upper bound is set

to 0.1 and 0.4. None of the baselines can achieve before the

deadline except our proposed method. If the noise upper bound

is large, our proposed method recovers but finds it hard to

maintain the system in the target set since the uncompromised

data (which we leverage for improved state reconstruction) is

itself too noisy. Other methods find it difficult to recover, let

alone maintain in the target state for more than one step.

Computational overhead. Fig. 13 shows the box plots of

the computation overhead for each step of the recovery on the

time horizon. Our MPC-based recovery method has the second

largest overhead since more computation (than LP or LQR) is

involved. But, if the MPC frequency is reduced (i.e. if the fre-

quency of linearization is reduced), then our proposed method

is applicable to real-time scenarios. On the other hand, our

MPC method outperforms the LP and LQR recovery results.

Moreover, if the non-linear dynamics (without linearization)

were directly applied to the recovery problem, we would have

the best recovery result because of zero adaption error. But the

nonlinear optimization takes too long and cannot be applied

to real-time scenarios. Therefore, from Fig. 13, there is a

trade-off between usability and recovery performance; and our

proposed method delivers both.

VI. CONCLUSION

In this work, we propose a novel framework for the recovery

of nonlinear CPS when faced with sensor attacks. Our frame-

work solves an MPC problem formulated every few time-steps

to generate control inputs for recovery to a target set within

a dynamically computed recovery deadline (to remain in a

safe set). It utilizes a model adaptor to linearize and discretize

nonlinear models for the MPC problem and computes both the

deadline and initial MPC state based on nonlinear reachability

analysis with Flow*. An evaluation of the nonlinear system

benchmarks alongside an analysis of recovery sensitivity to our

novel framework’s components demonstrate the effectiveness

of our approach.

220

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

This work was supported in part by NSF CNS-2143256,

NSF CNS-2143274, ONR N00014-20-1-2744, and the Air

Force under MOU FA8750-19-3-1000. The U.S. Government

is authorized to reproduce and distribute copies for Govern-

mental purposes notwithstanding any copyright or other re-

strictive legends. The views and conclusions contained herein

are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,

either expressed or implied, of the Air Force, the National

Science Foundation (NSF), the Office of Naval Research

(ONR), or the U.S. Government.

REFERENCES

[1] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in IEEE Intelligent Vehicles Sympo-

sium (IV). IEEE, 2011, pp. 163–168.

[2] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899–922, 2016.

[3] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations,” Trans-

portation Research Part A: Policy and Practice, vol. 77, pp. 167–181,
2015.

[4] N. Adam, “Workshop on future directions in cyber-physical systems
security,” in Report on workshop organized by Department of Homeland

Security (DHS), 2010.

[5] M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp. 9–20, 2017.

[6] S. Chaterji, P. Naghizadeh, M. A. Alam, S. Bagchi, M. Chiang, D. Cor-
man, B. Henz, S. Jana, N. Li, S. Mou et al., “Resilient cyberphysical
systems and their application drivers: A technology roadmap,” arXiv

preprint arXiv:2001.00090, 2019.

[7] S. Parkinson, P. Ward, K. Wilson, and J. Miller, “Cyber threats facing
autonomous and connected vehicles: Future challenges,” IEEE transac-

tions on intelligent transportation systems, vol. 18, no. 11, pp. 2898–
2915, 2017.

[8] M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal, H. M. Zhang,
J. Rowe, and K. Levitt, “Security vulnerabilities of connected vehicle
streams and their impact on cooperative driving,” IEEE Communications

Magazine, vol. 53, no. 6, pp. 126–132, 2015.

[9] A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and
K. Venkatasubramanian, “Security of autonomous systems employing
embedded computing and sensors,” IEEE micro, vol. 33, no. 1, pp. 80–
86, 2013.

[10] F. Kong, O. Sokolsky, J. Weimer, and I. Lee, “State consistencies
for cyber-physical system recovery,” in Workshop on Cyber-Physical

Systems Security and Resilience (CPS-SR), 2019.

[11] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in 57th Design Automa-

tion Conference. ACM, 2020.

[12] F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Interna-

tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018,
pp. 22–31.

[13] M. M. Waldrop et al., “No drivers required,” Nature, vol. 518, no. 7537,
p. 20, 2015.

[14] T. Sato, J. Shen, N. Wang, Y. Jia, X. Lin, and Q. A. Chen, “Dirty road
can attack: Security of deep learning based automated lane centering
under {Physical-World} attack,” in 30th USENIX Security Symposium

(USENIX Security 21), 2021, pp. 3309–3326.

[15] C. Zhou, Q. Yan, Y. Shi, and L. Sun, “DoubleStar: Long-Range
attack towards depth estimation based obstacle avoidance in autonomous
systems,” in 31st USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022, pp. 1885–1902.

[16] A. H. Rutkin, “spoofers use fake gps signals to knock a yacht off course,”
MIT Technology Review, 2013, online; accessed May 2020.

[17] H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Software-based
realtime recovery from sensor attacks on robotic vehicles,” in 23rd In-

ternational Symposium on Research in Attacks, Intrusions and Defenses

(RAID 2020), 2020, pp. 349–364.

[18] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery
for cyber-physical systems using linear approximations,” in 41st IEEE

Real-Time Systems Symposium (RTSS). IEEE, 2020.

[19] L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real-
time attack-recovery for cyber-physical systems using linear-quadratic
regulator,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, Sep.
2021. [Online]. Available: https://doi.org/10.1145/3477010

[20] L. Zhang, Z. Wang, M. Liu, and F. Kong, “Adaptive window-based
sensor attack detection for cyber-physical systems,” in Proceedings of

the 59th ACM/IEEE Design Automation Conference, ser. DAC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
919–924. [Online]. Available: https://doi.org/10.1145/3489517.3530555

[21] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal of

Field Robotics, vol. 31, no. 4, pp. 617–636, 2014.

[22] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of

the 18th ACM conference on Computer and communications security,
2011, pp. 75–86.

[23] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 895–912.

[24] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys

(CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[25] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, pp. 1–29, 2014.

[26] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

[27] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, 2018, pp. 801–816.

[28] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “Roboads:
Anomaly detection against sensor and actuator misbehaviors in mobile
robots,” in 2018 48th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). IEEE, 2018, pp. 574–585.

[29] ——, “Exploiting physical dynamics to detect actuator and sensor
attacks in mobile robots,” arXiv preprint arXiv:1708.01834, 2017.

[30] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in 2016 IEEE International Conference on Data Science and Advanced

Analytics (DSAA). IEEE, 2016, pp. 130–139.

[31] A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,” SAE Technical
Paper, Tech. Rep., 2017.

[32] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International

Conference on Information Assurance and Security. IEEE, 2010, pp.
92–98.

[33] F. Akowuah and F. Kong, “Real-time adaptive sensor attack detection
in autonomous cyber-physical systems,” in 27th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS). IEEE,
2021.

[34] F. A. T. Abad, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo,
“Reset-based recovery for real-time cyber-physical systems with tempo-
ral safety constraints,” in 2016 IEEE 21st International Conference on

Emerging Technologies and Factory Automation (ETFA), 2016, pp. 1–8.

[35] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-
physical systems,” in 2018 ACM/IEEE 9th International Conference on

Cyber-Physical Systems (ICCPS), 2018, pp. 10–21.

221

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

[36] J. Shin, Y. Baek, J. Lee, and S. Lee, “Cyber-physical attack detection and
recovery based on rnn in automotive brake systems,” Applied Sciences,
vol. 9, no. 1, 2019.

[37] K. Sridhar, R. Ivanov, V. Lesi, M. Juliato, M. Sastry, L. Yang, J. Weimer,
O. Sokolsky, and I. Lee, “A framework for checkpointing and recovery of
hierarchical cyber-physical systems,” arXiv preprint arXiv:2205.08650,
2022.

[38] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for
cyber-physical systems under adversarial attacks,” IEEE Transactions on

Automatic control, vol. 59, no. 6, pp. 1454–1467, 2014.

[39] N. Nower, Y. Tan, and A. O. Lim, “Efficient temporal and spatial data
recovery scheme for stochastic and incomplete feedback data of cyber-
physical systems,” in 2014 IEEE 8th International Symposium on Service

Oriented System Engineering, 2014, pp. 192–197.

[40] S. Z. Yong, M. Zhu, and E. Frazzoli, “Resilient state estimation against
switching attacks on stochastic cyber-physical systems,” in 2015 54th

IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp.
5162–5169.

[41] R. Ma, S. Basumallik, S. Eftekharnejad, and F. Kong, “Recovery-based
model predictive control for cascade mitigation under cyber-physical
attacks,” in 2020 IEEE Texas Power and Energy Conference (TPEC).
IEEE, 2020, pp. 1–6.

[42] ——, “A data-driven model predictive control for alleviating thermal
overloads in the presence of possible false data,” IEEE Transactions on

Industry Applications, vol. 57, no. 2, pp. 1872–1881, 2021.

[43] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting
uavs with reinforcement learning-assisted flight control under cyber-
physical attacks,” in 2020 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2020, pp. 7358–7364.

[44] Y. Tamir and C. H. Sequin, “Error recovery in multicomputers using
global checkpoints,” in 13th International Conference on Parallel Pro-

cessing (ICPP), 1984, pp. 32–41.

[45] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Transactions on Computer

Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[46] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers (TC), vol. 100, no. 11,
pp. 1328–1341, 1987.

[47] D. B. Johnson, “Distributed system fault tolerance using message
logging and checkpointing,” Ph.D. dissertation, Rice University, 1990.

[48] K.-F. Ssu, B. Yao, and W. K. Fuchs, “An adaptive checkpointing protocol
to bound recovery time with message logging,” in Proceedings of the

18th IEEE Symposium on Reliable Distributed Systems. IEEE, 1999,
pp. 244–252.

[49] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A sur-
vey of rollback-recovery protocols in message-passing systems,” ACM

Computing Surveys (CSUR), vol. 34, no. 3, pp. 375–408, 2002.

[50] M. Fiacchini, T. Alamo, and E. Camacho, “On the computation of
convex robust control invariant sets for nonlinear systems,” Automatica,
vol. 46, no. 8, pp. 1334–1338, 2010.

[51] M. Berz, Modern Map Methods in Particle Beam Physics, ser. Advances
in Imaging and Electron Physics. Academic Press, 1999, vol. 108.

[52] K. Makino and M. Berz, “Rigorous integration of flows and ODEs using
Taylor models,” in Proceedings of the 2009 conference on Symbolic

numeric computation (SNC’09). ACM, 2009, pp. 79–84.

[53] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Taylor model flowpipe
construction for non-linear hybrid systems,” in Proc. of RTSS’12, 2012,
pp. 183–192.

[54] X. Chen, “Reachability analysis of non-linear hybrid systems using
taylor models,” Ph.D. dissertation, RWTH Aachen University, 2015.

[55] X. Chen and S. Sankaranarayanan, “Decomposed reachability analysis
for nonlinear systems,” in Proc. of RTSS’16, 2016, pp. 13–24.

[56] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Proc. of CAV’13, ser. LNCS, vol.
8044, 2013, pp. 258–263.

[57] A. J. Sørensen, “Marine cybernetics, towards autonomous marine oper-
ations and systems,” Department of Marine Technology, NTNU, 2018.

[58] J. D. Hedengren, “A nonlinear model library for dynamics and control,”
Yeast, vol. 7, p. 24, 2008.

[59] A. Golabi, A. Erradi, and A. Tantawy, “Towards automated hazard
analysis for cps security with application to cstr system,” Journal of

Process Control, vol. 115, pp. 100–111, 2022.

[60] F. Sabatino, “Quadrotor control: modeling, nonlinearcontrol design, and
simulation,” 2015.

[61] R. Giorgiani do Nascimento, K. Fricke, and F. Viana, “Quadcopter
control optimization through machine learning,” in AIAA Scitech 2020

Forum, 2020, p. 1148.
[62] K. Sridhar and S. Sukumar, “Finite-time, event-triggered tracking con-

trol of quadrotors,” in 5th CEAS Specialist Conference on Guidance,

Navigation & Control (EurGNC 19) Milano, Italy, 2019.
[63] T. I. Fossen, Handbook of marine craft hydrodynamics and motion

control. John Wiley & Sons, 2011.

222

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

