2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS) | 979-8-3503-2176-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/RTAS58335.2023.00024

2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS)

Real-Time Data-Predictive Attack-Recovery
for Complex Cyber-Physical Systems

Lin Zhang*, Kaustubh Sridhar!, Mengyu Liu*, Pengyuan Luf,
Xin Chen?, Fanxin Kong*, Oleg Sokolsky', Insup Lee'

*Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY
TDepartmem‘ of Computer and Information Science, University of Pennsylvania, Philadelphia PA
iDepartment of Computer Science, University of Dayton, Dayton OH
Izhan120@syr.edu, ksridhar@seas.upenn.edu, mliu71@syr.edu, pelu@seas.upenn.edu,
xchend4 @udayton.edu, tkong03 @syr.edu, sokolsky @cis.upenn.edu, lee @cis.upenn.edu

Abstract—Cyber-physical systems (CPSs) leverage computa-
tions to operate physical objects in real-world environments, and
increasingly more CPS-based applications have been designed
for life-critical applications. Therefore, any vulnerability in such
a system can lead to severe consequences if exploited by ad-
versaries. In this paper, we present a data predictive recovery
system to safeguard the CPS from sensor attacks, assuming that
we can identify compromised sensors from data. Our recovery
system guarantees that the CPS will never encounter unsafe states
and will smoothly recover to a target set within a conservative
deadline. It also guarantees that the CPS will remain within the
target set for a specified period. Major highlights of our paper
include (i) the recovery procedure works on nonlinear systems,
(ii) the method leverages uncorrupted sensors to relieve uncer-
tainty accumulation, and (iii) an extensive set of experiments on
various nonlinear benchmarks that demonstrate our framework’s
performance and efficiency.

Index Terms—cyber-physical systems, security, real-time re-
covery, nonlinear systems

I. INTRODUCTION

Cyber-Physical Systems (CPSs) tightly integrate compu-
tational components and physical processes, which interact
in a feedback loop with the help of sensors, actuators, and
networking. The integration empowers critical applications and
services in various domains, such as transportation, health
care, the power grid, and industrial control [1]-[3]. Meanwhile,
new vulnerabilities in CPSs are emerging due to the transition
from isolated control architectures to open and autonomous
systems [4]-[9]. Different malicious attacks targeted at these
vulnerabilities are springing up, causing severe personal casu-
alties, social harm, and economic losses [10]-[12].

Sensor attacks, which corrupt sensor measurements, are
widely recognized as critical threats in CPSs for the fol-
lowing reasons. First, sensor attack surfaces are increasingly
expanding as CPSs become more and more complex and
open. For instance, there are more than 100 sensors in some
modern vehicles, and the number is growing with time. To
achieve high-level driving automation, vehicles rely on not
only more complicated sensors, such as cameras, LiDAR,
and IMU sensors, but also on traffic data through vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-
everything (V2X) communication [13]. Second, attackers can
launch sensor attacks without expensive equipment or solid

979-8-3503-2176-0/23/$31.00 ©2023 IEEE
DOI 10.1109/RTAS58335.2023.00024

209

domain knowledge. For example, attackers are able to pretend
to be road workers and install dirty road patches to compro-
mise the lane keeping system, causing the vehicle to leave the
road [14]. Another example is that an attacker without prior-
knowledge of perception algorithms can project pure light
onto the stereo cameras to inject a fake obstacle depth [15].
Third, traditional defense mechanisms for cyber systems are
inadequate to identify and respond to sensor attacks. Attackers
can non-invasively manipulate physical properties in the en-
vironment to corrupt sensor data, also known as transduction
attacks. For example, an attacker, without physical or cyber
access to GPS sensors, can use a radio transmitter broadcasting
fake GPS signals to steer a yacht off course [16]. Since all
components of CPSs are intact, traditional mechanisms are
unable to respond to such attacks. Fourth, a physical system
might already have considerably deviated from the desired
state before attacks are detected. This is because there is a
detection delay from the onset of an attack to its detection.
During the time interval, the deviation caused by the above
sensor attacks is a devastating repercussion for CPSs.

The urgent need to combat sensor attacks motivates many
attack recovery approaches. These recovery approaches mit-
igate the negative impacts of sensor attacks by correcting
deviations of physical states. For example, Fig. 1 illustrates
a recovery process for an autonomous vehicle. The vehicle
deviates from the center of lanes under a GPS spoofing
attack, and even goes towards the oncoming lane. A recovery
approach can drive the vehicle back to its own lane, and the
green line shows the recovery trajectory. Recovery approaches
can be divided into two threads. The first thread is the virtual-
sensor-based attack recovery [12], [17], which replaces the
corrupted sensor data with the virtual sensor data predicted
by the system model. On the basis of such predicted data, the
system relies on the original controller to steer the physical
states back to the desired states. The other thread is safety-
controller-based attack recovery [18], [19], which creates a
new dedicated controller to generate a recovery control se-
quence under attacks. The controller can be formulated as an
optimization problem with time and safety constraints.

However, these two existing recovery threads face several
challenges when applied to real systems. First, the virtual-

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Recover
Attack

¥
4 a‘ 3%
Fig. 1: Attack Recovery Demonstration on a Vehicle

sensor-based attack recovery relies on the original nominal
controller to recover the system, but nominal controllers are
not designed to handle attacks, lacking timing or safety guar-
antees. Second, real CPSs are complex and usually nonlinear,
so the recovery computational overhead on such systems is
extremely large. These methods reduce the complexity by
working on a linear model, which can be obtained by the
linearization of nonlinear systems around an equilibrium point,
or by system identification. Nevertheless, the linear model only
works well around the equilibrium point or in a small range.
Out of this range, there is a large modeling error, making
these methods fail to find a recovery solution. Third, uncer-
tainties, including noise and external disturbances, accumulate
over time. This happens because, after detecting the attack,
the existing methods assume that all sensors are attacked,
and, therefore, stop receiving feedback from physical sensors.
Without feedback, uncertainties cannot be rejected anymore
and accumulate, affecting the effectiveness of recovery.

To overcome these challenges, this paper proposes a new
real-time recovery method against senor attacks for nonlin-
ear CPSs. Once the detector identifies a sensor attack, the
proposed method takes over the nominal controller, efficiently
removing the negative impact caused by the attack and steering
the system to the desired states in real time.

Our main contributions are summarized as follows.

e For nonlinear CPSs, we propose an attack recovery system
with four components. The state predictor performs nonlinear
reachability analyses, making it possible to reconstruct the
initial state set of recovery. Based on that, the time oracle
computes a safety deadline online, after which the system
states may become unsafe and cause severe consequences
under current control inputs. Throughout the recovery, the
model adaptor keeps approximating the nonlinear system to
linear discrete-time models, enabling the generator to effi-
ciently obtain the recovery control sequence that can drive
the CPS to a target state before the safety deadline.

e The proposed method computes timing requirements,
online, in terms of recovery time. Sensor attacks deviate the
system’s physical states away from the desired states, and it is
impossible to anticipate this impact in advance. If the actual
physical state after an attack is closer to the unsafe set, a
shorter deadline should be chosen, and vice versa [20]. Thus,
the proposed method computes the safety deadline online
using the time oracle to better respond to different attacks.

e The proposed method makes full use of the uncompro-
mised sensor data, if any, to alleviate the accumulation of un-

210

certainty. The recovery control sequence generator uses good
sensor measurements as feedback at each activation, which
prevents the uncertainty from exploding in the uncorrupted
dimensions. Moreover, it leverages good sensor measurements
during state reconstruction also, which further relieves the
impact caused by uncertainties.

e The proposed method has low computational overhead.
First, the state predictor adopts a tool, Flow*, to perform
fast nonlinear reachability analysis. Second, the model adaptor
approximates the nonlinear and even nonconvex dynamics
into linear discrete-time models. Thus, the recovery controller
can solve optimization problems for linear systems instead
of nonlinear ones, reducing computational overhead. Also,
the linear approximation is kept updated with the current
state estimate and control input during recovery, and the
approximation is quite accurate within a small range. Thus,
accuracy is only minimally affected by the approximation.

e The proposed method checks the system safety before im-
plementing the recovery control sequence. The state predictor
performs the safety checking through reachability analysis for
the nonlinear system to guarantee a safe recovery. There is
a small probability that the recovery control fails to pass the
check; then a fail-safe method takes over.

e The paper evaluates the proposed method with several
numerical and high-fidelity simulators. The results show the
effectiveness of the proposed method, whereas the baseline
methods may fail to recover the physical states.

The rest of this paper is organized as follows. Section II
provides background and discussion of related work. Sec-
tion III gives preliminaries of our system’s recovery algorithm.
Section IV details the design of system components. Section V
validates our recovery system. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Current Research Focus. With the rise of CPS autonomy,
sensors are increasingly deployed to measure system states and
to perceive surroundings. However, new security vulnerabili-
ties in sensors come along, and sensor attacks spring up, such
as transduction attacks. Moreover, the launch of such attacks
becomes much easier, as the attack requires lower and lower
costs [21]-[23]. The urgent defense needs motivated many
attack detection works. The detectors leverage the system
model [24]-[29] or sensor correlations [11], [30]-[33] to find
anomalies compared to expected data. Note that, there usually
is a detection delay before the attacks are detected, and the
physical states have already considerably deviated from the
system’s desired states, even will reach the unsafe states in
the future. Thus, it is important to extend the benefits of
attack detection and remove the negative impact caused by
CPS attacks in time. Researchers place great expectations on
attack recovery techniques to achieve this goal.

Attack Recovery Works. CPS recovery is a sprouting field
that specifically researches how to correct a CPS’s behaviors
upon adversarial attacks. We divide these recovery techniques
into two main categories: shallow and deep recovery, with

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

the latter providing higher safety guarantees but having few
publications in the current state of the art.

We use the term shallow recovery for methods that aim to
fix affected CPS behaviors under attacks but have little to no
requirement on system states. One basic solution is to simply
restart the corrupted component while switching to a substitute
component to maintain system stability [34], [35]. Another
example of shallow recovery is to leverage redundancy, using
multiple components with the same functionality and taking
actions collectively, such as fusion on redundant sensors. Then,
upon a detected attack on some of these components, the
CPS isolates them from decision making [36]. Moreover,
specifically upon sensor attacks, the current state measurement
is corrupted but some system designs allow state estimation
via built-in software. For example, the system can use a
checkpointer to memorize the last trustworthy state and roll-
forward on its model to predict what the current actual state
should be [12], [17], [37]-[40].

On the other hand, deep recovery leverages prerequisite
knowledge of system states and aims at guiding the attacked
system back to pre-defined target states, which satisfy de-
sirable properties, such as safety, and maintain the system
there. For example, [18] designs a linear programming re-
covery controller to accomplish this goal, while a succeeding
work [19] replaces the control method with linear quadratic
regulator and achieves smoother trajectories on multiple linear
system benchmarks. This approach has been applied to real-
world scenarios such as power grids, where safe and unsafe
are defined by different levels of thermal loading [41], [42].
More than traditional controllers, machine learning researchers
have proposed learned control policies for deep recovery,
such as rescuing an attacked drone by control policies trained
via reinforcement learning [43]. The paper proposes a deep
recovery approach for non-linear systems.

Closest Related Work. The closest related work to this
paper is [18] and [19], identified as deep recovery. The
recovery system proposed in [18] provides an initial solution
to real-time recovery for CPS under sensor attacks. It builds a
linear-programming-based recovery controller that generates a
recovery control sequence bringing a physical system under
sensor attacks back to a target set in real-time. Then, the
LQR-based recovery system in [19] improves it by smoothing
the recovery state trajectory, maintaining physical states after
recovery, and considering a larger computational overhead.

However, several key aspects are overlooked in both works.
First, they assume that they recover the physical state of linear
time-invariant systems. However, most real-world systems are
nonlinear, and it is hard to find a linear approximation during
the entire recovery process. Second, they abandon sensor
measurements of all sensors once a sensor attack is detected,
even when only part of the sensors is corrupted. However,
the use of these uncompromised sensors could improve the
possibility of successful recovery and recovery performance.
This paper addresses these key aspects.

Scope of this Paper. To address the challenges, we pursue
real-time attack recovery, which steers a nonlinear physical

211

TABLE I: Nomenclature

[Symbols | Description

n dimension of state space

m dimension of control space

Xt system state estimate at the time ¢

ut control input at the time ¢

Xt overapproximation of x¢

T target state set C R™

F unsafe state set C R, FNT =0

tw time when the last trustworthy state is cached

ta unknown time when the attack begins

tr time when attack is detected and recovery begins

tr time when the first recovery control is implemented

tq deadline by which the system is in target set

tm time such that the system is maintained in target set
in [td, tm]

[} granularity of time; length of one control step

T number of control steps within which one optimiza-
tion computation is guaranteed to finish

J quadratic cost function of each optimization problem

Recovery Controller

‘ Adaptive Recovery Sequence Generator
Tmodel Thorizon
[Model Adaptor |+ State Predictor |+ Time Oracle | |'

Tstate estimate

|
[Observer | [Checkpointer | [Attack Diagnosis |-

|
[Sensors [« Physical Plant }+{ Actuators T o

Nominal Controller

Fig. 2: Real-time Data Predictive Recovery Overview

system back to a target state set before the recovery deadline
and maintains the state in the set for a while. Recovery
provides a time cushion for compromised parts to be reset, and
then the normal controller can retake control of the system.

Note that the recovery addressed in this work is different
from the recovery concept in computer systems. The latter is
to recover computing tasks, e.g., variables’ values, and thus
is limited to the cyber part [44]-[49]. In contrast, this paper
focuses on recovering the state of the physical system or the
physical state, e.g., the speed of a vehicle.

III. PRELIMINARIES AND SYSTEM OVERVIEW

This section explains the preliminaries of the real-time data
predictive attack-recovery system, including the system model
and the threat model. Then we summarize the overview of
system design, which will be discussed further in Section IV,
and give the problem statement and assumptions.

A. System Model

We aim to recover cyber-physical systems shown at the
bottom of Fig. 2, including a physical plant, a nominal
controller, sensors, and actuators. The system works at every
control step § in a periodic manner. First, the sensors mea-
sure the physical plant states. The controller then calculates
the state estimate based on the sensor measurements. Next,

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

the controller generates the control inputs # according to a
control algorithm and sends them to the actuators. Finally, the
actuators implement the control inputs # and drive the system
towards the desired or reference states. The state estimate x is a
vector of size n determined by the number of physical system
state variables (such as velocity, pressure, voltage, etc.); the
control input u is a vector of size m determined by the number
of control signals (such as throttle, steering angle, etc.).

The system plant follows the physical laws that can be
modeled as a continuous nonlinear system using an ordinary
differential equation in the form of Equation (1).

x=f(x,u)+d €]

where d is the disturbance term due to uncertainties. For
concise presentation, we assume that the system states are
fully observable, i.e., they can be directly determined from
sensor measurements, or x = y. However, in more general
cases, the state estimates x need to be calculated from sensor
measurements y by an observer, given an output equation
¥y = h(x) +v, where v is the sensor noise. We discuss how to
extend the system with an observer in Section IV-C1.

B. Threat Model

The CPS suffers from sensor attacks, where sensor attacks
aim at compromising the integrity or availability of sensor
data. The controller then generates inappropriate control inputs
based on malicious sensor data. We list some possible sensor
attack scenarios, but are not limited to these. For compromis-
ing integrity, (i) bias attacks change the value of sensor data
by adding a bias to them; (ii) replay attacks replace the current
sensor data with historical state ones. For compromising
availability, (iii) delay attacks defer the update of sensor data,
leading to stale state estimates. There is no assumption on
the number of compromised sensors. Our method, similar
to [18], [19], can operate when all sensors are compromised
but is the only framework that can leverage measurements
from uncompromised sensors. That is, measurements from
good sensors, if any, can only help to improve recovery
performance. We demonstrate the same in our experimental
results in Section V.

C. Problem Statement

We consider a nonlinear CPS described in Section III-A
under the sensor attacks shown in Section III-B. The physical
states deviate from the reference states under the influence of
such attacks. A recovery controller is triggered after the attack
diagnosis identifies the compromised sensors. The problem is
to design a recovery controller that can smoothly guide the
nonlinear system’s physical states to a target set 7 before
they reach the unsafe state set /. Note that it should leverage
uncompromised sensor data during recovery if possible.

D. Recovery Controller Overview

Our real-time data predictive recovery system is shown in
Fig. 2. The target CPS is in the bottom part of the figure,
and our system extends the original system to secure the

212

JE Unsgilfe étate Set

Q- - — [

(

ttlack

trustwlo
1
1

’
i
i
;
i
;
i i
| i
i :
| ‘
| |
i ‘
| ;
rthy f
‘ ‘
| i
| i
i |
. |
!
| i
: :
i
i
: v
i i
‘

é’T Target Si:;ate Set

' '

tw tq ty tr

Fig. 3: Illustration of Recovery Timeline

system under sensor attacks. The paper focuses on the recovery
controller shown in the blue shaded box, which includes (i)
adaptive recovery sequence generator, (ii) model adaptor, (iii)
state predictor, and (iv) time oracle.

When does the recovery controller take effect? The system
runs in two possible modes - normal mode and recovery mode.
Fig. 3 illustrates the timeline of how our recovery system
works. In normal mode, the system runs the original nominal
controller, and the system states follow the target states (also
known as reference states) without attacks. At an unknown
time ¢,, a sensor attack is launched, so the actual system states
begin deviating from the target states. There is a detection
delay (ty —t,) needed for the attack diagnosis to identify the
attack. At the time ty, the detector raises an alert indicating
the attack, and the system switches from normal to recovery
mode. In recovery mode, our recovery controller is activated.
Note that the recovery controller is designed to handle attacked
sensors, only running after detecting attacks.

How does the recovery controller work? The adaptive
recovery sequence generator draws upon the idea of model
predictive control. It formulates the recovery problem as an
optimization problem with time and safety constraints, but
only implements the first several recovery control inputs and
then optimizes again, repeatedly. Each optimization requires
the help of supporting components (Section IV-C) for updating
the formulation: the model adaptor provides the linear model
working on current states, reducing the modeling error; the
state predictor provides an accurate initial state for recovery,
relieving the uncertainty accumulation; the time oracle adjusts
the optimization horizon and time constraints, making a recov-
ery before the system states become unsafe. Note that, through
nonlinear reachability analysis, the initial state for recovery is
obtained from a trustworthy state provided by checkpointer,
and no measurements from attacked sensors are used.

E. Assumptions

We list our assumptions in this subsection. Note that the
assumptions about checkpointer, attack diagnosis, and target
set are fulfilled by the previous work, so they are outside the
scope of this paper.

We assume that the system operates a closed-loop control
process, and the plant can be nonlinear. Moreover, the system
is perturbed by noise. This assumption is detailed in Sec-

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

tion III-A. Also, sensor attacks make the nominal controller
generate inappropriate control inputs that lead to the deviation
from desired physical states, detailed in Section III-B.

For the CPS components, we assume that there is a
checkpointer that can record historical data, including state
estimations and control inputs. The data cover at least one
time step before the attack occurs. Such a checkpointer has
been described in detail in [12], [18], [19], [37]. Under the
assumption of fully observable states at the end of Section
III-A, this checkpointer caches the physical state x; at every
time step. In a general case, it records sensor measurement y.

Also, we assume a detection/diagnosis module that is able to
correctly locate the corrupted component before the system is
driven into an undesirable unsafe state. In our recovery system,
it can identify which sensors are compromised. The attack
diagnosis works give several solutions, such as the sensor
attack detectors proposed by [23], [27]. Note our method also
applies when all sensors are compromised. Uncompromised
sensors, if any, help improve recovery performance.

Furthermore, we assume that the recovery target state set
is within the control invariant set of the original nominal
controller, so that the nominal controller can take over when
it is available after recovery. The control invariant set can be
computed through [50]. We assume that the recovery control
sequence can be implemented to actuators, or we need a
redundant actuator in the systems.

IV. MODEL PREDICTIVE RECOVERY CONTROLLER

In this section, we provide an in-depth explanation of our
recovery controller, including the adaptive recovery sequence
generator and the supportive components: model adaptor, state
predictor, and time oracle.

A. Data Predictive Recovery Algorithm

The blue shaded box in Fig. 2 illustrates the data predictive
recovery controller. The controller consists of four components
that cooperate with each other. The adaptive recovery sequence
generator (Section IV-B), the core component, generates the
recovery control sequence and guides the physical state of
the CPS back to a target state. It formulates and solves an
optimization problem opt; with safety and time constraints in
every T control steps. During recovery, its input, an initial
reachable set X,y and a horizon N, comes from the state
predictor (Section IV-C1) and the time oracle (Section IV-C3),
respectively. In addition, the model adapter (Section IV-C2)
updates the linear approximation of the nonlinear dynamics
before formulating each optimization problem.

Algorithm 1 shows the real-time attack-recovery procedure,
and the critical time is reflected in the timeline (Fig. 3):

(i) Lines 3-4: Before the attack is detected at ¢y, the system
runs the original nominal controller in normal mode. The state
estimate may be corrupted by sensor attacks, while the actual
physical state may deviate from the desired state.

(ii) Lines 5-11: At detection time ¢, the system switches from
normal mode to recovery mode, where the recovery controller
takes over. Since the state estimate is compromised, the state

213

Algorithm 1 Extended Data Predictive Recovery

Input: historical data from checkpointer, attack detection/
diagnosis result, nonlinear system dynamics

QOutput: real-time control signal u; for 0 <t <t,,

while ¢ > 0 do

I:

2 switch ¢ do

3 case t <1y

4 Run with normal control

5: case t =1y

6: tq,t, < time oracle > deadline computing
7 X, < state predictor > state reconstruction
8 sys¢ <— model adaptor > model adaptation
9: opto(syse, Xt tm — tr) > first opt.
10: Uy, ...,U,_5 < uy > from nominal control
11: Run with u, > implement control input
12: case ty <t <1,

13: Run with #;,46,...,u4, 5 > cached control
14: case t, <t <t,

15: if t =t,. + KT§ with integer K > 0 then

16: Ui, ..., Ui (T—1)s < Opli D> opt. result
17: X475 + state predictor > reachability
18: sys; +— model adaptor > model adapt.
19: optr+1(syst, Xevrs, tm — (t +T9))
20: end if
21: Run with u, > implement control input

22: end while

predictor (Section IV-C1) performs a non-linear reachability
analysis and reconstructs the state estimate reachable set at ¢,
from a trustworthy state at time ¢, provided by checkpointer,
meanwhile, it uses good sensor data from t,, to ¢ to improve
prediction accuracy. Also, the algorithm calculates a safety
deadline ¢4 and a maintainable time ¢, using the time oracle
(Section IV-C3). Then, the model adaptor (Section IV-C2)
computes an updated linear approximation around current
states and control input from nonlinear dynamics. Based on
them, the adaptive recovery sequence generator (Section I'V-B)
formulates the first optimization problem opt, and begins to
solve it. Since the result of opty is not ready, it prepares the
control sequence for the preparation period [tf,t,) using the
last cached control input u; from the nominal controller.

(iii) Lines 12-13: During period (t¢,t,), the system runs with
the prepared control sequence, meanwhile solving optg.

(iv) Lines 14-21: From ¢, to t,,, for every T control step,
the state predictor predicts the initial reachable set of the
next optimization problem, i.e., X; 7s. In this process, intact
sensor data, if any, can improve prediction accuracy. Also, the
model adaptor updates the linear approximation of dynamics.
The recovery sequence generator starts to formulate and solve
a new optimization problem opt i 1. Consequently, the recov-
ery control sequence from optx will be ready in 7' control
steps, but only the first 7" control input will be implemented.
Note that finding a solution within ¢ is not necessary, since
optimization runs every 7" control step.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

B. Adaptive Recovery Sequence Generator

Our core component, adaptive recovery sequence genera-
tor, aims to recover the physical states into a target set T
before they touch an unsafe set . We consider continuous-
time and nonlinear systems in the form of Equation (1).
To efficiently compute recovery control inputs, we perform
local linearization and discretization online using the model
adaptor (Section IV-C2), and encode the linearized-discretized
model into the optimization problem. We use the subscript to
represent variables at a certain time hereinafter. For example,
u; represents the control input at time ¢. Note that our
approach also applies if we consider a discrete model from
the beginning.

1) Basic Data Predictive Recovery Formulation: After the
attack diagnosis identifies the corrupted sensors, the generator
formulates the recovery problem as a quadratic programming
problem with dynamics, time, and safety constraints. By
solving this problem, we get a recovery control sequence,
but we only implement the first control input and then repeat
this process in subsequent steps. Each optimization problem
updates the parameters, including the model from the model
adaptor, the initial state of recovery from the state predictor,
and the deadline from the time oracle.

The objective of these quadratic programming problems
guides the state steer towards reference state fast and smoothly:

J = (xn —x*)TQN(xN —x")

- @
+ Z (xr —x)TQ(x), — x*) + ul Ruy,
k=0

where x; and u; are the system state and control input variables
at it" control step; x* is the reference state; Q,Qn €
R™*™ R € R™ ™ are semi-definite symmetric matrices that
represent the state, the final state, and the control input cost
weight; N = D + M is the optimization horizon length,
where recovery time D = (ty — t)/J and maintainable time
M = (t;, —t)/d at the time t. A fast recovery steers states
to the reference state fast, and tends to achieve a small state
penalty, represented by the first two terms; A smooth recovery
uses small control effort, and tends to achieve a small control
penalty, represented by the third term.
The constraints are formulated as follows.

Xiy1 = Ax; +Bu; +c¢ Vi (3a)
u, €U Vi (3b)
XiNF=10 Vi € [0, M] (3¢)
x;, €T Vi € [D, M] (3d)

Notice that Eq. (3a) is the discrete linearized dynamic con-
straint provided by the model adapter as in Equation (7), with
parameters A, B and c. It is used to predict the plant’s future
evolution; Eq. (3b) limits our control inputs according to the
actuator’s capacity; Eq. (3c) ensures that all recovery states are
safe; Eq. (3d) makes sure that the system state goes back into
the target state set before the safe deadline ¢4 and maintains it
in the set for the rest of the optimization horizon until ¢,,,. Note

214

Unsé.fe Stat:b Set]F
Target Staté Set T f |
© @@]
ORI N ; ;

ty tr t,+T6 t,+2T6 --- tq tm t

Fig. 4: Illustration of Extended Model Predictive Recovery. @
denotes solving the i*" optimization problem, and | i | denotes
implementing the recovery control inputs computed from 7"

optimization problem.

that the optimization horizon is receding over time, thus the
computational overhead is also decreasing during the recovery.

However, there are some limitations in the standard data
predictive recovery formulation: (i) we did not consider the
computational overhead of optimization problems. It usually
takes more than one control step to solve this problem. Thus,
this recovery method may not be applied to complex systems
because the computational overhead is large. (ii) we did not
consider the uncertainty in the constraints in Eq. (3), such
as linearization error and estimation noises due to overap-
proximated reachable sets. Thus, some constraints are not
guaranteed to be met in real applications.

2) Extended Data Predictive Recovery Formulation: To
overcome the limitations above, we extend the basic formula-
tion by considering computational overhead and uncertainties,
shown in Fig. 4.

Considering that the computational overhead may be greater
than the control sampling time, the recovery sequence genera-
tor optimizes every I’ control steps instead of every step. Note
that the 7' control steps can cover computational overhead
and can be determined in advance. At time ¢y, the attack
diagnosis identifies the attack, and the generator begins to
formulate and solve the first optimization problem. Before
time ¢, = ¢y + 10, the generator can obtain the result of
the first optimization problem. From time ¢,, while it starts
to implement the first 7" control inputs computed by the first
optimization problem, it begins to formulate and solve the
second optimization problem. Similarly, at time ¢, + T, it
implements the first 7" control inputs computed by the second
optimization problem and begins to formulate the third one.
The recovery sequence generator repeats this process until time
t,, in such a pipeline manner.

To formulate each optimization problem, the generator
requires (i) the initial state =y and the uncertainty interval [
provided by the state predictor. Since x(contains good sensor
data, it can be seen as feedback, helping alleviate the accu-
mulation of uncertainty in uncompromised state dimensions.
(ii) the system model provided by the model adaptor, i.e. A,
B, and ¢ matrix. Since the linear model works well in a small

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

state range, the model adaptor keeps linearizing the nonlinear
dynamics around current states. The time-variant model helps
to reduce modeling errors. (iii) safe deadline ¢, provided by the
time oracle. The time oracle performs nonlinear reachability
analysis to compute a conservative deadline by which the
system may become unsafe. The deadline helps to guarantee
the safety of CPS. The detailed design of these supporting
components is described in Section IV-C. The constraints of
the optimization problem are reformulated as follows.

X0 € Xg=x0D Iy from state predictor (4a)
Xiy1 =Ax; +Bu; +c¢ Vi (4b)
u, €U Vi (4c)
x;N(FoAT) =10 Vi € [0, M] (4d)
x; €T A Vi € [D, M] (4e)

where at Eq. (4a), z(is the initial state of recovery with
uncertainty interval I that can be obtained from the state
predictor; Eq. (4d) and (4e) consider the effect of uncertainty
Iy, so the unsafe set is larger and the target set is smaller than
those of the basic data predictive recovery. Here, & is the
Minkowski sum defined as X @Y = {z +y|z € X,y €Y}
for any set X and Y'; © is the Minkowski difference such that
XY =,cy{z—ylzeX}

Furthermore, it is noted that the optimization horizon re-
duces T for every optimization problem. For example, the
horizon of the first optimization is (t,, — t¢.)/d, and the
horizon of the second becomes (t,,, —t,.)/d —T'. The reducing
horizon also leads to a reduction in the number of optimization
variables in optimization problems, so computational resources
are saved without hurting recovery performance. Note that
we can still guarantee safe and time constraints, although the
optimization horizon is reduced.

C. Supportive Components

The formulation of optimization problems requires the pa-
rameters of the supporting components, including the state pre-
dictor, the model adaptor, and the time oracle. This subsection
introduces each component in detail.

1) State Predictor: The state predictor performs nonlinear
reachability analysis to get the reachable set of states based
on historical data.

Input. It relies on (i) attack diagnosis result. The result indi-
cates which sensors are compromised and which sensors are
intact. (ii) historical states and control inputs from checkpoint.
The state at time t,, is the trustworthy state, and is not affected
by sensor attacks. The intact states during sensor attack can
also be used to relieve uncertainty accumulation. The control
inputs are used for reachability analysis. Since it does not use
compromised sensor data as input, the result is not affected
by sensor attacks.

Overview. Fig. 5 illustrates the process of successive calcu-
lation of reachable states. The gray-shaded area highlights a
fragment at time ¢. At time ¢, the reachable states (X, marked
in green) are obtained from the previous reachable analysis.

215

1 1
t—20 ! t i t+6
: :
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
T
reachability ! reachability,
analysis | analysis 1
1
L X :
L
intact state compromised reachable

Fig. 5: A fragment of successive calculation of reachable states
using the state predictor

H

:

estimates state estimates states

Also, current state estimates are obtained from the system
observer, but some state estimates are affected by sensor
attacks, marked in orange. We replace those compromised
ones with the corresponding reachable states, forming sensor-
adjusted reachable states X, which other components require.
From this set, we perform a nonlinear reachability analysis
and get the next reachable states. The state predictor repeats
the above steps to calculate the multiple-step reachable state.
The sensor-adjusted reachable state X; will be used as X
in equation (4a). In this process, the state predictor uses good
sensor measurements as feedback, preventing uncertainty from
exploding in the uncompromised dimension.

Reachability Analysis Given a historical state, we can use
the Taylor model-based reachability computation to obtain
an overapproximate estimation of the state at a later time.
Taylor models are originally proposed as overapproximate
representations for smooth functions [51], and are later used
in verified integration of nonlinear ODEs [52] and to compute
reachable set overapproximations for hybrid systems [53]-
[55]. To do so, we may directly use the state-of-the-art tool,
Flow* [56]. Since we only use the tool to compute an interval
reachable set overapproximation, our framework does not need
to handle Taylor models from scratch. For example, it can
compute a conservative estimation of the system state at ¢
when an attack is detected, which is also known as state
reconstruction. It takes the ODE (1), the latest trustworthy
state x,, as the initial state and the historical control sequence
that is used from t¢,, to ¢y, and computes an interval set (or
box) X that is guaranteed to contain the system state at t;.
Fig. 6 illustrates the use of Flow*.

Considering Observer. As stated at the end of Section III-A,
this algorithm assumes that states are fully observable for
concision, since computing state estimates is not our main
contribution. However, for more general cases, the above state
predictor can be extended and work with existing nonlinear
observers, which compute state estimates with good sensor
measurements. The observer operates in both normal and
recovery modes. As shown in Fig. 3, the observer uses the
original measurement function y h(x) + v before t,,
since all sensor measurements are reliable. In contrast, the
observer dynamic should be adjusted in the presence of the

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Interval overapproximation
omputed by Flow*.

/

v

All possible reachable set under the dynamics (1).

Fig. 6: Illustration of the use of Flow*.

attack to avoid the impact of attacks. After time t,,, some
sensor measurements could be compromised. The algorithm
trims the original measurement function to y' = h'(x) + v,
excluding the compromised sensor measurements indicated by
the attack diagnosis. The observer, for example the extended
Kalman filter, predicts state and covariance estimates with
checkpointed previous estimates and control input, and updates
the estimates with good sensor measurements. In this way, the
observer obtains state estimate X’ unaffected by attacks.
Since the observer requires a certain period for the state
estimates to converge during the start phase, we need to discuss
the impact of convergence time on recovery timing. For most
cases, since the observer also runs in the normal mode, the
trustworthy state estimate x,, calculated by the observer is
converged. When the attack is detected at time ¢, the observer
needs to reconstruct the state estimates x; with the trimed
measurement function from converged x,,. The computational
overhead of the reconstruction may enlarge the preparation
period from t; to t, (marked in orange in Fig. 3), where
t, is when the first recovery control input is implemented.
Moreover, it is undeniable that there exists an extremely rare
case that the system is attacked shortly after it starts operating,
and the trustworthy state estimate x,, has not yet converged.
In this case, the state estimate reconstruction must wait for
convergence, further extending the preparation period.
Tasks. There are four tasks for the state predictor:
(i) State reconstruction. At time ¢, the system state estimates
cannot reflect the actual system states because of sensor
attacks. Thus, the predictor needs to reconstruct the current
state reachable set Xy from a trustworthy state x,, provided
by the checkpointer. This process is demonstrated in the
reachability analysis above. (Line 7 of Algorithm 1)
(ii) Initial state calculation. The optimization problems for-
mulated by the adaptive recovery sequence generator require
an initial state of recovery. The state predictor can provide
sensor-adjusted reachable states as the initial state set Xo =
X0 @ Iy, where zg is the center of reachable states, and I is
the uncertainty interval. (Lines 7 and 17 of Algorithm 1)
(iii) Helper function. The state predictor is called by the
model adaptor and the time oracle. The model adaptor needs to
linearize and discretize the nonlinear system at current states,
which is provided by the state predictor. The time oracle
performs reachability analysis to find a safe deadline ¢4, after

216

which the system may touch the unsafe set.

(iv) Safety checker. Before implementing the recovery control
input, we use the state predictor to compute the reachable
states. If there is no intersection between the reachable states
and unsafe set F, the recovery is safe.

2) Model Adaptor: Optimizing using the nonlinear dy-
namic is time-consuming, and can hardly be solved online. To
reduce time overhead, linearized models can be used to ap-
proximate the original nonlinear system. However, a linearized
model from a nonlinear system only works well around the
operation or equilibrium point. The state deviation from the
point may cause a large modeling error. Also, the recovery
effectiveness depends on the model’s accuracy. Therefore, the
model adaptor keeps linearizing the nonlinear system during
recovery to obtain accurate linear models.

The following model adaptor has been widely used to
linearize and discretize a nonlinear continuous ODE to provide
the dynamics constraint for each optimization problem, which
is later formalized as Eq. (4b). Given a continuous nonlinear
system described as Eq. (1) and denoted as ¢, the adaptor
calculates a linear approximation from its first order Taylor
expansion around the point of interest X; and #;:

X, = Sﬂc(xtsut)
) AC

L [oltae _ % _
~ %Xy,) + o lea, (0 — X0) + ou, e @, (e — @) (5)
=A'x, +Bu; +¢
dp° dp° o
where A’ = Bft |xt,at, B’ = ai,, \xt,m, and ¢/ = ©° (X,) —
%% |z,.a, Xt — %% z,,a, -#;. In the implementation, the

point X, is obtained from the center of the reachable set
at time ¢, calculated by the state predictor. The point @
is the last control signal cached by the checkpointer. Since
discrete-time dynamics are required in optimization problems,
the model adaptor discretizes the linear approximation into
a discrete-time equation with a granular time step 6 > 0.
This discretization step is a direct result of integrating the
continuous time equation (5) and is given as follows.

A x4+ (A) (A —T)Bluy + oc’
~ (I+6A")x, + 6B'u, + ¢’

where I is the identity matrix with proper dimensions, and
¢ is the sampling time or the control interval. Thus, we ap-
proximate the nonlinear dynamics to the form of Equation (7),
where A =1+ 5A’, B=¢B’, and ¢ = dc’.

X156 = Ax; + Buy +¢

X465

(6)

@)

For example, on a simple control system x; = x? + u; with
one-dimensional x; and u;, we compute centers X; and #; from
the state predictor and perform Taylor expansion around this
point following Eq. (5).

xt :x?—l—ut %it+ﬁt+2it~(xt _jt)'i'l (llt —l_lt)
= 2% + Uy — 27 + Xy
That is, A’ = 2x,, B’ 1 and ¢’ —2x? + ¥;. the

discretization can be done by calling Eq. (6) with some time
step such as § = 0.01.

®)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

3) Time Oracle: The time oracle provides the horizon of
MPC problems by computing a conservative deadline t; by
which the system should be recovered and a maintainable
deadline t,, by which the system states can be maintained
in the target state set once they are recovered into the set.
This component is first used in [19] for linear systems, and
this paper extends it to nonlinear systems.

At the time ty, it leverages the state predictor and calculates
the reachable state set of each following control step as if the
norminal controller was running. If the upper or lower bound
falls into the unsafe set, then there is a possibility that a severe
consequence may happen. Thus, we choose the last time step
before unsafe as our safety deadline ¢4. Note that this analysis
assumes that we do not take any recovery actions, so it is a
conservative deadline. Then, it adds a constant maintenance
period M to obtain the maintainable deadline t¢,, = t4 + M.

V. EVALUATION

In this section, we validate our method using three non-
linear system simulators and highlight its effectiveness with
observations and result analysis.

A. Experiment Environment

We implement a nonlinear system simulation tool using
Python. We write these benchmarks’ ODE and sensor attack
scenarios in a configuration file. Then, the tool can run each
configuration one by one. In this process, the necessary data,
including system states, sensor values, and control input, are
recorded to plot the results. The experiments are implemented
on a 64-CPU server, where each one is an Intel(R) Xeon(R)
Gold 6248R CPU @ 3.00GHz. The optimizations are solved
by the cvxpy library with OSQP solver. Pyinterval library is
applied for the interval arithmetic of the MPC.

B. Non-linear systems benchmark

We consider three nonlinear system benchmarks: the con-
tinuously stirred tank reactor (CSTR), the quadrotor, and the
naval vessel. They are representative CPSs, used in many
works, from different domains. The CSTR benchmark study
presents an interesting setup for industrial sabotage, the vessel
benchmark has very long control steps, and the quadrotor
with its large number of states tests the scalability of each
component in the proposed recovery controller.

CSTR: In CSTR [58] dynamics, the exothermic reaction
of the species A — B is considered with the concentration
of A (C4) and the reactor temperature (7)) as states. The
control input is given by the temperature of the cooling jacket
(T). The exact dynamics given various system parameters
(ko,Caf,q, V,E,R,p,Cp,, Ty, AH,UA) is as follows,

VCa = q(Cas —Ca) — koexp (%) VCa
; -E)
pCLVT = pCprq (Ty — T) + AHkg exp (ﬁ) VCa
+UA(Tc —T)

We utilize a PID controller to stabilize the temperature 7.
Furthermore, we consider a bias sensor attack scenario for

217

CSTR where the temperature sensor values are compromised
like in [59], and the bias parameter is shown in TABLE II.

Quadrotor: The quadrotor dynamics [23], [60]-[62] de-
scribe the evolution of its attitude and position with 12 states:
roll (¢), pitch (0), yaw (v), roll rate (wg), pitch rate (wg),
yaw rate (w), 3D positions and 3D velocities. The control
input includes that for thrust, roll, pitch, and yaw represented
by Uy, Uy, Uy, Uy. Given inertias (I, I,,I.), mass (m) and
acceleration of gravity (g), it is given as,

Uy

¢ = wy, w¢=ﬁ+91/} LI;IZ

6= we, Wp = %‘j + (;51/) 7&1;11

PR SN

T =g, Up= %(cos(qﬁ) sin(6) cos(v)) + sin(¢) sin(v))
Yy=uvy, Oy = 2t(cos(¢)sin(f)sin(y) — sin(¢) cos(v)))
Z=w;, 0= Stcos(p)cos(f) —g

(10)
The state-space model is abstracted from a high-fidelity simu-
lator AirSim that Microsoft developed using the Unreal engine
as shown in Fig. 7b. A PID controller is used to maintain the
quadrotor at a certain height. Here, we consider the sensor
bias attack scenario in which the attacker compromises height
sensors resulting in incorrect feedback (see [18], [19]).
Vessel: The vessel dynamics describe the generic ship with
3 DoF [57], [63]. The state-space model is adapted from
the lecture notes of Marine Cybernetics and the high-fidelity
simulator developed from NTNU AUR-lab which implements
the Matlab scripts in the VESSELS catalogue of the MSS
toolbox. The simulator simulates the vessel shown in Fig. 7c.
The model implements the basic components of the ship such
as engine, propeller, rudder, etc., and considers the whole
model as a system. There are 8 states in the system, which are
the east and north positions, yaw, their velocities, the angular
shaft speed of the propeller, and the current of the DC motor.
Two PID controllers are used to maintain the surge speed
of the vessel and the yaw of the vessel. Here, we consider the
bias sensor attack scenario where the attacker compromises
speed sensor, resulting in over speeding.

C. Experiment Settings

All experiment settings are given in Table II. We chose
our CSTR settings, including reference, frequencies (dt, MPC
frequency), delay, safe/target sets based on previous work in
[58]. We tuned a PID controller to stabilize the model within
control limits determined by the physical properties of the
CSTR system [58]. For the quadrotor, we build on the settings
for the linearized model [19], while increasing the system
frequency to 100Hz (dt=0.01s). We tune a PID controller for
this increased speed and broader control limits (as given in
Table II’s second column). Finally, for the Naval Vessel, we
adapt reference, frequency, safe/target set settings from [57],
and tune two PID controllers to stabilize the reference speed.
Our control limits are again chosen based on the actuator
properties of the vessel [57]. In all three benchmarks, we chose
asymmetric positive noise to clearly observe the performance
of the recovery algorithms. Symmetric noises, on the other

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Motor —

—

<Jo
Species A
Species B
Cooli —
Tackets —=
= & ©
(a) CSTR (b) Drone from AirSim (c) Vessel model 1:70 scale [57]
Fig. 7: Numerical and High-Fidelity CPS Simulators
360 i Ur= : 2.5 :
—_ none none none
2340 Ip s Ip =20 lar
(3] 26 lgr 'y
5 — lar o £1.5! ssr
© 320 ssr 3 SsF 5 mpc
8_ —— mpc g 51 mp? o 31.0' E— =_=:
£ 300 i : g ‘
© ! -
280 wec : | Time [sec] 0 Time [sec]
8 9 10 11 12 44 26 28 30 32 34 36 995 300 305 310 315 3320 325

Fig. 8: Performance of our method (MPC recovery control) compared to the baselines (no recovery, LP recovery control, LQR
recovery control, and Software Sensor Recovery or SSR) on three benchmarks: continuous stirred tank reactor (CSTR) control
[left], quadrotor altitude control [middle], naval vessel control [right].

360———— 360 ; 360
— —— hone . —— hone — —— hone
X340 Ip X 340 Ip X340 Ip
< lar _— o < Iqr [lqr
% 320 ssr — 3 % 320 ssr ‘E 320 ssr
3 mpc 3 mpc 3 mpc
5 300 - E 300 .E 300
Time [sec sec Time {sec
2805 10 2 14 16 2805 9 10 11 2 B30 85 90 95 100 105
Fig. 9: Sensitivity analysis to bias values of {—25,—30, —35} on the CSTR benchmark.
360 : 360 ; 360
. —— none — —— none — none
<340 Ip X340 Ip X340 Ip
[[
5 — lar = — lar g lqr
© 320 ssr © 320 ssr ® 320 ssr
I —— mpc 3 — mpc g — mpc
5 300 \ ‘ 5 300 g 300
Tirmefsec sec Time [sec
280g 10 12 14 6 %% 9 10 11 12 B30 &5 90 95 100 105 110
Fig. 10: Sensitivity analysis to detection delay values of {0.5,1.0,1.4} on the CSTR benchmark.
hand, have little impact on recovery, since the negative and CSTR Quadrotor Naval Vessel
.. . . . attacked state Temp. Altitude Speed
positive noises offset each other. Our implementation can be reference 300 K 5m 0.55 m/s
found at https://github.com/CPSEC/nonlinear-recovery. dt 0.1s 0.01s s
noise unif[0, 0.1] unif[0, 2e-4] unif[0, .015]
. detetection delay | I's 0.2s 10s
D. Baselines bias 30K Im 0.5 mls
- safe set (250, 360) K (0,200) m (0, 150) m/s
We compare the. proposed da.ta—predlctlve recovery method farget set (299.301) K (48.52)m (0.5, 0.9) m/s
approach (mpc) with four baselines. We also add an observer control limits (250, 350) K (-10,100) N [(0, 2), (-1, 1)]
to our method and include it in the comparisons as mpc_obs. MPC freq. 10 Hz 10 Hz 1 Hz
(i) no recovery (none). This baseline does not take any ‘ P=0.50 P=100 P=0.45, 0.1
t fter the detection of sensor attacks Orig Controller 17133 1=0 1=0.05, 0
rf:‘covery countermeasures a . D=-0.05 D=19 D=0, 3.5
(ii) software-sensor-based recovery (ssr) [12], [17]. After
the detection of sensor attacks, the baseline replaces the TABLE II: Settings used in each benchmark.

corrupted physical sensor data with the software sensor data
predicted by the linear system model.

218

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

360 i 360 T 360 i
— —— hone — —— hone — —— none
X340 Ip X340 Ip X340 Ip
() [[
E — lgr é — lgr 5 — lgr
© 320 ssr © 320 ssr ® 320 ssr
3 — mpc \ 3 — mpc g — mpc
5 300 w 'E 300 5 300 \m
ec sec sec]
2808 9 10 11 12 13 2808 9 10 11 12 2808 9 10 11 12
Fig. 11: Sensitivity analysis to noise with upper bounds of {0.4,0.1,0.6} on the CSTR benchmark.
7 i 7 i 7 i :
- fone —t— hone —— honge
. Ip = Ip . Ip
Z6| lgr 26 lgr & 67|l Igr
@ L S
3 ssr 3 ssr 2 ssr
= &l =—Mpc = Jl 5—Mpc £ el — mpc
s5 E54 2 58
< s mpc_obs RN mpcobs 0 T mpc_obs
] ? Time [sec]] : Time [sec] i Time [sec]
%.4 2.6 2.8 3.0 3.2 3.4 3.6 %.4 2.6 2.8 3.0 3.2 3.4 3.6 %.4 2.6 2.8 3.0 3.2 3.4 3.6

Fig. 12: Sensitivity analysis of recovery with an observer to increasing noise with upper bounds of {0.05, 0.1, 0.25} x10~3

on the Quadrotor benchmark.

(iii) linear-programming-based recovery (Ip) [18]. The base-
line formulates the recovery problem as a linear programming
optimization problem. By solving this problem, it gets a
recovery control sequence that can steer the system states back
to the target set before a safe deadline.
(iv) linear-quadratic-regulator-based recovery (Iqr) [19].
The baseline extends the LP-based recovery by considering
state and control input penalty in the objective, and also can
maintain the system states in the target set for a while.
Given that all of the above baselines are designed for linear
systems. To apply them to our nonlinear benchmarks, we
obtain linear models by linearizing the nonlinear systems over
the equilibrium point or the operating point.

E. Recovery Effect

We compared the proposed method with four baselines for
the three benchmarks. We plot the actual system physical
states in Fig. 8, which shows the recovery process targeting
sensor attacks. The red line shows the physical states under
attacks without any recovery. The cyan, blue, and orange
curves are actual physical states that use linear-programming-
based recovery, linear-quadratic-regulator-based recovery, and
software-sensor-based recovery benchmarks.

We can get the following observations from them: Without
recovery, the system states deviate from the target states,
even reaching the unsafe states. When there is a bias
attack, i.e., adding a bias to sensor measurement, the controller
computes an error between state estimate and reference state.
This error makes the controller generate a control input to
eliminate this error, resulting in deviating from the reference
state. For example, in the CSTR benchmark, the red curve
goes out of the figure, i.e., reaching the unsafe set. For other
benchmarks, although the system states do not reach the unsafe
set with any countermeasures, the performance of the CPSs
is affected. The system states keep deviating from the target

219

states. If we choose a larger bias, the system states may also
reach the unsafe set.

The linear model based recovery method may fail to find
a recovery control sequence. For Ip and Iqr baselines, we do
not use the original deadline estimator, because they often give
a short deadline, resulting in failure to find a recovery control
sequence. The short deadline comes from the modeling error.
When the error is large, the reachability analysis may quickly
touch the unsafe set and get a short deadline.

The proposed method steers the system states closest
to the reference states. For the CSTR benchmark, ssr and
Ip do not drive the system state to the target set before the
deadline. For the quadrotor benchmark, the lqr baseline does
not drive the physical states to the deadline eventually, and the
final recovered states of the proposed method are closer to the
reference state than other baselines. This may be caused by
uncertainty accumulation. The baseline methods assume that
all sensors are not reliable, and do not get any feedback from
sensors. Thus, they cannot reject the external disturbance, and
cause an inaccurate recovery eventually.

F. Sensitivity Analysis.

In order to clearly show how different parameters affect the
methods’ performance, it is ideal to choose a benchmark that
has small inertia. Therefore, we perform sensitivity analyses
on the CSTR benchmark, and observe changes to variation
in attack intensity, detection delay, and noise intensity. We
compare all methods by their ability to recover to the target set
without encountering the unsafe set within the deadline, their
time of recovery, and their maintainable time in the target set.
Impact of Attack Intensity. The experiment changes the value
of bias added to the sensor measurement, and the biases in
the experiments are -25, -30, and -35K. There are two main
observations from Fig. 9: First, the SSR baseline and the
proposed method performed well if the bias is set to -25.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

Both can drive the system to the target set and maintain it
before the deadline. The LQR and LP baseline cannot achieve
it. Furthermore, the proposed method can drive the system to
the target set and maintain it even when the bias is set to -
30 and -35K since the proposed MPC-based method recovery
takes less time to recover the system to the target set. A lower
attack bias situates the system state closer to the target set
at detection time. Yet, we see that methods using linearized
models struggle to overcome the accumulation of uncertainty
even from a state with a lower bias. SSR, enabled by a
nonlinear model in state reconstruction, but with only a linear
model during recovery is seen to recover with a large delay
compared to our approach. With higher bias, and hence a state
further away from the target set at detection time, all other
methods struggle to recover and maintain in the target set.
Impact of Detection Delay. Fig. 10 shows the recovery
results under different detection delays. There are two main
observations: First, both SSR and the proposed method can
drive the system to the target set and maintain it before
the deadline if the detection delay is 0.5s. LQR and LP
cannot achieve recovery before the deadline. Secondly, the
SSR baseline cannot achieve recovery before the deadline if
the detection delay increased to 1s and 1.4s since there is
less recovery time. A decrease in detection delay prevents the
significant drift from the target state during attack time. Yet,
again, only SSR is able to recover but is unable to maintain in
the target state without a controller that optimizes for maintain
time. On the other hand, a longer detection delay pushes the
system further away from the target set and prevents any other
method from recovering within the deadline.

Impact of Uncompromised Sensors. Across all three simula-
tors in Fig. 8 and analyses in Figs. 9, 10, 9, our method lever-
ages the uncompromised sensor information, while LQR and
LP cannot do so. Thus, LQR and LP consistently take longer
to recover (sometimes after the deadline), and are unable to
maintain states in the target set even with these requirements
encoded in the optimization problem formulations.

Impact of an observer. We identify the impact of an observer
on the quadrotor benchmark (instead of the CSTR benchmark).
The CSTR benchmark only has two directly measured state
elements. Hence, adding an observer does not create any
measurable change. On the other hand, the quadrotor sensors
only measure four (out of twelve) elements of the state —
height, roll rate, pitch rate, and yaw rate. Height is obtained
from an ultrasonic sensor below the quadrotor. The attitude
rates are obtained from an onboard inertial measurement unit.
We use an extended Kalman filter (EKF) to estimate the full
state (with twelve elements). This additional observer step
increases the computational overhead minimally (see Fig. 13).
Moreover, as seen in the left plot of Fig. 12, the observer does
not significantly affect recovery at lower noise thresholds. With
increased noise, as seen in the right plot of Fig. 12, there is
an increased deviation from the tracked state after recovery.
And hence, reduced maintainability in the recovered state.
Thus, with an increase in noise, while recovery to the desired
region is not affected, maintainability over a long horizon in

220

0.6 ° Too
Long.
0.4 °
0.2 —
none Ip lgr ssr mpc mpc_obs nonlinear

Fig. 13: Computational overhead (in seconds) for all methods
on the Quadrotor benchmark. For both LP and LQR, the
outlier point on top represents the overhead in formulating
and solving the problem at time step ;.

the desired region may be affected.

Impact of Noise intensity. Two types of noise were imple-
mented on the sensors, uniform noise, and white noise. The
lower bound of these noises is 0, and we tested our method
with different levels of upper bounds for the noises. Fig. 11
shows that the proposed method can drive the system to the
target set and maintain it when the noise upper bound is set
to 0.1 and 0.4. None of the baselines can achieve before the
deadline except our proposed method. If the noise upper bound
is large, our proposed method recovers but finds it hard to
maintain the system in the target set since the uncompromised
data (which we leverage for improved state reconstruction) is
itself too noisy. Other methods find it difficult to recover, let
alone maintain in the target state for more than one step.
Computational overhead. Fig. 13 shows the box plots of
the computation overhead for each step of the recovery on the
time horizon. Our MPC-based recovery method has the second
largest overhead since more computation (than LP or LQR) is
involved. But, if the MPC frequency is reduced (i.e. if the fre-
quency of linearization is reduced), then our proposed method
is applicable to real-time scenarios. On the other hand, our
MPC method outperforms the LP and LQR recovery results.
Moreover, if the non-linear dynamics (without linearization)
were directly applied to the recovery problem, we would have
the best recovery result because of zero adaption error. But the
nonlinear optimization takes too long and cannot be applied
to real-time scenarios. Therefore, from Fig. 13, there is a
trade-off between usability and recovery performance; and our
proposed method delivers both.

VI. CONCLUSION

In this work, we propose a novel framework for the recovery
of nonlinear CPS when faced with sensor attacks. Our frame-
work solves an MPC problem formulated every few time-steps
to generate control inputs for recovery to a target set within
a dynamically computed recovery deadline (to remain in a
safe set). It utilizes a model adaptor to linearize and discretize
nonlinear models for the MPC problem and computes both the
deadline and initial MPC state based on nonlinear reachability
analysis with Flow*. An evaluation of the nonlinear system
benchmarks alongside an analysis of recovery sensitivity to our
novel framework’s components demonstrate the effectiveness
of our approach.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

This work was supported in part by NSF CNS-2143256,
NSF CNS-2143274, ONR NO00014-20-1-2744, and the Air
Force under MOU FA8750-19-3-1000. The U.S. Government
is authorized to reproduce and distribute copies for Govern-
mental purposes notwithstanding any copyright or other re-
strictive legends. The views and conclusions contained herein

are

those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force, the National
Science Foundation (NSF), the Office of Naval Research
(ONR), or the U.S. Government.

[1]

[14

[15

REFERENCES

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in IEEE Intelligent Vehicles Sympo-
sium (IV). 1EEE, 2011, pp. 163-168.

N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899-922, 2016.

D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167-181,
2015.

N. Adam, “Workshop on future directions in cyber-physical systems
security,” in Report on workshop organized by Department of Homeland
Security (DHS), 2010.

M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp. 9-20, 2017.

S. Chaterji, P. Naghizadeh, M. A. Alam, S. Bagchi, M. Chiang, D. Cor-
man, B. Henz, S. Jana, N. Li, S. Mou et al., “Resilient cyberphysical
systems and their application drivers: A technology roadmap,” arXiv
preprint arXiv:2001.00090, 2019.

S. Parkinson, P. Ward, K. Wilson, and J. Miller, “Cyber threats facing
autonomous and connected vehicles: Future challenges,” IEEE transac-
tions on intelligent transportation systems, vol. 18, no. 11, pp. 2898—
2915, 2017.

M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal, H. M. Zhang,
J. Rowe, and K. Levitt, “Security vulnerabilities of connected vehicle
streams and their impact on cooperative driving,” IEEE Communications
Magazine, vol. 53, no. 6, pp. 126-132, 2015.

A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and
K. Venkatasubramanian, “Security of autonomous systems employing
embedded computing and sensors,” IEEE micro, vol. 33, no. 1, pp. 80—
86, 2013.

F. Kong, O. Sokolsky, J. Weimer, and I. Lee, “State consistencies
for cyber-physical system recovery,” in Workshop on Cyber-Physical
Systems Security and Resilience (CPS-SR), 2019.

T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in 57th Design Automa-
tion Conference. ACM, 2020.

F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). 1EEE, 2018,
pp. 22-31.

M. M. Waldrop et al., “No drivers required,” Nature, vol. 518, no. 7537,
p. 20, 2015.

T. Sato, J. Shen, N. Wang, Y. Jia, X. Lin, and Q. A. Chen, “Dirty road
can attack: Security of deep learning based automated lane centering
under {Physical-World} attack,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 3309-3326.

C. Zhou, Q. Yan, Y. Shi, and L. Sun, “DoubleStar: Long-Range
attack towards depth estimation based obstacle avoidance in autonomous
systems,” in 31st USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022, pp. 1885-1902.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. H. Rutkin, “spoofers use fake gps signals to knock a yacht off course,”
MIT Technology Review, 2013, online; accessed May 2020.

H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Software-based
realtime recovery from sensor attacks on robotic vehicles,” in 23rd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), 2020, pp. 349-364.

L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery
for cyber-physical systems using linear approximations,” in 4/st I[EEE
Real-Time Systems Symposium (RTSS). 1EEE, 2020.

L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and 1. Lee, “Real-
time attack-recovery for cyber-physical systems using linear-quadratic
regulator,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, Sep.
2021. [Online]. Available: https://doi.org/10.1145/3477010

L. Zhang, Z. Wang, M. Liu, and F. Kong, “Adaptive window-based
sensor attack detection for cyber-physical systems,” in Proceedings of
the 59th ACM/IEEE Design Automation Conference, ser. DAC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
919-924. [Online]. Available: https://doi.org/10.1145/3489517.3530555
A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal of
Field Robotics, vol. 31, no. 4, pp. 617-636, 2014.

N. O. Tippenhauer, C. Pépper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 75-86.

R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 895-912.

J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1-36, 2018.

R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, pp. 1-29, 2014.

R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 801-816.

P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “Roboads:
Anomaly detection against sensor and actuator misbehaviors in mobile
robots,” in 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 1EEE, 2018, pp. 574-585.
, “Exploiting physical dynamics to detect actuator and sensor
attacks in mobile robots,” arXiv preprint arXiv:1708.01834, 2017.

A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). 1EEE, 2016, pp. 130-139.

A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,” SAE Technical
Paper, Tech. Rep., 2017.

M. Miiter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International
Conference on Information Assurance and Security. 1EEE, 2010, pp.
92-98.

F. Akowuah and F. Kong, “Real-time adaptive sensor attack detection
in autonomous cyber-physical systems,” in 27th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2021.

F. A. T. Abad, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo,
“Reset-based recovery for real-time cyber-physical systems with tempo-
ral safety constraints,” in 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), 2016, pp. 1-8.
F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-
physical systems,” in 2018 ACM/IEEE 9th International Conference on
Cyber-Physical Systems (ICCPS), 2018, pp. 10-21.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

(36]

(37]

(38]

[39]

[40]

[41

9
=

J. Shin, Y. Baek, J. Lee, and S. Lee, “Cyber-physical attack detection and
recovery based on rnn in automotive brake systems,” Applied Sciences,
vol. 9, no. 1, 2019.

K. Sridhar, R. Ivanov, V. Lesi, M. Juliato, M. Sastry, L. Yang, J. Weimer,
O. Sokolsky, and I. Lee, “A framework for checkpointing and recovery of
hierarchical cyber-physical systems,” arXiv preprint arXiv:2205.08650,
2022.

H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for
cyber-physical systems under adversarial attacks,” IEEE Transactions on
Automatic control, vol. 59, no. 6, pp. 1454-1467, 2014.

N. Nower, Y. Tan, and A. O. Lim, “Efficient temporal and spatial data
recovery scheme for stochastic and incomplete feedback data of cyber-
physical systems,” in 2014 IEEE S8th International Symposium on Service
Oriented System Engineering, 2014, pp. 192-197.

S. Z. Yong, M. Zhu, and E. Frazzoli, “Resilient state estimation against
switching attacks on stochastic cyber-physical systems,” in 2015 54th
IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp.
5162-5169.

R. Ma, S. Basumallik, S. Eftekharnejad, and F. Kong, “Recovery-based
model predictive control for cascade mitigation under cyber-physical
attacks,” in 2020 IEEE Texas Power and Energy Conference (TPEC).
IEEE, 2020, pp. 1-6.

——, “A data-driven model predictive control for alleviating thermal
overloads in the presence of possible false data,” IEEE Transactions on
Industry Applications, vol. 57, no. 2, pp. 1872-1881, 2021.

F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting
uavs with reinforcement learning-assisted flight control under cyber-
physical attacks,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). 1IEEE, 2020, pp. 7358-7364.

Y. Tamir and C. H. Sequin, “Error recovery in multicomputers using
global checkpoints,” in 13th International Conference on Parallel Pro-
cessing (ICPP), 1984, pp. 32-41.

K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Transactions on Computer
Systems (TOCS), vol. 3, no. 1, pp. 63-75, 1985.

K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers (TC), vol. 100, no. 11,
pp. 1328-1341, 1987.

D. B. Johnson, “Distributed system fault tolerance using message
logging and checkpointing,” Ph.D. dissertation, Rice University, 1990.
K.-F. Ssu, B. Yao, and W. K. Fuchs, “An adaptive checkpointing protocol
to bound recovery time with message logging,” in Proceedings of the
18th IEEE Symposium on Reliable Distributed Systems. 1EEE, 1999,
pp. 244-252.

E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A sur-
vey of rollback-recovery protocols in message-passing systems,” ACM
Computing Surveys (CSUR), vol. 34, no. 3, pp. 375-408, 2002.

M. Fiacchini, T. Alamo, and E. Camacho, “On the computation of
convex robust control invariant sets for nonlinear systems,” Automatica,
vol. 46, no. 8, pp. 1334-1338, 2010.

M. Berz, Modern Map Methods in Particle Beam Physics, ser. Advances
in Imaging and Electron Physics. Academic Press, 1999, vol. 108.
K. Makino and M. Berz, “Rigorous integration of flows and ODEs using
Taylor models,” in Proceedings of the 2009 conference on Symbolic
numeric computation (SNC’09). ACM, 2009, pp. 79-84.

X. Chen, E. Abrahdm, and S. Sankaranarayanan, “Taylor model flowpipe
construction for non-linear hybrid systems,” in Proc. of RTSS 12, 2012,
pp. 183-192.

X. Chen, “Reachability analysis of non-linear hybrid systems using
taylor models,” Ph.D. dissertation, RWTH Aachen University, 2015.
X. Chen and S. Sankaranarayanan, “Decomposed reachability analysis
for nonlinear systems,” in Proc. of RTSS’16, 2016, pp. 13-24.

X. Chen, E. Abrahém, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Proc. of CAV’13, ser. LNCS, vol.
8044, 2013, pp. 258-263.

A. J. Sgrensen, “Marine cybernetics, towards autonomous marine oper-
ations and systems,” Department of Marine Technology, NTNU, 2018.
J. D. Hedengren, “A nonlinear model library for dynamics and control,”
Yeast, vol. 7, p. 24, 2008.

A. Golabi, A. Erradi, and A. Tantawy, “Towards automated hazard
analysis for cps security with application to cstr system,” Journal of
Process Control, vol. 115, pp. 100-111, 2022.

F. Sabatino, “Quadrotor control: modeling, nonlinearcontrol design, and
simulation,” 2015.

[61]

[62]

[63]

R. Giorgiani do Nascimento, K. Fricke, and F. Viana, “Quadcopter
control optimization through machine learning,” in AIAA Scitech 2020
Forum, 2020, p. 1148.

K. Sridhar and S. Sukumar, “Finite-time, event-triggered tracking con-
trol of quadrotors,” in 5th CEAS Specialist Conference on Guidance,
Navigation & Control (EurGNC 19) Milano, Italy, 2019.

T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 28,2024 at 20:07:13 UTC from IEEE Xplore. Restrictions apply.

