

3 | Environmental Microbiology | Announcement

Draft genome sequence of the BAL58 Betaproteobacteria representative strain LSUCC0117

Holly R. D. Stapelfeldt, ¹ V. Celeste Lanclos, ¹ Michael W. Henson, ² J. Cameron Thrash ¹

AUTHOR AFFILIATIONS See affiliation list on p. 3.

ABSTRACT Here, we present the draft genome sequence of strain LSUCC0117, a representative of the abundant aquatic BAL58 Betaproteobacteria group which we isolated from a coastal site in the northern Gulf of Mexico. The genome is estimated at over 99% complete, with a genome size of 2,687,225 bp.

KEYWORDS bacterioplankton, BAL58, high throughput culturing, LSUCC

SUCC0117 was isolated in artificial seawater media via dilution-to-extinction cultivation using an inoculum from Freshwater City (Louisiana, Gulf of Mexico, 29.53084, –92.32615) in March 2015 (1, 2). LSUCC0117 was closely related to several fellow isolates from the Louisiana State University Culture Collection (LSUCC), and close relatives outside the LSU culture collection included Betaproteobacterium BAL58 (99.56% identity, AY317112.1 [3]) and *Hydrogenophaga* sp. strain M7527 (98.74% identity, MT950111.1 [1, 2]). We chose to sequence LSUCC0117 due to its close identity to BAL58, which lies in a poorly studied yet abundant aquatic clade of obligately oligotrophic Betaproteobacteria found in freshwater-marine transition areas (2, 4), and to *Hydrogenophaga*, a genus of hydrogen-oxidizing bacteria with relevance to clean energy (5).

For sequencing, triplicate cryostocks of LSUCC0117 were revived in 50 mL of JW4 medium (2) in a polycarbonate flask and cultivated at room temperature until the late log phase. Cells were syringe filtered onto 0.2 µm polyethersulfone filters (Millipore Sigma, USA), and genomic DNA was extracted using a phenol-chloroform protocol with ethanol precipitation (https://dx.doi.org/10.17504/protocols.io.b5iiq4ce). Replicate DNA was combined, cleaned, and concentrated (Zymo Research, USC) and quantified with a Qubit fluorometer (Invitrogen, USA) using the HS dsDNA kit. Library preparation (KAPA HyperPlus library preparation kit, Kapa Biosystems, Inc., USA) and sequencing were completed at the University of Southern California Genome Core after size and quality analysis with the Agilent BioAnalyzer system. Paired-end 150 bp sequencing was performed with an Illumina NextSeq 550 using a midoutput flow cell, resulting in 5,757,661 read pairs.

Sequences were quality controlled using Trimmomatic v0.38 (6) with the following details: LEADING:20 TRAILING:20 SLIDINGWINDOW:13:20 MINLEN:40. Afterwards, we assembled reads using SPAdes v3.13.0 (7), followed by read mapping with the Burrows-Wheeler Aligner v0.7.17 (r1188) (8) and samtools v18.0.4 (9), and polishing with Pilon v. 1.22 (10) that produced the final assembly. Contigs less than 500 bp were manually removed. We evaluated the genome with Quast v5.2.0 (11) and CheckM2 v1.0.0 using "predict" (12), updated the taxonomy with GTDB-tk v2.1.1 using "classify_wf" (13), and annotated the genome with the NCBI Prokaryotic Genome Annotation Pipeline (14). Default settings were used for all softwares unless otherwise noted.

The LSUCC0117 draft genome is 2,687,225 bp in length with 13 scaffolds (N50: 433,083 bp), a 56.03% GC content, and a mean coverage of 545×. The genome encodes 2,624 putative genes, 2,553 of which were estimated to encode for proteins, with two

Editor Frank J. Stewart, Montana State University, Bozeman, Montana, USA

Address correspondence to J. Cameron Thrash, thrash@usc.edu.

The authors declare no conflict of interest.

See the funding table on p. 3.

Received 13 July 2023 Accepted 13 September 2023

Published 13 October 2023

Copyright © 2023 Stapelfeldt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license

Downloaded from https://journals.asm.org/journal/mra on 28 June 2024 by 2603:8001:a400:e6f7:dd29:a968:677c:e22a.

copies each of the 5S, 16S, and 23S rRNA genes, and was predicted to be 99.99% complete, with 0.05% contamination. GTDB placed LSUCC0117 within the unclassified RS62 genus of the <code>Burkholderiaceae</code>. The mean growth rate of LSUCC0117 across two separate experiments was 3.17 \pm 0.26 doublings per day at room temperature in 5x JW4 medium as determined by flow cytometry using an Accuri C6 Plus and growth calculations with sparse-growth-curve (15) (Fig. 1).

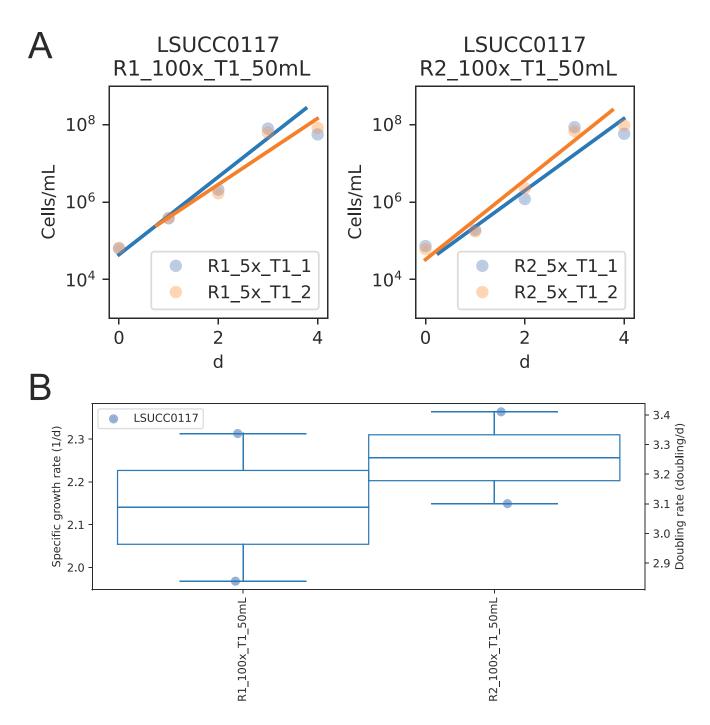


FIG 1 Growth curves (A) and rate calculations (B) for LSUCC0117. Cultures were grown in 5× JW4 medium at room temperature in 50 mL polycarbonate flasks, and cell density was measured with an Accuri C6 Plus flow cytometer (BD). Growth rates were calculated using sparse-growth-curve (15).

ACKNOWLEDGMENTS

The authors acknowledge the Center for Advanced Research Computing (CARC) at the University of Southern California for providing computing resources that have contributed to the research results reported within this publication (https://carc.usc.edu).

This work was supported by a USC Dornsife College of Letters, Arts and Sciences Faculty-led Initiatives in Key Research Areas, Phase II grant, as well as a Simons Early Career Investigator in Marine Microbial Ecology and Evolution Award, and NSF Biological Oceanography Program OCE-1945279 and Emerging Frontiers Program EF-2125191 grants to J.C.T.

AUTHOR AFFILIATIONS

¹Department of Biological Sciences, University of Southern California, Los Angeles, California, USA

²Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, USA

PRESENT ADDRESS

Holly R. D. Stapelfeldt, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA

Michael W. Henson, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA

AUTHOR ORCIDs

V. Celeste Lanclos (1) http://orcid.org/0000-0003-2102-0265
Michael W. Henson (1) http://orcid.org/0000-0002-4351-797X
J. Cameron Thrash (1) http://orcid.org/0000-0003-0896-9986

FUNDING

Funder	Grant(s)	Author(s)
Simons Foundation (SF)	Early Career Investigator in Marine Microbial Ecology and Evolution Award	J. Cameron Thrash
National Science Foundation (NSF)	OCE-1945279	J. Cameron Thrash

AUTHOR CONTRIBUTIONS

Holly R. D. Stapelfeldt, Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft, Writing – review and editing | V. Celeste Lanclos, Investigation, Methodology, Resources, Supervision, Writing – review and editing | Michael W. Henson, Investigation, Methodology, Resources, Supervision, Writing – review and editing | J. Cameron Thrash, Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review and editing

DATA AVAILABILITY

This whole genome shotgun project has been deposited in DDBJ/ENA/GenBank under the accession no. JAUJFZ000000000. The version described in this paper is the first version, JAUJFZ010000000. The BioProject number is PRJNA988812, and the raw reads are available with SRA accession number SRX20918002. Cryostocks and/or live cultures of LSUCC0117 are available upon request.

Downloaded from https://journals.asm.org/journal/mra on 28 June 2024 by 2603:8001:a400:e6f7:dd29:a968:677c:e22a

REFERENCES

- Henson MW, Lanclos VC, Pitre DM, Weckhorst JL, Lucchesi AM, Cheng C, Temperton B, Thrash JC. 2020. Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-toextinction cultivation. Appl Environ Microbiol 86:e00943-20. https://doi.org/10.1128/AEM.00943-20
- Henson MW, Pitre DM, Weckhorst JL, Lanclos VC, Webber AT, Thrash JC. 2016. Artificial seawater media facilitate cultivating members of the microbial majority from the Gulf of Mexico. mSphere 1:e00028-16. https: //doi.org/10.1128/mSphere.00028-16
- 3. Simu K, Hagström A. 2004. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl Environ Microbiol 70:2445-2451. https:// doi.org/10.1128/AEM.70.4.2445-2451.2004
- Yeo SK, Huggett MJ, Eiler A, Rappé MS. 2013. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS One 8:e56207. https://doi.org/10.1371/journal.pone.0056207
- 5. Kimura Z, Okabe S. 2013. Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell. J Gen Appl Microbiol 59:261-266. https://doi.org/10.2323/jgam.59.261
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for 6. Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/ 10.1093/bioinformatics/btu170
- 7. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using spades de novo assembler. Curr Protoc Bioinformatics 70:e102. https://doi.org/10.1002/cpbi.102
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. https://doi. org/10.1093/bioinformatics/btp324
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome project data processing subgroup.

- 2009. Genome project data processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
- Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/ journal.pone.0112963
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072-1075. https://doi.org/10.1093/bioinformatics/btt086
- Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. 2022. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. bioRxiv. https://doi.org/10.1101/2022.07.11.499243
- Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2022. GTDB-TK V2: memory friendly classification with the genome taxonomy database. Bioinformatics 38:5315-5316. https://doi.org/10.1093/bioinformatics/ btac672
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, 14. Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614-6624. https://doi.org/10.1093/nar/gkw569
- Cheng C, Thrash JC. 2021. Sparse-growth-curve: a computational pipeline for parsing cellular growth curves with low temporal resolution. Microbiol Resour Announc 10:e00296-21. https://doi.org/10.1128/MRA. 00296-21