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imine-based Cu() and Fe(1) coordination
complexes from a six-component reagent library has been achieved

Self-sorting of two

through solvent-free mechanochemistry. The reaction proceeds
rapidly, yielding the thermodynamically favored products in less than
24 hours. The results point to the potential of mechanochemistry to
achieve increasingly complex multi-metallic systems through one-pot
protocols.

Introduction

Constitutional dynamic chemistry (CDC), based on molecules
which are capable of altering their constitution by reversible
bond formation and exchange of their components, provides
a promising avenue to access complex dynamic systems."* One
of our groups previously reported the simultaneous formation of
bidentate and tridentate imine-containing ligands bound to two
different metal centers, from a library comprised of two imines,
two aldehydes, and the respective BF,~ salts of Cu(1) and Fe(u)
(Fig. 1).* The sorting behaviour is driven by two factors (a) the
difference in the preferred coordination geometries of the metals
(Cu(i) - tetrahedral, Fe(u) - octahedral),"* and (b) the minimiza-
tion of steric repulsion around the metal center, nominally the
preference for a less crowded binding pocket around Fe(u).'
Thus, a cocktail of 2 equivalents each of 4-methylaniline (1),
aminoquinoline (2), 5-methylpyridine-2-carboxaldehyde (3), and
6-methylpyridine-2-carboxaldehyde (4), with 1 equivalent each of
Cu(CH;3CN),(BF,) and Fe(BF,), 6H,0, in a 20 mM solution of
CD;CN at 60 °C yielded a 1:1 ratio of complexes [Cu(1,4),][BF,]
and [Fe(2,3),][BF,], after 20 days (Fig. 1); the product mixture
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under thermodynamic equilibrium. Shorter reaction time, or
lower reagent concentration (3.6 mM) resulted in incomplete
sorting, with notable presence of mixed ligand species
[Fe(2,3)(2,4)][BF4], - The details and rationale of this self-sorting
behaviour has been described in detail in prior works.**

These solution state results inspire exploration of self-
sorting phenomena in the solid state, via mechanochemistry
(vibratory ball milling)."”** Therein, self-sorting behaviour can
be studied under a solvent-free process that eliminates
concentration effects noted in solution, but may introduce
crystal packing effects.’”” Mechanochemical reactions have been
shown to proceed at accelerated time scales compared to solu-
tion." This raises the question, will self-sorting of transition
metal complexes occur rapidly under these solvent-free milling
conditions? Herein, the application of solvent-free mechano-
chemical synthesis, via vibratory ball-milling, that can replicate
the 1:1 thermodynamic equilibrium product ratio of [Cu(1,4),]
[BF,] and [Fe(2,3),][BF,], in 18 hours is demonstrated (Fig. 1).
Notably, while the system studied begins as solvent-free, as the
reaction progresses 6 equivalents of H,O are released from
Fe(BF,),-6H,0, and another 4 equivalents are released from the
imine formation reactions. This can be understood to create
a liquid assisted grinding (LAG) process, which itself has been
shown to enhance milling reaction rates, and potentially
influence selectivity.>*>*
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Fig. 1 Schematic for the simultaneous formation of complexes
[Cu(1,4),]* and [Fe(2,3),]2" through previously reported solution and
current mechanochemical routes.
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Over the past decade, mechanochemical synthesis of tran-
sition and main group metal coordination complexes,** and
germane to this work, Schiff base species, has gained increasing
attention.***® This work highlights the synthesis and stability of
four transition metal complexes, and the application of mech-
anochemistry towards the dynamic assembly of a complex
multi-ligand, multi-metal system. The former adds to this
growing body of mechanochemically prepared coordination
complexes, and the latter demonstrates the feasibility of
increasingly complex one-pot reaction systems via mechano-
chemistry, with notable prior examples from Frisci¢, Lamaty,
James, Hanusa, Garcia, and others.?**8

Results and discussion

First, a series of reactions were conducted to assess that the
individual homoleptic complexes that could arise from the six-
component system in Fig. 1 are feasible under solvent-free

(A)
b \N
NN l
AR
NH, 3 ':4\ \I
@. FolBFy), 6H,0 [Fe(2,3);1%*

_ \

18 hours

A A

L 12 hours

l 8 hours
2 hours

View Article Online

Communication

mechanochemical conditions. Notably, the molecules targeted
were: [Cu(1,3),][BF,], [Cu(1,4),][BF,] [Fe(2,3),][BF4],, and
[Fe(2,4),][BF,], (Fig. 2). The experiments were conducted with
a SPEX 8000M mill (18 Hz) in 5 mL stainless steel (ss)
Smartsnap™ grinding jars from Form-Tech Scientific and four
3.175 mm ss (440c) balls. An aluminum holder assembly was
used to facilitate three concurrent trials per run.* Individual
complexes were synthesized using a 1: 2 : 2 molar ratio of metal
salts to ligand components. The total reagent mass in each vial
was approximately 200 mg. All reactions were conducted for 2,
8, 12, and 18 h. Upon completion, 0.7 mL of CD;CN was
introduced to the grinding jar and passed through a 22 um
nylon filter, with a syringe, directly into an NMR tube. The 'H
NMR was recorded immediately after sample preparation
(Fig. 2).

[Cu(1,4),][BF,], [Fe(2,3),][BF4],, and [Fe(2,4),][BF,], were
characterized in detail in one of our groups' prior reports and
served as the guideline for validating the formation of the
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Fig.2 Partial 'H NMR (CDsCN) for the one-pot formation of complexes (A) [Fe(2,3),]2", (B) [Fe(2,4),1%, (C) [Cu(1,3),]", (inset single crystal X-ray
structure with thermal ellipsoids at 50% and BF,~ anion omitted for clarity) and (D) [Cu(1,4),]*, through vibratory ball-milling. Each timepoint
represents a separate reaction. Full *H NMR spectra reported in the ESI, Fig. S1.1
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products via "H NMR (Fig. 2A, B and D).** [Cu(1,3),][BF4],
although not reported in the original manuscript," was also
readily accessible, but displayed lower solubility resulting in
broadened "H NMR signals (Fig. 2C). A single crystal X-ray
structure confirmed the identity of [Cu(1,3),][BF,] as a dis-
torted tetrahedral Cu(i) complex (Fig. 2C inset). The material
could readily be synthesized on a 1 g scale and isolated in near
quantitative yield over 1 h of grinding (see ESI{). Notably, all
four complexes could be cleanly accessed in a one-pot, one-step,
solvent-free mechanochemical process ([Fe(2,3),][BF4],, and
[Fe(2,4),][BF,], can be considered LAG as 6 equivalents of H,O
are released per Fe) starting with the unreacted ligand compo-
nents, and with no evidence of other product formation.
Significantly, these reactions occur quickly, reaching comple-
tion at 2 hours (or less), and also showing no signs of degra-
dation after 18 h of continuous milling. While the nature and
utility of these complexes is beyond the scope of this work, it
should be noted that homoleptic Schiff base Cu(i) have garnered
significant attention as photoactive molecules* and as catalysts
for copper-catalysed azide-alkyne cycloadditions (CuAAC).*
Analogously, Fe(u) bis tridentate Schiff base species have
received attention as spin crossover complexes.”*">

With the knowledge that the individual homoleptic products
from the multicomponent system could be readily accessed,
and remain stable over prolonged mechanochemical grinding,
self-sorting trials were targeted. Individual self-sorting trials
were conducted in a similar fashion, with a bulk reagent mass
of approximately 250 mg with components presentina1:1:2:
2:2:2 molar ratio of metal salts to ligand precursors (Fig. 1),
and at times of 2, 4, 8, 18, and 24 hours. 'H NMR sample
preparation and analysis was conducted as noted prior. The 2 h
trial displayed predominantly homoleptic [Cu(1,4),]BF,] and
[Fe(2,3),][BF.],, with a significant amount of heteroleptic
[Fe(2,3)(2,4)][BF4], (ca. 4:1 [Fe(2,3),][BF.]; : [Fe(2,3)(2,4)][BF.]
based on integration of imine C-H). The 4 h trial displayed near
complete conversion to [Cu(1,4),][BF,] and [Fe(2,3),][BF,],, the
expected thermodynamic products, with <10% heteroleptic
[Fe(2,3)(2,4)][BF4],, as indicated by very low intensity signals at
6 9.2 (broad shoulder), ¢ 10.7 (broad shoulder), and ¢ 10.9
(broad singlet) ppm (Fig. 3). The 18 h sample further dimin-
ished the level of [Fe(2,3)(2,4)][BF.], (<5%). Trace signals at ¢ 6.3
and 6 6.9 ppm are diagnostic of free amine. Clear signals for
[Cu(1,3),][BF,] were not observed under mechanochemical
conditions herein, or in the solution-based system previously
reported,* likely due to lower solubility (vide supra).

These results validate that the solution self-sorting behav-
iour previously reported for this system can be replicated under
solvent-free/LAG mechanochemical conditions. The dramati-
cally accelerated reaction time for reaching the thermodynamic
equilibrium product mixture, compared to the solution-based
system originally reported can be explained in part due to
concentration effects, and additionally to other characteristics
associated with the mechanochemical process which have been
extensively detailed in the literature.®®* With regards to
concentration, in solution, self-sorting was achieved in 20 days
at 20 mM (at 60 °C), whereas 3.6 mM retained significant

amounts of [Fe(2,3)(2,4)][BF4],- The mechanochemical
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Fig. 3 (A) Partial *H NMR (CDsCN) for the one-pot formation of
complexes [Cu(l,4),]*, [Fe(2,3),]°" and trace [Fe(2,3)(2,4)]?" through
vibratory ball-milling of the 6-reagent library. Each timepoint repre-
sents a separate reaction. A diagnostic signal of the free aldehydes 3
and 4 is highlighted by a black circle, and two of the diagnostic signals
of the free amine 1 are highlighted by black squares. Peaks tentatively
associated to paramagnetic species are highlighted with hollow
squares. (B) Legend of highlighted complexes. (C) Table of observed
[Fe(2,3),][BF 4], : [Fe(2,3)(2,4)1[BF 4], ratios. NA = not measured due to
paramagnetic line broadening.

approach reported herein begins as “neat”, gradually releasing
up to 10 equivalents of H,O (per every Fe and Cu), and is thus
not limited by concentration-based mass transport limitations
of a dilute solution. Similar effects have been noted prior in
comparing solvent-free/LAG mechanochemical grinding to
standard solution-based protocols.'®*3¢

Interestingly, for trials at 8 h and 24 h, beyond the expected
combination of [Cu(1,4),][BF,], [Fe(2,3),][BF.),, and
[Fe(2,3)(2,4)][BF,],, significant line broadening is observed, in
addition to high intensity broad peaks at ca. ¢ 6.5 and ¢ 7.0 ppm.
Notably, these signals were not observed in the solution-based
study. Tentatively, it is postulated that they may represent
paramagnetic trigonal bipyramidal [Fe(1,4)(2,3)][BF4], or
[Fe(1,3)(2,4)][BF,], species (Fig. S71). Further proof of para-
magnetic species is found in very broad signals at ¢ 44, § 40,
032,630,017,0 15,06 —5, and 6 —34 ppm for the 8 hand 24 h
trials, (Fig. S67). It is not surprising that the different reaction
environment*® of solvent-free mechanochemical grinding may
favour formation of different, or longer-lived metastable inter-
mediates than the nominally dilute (20 mM) solution-based
system. However, the transient nature of the formation of the
thermodynamic equilibrium product mixture at 4 h, and what
appears to be a scrambling at 8 h, subsequent reconstitution of
the product mixture at 18 h, and scrambling at 24 h was unex-
pected based on the original solution studies under steady-state
conditions.

RSC Mechanochem., 2024, 1, 33-37 | 35
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Vibratory ball-milling is a complex, non-equilibrium
process,®*** and with the system utilized herein, there is no
temperature control under continuous grinding. Typically, the
system warms rapidly over the first few hours to reach a steady
temperature that only changes gradually as a function of time.>®
However, it should be noted that heated mechanochemistry has
been successfully demonstrated for multiple reaction systems,
with many significant contributions from Uzarevi¢ and
coworkers.** For the system utilized herein, to ascertain any
potential temperature fluctuation effects, the temperature of
the room (1 m from the ball mill), the motor, and the outside of
the reactor vials was measured over 24 h (Fig. S81). While the
inside of the vials could not be measured, observations in
literature and from one of our groups point to a close rela-
tionship between interior and exterior with a AT < 5 °C; though
higher variances up to 25 °C between milling balls and vial
exterior have been reported.®® Interestingly, the observed
formation of the thermodynamic equilibrium product mixture
coincided with periods of slightly lower temperature, or regions
where the temperature remained steady for prolonged periods;
e.g. at 4 hours as the system was warming up, and at 18 hours as
the system was cooling steadily overnight. Sampling times
coincident with a positive temperature change/gradient led to
a mixture of products. Thus it is postulated that even under
dynamic conditions, the reaction environment achieves
a pseudo-equilibrium for enough time to allow for the isolation
of the thermodynamic equilibrium product mixture, congruent
with the solution state observations. Shifts in temperature and
concomitant changes to local reaction environment appear to
trigger further reaction and a scrambling of the ideal product
distribution of 1:1 [Cu(1,4),][BF,] and [Fe(2,3)2][BF,],, which
can be expected for a dynamic system.

The self-sorting reactions were repeated at 0.5 x concentra-
tion using Celite as a solid diluent (~250 mg total weight
including 125 mg Celite). We have previously demonstrated the
potential of Celite to be an unreactive additive for mechano-
chemical preparation of imines.”> The 4 h trial displayed
predominantly homoleptic [Cu(1,4),][BF,] and [Fe(2,3),][BF4]s,
with a significant amount of heteroleptic [Fe(2,3)(2,4)][BF.], (ca.
4:1 [Fe(2,3),][BF4], : [Fe(2,3)(2,4)][BF,], based on integration of
imine C-H). The 18 h sample further diminished [Fe(2,3)(2,4)]
[BF,], to trace levels (Fig. S9t). Paramagnetic broadening and
evolution of new signals is again evident at 8 h and 24 h;
corroborating the reproducibility of this phenomenon under
slightly altered reaction environment (see ESIf for more
details). Repeating the 18 h reaction with Celite starting at
a different time of day (subject to different environmental
temperatures) yielded a 1: 2 [Fe(2,3),][BF,], : [Fe(2,3)(2,4)][BF 4],
ratio. Similarly, repeating the 18 h reaction and replacing Celite
with MgSO,, a desiccant, yielded a ca. 5:3 [Fe(2,3),][BF4],:
[Fe(2,3)(2,4)][BF,], ratio (Fig. S10t). These observations point to
a dynamic system, where changes in temperature, and the
nature of additive can have a significant impact on product
distribution as a function of time.

Reversible behaviour and equilibration under mechano-
chemical conditions was first reported by Belenguer and Fris¢ic
for organic aromatic disulfides.”” They noted that
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mechanochemical equilibration led to different outcomes from
conventional solution state reactions, and changes of mechano-
chemical reaction environment could also yield different equi-
librium products, driven by crystal packing effects. Herein, both
mechanochemical reaction systems can yield similar thermody-
namic equilibrium product mixtures as the solution based
system." Even though the individual homoleptic species (Fig. 2)
are readily accessed and stable under vibratory ball milling
conditions, the system equilibrates to 1:1 [Cu(1,4),][BF,] and
[Fe(2,3),][BF,],. This is tentatively attributed to a combination of
the favourability of [Fe(2,3),][BF,],, the unfavorability of the
transient kinetic products, and what appears to be the overall
ease of reversible imine bond formations for these molecules.

Conclusion

In summary, the self-sorting of two imine-based Cu(1) and Fe(u)
complexes has been successfully demonstrated under solvent-
free/LAG mechanochemical conditions. The system achieves
a transient equilibrium, enabling access exclusively to the
thermodynamic equilibrium product mixture of homoleptic
tetrahedral Cu() and octahedral Fe(u) species, replicating
a multi-week solution process in less than one day. Additionally,
the synthesis and validation of stability of four transition metal
complexes under vibratory milling conditions has been ach-
ieved. These results add to a growing body of mechanochemical
syntheses of transition metal coordination complexes, and
provide compelling evidence for the potential of mechano-
chemistry as an avenue towards sorting complex mixtures of
different metallic species.
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