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Abstract. In this paper, we aim to explore novel machine learning (ML) techniques

to facilitate and accelerate the construction of universal Equation-Of-State (EOS)

models with a high accuracy while ensuring important thermodynamic consistency.

When applying ML to fit a universal EOS model, there are two key requirements: (1)

a high prediction accuracy to ensure precise estimation of relevant physics properties

and (2) physical interpretability to support important physics-related downstream

applications. We first identify a set of fundamental challenges from the accuracy

perspective, including an extremely wide range of input/output space and highly

sparse training data. We demonstrate that while a neural network (NN) model

may fit the EOS data well, the black-box nature makes it difficult to provide

physically interpretable results, leading to weak accountability of prediction results

outside the training range and lack of guarantee to meet important thermodynamic

consistency constraints. To this end, we propose a principled deep regression model

that can be trained following a meta-learning style to predict the desired quantities

with a high accuracy using scarce training data. We further introduce a uniquely

designed kernel-based regularizer for accurate uncertainty quantification. An ensemble

technique is leveraged to battle model overfitting with improved prediction stability.

Auto-differentiation is conducted to verify that necessary thermodynamic consistency

conditions are maintained. Our evaluation results show an excellent fit of the EOS

table and the predicted values are ready to use for important physics-related tasks.
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1. Introduction

Background. Improving our understanding of high-energy-density physics and

advancing research in the important fields of inertial confinement fusion (ICF) and

planetary science relies on accurate equation-of-state (EOS) models, which cover a wide

range of thermodynamic conditions [1, 2]. As technology is improving, experimental

measurements of EOS are accessing higher and higher density and temperature

conditions, such as those encountered in imploding ICF targets [3, 4] and white dwarfs

[5]. Measurements at such conditions are extremely difficult to obtain and data are

therefore sparse and mainly serve as benchmarks for the accuracy of theoretical models,

which are also constantly evolving in both accuracy and range of conditions covered [6].

Recently, an improved version of the first-principles EOS table (iFPEOS) for

deuterium is published [7], which is an update on FPEOS [8, 9] based improved

theoretical methods such as ab initio molecular dynamics (AIMD). These methods

are driven by density functional theory (DFT), where advanced meta-generalized

gradient approximation (meta-GGA) exchange-correlation (XC) free energy density

functional TSCANL [10], a high-accuracy non-interacting orbital-free free energy density

functional LKTFγTF (see details in Ref. [7]) is used. Compared to previous models

[11, 12, 13, 14, 15], iFPEOS showed better agreement with experimental measurements

[4, 16, 17, 18] for temperatures T ∼ 60,000 K and pressures up to P ∼ 200 GPa.

However, for higher T − P regimes, iFPEOS fails to close the gap between latest

theory and experiment. At such extreme conditions, both theoretical and experimental

work can be considered in their pioneering stages and iFPEOS suggests that first-

principles treatment beyond DFT might be necessary. Additionally, at such extreme

conditions, first-principles simulations are challenging from the computational point

of view as AIMD are significantly time-consuming and require a large allocation of

computing resources. An AIMD run, corresponding to one point in iFPEOS, could

take approximately a few hours to several days running on tens to hundreds of

cores depending on thermodynamic conditions and methodology, with the low-T , low-

density orbital-based Kohn-Sham DFT calculations being much more computationally

demanding than the high-T orbital-free AIMD ones. Therefore, the immediate future

of theoretical EOS models relevant to ICF faces two great challenges: (1) The high

computational demands of a single calculation arising from the need to go beyond DFT;

(2) The need for many such calculations in order to finely sample a wide range of

thermodynamic conditions. As current developments in efficient ab initio algorithms

and the performance of supercomputing clusters is relatively slow and incremental, one

cannot overlook the potential of machine learning (ML) methods in the fast generation

of dense and accurate EOS models from sparse data.

ML based EOS Modeling. In recent years, machine learning (ML) has been

increasingly adopted by the scientific research community to address the data-

computation extensive challenges [19]. Given available observations, an ML model can

be trained to learn the underlying patterns in the data, which can then be used to make
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a prediction at any density-temperature point of interest. A promising solution to build

a universal EOS model is to leverage an iFPEOS table of finite size to train an ML model

that can recover any missing values in the table and hence explain the wide range of

behaviors of deuterium EOS. As some recent efforts in using ML to model EOS [20, 21]

show, using a neural network (NN) surrogate model to provide EOS information is viable

and provides advantages such as saving the memory cost of restoring all EOS tables,

providing differentiability for downstream tasks, and accelerating simulations. Another

important factor is as aforementioned, that an NN model can provide a universal

approximation. This implies that an NN model can achieve any desired error rate

on training. Plus, unlike interpolation methods which usually require neighborhood

knowledge, a trained NN model can predict at any input point.

In our work, we propose novel extensions of a standard NN model to an encoder-

decoder structure and improve the ML model design to address the unique challenges

for modeling the EOS table. We first formally introduce these key challenges either

identified by prior work or newly discovered by us. First, both the input and the output

span a very wide range. As an example, Figure 1 visualizes an iFPEOS table used in

our experiments. The two input features, including density and temperature, cover a

wide range that reaches 10−6 ∼ 103 g/cm3 and 10−5 ∼ 105 eV, respectively. Similarly,

the two outputs, i.e., energy and pressure, span more than eight orders of magnitude.

Meanwhile, the input-output dependency in certain ranges is highly sensitive, where

a small change in the input may result in a significant variation in the output. This

poses a major challenge for the commonly used gradient-based ML models, such as

neural networks, as the variance of predictions will be high where the training data is

sparse [22, 23]. Second, the distribution of data entries is highly skewed within the table.

As can be seen from Figure 1, while there is a decent amount of data entries in certain

regions, the table becomes much more sparse or even completely empty in other regions.

The imbalanced data distribution and the high data sparsity in certain regions make it

challenging to train data-intensive ML models (e.g., deep neural networks or DNNs).

Last, most advanced ML models, such as DNNs, leverage deeply connected layers to

perform non-linear transformations of the input to generate the output. While these

models can usually produce highly accurate predictions to match the desired outputs,

they are not sufficient for effective application in real-world physics-related applications.

Due to their black-box nature and limited data supervision, the learned function may

not necessarily follow the physical rules. Therefore, there is a risk that these models

may offer false explanations that violate some fundamental physics relations. In this

work, we intend to first improve the predictions of the model, then verify if the model

can minimize the violation of physics relations.

Overview of Our Approach. To address the key challenges as outlined above, we

propose a meta-learning-based Deep Regression model to jointly predict Energy and

Pressure (referred to as DREP) after being trained from a finite-sized iFPEOS, aiming

to realize a universal EOS model. More specifically, to deal with the imbalanced

data distribution and extremely sparse regions, we apply log transformations on both
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(a) Pressure based on iFPEOS
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(b) Energy based on iFPEOS

Figure 1: Visualization of the dataset in the original space

the inputs and outputs before training the DREP model. We compare different types

of ML models, showing that most ML models have improved performance with the

transformation. NN models are especially good at re-creating the original space and

can fit the targets well in all regions. Furthermore, we propose to leverage a meta-

learning-based training process to first learn a model that can fit the target properties

E and P well locally and then generalize to the entire region by giving the model more

context points. We utilize the model’s ability to learn from multiple tasks instead of

simply running through random batches. This design also provides more flexibility

during the test phase when the model is used in practice after being trained.

To achieve the meta-learning-style training process, DREP augments a Neural

Process that simulates a stochastic process [24], like a Gaussian Process (GP). On the

one hand, DREP inherits the strong function-fitting capacity of a deep neural network to

provide accurate predictions. On the other hand, DREP has the advantage of enabling

accurate uncertainty modeling. For a standard NN, we can expand the outputs to

predict not only P and E but also their corresponding variances. However, there is no

means to ensure the quality of the predicted variance for a standard NN. By simulating

the statistical consistency of a stochastic process through kernel regularization, DREP

can faithfully report the predictive uncertainty. In the unseen range, the uncertainty

will increase accordingly. Therefore, we are able to identify the uncertainty of the model

when the predictions are less reliable through uncertainty quantification. Additionally,

we use an ensemble model to improve the stability of model predictions especially when

generalizing or applying to downstream tasks. Finally, to verify the thermodynamical

consistency of the proposed DREP model, we perform a check of Maxwell’s relation

regarding energy and pressure. The check is to evaluate the commutativity of the

partial derivatives of the predicted pressure and internal energy with respect to density

and temperature, relating the two separate outputs. We use auto-differentiation to

compute the partial derivatives and find the resulting relative difference between the

prediction and Maxwell’s relation-induced calculation result to be on the order of 10%

or less. Unfortunately, due to the lack of reference free energies, entropies, and chemical
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potentials in conjunction with the current form of the DREP model, we are unable to

verify if other relations regarding thermodynamic consistency, such as the Gibbs-Duhem

relation, hold.

Summary of Contributions. We summarize our contributions as follows:

• We show superior prediction results using an NN model and the remaining

challenges in terms of stability, consistency, and uncertainty quantification, which

justify the unique design of the proposed DREP model.

• We propose the DREP model, which can more accurately predict pressure and

internal energy values at arbitrary density and temperature points.

• We propose kernel regularization to ensure faithful uncertainty quantification.

• We propose to use an ensemble model to improve the stability of model predictions.

• We evaluate the consistency of the DREP model using auto differentiation and a

PDE-informed thermodynamic violation measure.

• We provide detailed experimental results to demonstrate the prediction performance

of DREP as well as ablation studies and effectiveness on other physics-related

downstream tasks.

2. Related Work

In recent years, machine learning, especially deep neural networks (DNNs) [25], has

been widely used not only in computing and data-mining fields [26] but also in many

cutting-edge interdisciplinary scientific research fields [27, 28, 29]. With this trend,

physics-informed machine learning [30, 31, 32, 33, 34, 35] or machine learning for

physics [36, 37, 38] has attracted increasing attention with promising results. Some

recent works aim to develop machine learning (ML) models consistent with real-world

physical phenomena. To this end, one popular line of research is to develop data-

driven models that rely on observed data (that reflects the underlying mathematical

principles) to encode physical rules in the model. Alternatively, specialized neural

network architectures with different types of inductive biases [39] (e.g., convolutional

networks [25] to ensure translational symmetry) have also been developed to encode

the prior physics knowledge in the ML models [40, 34]. DNNs can also be trained by

incorporating the underlying physics into loss functions or regularization terms. Finally,

hybrid approaches that aim to integrate different physics-informed neural network

approaches are also being developed [41, 42, 43].

Regression models provide a powerful vehicle to replace expensive numerical

calculations or time-consuming simulations by quickly predicting desired physics

properties once being trained. Many classic models like linear/polynomial regression and

DNNs have been commonly used. However, these models primarily focus on learning

from data with limited flexibility to incorporate domain knowledge. When physics-

informed knowledge or constraints are considered, kernel-based methods like kernel
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regression [44, 45], numerical Gaussian processes [46, 47], and deep kernel learning [43]

have been frequently leveraged with promising results.

Modeling the EOS table is an important task in high-density-energy computational

physics. Having a reliable EOS table that covers a wide range is often difficult because of

the shortcomings of various computational models [11, 12] and the discrepancies among

these methods in the overlapping range [8, 9, 7]. iFPEOS provides a more accurate

model that covers a wide range of density and temperature values [7]. However, the

high computational cost makes it challenging to leverage iFPEOS to generate the desired

physics quantifies at arbitrary points. While it is possible to train existing regression

models, including kernel methods, from limited iFPEOS data points, these approaches

fall short in addressing the key challenges as identified earlier in the paper.

When modeling physics-informed problems, differential equations provide an

effective means to encode important knowledge or constraints. Although using neural

networks to model ordinary or partial differential equations has been studied for a

long time [48] and improved recently by PINN (physics-informed neural networks) [30],

to our knowledge, there is no prior work that uses indirect PDEs of multiple-outputs

(e.g., pressure and internal energy) to verify the thermodynamic consistency without

modeling the underlying quantity (e.g., free energy), which is achieved by the proposed

DREP model.

3. Methodology

In this section, we describe the detailed design of DREP. We start with a formal problem

formulation of multi-output regression. We then summarize preliminaries that cover a

set of classical regression models. Next, we present the model architecture and discuss

how we design the model to achieve each of its key properties in order to address the

important EOS modeling challenges.

Problem formulation. The main problem – EOS modeling – is a multi-output regression

problem. In a standard multi-output regression setting, we have a set of input features

x ∈ RD, and train the model to predict some continuous output response y ∈ R or

multiple responses y ∈ RL. In the EOS modeling problem, the input features include

density ρ and temperature T and the target outputs are pressure P and internal energy

E: x = (ρ, T )⊤,y = (P,E)⊤.

3.1. Preliminaries

A key challenge with the EOS table data is the wide ranges that the physics quantities

span. We perform log transformations to make the inputs more accessible for the ML

models. The transformation is simple and also makes visualizations of the predictions

more accessible. The physics quantities should also satisfy certain boundary conditions

(e.g., near density ρ = 0 and temperature T = 0). We use extrapolation to generate
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synthetic training data near the boundary and add these points to the training process.

Later we will show how these transformations change the fitting results and the

generalizing ability of the model. Below, we give an overview of standard regression

models that can be used for EOS modeling.

Linear/polynomial regression. Linear regression uses a linear function of the input

features ŷ = w⊤x to fit the response y, where x = (1, ρ, T )⊤ is the feature vector in

the EOS problem and w is a set of coefficients. However, the expressiveness of a linear

function is limited. We can use polynomial feature expansion to improve the flexibility

of the model, which includes the p-th power of each component in x with the interaction

terms. The coefficients can be learned by minimizing a mean squared error:

LPR({xn, yn}Nn=1) =
1

N

N∑
n=1

(
yn −w⊤xn

)2
(1)

Extension to multiple outputs is straightforward, where the coefficient vector w is

replaced with a coefficient matrix W ∈ RD×L to fit multiple responses y ∈ RL:

ŷ = W⊤x. Polynomial regression (PR) using high-order polynomial features is prone

to overfitting. We can use regularization to reduce overfitting, which we will introduce

next together with the kernel trick.

Kernel methods. Ridge regression (RR) adds the l2 norm of the coefficients to address

overfitting. The regularized loss function can be formalized as:

LRR =
L∑
l=1

γl

(
N∑
n=1

lSE({x, y(l)n }) + λw(l)⊤w(l)

)
(2)

where γl is the weight for the lth output and λ is the regularization weight. For

one entry of the output y(l), we still use the mean squared error: lSE({x, y(l)}n) =(
y
(l)
n −w(l)⊤xn

)2
. We can adopt the matrix view of the RR problem, and the solution

can be formed as W = (X⊤X + λI)−1X⊤y, where X is the design matrix (stacking

x⊤
n ). The term XX⊤ is called the Gram matrix [49]. We can also allow implicit

feature representation using the kernel trick. Kernel ridge regression (KRR) introduces

a kernel-represented Gram matrix K, where Kij = k(xi,xj) with k(·, ·) being a kernel

function [49].

Gaussian Processes (GPs) also use the kernel trick to build random processes.In

a standard GP formulation, the prior is given as a 0-mean Gaussian distribution with

the Gram matrix K being the covariance matrix p(z) = N (z|0,K). The conditional

probability distribution of the target output is also a Gaussian p(y|z) = N (y|z, β−1IN).

Thus, the marginal distribution of the outputs is still Gaussian p(y) =
∫
p(y|z)p(y)dy =

N (y|0,C), where C is the covariance matrix. The elements of C are given by

C(xi,xj) = k(xi,xj) + β−1δij. The prediction for an unseen input xN+1 can also

be expressed in the Gaussian form N (yN+1|y) where the mean and variance are
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m(xN+1) = k⊤C−1y, σ2(xN+1) = c − k⊤C−1k with c = k(xN+1,xN+1) + β−1. The

advantage of the GP model is that it can fit the data well locally and provides a

natural statistical interpretation that directly gives us a covariance matrix instrumental

to quantify the uncertainty.

Deep neural networks (DNNs). A DNN consists of multiple (usually deeply connected)

layers of nodes that play the role of artificial “neurons”. All these weights are the

parameters of the DNN that are updated during training such that the DNN can

approximate the true underlying function and generalize well during inference.

Comparing DNNs with the kernel-based models, we will see the following core

differences: First, DNNs can be trained using stochastic gradient descent with is much

more scalable than a GP with respect to the number of data points. Second, instead of

relying on either the original features or a fixed kernel function, DNNs can learn a latent

feature space optimized for the downstream tasks (e.g., regression or classification). In

this task, we will take advantage of the second property and utilize the flexibility of

DNNs to design a specific model that performs well for the problem. The entire DNN

can be expressed as a function: y = fΘ(x), where Θ denotes all the weights in the

network. Besides modeling the outputs y = (P,E)⊤, we can make the DNN generate

a probabilistic output by outputting both the mean and the variance in the need of

quantifying the uncertainty of the prediction. The model is trained by using a log-

likelihood-based objective that simplifies to Mean Squared Error loss when the output

variance is treated as constant. Such a DNN-based regression model is shown in Figure

2.

Figure 2: The DNN regression model

One major limitation of standard DNNs is that they require a lot of labeled data

to be properly trained [50], which makes it challenging to apply for the EOS problem

due to highly sparse training data. Furthermore, a DNN trained over limited data

may suffer from under-fitting, overfitting [51], or both at the same time. A principled

uncertainty quantification mechanism is needed to detect when the model may provide

wrong predictions to inform decision-making. The proposed DREP model is designed to

address these limitations, which will be detailed next.
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3.2. Deep Regression to Jointly Predict Energy and Pressure

We first introduce a task-based meta-learning style training process for the EOS

regression problem. Afterward, we develop the DREP architecture for the training

process. We then carry out a theoretical analysis that shows the advantage of this

unique design over a standard DNN, in terms of sequential inference, thermodynamic

consistency, and accurate uncertainty quantification capabilities.

3.2.1. A Task-Based Meta-Learning Style Training Process

In real-world physics regression problems, we are likely to have a limited number

of available training data points (e.g., limited data for the EOS table fitting problem

due to expensive Molecular Dynamics simulations). For this work, we assume that

we have a limited-data dataset D with Ntr labeled data points in the training set

(Dtr = {xn,yn}Ntr
n=1), and Nts data points in the test set (Dts = {xn,yn}Nts

n=1).

To better utilize the limited training data, inspired by few-shot learning approaches

[24], we propose to use a task-based meta-learning-style training process. To this end, we

consider two phases: a meta-training phase to acquire the global knowledge of the true

underlying regression function, and a meta-testing phase to use the global knowledge in

EOS table prediction.

The DREP model accesses the information of Dtr in the meta-training phase to

acquire the global knowledge for the EOS regression task. Specifically, in the meta-

training phase, we consider a large number of randomly sampled tasks to acquire the

required global knowledge for accurate regression. Each meta-training task consists

of a support set S = (XS,YS) and a query set Q = (XQ,YQ). These sets are

constructed by randomly sampling NS + NQ data points from the Ntr training data

points, assigning the NS data points to the support set, i.e., Sn = (XSn ,YSn) =

{(xn,yn)}NS
n=1, (xn,yn) ∈ Dtr, and assigning the NQ points to the query set i.e.

Qn = (XQn ,YQn) = {(xn,yn)}
NQ

n=1, (xn,yn) ∈ Dtr. The support set and the query

set of the training task represent two local views of the true regression function, and the

DREP model training is formulated such that given one local view of the true function,

i.e., the support set view, the model has to accurately predict the query set. In other

words, given the support set information, the model has to be able to predict the query

set (additional details of model training are provided in Section 3.3.1). Such task-based

local view formulation of the objective enables the model to train on a large number

of tasks, with multiple local views, and is expected to guide the model to gain global

knowledge of the target function.

From the meta-training phase, the DREP model is expected to acquire the desired

meta-knowledge required for accurate downstream EOS regression. We then introduce

the meta-testing phase to evaluate the DREP model’s acquired knowledge. The meta-

testing consists of one test task Ttest in which all the training data constitutes the

support set i.e., Stest = Dtr, and all the test data points constitute the query set i.e.

Qts = Dtest, Ttest = (Stest,Qtest). We consider all the training in the support of the
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meta-test task, i.e., Stest = Dtr to ensure the DREP model has a global view of the true

regression function. With the global view of the function, the model makes predictions

on the test set {xi}Nts
n=1.

As stated above, the rationale behind using the meta-learning style training for the

DREP model is that the data from the EOS table is scarce and sparse, and the underlying

function is difficult to learn. To elaborate, although P and E increase with ρ and T

in most regions, there are also the plateau region and other refined local trends. If we

simply use one model to learn the entire function, we might either underfit and not

describe the training data well, or overfit and lose the ability to generalize. By using

the meta-learning style training and having the model learn many local functions first

through task-based training, we increase the ability to learn the entire P and E functions

when given the global view in the meta-testing phase.

DREP Architecture. Inspired by Conditional Neural Processes [24], we develop an

encoder-decoder structure for the EOS regression problem as shown in Figure 3. The

proposed DREP model considers the neural network structure fψ(·) as the decoder, and

introduces an encoder fΘ(·) that encodes the entire support set information to a vector

r. The encoder enables the DREP model to capture the knowledge of the support set as

a reference for the decoder so that the decoder can consider this reference information

to make accurate predictions. Specifically, the reference vector r is concatenated with

a query point in XQ and passed to the decoder to predict the output.

Figure 3: Architecture of DREP. Compared to a standard DNN, both the aggregated r

and decoder capture the general knowledge.

Remarks. We propose to use the DREP model with the encoder-decoder structure

because it surpasses the standard DNN by incorporating general knowledge. We further

note that the DREP model can realize the DNN as a special instance when it completely

ignores the information carried through the encoder structure. This can be proven

by a straightforward example. Consider a K layer DNN represented by fψ(·) with m

dimensional input. Assume the input layer consists of D neurons. Let Wm×D represent

the weight matrix corresponding to these D neurons. Consider an equivalent DREPmodel

with l dimensional encoder representation r ∈ Rl and K layers in the decoder structure
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Deep Energy-Pressure Regression for a Thermodynamically Consistent EOS Model 11

similar to the DNN. Now, for an equivalent DREP model, consider D neurons in the first

input layer of the decoder. Let W l+m×D represent the weight matrix corresponding to

these D neurons. For the DREP model, when W l×D (i.e., the components in the weight

matrix corresponding to the representation r) are all zero, the representation r is ignored,

and the DREP model reduces to a DNN model. Equivalently, when the representation r is

all zero, the representation carries no information, and the DREP model again reduces to

the DNN model. In both of these cases, both the network training and inference for the

two models are identical. In all other cases, DREP model also considers the information

in the representation r due to which it is expected to perform better than the neural

network as r can provide useful reference information for training and inference.

3.2.2. Sequential Inference and Fast Adaptation to New Training Data

The proposed DREP model introduces the encoder-decoder structure that enables the

model to capture the knowledge in the training data in two ways: 1) through the

parameters of the decoder similar to a standard DNN, and 2) through representation

r generated by the encoder using the support set. Specifically, during inference, the

encoder structure aggregates all the training data to an embedding r that acts as the

compact representation. For training dataset with NS data points, r is given as

r =
1

NS

NS∑
n=1

fΘ(xsn ,ysn) =
1

NS

NS∑
n=1

rn , (xsn ,ysn) ∈ Sn (3)

The representation is permutation invariant over the input data [52] that encodes all

the training data and aggregates the resultant NS embeddings. This representation can

be expressed via a sequential update rule:

r =
1

NS

NS∑
n=1

rn =
1

NS

rNS
+

NS − 1

NS

1

NS − 1

NS−1∑
n=1

rn =
1

NS

rNS
+

NS − 1

NS

rold (4)

where rold = 1
NS−1

∑NS−1
n=1 rn is the aggregated representation of the first NS − 1 data

points, and 1
NS

rNS
is the encoder embedding for the new N th

S data point. This sequential

update rule enables the model to discard the training data once observed, and also

incorporate new information/observations for improved prediction during the inference

phase. The sequential inference capability of DREP can enable some practical use cases

for the EOS problem. For example, sequential inference is useful when we might have

different EOS data that can be used as the support set at test time. Usually, when

new ground truth data are available, we need to re-train the DNN model, which is

time-consuming. However, for the DREP structure, we do not need to re-train the model

but only need to include the new ground truth data in the support set that serves as

reference data to support prediction. This shows the generalization ability of the model

from an ML perspective. Moreover, the sequential update also enables the model to

be effective when some regions of density/temperature are not available during model

training. To this end, we do not need to store the entire dataset used for training. We
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Deep Energy-Pressure Regression for a Thermodynamically Consistent EOS Model 12

can keep the learned representation and use it in future tasks. Since EOS problems may

involve different computational physics models, this functionality can be very useful in

practice.

3.3. Challenging Tasks for NN: Uncertainty Quantification and Downstream Tasks

NN Uncertainty Quantification. We use the common practice from [53] to connect the

predicted variance of NN to the model outputs, P and E. More specifically, we modify

the loss function by including the variance to each prediction and a regularization term

that includes the variance itself:

Lvar =
1

N

N∑
i=1

1

2

(
||PNN − P ||2

σ2
P

+ log σ2
P +

||ENN − E||2

σ2
E

+ log σ2
E

)
(5)

where P and E are equally balanced. However, as shown in the later section (Figure 10),

the results are usually not meaningful as NN does not consider the relationship to the

training data here.

3.3.1. DREP Uncertainty Quantification Results

When the training data is limited, it is desirable that the model remains uncertain

on its predictions in regions far away from the observed data samples. To this end,

we introduce a novel variance regularization term that aims to guide the model to be

uncertain in regions with limited or no training data samples:

LKER =
1

NQ

NQ∑
n=1

1

σxqn

Dist(xqn ,Sn) xqn ∈ XQn (6)

where σxqn
represents the predicted variance for the query input xqn , and Dist(xqn ,S)

represents the distance between the query point xqn , and the point in the support set

Sn nearest to the query point xqn . To minimize this loss, the variance should be high

for 1) data points far away from the observed data, and 2) in regions of missing data.

DREP model enables us to introduce such novel regularization to accurately guide the

uncertainty. In the regions near to observed data, the distance will be low leading to

overall low loss.

We train the model to maximize the conditional log-likelihood

LDREP =

NQ∑
n=1

− log(pDREP (yqn |Sn,xqn)) =
NQ∑
n=1

− log(N (yqn |µqn , σ2
qn)) (7)

where Sn is the support set of the training task Tn, yqn represents the query set output

for query set input xqn , (xqn ,yqn) ∈ Qn, N (.) represents the gaussian distribution,

µqn represents the predicted mean, σ2
qn represents the predicted variance, and pDREP

represents the DREP model. In addition, we introduce the kernel-based regularization

term LKER (Eqn. (6)). The overall loss of the model is given by

L = LDREP + λ1LKER (8)
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Deep Energy-Pressure Regression for a Thermodynamically Consistent EOS Model 13

where λ1 is the regularization coefficient that controls the impact of variance

regularization on the overall model training.

3.3.2. Prediction/Thermodynamics Consistency Checking

Using the model designs and regularization methods from previous sections, we have

established a multi-output model that can fit the EOS data well despite the range and

sparsity issues. However, DREP simulates stochastic processes and still produces some

variance when there are no nearby reference data points. This would create some wiggles

in the predicted P and E curves. Additionally, in the large-density regions, the model

predictions might have some larger absolute errors due to overfitting. To address this

issue, we can train multiple models with randomized initialization and meta-learning-

style tasks. The ensemble of these randomized models creates more reliable prediction

results. Next, we also verify that by improving the prediction stability of the model, we

also improve the consistencywhen applied to downstream tasks

Thermodynamic consistency from gradient-based PDE measure. The proposed DREP

model can fit the pressure and internal energy well with limited training data. However,

to safely utilize these prediction results, we would need to verify them in terms of

thermodynamic consistency. We know that both pressure and internal energy can be

derived from the Helmholtz free energy F . This can be combined with the fundamental

thermodynamic relation: dU = −SdT − PdV . Thus, we have

P = −∂F

∂V
|T , E = F − T

∂F

∂T
|V (9)

(10)

where V is the volume. We perform partial differentiation of P and E, then using the

chain rule we have:

∂P

∂T
= − ∂2F

∂T∂V
,

∂E

∂V
=

∂F

∂V
− T

∂2F

∂V ∂T
= −P + T

∂P

∂T
(11)

P = T
∂P

∂T
− ∂E

∂V
(12)

with ∂V
∂ρ

= −m
ρ2
, where m is the mass corresponding to V , we get

PCONSISTENCY = P = T
∂P

∂T
+

ρ2

m

∂E

∂ρ
(13)

which we will use as the consistency criterion.

We propose to use the computed gradients from the DREP model to generate a

PCONSISTENCY term and compare it with the ground truth P or the DREP prediction

Ppred if the ground truth is not available. If the difference is small, we can conclude that

the P and E predictions are consistent with each other. Together with the accuracy

of the actual E predictions, we can conclude that the model makes thermodynamically

consistent predictions.
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Figure 5: Visualization of the dataset in the log scale

4. Evaluation Results

We first introduce the iFPEOS dataset and experiment details in section 4.1. We then

present the quantitative results that show the superiority of our proposed model over

the baseline regression models in section 4.2. In section 4.2, we compare the prediction

results using averaged MRE results from training-validation-splits. Afterward, we

present the consistency and uncertainty quantification results of our proposed DREP

model. The final results are from the proposed model trained with all available training

data. Finally, we carry out multiple ablation studies to investigate the contribution of

different components of the proposed model.

4.1. Dataset Description

The iFPEOS dataset is visualized in Figure 4. It consists of 1,637 data points: D =

{(ρi, Ti, Ei, Pi)}1637i=1 , where 1,228 are observations from experiments that reflect samples

from the true underlying function f such that (E,P ) = f(ρ, T ), 63 are interpolated

on the isochores 0.0196 to 0.0841 g/cm3 for temperature points 0.086 to 10.77eV, and

all remaining ones are extrapolations [54] from the observed data points. We consider

extrapolations at density 1e−5 g/cm3 and temperature 8.62e−6 eV as boundary data

points.

Figure 4: Dataset composition visualization

As mentioned in Section 3.2,

to address the wide range and

high sparsity of the given dataset,

we apply log transformations.

The input scale is already pre-

sented in Figure 4. We also vi-

sualize the outputs in Figure 5:

We consider all the interpolations

and extrapolations as part of the
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Table 1: Comparison results

Model Average MRE P (%) Average MRE E(%)

RR 397 492

RRpoly=13 7.11 6.00

KRR 5.84 5.95

GP 24.3 31.9

NN 1.11 1.19

DREP 0.90 1.03

training data. From them, we

randomly select 80% for training: Dtr = {(ρi, Ti, Ei, Pi)}1391i=1 , and the rest for testing:

Dts = {(ρi, Ti, Ei, Pi)}246i=1. We repeat the random train-test split 5 times and present

the average test set results across the 5 runs.

4.2. Prediction Results and Comparisons

In this section, we present experimental results that: 1) compare the prediction results

of the proposed DREP model with several commonly used baseline regression models; 2)

verify thermodynamic consistency of the ML-EOS predictions; and 3) demonstrate the

stability and generalization abilities of the proposed model from both ML and physics

perspectives.

We use the mean relative error (MRE) as the main metric to show the overall

performance, which is defined as:

MRE =
1

N

N∑
n=1

|ŷn − yn|
|yn|

(14)

where the target response can be either P or E. We first summarize the overall MRE

comparison in Table 1. As can be seen, the proposed DREP outperforms all the baseline

models on both energy and pressure predictions. We will demonstrate more detailed

results including P/E − T curves at different density points and show how the baseline

models suffer from the main challenges as summarized earlier in the paper.

Prediction results of DREP. In this section, we present a detailed visualization of the

EOS fitting results by the DREP model. The overall objective of the model is to

take density ρ and temperature T as inputs and make predictions on pressure P and

internal energy E as outputs. In the training stage, we make 80% of the entire table

available and iteratively generate tasks from it. Each task consists of 50 context points

and 50 target points. We consider the trained DREP model and analyze the model’s

regression capability for different density values using the pressure-temperature and

energy-temperature Curves. For each density value, we consider the temperature in the
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Figure 6: DREP prediction results (Es = 16eV/atom, original units: T : eV, P : Mbar,

E: eV/atom). The ground truth data points are marked by circles. The solid curves

represent density values that are included in the training data, while the dashed curves

represent unseen density values.

range of 8.6e−6eV to 22060eV, and plot the ground truth values along with the energy

and pressure predictions. In Figure 6, each pressure-temperature curve is generated by

predicting on 1, 000 temperature values for each density value. For better visualizations,

we use the log scale. The original units for the quantities are: g/cm3 for density, eV

for temperature, Mbar for pressure, and eV/atom for internal energy. The temperature

values are evenly distributed in the log space. The reference points (ground truth

data) from the original EOS table are shown as circles in the figure. The solid curves
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(a) Energy surface (b) Pressure surface

Figure 7: Predicted energy and pressure surface visualization. The color coding shows

the overall increasing trend of P and E predictions (log of indicated units) along with

the increase of ρ and T .

represent density values that are included in the training data, while the dashed curves

are predictions for density values not present in the training dataset. It is worth to note

the unseen density curves are also smooth and show reasonable trends compared to the

adjacent curves that include ground truth points.

We next visualize the predicted surface of energy and pressure for density in the

range 1e−5g/cm3 to 1597g/cm3 and temperature in the range 8.6e−4eV to 22060eV . For

the energy trend, we shifted the DREP model prediction by ES = 16eV/atom before the

log transformation. Figure 7 visualizes the two surfaces predicted by our DREP model.

We also visualized the relative error distribution in Figure 11 (a). The error is mostly

evenly distributed over the density-temperature range in which the model is trained in.

The relative error can be higher when the ground truth value is small, which is expected.

Prediction results of baseline models. For a more thorough comparison, we present

some detailed prediction results from representative baseline models, including ridge

regression (RR) and Gaussian process regression (GP).

For the RR model, the overall MRE is around 444.5%. Apparently, a

linear model can not capture the complex (and highly nonlinear) relationship

between the outputs and the inputs. One solution is to construct nonlinear

polynomial features based on the inputs. To this end, we have tested

polynomial orders of 2, 3, 5, 7, 13, 17, and the corresponding MRE results are:

LMRE(Poly2) = 72.9%, LMRE(Poly3) = 60.4%, LMRE(Poly5) = 29.7%, LMRE(Poly7) =

16.3%, LMRE(Poly13) = 5.2%, LMRE(Poly17) = 205.5%. After a polynomial order of 13,

the model starts to severely overfit and the MRE quickly increases. The MRE results

with polynomial order of 13 look promising. However, by closely checking the pressure-

temperature curves of Poly13, it shows that the model is highly unstable between ground-

truth data points. By using the kernel approach instead of expanding to polynomial
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inputs, Kernel ridge regression (KRR) can further improve the smoothness of the RR

model, achieving an MRE at around 5%. However, as can be seen in Figure 8, the curves

still have severe wiggles in many density regions. Particularly, the prediction struggles

to stay true to the reference data trend in the low temperature region. We can see from

Figure 5 too that the low temperature region changes drastically from low density to

high density, which could be the cause of the poor performance from baseline models in

this range. Finally, the GP model exhibits some large predictive variances for regions

where training data is completely missing. It is also worth noting that in Table 1, we

show the overall MRE after omitting some highly nonphysical predictions (with relative

errors being much larger than 100%), and the results are still far from ideal.

Sequential inference experiments. The proposed model can integrate knowledge from

different sizes of support sets for downstream regression problems during the inference

phase as a sequential inference model. Here, we show how the model’s sequential

inference capability can be useful in the EOS problem. If we use a support set of size 0,

the model reduces to a simple NN model. When we change the size of the support set,

we change the amount of information we force the model to consider during inference

for prediction on the test inputs.

We consider the DREP model trained for 1, 000 epochs with novel kernel-based

regularization strength λ1 of 0.1. As shown in Figure 9, when there is only one data

point in the support set, the MRE’s for both P and E are very high. As the support

set size increases, the model has more knowledge about the true regression function,

and the model obtains a better estimate of the true underlying function which leads to

improved performance on downstream regression tasks.

4.3. Uncertainty Quantification Results

DREP introduces a kernel-based regularizer that enables the model to have accurate

uncertainty quantification capabilities, which will be investigated in this section.

NN Uncertainty Quantification Results. First, we show the issue with the predicted

variances of NN. In Figure 10, the variance is not very accurate in that it can not

provide an interpretation of how the model is performing outside of the training regime.

The predicted variance of P is larger only in the low temperature region, while the

predicted variance of E is almost uniform across the entire data space. The desired

behavior of the predicted variance should indicate whether the model is certain about

the predictions. Next, we show that our proposed DREP structure enables us to use a

novel regularizer to do exactly that.

Regularization and uncertainty quantification The support set offers information that

makes DREP different from a standard NN. In supervised ML, when the target prediction

region is very different from the labeled data that we have seen during training, the
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Figure 8: Kernel ridge regression predictions: Pressure / Internal Energy - temperature

curves for different densities (Es = 16eV/atom, original units: T : eV, P : Mbar, E:

eV/atom). The ground truth data points are marked by circles. The solid curves

represent density values that are included in the training data, while the dashed curves

represent unseen density values.

prediction results are not as reliable as in-range predictions. The model should be

able to quantify such unreliability. In our framework, these cases can be captured by

the uncertainty through the predicted variance. To ensure that the model predicts a

higher variance when the test data point is far away from the available training data,

we propose to add a kernel regularization term to the loss function (Section 3.3.1). In
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(a) MRE trend for E (b) MRE trend for P

Figure 9: Trends of MRE vs. number of data points in the support set. Number of

points in the support data set is indicated by x axis values. We can see the MRE

decreases as we increase the size of the support set, which indicates that the support

set data points provide useful information that could help the model make accurate

predictions.
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Figure 10: Trends of NN predicted variance. The predicted variance for pressure does

not match the training data distribution and the predicted variance for internal energy

is mostly non-informative.

the EOS problem, we introduce the variance regularization loss during training as:

LKER =

NQ∑
n=1

Dis(xqn ,Sn)×
( 1

σPn

+
1

σEn

)
(15)

where σPn and σEn represent the predicted pressure and energy for the query input xqn .

We train the DREP model on the 1, 228 iFPEOS dataset points directly observed from

the experiments. After training for 1, 000 epochs, we plot the predicted variance for

missing data regions and data regions far away from the observations in Figure 11. We

consider the model’s prediction and consistency in the density range 0.0001g/cm3 to

1597g/cm3 and temperature range of 0.068eV to 22061eV. As can be seen, the model
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outputs high variance in regions of low density and temperature, which corresponds

to the missing data region (see Figure 4), where no reference data is available for the

model to learn from. Moreover, this high variance also correlates to a high relative error

region, a desirable property of an uncertainty-aware model.

(a) Relative Error (b) Predicted variance σPDREP

Figure 11: Trends of relative error and variance of DREP with λ1 = 0.1

Out-of-distribution detection experiments. In the above experiments, the input range

is still close to the training data.

Figure 12: Predicted variance

We have shown that our

model can generalize better than

basic models in these cases.

However, if the test inputs are

even further away from the

known region, all the models are

expected to make more unreliable

predictions. In this case, we

would like the model to output

a high uncertainty score that

indicates a potentially unreliable

prediction. Our DREP model is

designed with this objective and

leads to desired uncertainty behavior. Figure 12 shows the variance output of the DREP

model for such out-of-distribution regions, where the model variance increases as the

model makes predictions on regions far away from the training data.

4.4. Consistency Analysis

We next carry out experiments to study the physical consistency of the DREP model.

We first show the results on using ensembling to improve the model consistency. We

then examine the consistency in the model predictions using automatic differentiation

[55]. Finally, we plot the Hugoniot plot to further verify the model consistency.
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Figure 13: DREP prediction results with/without ensembles. The ground truth data

points are marked by circles. The solid lines represent density values that are included

in the training data, while the dashed lines represent unseen density values. We can see

that the single model predictions (right figure) have wiggles in low-temperature regions.

The average training MRE of the single models is 0.89% for P and 1.11% for E, while

the ensemble predictions on the training data has an MRE of 0.77% for P and 0.51%

for E.

Consistency results with/without ensembling. Although the overall MRE is already

low with DREP, we can still observe few wiggles or oscillations in smaller-value regions

(Figure 13). To address this issue, we propose to leverage the ensemble method by

training multiple randomly initialized models with different random meta-learning-style

tasks. In Figure 13, we compare the high-density-low-temperature predictions of a

single model and the ensemble model, which shows that the ensemble model improves

the prediction consistency to a large extent. This, together with the thermodynamic

consistency in the following subsection, will greatly benefit downstream tasks. We will

use the Hugoniot as an example at the end of the section to demonstrate the overall

effectiveness.

Gradient-based consistency results. It is important that the EOS predictions are

thermodynamically consistent. To evaluate whether desired thermodynamic consistency

can be achieved by the proposed model, we compare the model’s pressure prediction

(PDREP ) with the pressure value (PCONSISTENCY ) obtained by solving the consistency

criterion in Eq. (13). In Figure 14, we show both PDREP and PCONSISTENCY for three
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different density values at different temperatures. It can be seen that the PDREP curves

match closely with the PCONSISTENCY curves. In addition, the model prediction PDREP
also matches the ground truth P points (GT points) almost perfectly. It is also worth

noting that no data points are available in training for a density of 13.00 g/cm3. The

DREP model is still able to output physically reliable pressure values that are bounded

between the pressure curves of density 10.52 g/cm3 and 15.71 g/cm3. Moreover, it

is well aligned with the corresponding PCONSISTENCY curve as shown in Figure 14.
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Figure 14: Trends of DREP model prediction and

consistency-based computation of P . The relative

difference in this density range is 3.03%

Next, we show the difference

(using MRE) between PDREP
and PCONSISTENCY for the DREP

model trained over all the train-

ing data (including interpolated,

and extrapolated data) in Figure

15. The averaged overall rela-

tive difference in the entire den-

sity temperature range is around

9%, and the distribution is al-

most uniform except for the ρ ∼
0.1g/cm3 region where the rela-

tive difference reaches a very high

value of up to 600% (see Figure

15 (a)). It can be interesting future work to study this ρ ∼ 0.1g/cm3 region to better

understand the ML model’s inconsistent prediction around this region. In low-density-

temperature regions, the relative difference exceeds a threshold of 50% (see Figure 15

(b)). In all other regions, the model’s predictions are mostly consistent, the relative

difference is reasonably low, and the model is accurate.

(a) Overall relative difference (b) Relative difference ≤ 50%

Figure 15: Relative difference between predictions PDREP and PCONSISTENCY
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Fitting the Hugoniot curves. Besides analyzing the predictions and PDE-induced

consistency measures, another important verification of the model consistency is to

test it for downstream tasks.
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(a) 0 ∼ 250 GPa pressure range: a

zoomed-in comparison between the

results from DREP ensemble and a

single model
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(b) 0 ∼ 600 GPa pressure range:

a comparison between the results

from DREP ensemble and existing

computational results

Figure 16: Hugoniot plots using predicted results from DREP with comparisons. We

show that although a single model may output a wiggly curve, the DREP ensemble can

produce results very close to the most recent iFPEOS baseline.

The Hugoniot relations, which provide the thermodynamic conditions in shock-

compressed matter, are an important and convenient benchmark for the accuracy of

EOS models. The Hugoniot equation relates the internal energy, pressure and density

(E0, P0, ρ0) in the unshocked side of the shock front to those in the shocked side (E,P, ρ):

E − E0 =
1

2
(P + P0)

(
1

ρ0
− 1

ρ

)
(16)

E0 and P0 have been obtained for the initial conditions corresponding to those in

reported experimental measurements (ρ0 = 0.173 g/cm3, T = 19 K [4]) using the

methodology presented in existing work [7]. The Hugoniot curves, corresponding to

the pressure-compression points (P, ρ/ρ0) which satisfy Eq. (16), are presented in Fig.

16, where we show curves generated by: 1) predicted table from a single model; 2)

predicted table from ensemble model, and compare the ensemble model results with

existing results [7, 12, 15]. As we can see, using a single model leads to a more wiggly

curve that has sudden slope changes compared to the ensemble model. If we compare

with the most recent existing results [7], we find that these wiggles can not be interpreted

as reasonable physical behaviors. The ensemble model shows smooth curves which are

close to existing results. Thus, although the overall predictive performance (e.g., using

MRE as a metric) of a single model is close to the ensemble model, the latter shows an

improved ability to adapt to downstream tasks.
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Table 2: MRE results without log transformation

ML model Average MRE P (%) Average MRE E (%)

RR 144 27.9

KRR 41.3 24.8

GP 92.3 85.0

NN 253 257

Table 3: Impact of λ1

λ1 Average MRE P (%) Average MRE E (%)

0 0.90 1.03

0.001 0.89 1.09

0.1 0.91 1.25

10 5.80 3.01

4.5. Ablation Studies

We first investigate the impact of log transformation. We then study how the trade-off

parameter λ1 and the width L of neural network layers affect the model’s performance.

Prediction results without preprocessing. In Table 2, we show the prediction results

without log transformation. As we can be seen, the model performance without log

transformation is much worse than reported in Table 1. Specifically, the NN model

suffers more than other models because it does not consider the similarity between data

points as in kernel-based methods. This shows that both the transformation and the

model design are important for a good prediction performance.

Impact of regularization parameter λ1. The regularization parameter λ1 controls the

contribution of the kernel regularizer. We show the impact on the prediction results in

Table 3. As can be seen, stronger regularization hurts the generalization performance.

With a reasonable regularization value (e.g., 0.001 – 0.1), the model has accurate

uncertainty behavior, and reasonable prediction performance in terms of average MRE

of both P and E.

Impact of Width L. The proposed DREP model consists of an encoder block and the

aggregation module, followed by the decoder block (see Figure 3). The encoder and

decoder blocks are neural networks with L neurons in each layer. We evaluate models

with different widths L. All the models are trained for 10, 000 epochs (each epoch

consists of 2000 training tasks) and evaluated on the same test set. Table 4 shows the

results. For a model with low L values, it is likely to under-fit the training data. In
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Table 4: Impact of layer width L

L Average MRE P (%) Average MRE E(%)

32 3.49 4.34

64 2.56 2.63

128 1.61 2.41

512 0.98 1.35

1024 0.90 1.03

2048 1.02 1.32

contrast, for large L values, the models tend to overfit to the training data. As can be

seen from the table, the best result is achieved by a model with L = 1024.

5. Conclusion

In this work, we conduct deep learning-based regression to jointly predict energy and

pressure at an arbitrary point, aiming to facilitate and accelerate the construction of

universal Equation-Of-State (EOS) models. We introduce log transformations and meta-

learning-inspired training that lead to an accurate, thermodynamically consistent, and

uncertainty-aware deep regression model. Experiments across multiple baselines and

settings demonstrate the effectiveness of the developed model. The designed training

mechanism proves to work well under wide-ranged and sparse data settings. The

uniquely designed kernel-based regularizer ensures accurate uncertainty quantification

even with highly sparse training data. The ensembling technique further improves

the prediction consistency of the model, which is also demonstrated in the improved

thermodynamic consistency and downstream tasks.
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[22] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance

dilemma. Neural computation, 4(1):1–58, 1992.

[23] Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance

trade-off for generalization of neural networks. In International Conference on Machine

Learning, pages 10767–10777. PMLR, 2020.

[24] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray

Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes.

In International Conference on Machine Learning, pages 1704–1713. PMLR, 2018.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,

2015.

[26] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro López Garćıa, Ignacio
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