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Abstract. In this paper, we aim to explore novel machine learning (ML) techniques
to facilitate and accelerate the construction of universal Equation-Of-State (EOS)
models with a high accuracy while ensuring important thermodynamic consistency.
When applying ML to fit a universal EOS model, there are two key requirements: (1)
a high prediction accuracy to ensure precise estimation of relevant physics properties
and (2) physical interpretability to support important physics-related downstream
applications. We first identify a set of fundamental challenges from the accuracy
perspective, including an extremely wide range of input/output space and highly
sparse training data. We demonstrate that while a neural network (NN) model
may fit the EOS data well, the black-box nature makes it difficult to provide
physically interpretable results, leading to weak accountability of prediction results
outside the training range and lack of guarantee to meet important thermodynamic
consistency constraints. To this end, we propose a principled deep regression model
that can be trained following a meta-learning style to predict the desired quantities
with a high accuracy using scarce training data. We further introduce a uniquely
designed kernel-based regularizer for accurate uncertainty quantification. An ensemble
technique is leveraged to battle model overfitting with improved prediction stability.
Auto-differentiation is conducted to verify that necessary thermodynamic consistency
conditions are maintained. Our evaluation results show an excellent fit of the EOS
table and the predicted values are ready to use for important physics-related tasks.
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1. Introduction

Background. Improving our understanding of high-energy-density physics and
advancing research in the important fields of inertial confinement fusion (ICF) and
planetary science relies on accurate equation-of-state (EOS) models, which cover a wide
range of thermodynamic conditions [1, 2]. As technology is improving, experimental
measurements of EOS are accessing higher and higher density and temperature
conditions, such as those encountered in imploding ICF targets [3, 4] and white dwarfs
[5]. Measurements at such conditions are extremely difficult to obtain and data are
therefore sparse and mainly serve as benchmarks for the accuracy of theoretical models,
which are also constantly evolving in both accuracy and range of conditions covered [6].

Recently, an improved version of the first-principles EOS table (iFPEQS) for
deuterium is published [7], which is an update on FPEOS [8, 9] based improved
theoretical methods such as ab initio molecular dynamics (AIMD). These methods
are driven by density functional theory (DFT), where advanced meta-generalized
gradient approximation (meta-GGA) exchange-correlation (XC) free energy density
functional TSCANL [10], a high-accuracy non-interacting orbital-free free energy density
functional LKTFATF (see details in Ref. [7]) is used. Compared to previous models
[11, 12, 13, 14, 15], iFPEOS showed better agreement with experimental measurements
[4, 16, 17, 18] for temperatures 7' ~ 60,000 K and pressures up to P ~ 200 GPa.
However, for higher T" — P regimes, iFPEQOS fails to close the gap between latest
theory and experiment. At such extreme conditions, both theoretical and experimental
work can be considered in their pioneering stages and iFPEOS suggests that first-
principles treatment beyond DFT might be necessary. Additionally, at such extreme
conditions, first-principles simulations are challenging from the computational point
of view as AIMD are significantly time-consuming and require a large allocation of
computing resources. An AIMD run, corresponding to one point in iFPEQS, could
take approximately a few hours to several days running on tens to hundreds of
cores depending on thermodynamic conditions and methodology, with the low-T', low-
density orbital-based Kohn-Sham DFT calculations being much more computationally
demanding than the high-T" orbital-free AIMD ones. Therefore, the immediate future
of theoretical EOS models relevant to ICF faces two great challenges: (1) The high
computational demands of a single calculation arising from the need to go beyond DF'T;
(2) The need for many such calculations in order to finely sample a wide range of
thermodynamic conditions. As current developments in efficient ab initio algorithms
and the performance of supercomputing clusters is relatively slow and incremental, one
cannot overlook the potential of machine learning (ML) methods in the fast generation
of dense and accurate EOS models from sparse data.

ML based EOS Modeling. In recent years, machine learning (ML) has been
increasingly adopted by the scientific research community to address the data-
computation extensive challenges [19]. Given available observations, an ML model can
be trained to learn the underlying patterns in the data, which can then be used to make
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a prediction at any density-temperature point of interest. A promising solution to build
a universal EOS model is to leverage an iFPEQS table of finite size to train an ML model
that can recover any missing values in the table and hence explain the wide range of
behaviors of deuterium EOS. As some recent efforts in using ML to model EOS [20, 21]
show, using a neural network (NN) surrogate model to provide EOS information is viable
and provides advantages such as saving the memory cost of restoring all EOS tables,
providing differentiability for downstream tasks, and accelerating simulations. Another
important factor is as aforementioned, that an NN model can provide a universal
approximation. This implies that an NN model can achieve any desired error rate
on training. Plus, unlike interpolation methods which usually require neighborhood
knowledge, a trained NN model can predict at any input point.

In our work, we propose novel extensions of a standard NN model to an encoder-
decoder structure and improve the ML model design to address the unique challenges
for modeling the EOS table. We first formally introduce these key challenges either
identified by prior work or newly discovered by us. First, both the input and the output
span a very wide range. As an example, Figure 1 visualizes an iFPEQS table used in
our experiments. The two input features, including density and temperature, cover a
wide range that reaches 107¢ ~ 103 g/cm? and 107 ~ 10° eV, respectively. Similarly,
the two outputs, i.e., energy and pressure, span more than eight orders of magnitude.
Meanwhile, the input-output dependency in certain ranges is highly sensitive, where
a small change in the input may result in a significant variation in the output. This
poses a major challenge for the commonly used gradient-based ML models, such as
neural networks, as the variance of predictions will be high where the training data is
sparse [22, 23]. Second, the distribution of data entries is highly skewed within the table.
As can be seen from Figure 1, while there is a decent amount of data entries in certain
regions, the table becomes much more sparse or even completely empty in other regions.
The imbalanced data distribution and the high data sparsity in certain regions make it
challenging to train data-intensive ML models (e.g., deep neural networks or DNNs).
Last, most advanced ML models, such as DNNs, leverage deeply connected layers to
perform non-linear transformations of the input to generate the output. While these
models can usually produce highly accurate predictions to match the desired outputs,
they are not sufficient for effective application in real-world physics-related applications.
Due to their black-box nature and limited data supervision, the learned function may
not necessarily follow the physical rules. Therefore, there is a risk that these models
may offer false explanations that violate some fundamental physics relations. In this
work, we intend to first improve the predictions of the model, then verify if the model
can minimize the violation of physics relations.

Overview of Our Approach. To address the key challenges as outlined above, we
propose a meta-learning-based Deep Regression model to jointly predict Energy and
Pressure (referred to as DREP) after being trained from a finite-sized iFPEQS, aiming
to realize a universal EOS model. More specifically, to deal with the imbalanced
data distribution and extremely sparse regions, we apply log transformations on both
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Figure 1: Visualization of the dataset in the original space

the inputs and outputs before training the DREP model. We compare different types
of ML models, showing that most ML models have improved performance with the
transformation. NN models are especially good at re-creating the original space and
can fit the targets well in all regions. Furthermore, we propose to leverage a meta-
learning-based training process to first learn a model that can fit the target properties
E and P well locally and then generalize to the entire region by giving the model more
context points. We utilize the model’s ability to learn from multiple tasks instead of
simply running through random batches. This design also provides more flexibility
during the test phase when the model is used in practice after being trained.

To achieve the meta-learning-style training process, DREP augments a Neural
Process that simulates a stochastic process [24], like a Gaussian Process (GP). On the
one hand, DREP inherits the strong function-fitting capacity of a deep neural network to
provide accurate predictions. On the other hand, DREP has the advantage of enabling
accurate uncertainty modeling. For a standard NN, we can expand the outputs to
predict not only P and F but also their corresponding variances. However, there is no
means to ensure the quality of the predicted variance for a standard NN. By simulating
the statistical consistency of a stochastic process through kernel regularization, DREP
can faithfully report the predictive uncertainty. In the unseen range, the uncertainty
will increase accordingly. Therefore, we are able to identify the uncertainty of the model
when the predictions are less reliable through uncertainty quantification. Additionally,
we use an ensemble model to improve the stability of model predictions especially when
generalizing or applying to downstream tasks. Finally, to verify the thermodynamical
consistency of the proposed DREP model, we perform a check of Maxwell’s relation
regarding energy and pressure. The check is to evaluate the commutativity of the
partial derivatives of the predicted pressure and internal energy with respect to density
and temperature, relating the two separate outputs. We use auto-differentiation to
compute the partial derivatives and find the resulting relative difference between the
prediction and Maxwell’s relation-induced calculation result to be on the order of 10%
or less. Unfortunately, due to the lack of reference free energies, entropies, and chemical
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potentials in conjunction with the current form of the DREP model, we are unable to
verify if other relations regarding thermodynamic consistency, such as the Gibbs-Duhem
relation, hold.

Summary of Contributions. We summarize our contributions as follows:

e We show superior prediction results using an NN model and the remaining
challenges in terms of stability, consistency, and uncertainty quantification, which
justify the unique design of the proposed DREP model.

e We propose the DREP model, which can more accurately predict pressure and
internal energy values at arbitrary density and temperature points.

e We propose kernel regularization to ensure faithful uncertainty quantification.
e We propose to use an ensemble model to improve the stability of model predictions.

e We evaluate the consistency of the DREP model using auto differentiation and a
PDE-informed thermodynamic violation measure.

e We provide detailed experimental results to demonstrate the prediction performance
of DREP as well as ablation studies and effectiveness on other physics-related
downstream tasks.

2. Related Work

In recent years, machine learning, especially deep neural networks (DNNs) [25], has
been widely used not only in computing and data-mining fields [26] but also in many
cutting-edge interdisciplinary scientific research fields [27, 28, 29]. With this trend,
physics-informed machine learning [30, 31, 32, 33, 34, 35| or machine learning for
physics [36, 37, 38] has attracted increasing attention with promising results. Some
recent works aim to develop machine learning (ML) models consistent with real-world
physical phenomena. To this end, one popular line of research is to develop data-
driven models that rely on observed data (that reflects the underlying mathematical
principles) to encode physical rules in the model. Alternatively, specialized neural
network architectures with different types of inductive biases [39] (e.g., convolutional
networks [25] to ensure translational symmetry) have also been developed to encode
the prior physics knowledge in the ML models [40, 34]. DNNs can also be trained by
incorporating the underlying physics into loss functions or regularization terms. Finally,
hybrid approaches that aim to integrate different physics-informed neural network
approaches are also being developed [41, 42, 43].

Regression models provide a powerful vehicle to replace expensive numerical
calculations or time-consuming simulations by quickly predicting desired physics
properties once being trained. Many classic models like linear/polynomial regression and
DNNs have been commonly used. However, these models primarily focus on learning
from data with limited flexibility to incorporate domain knowledge. When physics-
informed knowledge or constraints are considered, kernel-based methods like kernel
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regression [44, 45], numerical Gaussian processes [46, 47], and deep kernel learning [43]
have been frequently leveraged with promising results.

Modeling the EOS table is an important task in high-density-energy computational
physics. Having a reliable EOS table that covers a wide range is often difficult because of
the shortcomings of various computational models [11, 12] and the discrepancies among
these methods in the overlapping range [8, 9, 7]. iFPEOS provides a more accurate
model that covers a wide range of density and temperature values [7]. However, the
high computational cost makes it challenging to leverage iFPEQOS to generate the desired
physics quantifies at arbitrary points. While it is possible to train existing regression
models, including kernel methods, from limited iFPEQOS data points, these approaches
fall short in addressing the key challenges as identified earlier in the paper.

When modeling physics-informed problems, differential equations provide an
effective means to encode important knowledge or constraints. Although using neural
networks to model ordinary or partial differential equations has been studied for a
long time [48] and improved recently by PINN (physics-informed neural networks) [30],
to our knowledge, there is no prior work that uses indirect PDEs of multiple-outputs
(e.g., pressure and internal energy) to verify the thermodynamic consistency without
modeling the underlying quantity (e.g., free energy), which is achieved by the proposed
DREP model.

3. Methodology

In this section, we describe the detailed design of DREP. We start with a formal problem
formulation of multi-output regression. We then summarize preliminaries that cover a
set of classical regression models. Next, we present the model architecture and discuss
how we design the model to achieve each of its key properties in order to address the
important EOS modeling challenges.

Problem formulation. The main problem — EOS modeling — is a multi-output regression
problem. In a standard multi-output regression setting, we have a set of input features
x € RP, and train the model to predict some continuous output response y € R or
multiple responses y € R”. In the EOS modeling problem, the input features include
density p and temperature 7" and the target outputs are pressure P and internal energy
E:x=(pT),y=(PE)".

3.1. Preliminaries

A key challenge with the EOS table data is the wide ranges that the physics quantities
span. We perform log transformations to make the inputs more accessible for the ML
models. The transformation is simple and also makes visualizations of the predictions
more accessible. The physics quantities should also satisfy certain boundary conditions
(e.g., near density p = 0 and temperature 7" = 0). We use extrapolation to generate
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synthetic training data near the boundary and add these points to the training process.
Later we will show how these transformations change the fitting results and the
generalizing ability of the model. Below, we give an overview of standard regression
models that can be used for EOS modeling.

Linear/polynomial regression. Linear regression uses a linear function of the input
features §j = w'x to fit the response y, where x = (1,p,T)" is the feature vector in
the EOS problem and w is a set of coefficients. However, the expressiveness of a linear
function is limited. We can use polynomial feature expansion to improve the flexibility
of the model, which includes the p-th power of each component in x with the interaction
terms. The coefficients can be learned by minimizing a mean squared error:

Lpr({Xn, Yn}nzi) Z —w'x,)" (1)
n=1
Extension to multiple outputs is straightforward, where the coefficient vector w is
replaced with a coefficient matrix W € RP*L to fit multiple responses y € RF:
y = WTx. Polynomial regression (PR) using high-order polynomial features is prone
to overfitting. We can use regularization to reduce overfitting, which we will introduce
next together with the kernel trick.

Kernel methods. Ridge regression (RR) adds the Iy norm of the coefficients to address
overfitting. The regularized loss function can be formalized as:

L N
.
Lrr = Z’n (Z lse({x,y9}) + awl W(l)> (2)
=1 n=1

where v, is the weight for the I'® output and ) is the regularization weight. For
one entry of the output y, we still use the mean squared error: lgp({x,y"},) =

2
<y,(zl ) W(Z)Txn) . We can adopt the matrix view of the RR problem, and the solution

can be formed as W = (X"X + M)"'X "y, where X is the design matrix (stacking
x,). The term XX is called the Gram matriz [49]. We can also allow implicit
feature representation using the kernel trick. Kernel ridge regression (KRR) introduces
a kernel-represented Gram matrix K, where K;; = k(x;,x;) with k(-,-) being a kernel
function [49].

Gaussian Processes (GPs) also use the kernel trick to build random processes.In
a standard GP formulation, the prior is given as a 0-mean Gaussian distribution with
the Gram matrix K being the covariance matrix p(z) = N (z]0,K). The conditional
probability distribution of the target output is also a Gaussian p(y|z) = N (y|z, 7' Iy).

Thus, the marginal distribution of the outputs is still Gaussian p(y) = [ p(y|z)p(y)dy =

N(y|0,C), where C is the covariance matrix. The elements of C are given by

C(xi,xj) = k(xi,x;) + 87'0;;. The prediction for an unseen input xy;; can also
be expressed in the Gaussian form N (yyii1]y) where the mean and variance are
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m(xyy1) = k' Cly, 0?(xny1) = ¢ — k' C7 'k with ¢ = k(xyy1,Xn41) + 871 The
advantage of the GP model is that it can fit the data well locally and provides a
natural statistical interpretation that directly gives us a covariance matrix instrumental
to quantify the uncertainty.

Deep neural networks (DNNs). A DNN consists of multiple (usually deeply connected)
layers of nodes that play the role of artificial “neurons”. All these weights are the
parameters of the DNN that are updated during training such that the DNN can
approximate the true underlying function and generalize well during inference.

Comparing DNNs with the kernel-based models, we will see the following core
differences: First, DNNs can be trained using stochastic gradient descent with is much
more scalable than a GP with respect to the number of data points. Second, instead of
relying on either the original features or a fixed kernel function, DNNs can learn a latent
feature space optimized for the downstream tasks (e.g., regression or classification). In
this task, we will take advantage of the second property and utilize the flexibility of
DNNs to design a specific model that performs well for the problem. The entire DNN
can be expressed as a function: y = fg(x), where © denotes all the weights in the
network. Besides modeling the outputs y = (P, E)", we can make the DNN generate
a probabilistic output by outputting both the mean and the variance in the need of
quantifying the uncertainty of the prediction. The model is trained by using a log-
likelihood-based objective that simplifies to Mean Squared Error loss when the output
variance is treated as constant. Such a DNN-based regression model is shown in Figure
2.

xq, » Neural [ \‘ Loss
Network L, -2 1~
Ya fu(.)

Figure 2: The DNN regression model

One major limitation of standard DNNs is that they require a lot of labeled data
to be properly trained [50], which makes it challenging to apply for the EOS problem
due to highly sparse training data. Furthermore, a DNN trained over limited data
may suffer from under-fitting, overfitting [51], or both at the same time. A principled
uncertainty quantification mechanism is needed to detect when the model may provide
wrong predictions to inform decision-making. The proposed DREP model is designed to
address these limitations, which will be detailed next.
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3.2. Deep Regression to Jointly Predict Energy and Pressure

We first introduce a task-based meta-learning style training process for the EOS
regression problem. Afterward, we develop the DREP architecture for the training
process. We then carry out a theoretical analysis that shows the advantage of this
unique design over a standard DNN, in terms of sequential inference, thermodynamic
consistency, and accurate uncertainty quantification capabilities.

3.2.1. A Task-Based Meta-Learning Style Training Process

In real-world physics regression problems, we are likely to have a limited number
of available training data points (e.g., limited data for the EOS table fitting problem
due to expensive Molecular Dynamics simulations). For this work, we assume that
we have a limited-data dataset D with Ny labeled data points in the training set
(D = {xp, yn ), and N, data points in the test set (D* = {x,,y.}2%)).

To better utilize the limited training data, inspired by few-shot learning approaches
[24], we propose to use a task-based meta-learning-style training process. To this end, we
consider two phases: a meta-training phase to acquire the global knowledge of the true
underlying regression function, and a meta-testing phase to use the global knowledge in
EOS table prediction.

The DREP model accesses the information of D! in the meta-training phase to
acquire the global knowledge for the EOS regression task. Specifically, in the meta-
training phase, we consider a large number of randomly sampled tasks to acquire the
required global knowledge for accurate regression. Each meta-training task consists
of a support set S = (Xgs,Ys) and a query set Q = (Xg,Yg). These sets are
constructed by randomly sampling Ng + Ng data points from the N, training data
points, assigning the Ng data points to the support set, i.e., S, = (Xgs,,Ys,) =
{(xn,yn)}fjﬁl, (Xn,¥n) € D', and assigning the Ny points to the query set i.e.
Q, = (Xg.,Yq,) = {Xn y) 122, (X, yn) € D', The support set and the query
set of the training task represent two local views of the true regression function, and the
DREP model training is formulated such that given one local view of the true function,
i.€., the support set view, the model has to accurately predict the query set. In other
words, given the support set information, the model has to be able to predict the query
set (additional details of model training are provided in Section 3.3.1). Such task-based
local view formulation of the objective enables the model to train on a large number
of tasks, with multiple local views, and is expected to guide the model to gain global
knowledge of the target function.

From the meta-training phase, the DREP model is expected to acquire the desired
meta-knowledge required for accurate downstream EOS regression. We then introduce
the meta-testing phase to evaluate the DREP model’s acquired knowledge. The meta-
testing consists of one test task Ti.s in which all the training data constitutes the
support set i.e., Siee = D', and all the test data points constitute the query set i.e.
Qs = D" Trest = (Stest, Qiest). We consider all the training in the support of the
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meta-test task, i.e., Siess = D to ensure the DREP model has a global view of the true

regression function. With the global view of the function, the model makes predictions

Nts

on the test set {x;},.

As stated above, the rationale behind using the meta-learning style training for the
DREP model is that the data from the EOS table is scarce and sparse, and the underlying
function is difficult to learn. To elaborate, although P and E increase with p and T
in most regions, there are also the plateau region and other refined local trends. If we
simply use one model to learn the entire function, we might either underfit and not
describe the training data well, or overfit and lose the ability to generalize. By using
the meta-learning style training and having the model learn many local functions first
through task-based training, we increase the ability to learn the entire P and E functions
when given the global view in the meta-testing phase.

DREP Architecture. Inspired by Conditional Neural Processes [24], we develop an
encoder-decoder structure for the EOS regression problem as shown in Figure 3. The
proposed DREP model considers the neural network structure fy(-) as the decoder, and
introduces an encoder fg(-) that encodes the entire support set information to a vector
r. The encoder enables the DREP model to capture the knowledge of the support set as
a reference for the decoder so that the decoder can consider this reference information
to make accurate predictions. Specifically, the reference vector r is concatenated with
a query point in X and passed to the decoder to predict the output.

Support Set Aggregation
Xs ENCODER = 1 ~,
1 EEEED P EEN
b f ensr” Decoder
Query Set f¢

Xy

Y.

Figure 3: Architecture of DREP. Compared to a standard DNN, both the aggregated r
and decoder capture the general knowledge.

Remarks. We propose to use the DREP model with the encoder-decoder structure
because it surpasses the standard DNN by incorporating general knowledge. We further
note that the DREP model can realize the DNN as a special instance when it completely
ignores the information carried through the encoder structure. This can be proven
by a straightforward example. Consider a K layer DNN represented by fy(-) with m
dimensional input. Assume the input layer consists of D neurons. Let W™*? represent
the weight matrix corresponding to these D neurons. Consider an equivalent DREP model
with [ dimensional encoder representation r € R! and K layers in the decoder structure
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similar to the DNN. Now, for an equivalent DREP model, consider D neurons in the first
input layer of the decoder. Let W+™*P represent the weight matrix corresponding to
these D neurons. For the DREP model, when WP (i.e., the components in the weight
matrix corresponding to the representation r) are all zero, the representation r is ignored,
and the DREP model reduces to a DNN model. Equivalently, when the representation r is
all zero, the representation carries no information, and the DREP model again reduces to
the DNN model. In both of these cases, both the network training and inference for the
two models are identical. In all other cases, DREP model also considers the information
in the representation r due to which it is expected to perform better than the neural
network as r can provide useful reference information for training and inference.

3.2.2. Sequential Inference and Fast Adaptation to New Training Data

The proposed DREP model introduces the encoder-decoder structure that enables the
model to capture the knowledge in the training data in two ways: 1) through the
parameters of the decoder similar to a standard DNN, and 2) through representation
r generated by the encoder using the support set. Specifically, during inference, the
encoder structure aggregates all the training data to an embedding r that acts as the
compact representation. For training dataset with Ng data points, r is given as

1 NS 1 NS
r= — f Xsn1Ysn) = 77 ry, Xsp,¥Ysn) € Sn 3
Do) = Yo o) ®

The representation is permutation invariant over the input data [52] that encodes all
the training data and aggregates the resultant Ng embeddings. This representation can
be expressed via a sequential update rule:

Ng Ng—1
1 S 1 Ne—1 1 S 1 Ng — 1
= — n = — n _ E— Ie) 4
r Ng ' NSrNS * Ng Ng—1 ' NSrNS + Ng Fold ( )
n=1 n=1

where roq = ﬁ ZnNi; 1, is the aggregated representation of the first Ng — 1 data

points, and NLSr N is the encoder embedding for the new N data point. This sequential
update rule enables the model to discard the training data once observed, and also
incorporate new information/observations for improved prediction during the inference
phase. The sequential inference capability of DREP can enable some practical use cases
for the EOS problem. For example, sequential inference is useful when we might have
different EOS data that can be used as the support set at test time. Usually, when
new ground truth data are available, we need to re-train the DNN model, which is
time-consuming. However, for the DREP structure, we do not need to re-train the model
but only need to include the new ground truth data in the support set that serves as
reference data to support prediction. This shows the generalization ability of the model
from an ML perspective. Moreover, the sequential update also enables the model to
be effective when some regions of density/temperature are not available during model
training. To this end, we do not need to store the entire dataset used for training. We
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can keep the learned representation and use it in future tasks. Since EOS problems may
involve different computational physics models, this functionality can be very useful in
practice.

3.3. Challenging Tasks for NN: Uncertainty Quantification and Downstream Tasks

NN Uncertainty Quantification. We use the common practice from [53] to connect the
predicted variance of NN to the model outputs, P and E. More specifically, we modify
the loss function by including the variance to each prediction and a regularization term
that includes the variance itself:

1”

||Pyy — PI? |Eny — E
Lyar = NZ (—+1Og0'123+T+10g0% (5)
where P and F are equally balanced. However, as shown in the later section (Figure 10),
the results are usually not meaningful as NN does not consider the relationship to the
training data here.

3.3.1. DREP Uncertainty Quantification Results

When the training data is limited, it is desirable that the model remains uncertain
on its predictions in regions far away from the observed data samples. To this end,
we introduce a novel variance regularization term that aims to guide the model to be
uncertain in regions with limited or no training data samples:

Ng
1 )
Lxpr = N_Q - Dist(xg,,Sp) Xq, € XQ, (6)
n=1 *an

where oy, represents the predicted variance for the query input x,,, and Dist(x,,,S)
represents the distance between the query point x,,, and the point in the support set
S, nearest to the query point x,,. To minimize this loss, the variance should be high
for 1) data points far away from the observed data, and 2) in regions of missing data.
DREP model enables us to introduce such novel regularization to accurately guide the
uncertainty. In the regions near to observed data, the distance will be low leading to
overall low loss.
We train the model to maximize the conditional log-likelihood

Ng Ng
Lprep = Z —log(ppreP (Y4, |Sns X4,)) = Z —log(N (¥4, g, aﬁn)) (7)
n=1 n=1

where S, is the support set of the training task 7,,, y,, represents the query set output
for query set input x,,, (X4, ¥q,) € Qn, N(.) represents the gaussian distribution,

Iiq, represents the predicted mean, o2

represents the predicted variance, and pprep
represents the DREP model. In addition, we introduce the kernel-based regularization

term Lxpr (Eqn. (6)). The overall loss of the model is given by
L= Lprep +MLkER (8)
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where \; is the regularization coefficient that controls the impact of variance
regularization on the overall model training.

3.3.2. Prediction/Thermodynamics Consistency Checking

Using the model designs and regularization methods from previous sections, we have
established a multi-output model that can fit the EOS data well despite the range and
sparsity issues. However, DREP simulates stochastic processes and still produces some
variance when there are no nearby reference data points. This would create some wiggles
in the predicted P and E curves. Additionally, in the large-density regions, the model
predictions might have some larger absolute errors due to overfitting. To address this
issue, we can train multiple models with randomized initialization and meta-learning-
style tasks. The ensemble of these randomized models creates more reliable prediction
results. Next, we also verify that by improving the prediction stability of the model, we
also improve the consistencywhen applied to downstream tasks

Thermodynamic consistency from gradient-based PDE measure. The proposed DREP
model can fit the pressure and internal energy well with limited training data. However,
to safely utilize these prediction results, we would need to verify them in terms of
thermodynamic consistency. We know that both pressure and internal energy can be
derived from the Helmholtz free energy F'. This can be combined with the fundamental
thermodynamic relation: dU = —SdT — PdV. Thus, we have

oF oF
P__W‘Ta E—F—Ta—T\V (9)

(10)

where V' is the volume. We perform partial differentiation of P and F, then using the
chain rule we have:

oP  O*F  OE OF _ O°F oP

— = —=—-T——=—-P+T— 11
oT ~ oTav’ ov oV  ovarT T (1)
oP OF
P=T——-— 12
or oV (12)
with %—‘; = —;”—2, where m is the mass corresponding to V', we get
OP 20F
Peonsisrency = P =T + (13)

o " mp
which we will use as the consistency criterion.

We propose to use the computed gradients from the DREP model to generate a
Peonsistency term and compare it with the ground truth P or the DREP prediction
P,eq if the ground truth is not available. If the difference is small, we can conclude that
the P and FE predictions are consistent with each other. Together with the accuracy
of the actual E predictions, we can conclude that the model makes thermodynamically
consistent predictions.
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Figure 5: Visualization of the dataset in the log scale

4. Evaluation Results

We first introduce the iFPEOS dataset and experiment details in section 4.1. We then
present the quantitative results that show the superiority of our proposed model over
the baseline regression models in section 4.2. In section 4.2, we compare the prediction
results using averaged MRE results from training-validation-splits. Afterward, we
present the consistency and uncertainty quantification results of our proposed DREP
model. The final results are from the proposed model trained with all available training
data. Finally, we carry out multiple ablation studies to investigate the contribution of
different components of the proposed model.

4.1. Dataset Description

The iFPEQOS dataset is visualized in Figure 4. It consists of 1,637 data points: D =
{(ps, Ty, By, P) 837 where 1,228 are observations from experiments that reflect samples
from the true underlying function f such that (E, P) = f(p,T), 63 are interpolated
on the isochores 0.0196 to 0.0841 g/cm?® for temperature points 0.086 to 10.77eV, and
all remaining ones are extrapolations [54] from the observed data points. We consider
extrapolations at density le™® g/cm® and temperature 8.62¢7¢ eV as boundary data

points.

As mentioned in Section 3.2, % Do — : D:Zur;da:y 1 m:}me:nmn:mz::’iazed]
to address the wide range and § 55 %%g%%%
high sparsity of the given dataset, g_ g E ggg g g E%E EEEEEEEE
we apply log transformations. e 0.01 g ggggg g Eél_gg EE%EEE
The input scale is already pre- 3—2.5- 8 BEEE R B B ¥ MmN UGN N 5N HRNY ¥
sented in Figure 4. We also vi- & : : ooe o oo omommmamos mam 0w 00 0mss o
sualize the outputs in Figure 5: § —4 -2 0 2

We consider all the interpolations Log Density (log g/cc)

and extrapolations as part of the ) - o
Figure 4: Dataset composition visualization
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Table 1: Comparison results

Model | Average MRE P (%) ‘ Average MRE E(%) ‘

RR 397 492
RR pory—13 7.11 6.00
KRR 5.84 5.95
GP 24.3 31.9
NN 1.11 1.19
DREP 0.90 1.03

training data. From them, we
randomly select 80% for training: D = {(p;, T3, E;, )} 1231, and the rest for testing:

Dt = {(pi, Ty, E;, P;)}248. We repeat the random train-test split 5 times and present
the average test set results across the 5 runs.

4.2. Prediction Results and Comparisons

In this section, we present experimental results that: 1) compare the prediction results
of the proposed DREP model with several commonly used baseline regression models; 2)
verify thermodynamic consistency of the ML-EOS predictions; and 3) demonstrate the
stability and generalization abilities of the proposed model from both ML and physics
perspectives.

We use the mean relative error (MRE) as the main metric to show the overall
performance, which is defined as:

N
1 |fgn_yn‘
MRE = — = - 14

N2 (1)

where the target response can be either P or E. We first summarize the overall MRE
comparison in Table 1. As can be seen, the proposed DREP outperforms all the baseline
models on both energy and pressure predictions. We will demonstrate more detailed
results including P/E — T curves at different density points and show how the baseline
models suffer from the main challenges as summarized earlier in the paper.

Prediction results of DREP. In this section, we present a detailed visualization of the
EOS fitting results by the DREP model. The overall objective of the model is to
take density p and temperature 7' as inputs and make predictions on pressure P and
internal energy E as outputs. In the training stage, we make 80% of the entire table
available and iteratively generate tasks from it. Each task consists of 50 context points
and 50 target points. We consider the trained DREP model and analyze the model’s
regression capability for different density values using the pressure-temperature and
energy-temperature Curves. For each density value, we consider the temperature in the
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Figure 6: DREP prediction results (Ey = 16eV /atom, original units: T: eV, P: Mbar,
E: eV/atom). The ground truth data points are marked by circles. The solid curves
represent density values that are included in the training data, while the dashed curves
represent unseen density values.

range of 8.6e %V to 22060eV, and plot the ground truth values along with the energy
and pressure predictions. In Figure 6, each pressure-temperature curve is generated by
predicting on 1, 000 temperature values for each density value. For better visualizations,
we use the log scale. The original units for the quantities are: g/cm? for density, eV
for temperature, Mbar for pressure, and eV/atom for internal energy. The temperature
values are evenly distributed in the log space. The reference points (ground truth
data) from the original EOS table are shown as circles in the figure. The solid curves
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Figure 7: Predicted energy and pressure surface visualization. The color coding shows
the overall increasing trend of P and F predictions (log of indicated units) along with
the increase of p and T

represent density values that are included in the training data, while the dashed curves
are predictions for density values not present in the training dataset. It is worth to note
the unseen density curves are also smooth and show reasonable trends compared to the
adjacent curves that include ground truth points.

We next visualize the predicted surface of energy and pressure for density in the
range le °g/cm? to 1597g/cm?® and temperature in the range 8.6e*eV to 22060eV . For
the energy trend, we shifted the DREP model prediction by Es = 16eV/atom before the
log transformation. Figure 7 visualizes the two surfaces predicted by our DREP model.
We also visualized the relative error distribution in Figure 11 (a). The error is mostly
evenly distributed over the density-temperature range in which the model is trained in.
The relative error can be higher when the ground truth value is small, which is expected.

Prediction results of baseline models. For a more thorough comparison, we present
some detailed prediction results from representative baseline models, including ridge
regression (RR) and Gaussian process regression (GP).

For the RR model, the overall MRE is around 444.5%.  Apparently, a
linear model can not capture the complex (and highly nonlinear) relationship
between the outputs and the inputs. Omne solution is to construct nonlinear
polynomial features based on the inputs. To this end, we have tested
polynomial orders of 2,3,5,7,13,17, and the corresponding MRE results are:
Layre(Polys) = 72.9%, Ly re(Polys) = 60.4%, Ly re(Polys) = 29.7%, Lyre(Poly;) =
16.3%, Ly re(Polyis) = 5.2%, Ly re(Polyi7) = 205.5%. After a polynomial order of 13,
the model starts to severely overfit and the MRE quickly increases. The MRE results
with polynomial order of 13 look promising. However, by closely checking the pressure-
temperature curves of Poly;s, it shows that the model is highly unstable between ground-
truth data points. By using the kernel approach instead of expanding to polynomial
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inputs, Kernel ridge regression (KRR) can further improve the smoothness of the RR
model, achieving an MRE at around 5%. However, as can be seen in Figure 8, the curves
still have severe wiggles in many density regions. Particularly, the prediction struggles
to stay true to the reference data trend in the low temperature region. We can see from
Figure 5 too that the low temperature region changes drastically from low density to
high density, which could be the cause of the poor performance from baseline models in
this range. Finally, the GP model exhibits some large predictive variances for regions
where training data is completely missing. It is also worth noting that in Table 1, we
show the overall MRE after omitting some highly nonphysical predictions (with relative
errors being much larger than 100%), and the results are still far from ideal.

Sequential inference experiments. The proposed model can integrate knowledge from
different sizes of support sets for downstream regression problems during the inference
phase as a sequential inference model. Here, we show how the model’s sequential
inference capability can be useful in the EOS problem. If we use a support set of size 0,
the model reduces to a simple NN model. When we change the size of the support set,
we change the amount of information we force the model to consider during inference
for prediction on the test inputs.

We consider the DREP model trained for 1,000 epochs with novel kernel-based
regularization strength A; of 0.1. As shown in Figure 9, when there is only one data
point in the support set, the MRE’s for both P and E are very high. As the support
set size increases, the model has more knowledge about the true regression function,
and the model obtains a better estimate of the true underlying function which leads to
improved performance on downstream regression tasks.

4.8. Uncertainty Quantification Results

DREP introduces a kernel-based regularizer that enables the model to have accurate
uncertainty quantification capabilities, which will be investigated in this section.

NN Uncertainty Quantification Results. First, we show the issue with the predicted
variances of NN. In Figure 10, the variance is not very accurate in that it can not
provide an interpretation of how the model is performing outside of the training regime.
The predicted variance of P is larger only in the low temperature region, while the
predicted variance of E is almost uniform across the entire data space. The desired
behavior of the predicted variance should indicate whether the model is certain about
the predictions. Next, we show that our proposed DREP structure enables us to use a
novel regularizer to do exactly that.

Regularization and uncertainty quantification The support set offers information that
makes DREP different from a standard NN. In supervised ML, when the target prediction
region is very different from the labeled data that we have seen during training, the
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Figure 8: Kernel ridge regression predictions: Pressure / Internal Energy - temperature
curves for different densities (F; = 16eV/atom, original units: T7: eV, P: Mbar, E:
eV/atom). The ground truth data points are marked by circles. The solid curves
represent density values that are included in the training data, while the dashed curves
represent unseen density values.

prediction results are not as reliable as in-range predictions. The model should be
able to quantify such unreliability. In our framework, these cases can be captured by
the uncertainty through the predicted variance. To ensure that the model predicts a
higher variance when the test data point is far away from the available training data,
we propose to add a kernel regularization term to the loss function (Section 3.3.1). In
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Figure 9: Trends of MRE vs. number of data points in the support set. Number of
points in the support data set is indicated by x axis values. We can see the MRE
decreases as we increase the size of the support set, which indicates that the support
set data points provide useful information that could help the model make accurate

predictions.
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Figure 10: Trends of NN predicted variance. The predicted variance for pressure does
not match the training data distribution and the predicted variance for internal energy
is mostly non-informative.

the EOS problem, we introduce the variance regularization loss during training as:

. 1 1
EKER = Z DZS(an,Sn) X (; + g) (15)

n n

where op, and o, represent the predicted pressure and energy for the query input x,, .
We train the DREP model on the 1,228 iFPEQS dataset points directly observed from
the experiments. After training for 1,000 epochs, we plot the predicted variance for
missing data regions and data regions far away from the observations in Figure 11. We
consider the model’s prediction and consistency in the density range 0.0001g/cm? to
1597g/cm?® and temperature range of 0.068eV to 22061eV. As can be seen, the model
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outputs high variance in regions of low density and temperature, which corresponds
to the missing data region (see Figure 4), where no reference data is available for the
model to learn from. Moreover, this high variance also correlates to a high relative error
region, a desirable property of an uncertainty-aware model.

Relative Error: 8.34% Thr: 20% op ., Threshold: 0.4
- - 20 . DREP 0.4
T 41 B 4
g 15 3 0.3
e (]
S 29 S 24
5 10 2 0.2
2 2
IS €
@ 0 5 faj 0 0.1
(=] (=)
= 3 0.0
-2 0 2 -2 0 2 )
Log Density (log gcc) Log Density (log gcc)
(a) Relative Error (b) Predicted variance o py,

Figure 11: Trends of relative error and variance of DREP with \; = 0.1

Out-of-distribution detection experiments. In the above experiments, the input range
is still close to the training data.

We have shown that our
model can generalize better than Opyeerr Threshold: 0.4

basic models in these cases. % .
However, if the test inputs are :8’ °] 0.3
even further away from the g2 4l

known region, all the models are g 0.2
expected to make more unreliable g 5]

predictions. In this case, we 'i o
would like the model to output 3 -104 0.0

-5 0 5

a high uncertainty score that Log Density (log gcc)

indicates a potentially unreliable
prediction. Our DREP model is Figure 12: Predicted variance

designed with this objective and

leads to desired uncertainty behavior. Figure 12 shows the variance output of the DREP
model for such out-of-distribution regions, where the model variance increases as the

model makes predictions on regions far away from the training data.

4.4. Consistency Analysis

We next carry out experiments to study the physical consistency of the DREP model.
We first show the results on using ensembling to improve the model consistency. We
then examine the consistency in the model predictions using automatic differentiation
[55]. Finally, we plot the Hugoniot plot to further verify the model consistency.
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Figure 13: DREP prediction results with/without ensembles. The ground truth data
points are marked by circles. The solid lines represent density values that are included
in the training data, while the dashed lines represent unseen density values. We can see
that the single model predictions (right figure) have wiggles in low-temperature regions.
The average training MRE of the single models is 0.89% for P and 1.11% for E, while
the ensemble predictions on the training data has an MRE of 0.77% for P and 0.51%
for E.

Consistency results with/without ensembling. Although the overall MRE is already
low with DREP, we can still observe few wiggles or oscillations in smaller-value regions
(Figure 13). To address this issue, we propose to leverage the ensemble method by
training multiple randomly initialized models with different random meta-learning-style
tasks. In Figure 13, we compare the high-density-low-temperature predictions of a
single model and the ensemble model, which shows that the ensemble model improves
the prediction consistency to a large extent. This, together with the thermodynamic
consistency in the following subsection, will greatly benefit downstream tasks. We will
use the Hugoniot as an example at the end of the section to demonstrate the overall
effectiveness.

Gradient-based consistency results. It is important that the EOS predictions are
thermodynamically consistent. To evaluate whether desired thermodynamic consistency
can be achieved by the proposed model, we compare the model’s pressure prediction
(Pprep) with the pressure value (Poonsistency) obtained by solving the consistency
criterion in Eq. (13). In Figure 14, we show both Pprrp and Peonsistency for three
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different density values at different temperatures. It can be seen that the Pprgp curves
match closely with the PoonsrsTtency curves. In addition, the model prediction Pprep
also matches the ground truth P points (GT points) almost perfectly. It is also worth
noting that no data points are available in training for a density of 13.00 g/cm?. The
DREP model is still able to output physically reliable pressure values that are bounded
between the pressure curves of density 10.52 g/cm?® and 15.71 g/cm?®. Moreover, it
is well aligned with the corresponding PronsrsTency curve as shown in Figure 14.

1\Ie>(t7 we ShOW the diﬁerence PCONSISTENCY VS PDREP
(using MRE) between Ppgrep | ---- 10.529/cm3,Pprep
and Poconsristency for the DREP 15.71g/cm? Pprep
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ing data (including interpolated,
and extrapolated data) in Figure
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o
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{8

sity temperature range is around
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most uniform except for the p ~

Figure 14: Trends of DREP model prediction and

3 .
0.1g/em? region where the rela- consistency-based computation of P. The relative

tive difference reaches a very high difference in this density range is 3.03%

value of up to 600% (see Figure

15 (a)). It can be interesting future work to study this p ~ 0.1g/cm? region to better
understand the ML model’s inconsistent prediction around this region. In low-density-
temperature regions, the relative difference exceeds a threshold of 50% (see Figure 15
(b)). In all other regions, the model’s predictions are mostly consistent, the relative

difference is reasonably low, and the model is accurate.
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Figure 15: Relative difference between predictions Pprep and PoonsisTENCY
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Fitting the Hugoniot curves. Besides analyzing the predictions and PDE-induced
consistency measures, another important verification of the model consistency is to
test it for downstream tasks.

550 Hugoniot 500 Hugoniot
—_ —— DREP ensemble — —— DREP
& 200{ — DREP single & 500 iFPEOS
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(a) 0 ~ 250 GPa pressure range: a (b) 0 ~ 600 GPa pressure range:
zoomed-in comparison between the a comparison between the results
results from DREP ensemble and a from DREP ensemble and existing
single model computational results

Figure 16: Hugoniot plots using predicted results from DREP with comparisons. We
show that although a single model may output a wiggly curve, the DREP ensemble can
produce results very close to the most recent iFPEOS baseline.

The Hugoniot relations, which provide the thermodynamic conditions in shock-
compressed matter, are an important and convenient benchmark for the accuracy of
EOS models. The Hugoniot equation relates the internal energy, pressure and density
(Eo, Py, po) in the unshocked side of the shock front to those in the shocked side (E, P, p):

E—Eozl(P-i-Po)(i—l) (16)
2 pPo P

Ey and P, have been obtained for the initial conditions corresponding to those in
reported experimental measurements (py = 0.173 g/cm®, T = 19 K [4]) using the
methodology presented in existing work [7]. The Hugoniot curves, corresponding to
the pressure-compression points (P, p/pg) which satisfy Eq. (16), are presented in Fig.
16, where we show curves generated by: 1) predicted table from a single model; 2)
predicted table from ensemble model, and compare the ensemble model results with
existing results [7, 12, 15]. As we can see, using a single model leads to a more wiggly
curve that has sudden slope changes compared to the ensemble model. If we compare
with the most recent existing results [7], we find that these wiggles can not be interpreted
as reasonable physical behaviors. The ensemble model shows smooth curves which are
close to existing results. Thus, although the overall predictive performance (e.g., using
MRE as a metric) of a single model is close to the ensemble model, the latter shows an
improved ability to adapt to downstream tasks.
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Table 2: MRE results without log transformation

ML model | Average MRE P (%) ‘ Average MRE E (%) ‘

RR 144 27.9
KRR 41.3 24.8
GP 92.3 85.0
NN 253 257

Table 3: Impact of A\;

’ A ‘ Average MRE P (%) ‘ Average MRE E (%) ‘

0 0.90 1.03
0.001 0.89 1.09
0.1 0.91 1.25
10 5.80 3.01

4.5. Ablation Studies

We first investigate the impact of log transformation. We then study how the trade-off
parameter A\; and the width L of neural network layers affect the model’s performance.

Prediction results without preprocessing. In Table 2, we show the prediction results
without log transformation. As we can be seen, the model performance without log
transformation is much worse than reported in Table 1. Specifically, the NN model
suffers more than other models because it does not consider the similarity between data
points as in kernel-based methods. This shows that both the transformation and the
model design are important for a good prediction performance.

Impact of regularization parameter A\;. The regularization parameter A\; controls the
contribution of the kernel regularizer. We show the impact on the prediction results in
Table 3. As can be seen, stronger regularization hurts the generalization performance.
With a reasonable regularization value (e.g., 0.001 — 0.1), the model has accurate

uncertainty behavior, and reasonable prediction performance in terms of average MRE
of both P and E.

Impact of Width L. The proposed DREP model consists of an encoder block and the
aggregation module, followed by the decoder block (see Figure 3). The encoder and
decoder blocks are neural networks with L neurons in each layer. We evaluate models
with different widths L. All the models are trained for 10,000 epochs (each epoch
consists of 2000 training tasks) and evaluated on the same test set. Table 4 shows the
results. For a model with low L values, it is likely to under-fit the training data. In
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Table 4: Impact of layer width L

’ L ‘ Average MRE P (%) ‘ Average MRE E(%) ‘

32 3.49 4.34
64 2.56 2.63
128 1.61 241
012 0.98 1.35
1024 0.90 1.03
2048 1.02 1.32

contrast, for large L values, the models tend to overfit to the training data. As can be
seen from the table, the best result is achieved by a model with L = 1024.

5. Conclusion

In this work, we conduct deep learning-based regression to jointly predict energy and
pressure at an arbitrary point, aiming to facilitate and accelerate the construction of
universal Equation-Of-State (EOS) models. We introduce log transformations and meta-
learning-inspired training that lead to an accurate, thermodynamically consistent, and
uncertainty-aware deep regression model. Experiments across multiple baselines and
settings demonstrate the effectiveness of the developed model. The designed training
mechanism proves to work well under wide-ranged and sparse data settings. The
uniquely designed kernel-based regularizer ensures accurate uncertainty quantification
even with highly sparse training data. The ensembling technique further improves
the prediction consistency of the model, which is also demonstrated in the improved
thermodynamic consistency and downstream tasks.
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