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Abstract  
Breeding has dramatically changed the plant architecture of wheat (Triticum aestivum), resulting in the development of high- 
yielding varieties adapted to modern farming systems. However, how wheat breeding shaped the genomic architecture of this 
crop remains poorly understood. Here, we performed a comprehensive comparative analysis of a whole-genome resequencing 
panel of 355 common wheat accessions (representing diverse landraces and modern cultivars from China and the United 
States) at the phenotypic and genomic levels. The genetic diversity of modern wheat cultivars was clearly reduced compared 
to landraces. Consistent with these genetic changes, most phenotypes of cultivars from China and the United States were sig-
nificantly altered. Of the 21 agronomic traits investigated, 8 showed convergent changes between the 2 countries. Moreover, of 
the 207 loci associated with these 21 traits, more than half overlapped with genomic regions that showed evidence of selection. 
The distribution of selected loci between the Chinese and American cultivars suggests that breeding for increased productivity 
in these 2 regions was accomplished by pyramiding both shared and region-specific variants. This work provides a framework to 
understand the genetic architecture of the adaptation of wheat to diverse agricultural production environments, as well as 
guidelines for optimizing breeding strategies to design better wheat varieties. 

Introduction 
Common wheat (Triticum aestivum) spread to a wide range 
of diverse environments since it originated in the Fertile 
Crescent approximately 8,000 years ago (Marcussen et al. 

2014). During this process, wheat experienced intensive nat-
ural and artificial selection associated with adaptation to new 
environments, human needs, and local agricultural practices, 
resulting in the development of local landraces. A landrace is 
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a traditional crop variety capable of tolerating local biotic 
and abiotic stresses and maintaining intermediate yield levels 
in low-input farming systems (Zeven 1998; Lopes et al. 2015). 
The development of cultivars from landraces was achieved by 
human-mediated selection aimed at higher yield, better 
quality, and stronger fitness (Liu et al. 2019). However, 
most modern cultivars were developed from a limited num-
ber of founders, resulting in a bottleneck effect and reduced 
genetic diversity in most breeding programs (Lopes et al. 
2015). This hinders the progress toward the development 
of new wheat varieties adapted to more extreme environ-
mental conditions to provide food security for the growing 
human population (McCouch et al. 2013; Bhatta et al. 
2018). Wheat landraces, a rich reservoir of regional adaptive 
diversity, represent valuable genetic resources for overcom-
ing these challenges (Milner et al. 2019). Therefore, under-
standing the genetic architecture of wheat improvement 
during the transition from landraces to cultivars (Cavanagh 
et al. 2013; Zhou et al. 2018) in distinct geographic regions 
will be crucial for developing high-performance varieties in 
the future. 

Comprehensive characterization of genetic variations 
across the genome, identification of loci subjected to selec-
tion during breeding, and mapping markers associated with 
variation in agronomic traits can provide guidelines for fur-
ther wheat improvement and can help improve genomic se-
lection models (Morrell et al. 2011; Cavanagh et al. 2013). In 
the past few years, studies of the history, genomic compos-
ition, gene flow, selective sweeps, and genetic basis of wheat 
have been greatly promoted by population genomics. 
Common wheat originated from the southwest coast of 
the Caspian Sea and spread across Eurasia and reached 

Europe, South Asia, and East Asia. This was accompanied 
by frequent intra- and interspecies introgression from wheat 
relatives to facilitate its proliferation in novel environments 
(Cheng et al. 2019; He et al. 2019; Pont et al. 2019; Guo 
et al. 2020; Zhou et al. 2020; Wang et al. 2022; Zhao et al. 
2023). 

Following adaptation to local environments, landraces 
emerged and underwent a small population bottleneck 
and successive selection during modern wheat breeding to 
develop cultivars (Cavanagh et al. 2013). During this process, 
some genetic footprints related to grain yield, growth peri-
ods, disease resistance, vernalization, and flour quality were 
selected (Gaire et al. 2020; Hao et al. 2020; Sansaloni et al. 
2020; Li et al. 2022). The selective genetic footprints of mod-
ern wheat varied through time and among different breeding 
programs. Most studies investigating this process have fo-
cused on a single breeding program using either populations 
of relatively small size or with low marker density. The rela-
tively small sizes of the studied populations, modest marker 
density, or the low number of analyzed traits only provided 
limited insights into the genetic impact of trait improve-
ment, especially in multiple regional breeding programs 
with different management practices or growing conditions. 

China and the United States are the world’s major wheat 
producers and consumers. Although the breeding goals are 
the same in both counties: improving grain yield, resistance, 
and quality, the environmental factors and human prefer-
ences may be different. The major difference between the 
2 countries is that wheat is fed with sufficient water and nu-
trition in China, while it is rain fed in the United States. To 
investigate how modern wheat breeding reshapes the plant 
and genome architecture in these 2 wheat-growing regions, 

IN A NUTSHELL 
Background: A landrace is a traditional plant variety capable of tolerating local biotic and abiotic stresses and main-
taining intermediate yield levels in low-input farming systems. The development of cultivars from landraces was 
achieved by human-mediated selection aimed at higher yield, better quality, and stronger fitness. The transition 
from landraces to elite cultivars is regarded as crop improvement, during which beneficial alleles might gradually ac-
cumulate in cultivars. Therefore, understanding the genetic architecture of wheat (Triticum aestivum) improvement 
during the transition from landraces to cultivars in distinct geographic regions will be crucial for developing high- 
performance varieties in the future. 

Question: How has modern wheat breeding reshaped the phenotypic and genomic architecture of wheat in China 
and the United States? 

Findings: We performed a comprehensive comparative analysis (at the phenotypic and genomic levels) of a whole- 
genome resequencing panel of 355 common wheat accessions representing diverse landraces and modern cultivars 
from China and the United States. Compared with landraces, the genetic diversity and phenotypes of modern wheat 
cultivars from China and the United States changed significantly. Furthermore, we identified breeding targets during 
modern wheat breeding and determined that breeding for increased productivity in these 2 geographic regions was 
accomplished by pyramiding shared and region-specific variants. 

Next steps: The unique loci selected either in China or in the United States can be used to develop high-performance 
wheat varieties in the future.   
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we sequenced 355 common wheat accessions, including cul-
tivars from China and the United States and landraces from 
13 countries, and constructed a comprehensive genomic 
variation map. By comparing the phenotypic changes and 
genomic compositions of cultivars developed in China and 
the United States, we uncovered similarities and differences 
in the direction of breeding selection between these 2 coun-
tries. Furthermore, we constructed genome-wide maps of se-
lective sweeps and phenome-to-genome associations, which 
incorporate 207 loci linked with 21 key agronomic traits. Our 
study provides insights into the impacts of improvement se-
lection in both China and the United States on the genetic 
architecture of major agronomic traits in common 
wheat. We also generated resources for further wheat 
improvement. 

Results 
Whole-genome resequencing of 355 common wheat 
germplasms reveals abundant genetic diversity 
To identify genomic regions targeted by modern wheat 
breeding in China and the United States, we analyzed 355 
common wheat accessions, including 175 improved cultivars 
(103 from China and 72 from the United States) and 180 rep-
resentative diverse landraces from 13 countries mainly 
around the Fertile Crescent (Supplemental Data Set 1). 
Most of the cultivars were collected from the major wheat 
production areas in China and the United States. The land-
races harbor more than 94% of the diversity (π180 Landraces/ 
π632 Landraces) of a previously described population of 632 
worldwide wheat landraces (Balfourier et al. 2019), and all 
632 landraces match to at least 1 counterpart in the 180 
landraces examined in the current study (Supplemental 
Fig. S1). The 355 common wheat accessions were collected 
from 14 countries (Supplemental Data Set 2), representing 
geographically and genetically diverse landraces and cultivars 
from distinct climatic regions. 

Whole-genome sequencing of the 355 wheat accessions 
yielded 799.58 billion 100-bp paired-end reads with an aver-
age genome coverage depth of 14.52× for each accession 
(Supplemental Data Set 3). By mapping the quality-trimmed 
reads to the wheat reference genome (IWGSC RefSeq v1.0) 
and implementing a strict filtering pipeline, we ultimately 
identified 76,874,471 high-quality single nucleotide poly-
morphisms (SNPs) and 5,208,800 insertions and deletions 
(InDels ≤ 8 bp) (Supplemental Data Set 4). To estimate the 
accuracy of the SNPs identified in this study, we also geno-
typed 343 of the 355 accessions using the wheat 660K SNP 
arrays (Sun et al. 2020) and discovered 367,846 SNPs (minor 
allele frequency [MAF] > 0.01, heterozygosity < 0.3, and 
missing rate < 0.25) in the panel, which is only 0.48% of the 
SNPs identified by genome resequencing. We used the 
SNPs shared between the genome resequencing data and 
the wheat 660K SNP array in each accession to evaluate 
the accuracy of genotyping. The SNPs identified by whole- 

genome resequencing and the wheat 660K array showed 
high concordance, with average of 99.74% and median of 
99.91% (Supplemental Data Set 5). These results indicate 
that the SNPs identified by whole-genome resequencing 
are much more abundant (more than 220 times) than those 
from the wheat 660K SNP array and that the quality is high. 

We analyzed the distribution of variants in common 
wheat. More variants occur at the ends of chromosomes 
than in the centromere. Chromosome 3B (chr3B) contains 
the most variants, whereas chr4D contains the fewest 
(Supplemental Data Set 4 and Fig. S2, A to D). Among the 
3 subgenomes of common wheat, the B subgenome harbors 
the most variants, whereas the D subgenome harbors the 
fewest (Supplemental Fig. S2, E and F). The trends in variant 
distribution observed in this study are consistent with previ-
ous reports (Jordan et al. 2015; Pont et al. 2019; Hao et al. 
2020). The average variant density in the whole genome 
was 5.64 per kb (6.28 per kb for the A subgenome, 7.72 per 
kb for the B subgenome, and 2.65 per kb for the D subge-
nome). This is by far the highest density variant map con-
structed in common wheat. Among these variants, 
1,659,126 (2.05%) SNPs and 253,492 (4.31%) InDels are lo-
cated in genic regions, covering 83.37% (89,946/107,891) of 
all high-confidence (HC) genes reported in the Chinese 
Spring genome (International Wheat Genome Sequencing 
Consortium (IWGSC) 2018). The number of nonsynonymous 
SNPs and tentatively deleterious variants (including SNPs 
and InDels), which potentially affect plant fitness, was 
318,707 and 42,946, respectively (Supplemental Data Set 6). 
These deleterious variants potentially affect 18,488 HC genes, 
including 95 known genes such as Rht1 and Rht2 related to 
plant height (PH), Vrn1 and Vrn3 associated with vernaliza-
tion, and multiple resistance genes (Sr45, Lr21, Pm3, Pm5e, 
and others). 

Modern breeding has greatly shaped the genetic 
architecture of common wheat populations 
To assess population structure among the 355 common 
wheat accessions, we performed genetic assignment analysis 
and principal component analysis (PCA) of 304,744 SNPs se-
lected based on the patterns of linkage disequilibrium (LD). 
As shown in Fig. 1A, genetic assignment analysis showed 
that most of the cultivars from China and the United 
States were separated from the other accessions at K = 3. 
The landraces gradually separated into minor subpopula-
tions with increasing K. PCA also suggested that most of 
the landraces (hereafter Landrace) clustered together, al-
though a few accessions were close to cultivars. The cultivars 
were mainly grouped into 2 clusters (Fig. 1B; Supplemental 
Fig. S3): 1 cluster consisting of cultivars mainly collected 
from the United States (hereafter USA_CV) and the other 
mostly collected from China (hereafter CHN_CV). In add-
ition, there was a subgroup (Mixed) including 23 accessions 
collected from different countries, suggesting exchange of 
genetic material between different countries. At K = 3, on  
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average, the Mixed group had 45.46%, 43.71%, and 10.81% of 
ancestry assigned to USA_CV, CHN_CV, and Landrace, re-
spectively (Supplemental Fig. S4). Furthermore, negative f3 

statistics were obtained from f3 (Mixed; CHN_CV and 
USA_CV) (Supplemental Data Set 7). These results suggest 
that the Mixed group was derived from at least 2 different 
groups related to CHN_CV and USA_CV. 

It is well known that wheat originated from the Fertile 
Crescent and spread around the world. Therefore, landraces 
around this region should represent relatively raw genetic reser-
voirs, although new alleles likely originated during their spread 
worldwide. To test this hypothesis, we evaluated the number of 
private variants in each subpopulation (Landrace, CHN_CV, 
and USA_CV). The percentages of private variants were 
2.76%, 3.37%, and 22.5% for CHN_CV, USA_CV, and Landrace 
(2,263,507/82,083,271 in CHN_CV; 2,766,702/82,083,271 in 
USA_CV; and 18,465,375/82,083,271 in Landrace), respectively. 
Furthermore, we conducted a comprehensive comparison of 

genetic diversity and differentiation across populations. The 
genetic diversity (π) was lower in cultivars (πCHN_CV = 7.66 ×  
10−4 and πUSA_CV = 6.70 × 10−4) than in landraces (πLandrace  

= 9.45 × 10−4) (Fig. 1C; Supplemental Fig. S5A). Compared 
with Landrace, CHN_CV showed a decrease in nucleotide diver-
sity of approximately 18.9% (2-tailed t test, P < 1.0 × 10−308), 
whereas the diversity of USA_CV showed a decrease of 29.1% 
(2-tailed t test, P < 1.0 × 10−308). These results imply that a sig-
nificant bottleneck effect has arisen during modern wheat 
breeding. 

Among the 3 subgenomes of common wheat, the nucleo-
tide diversity of the B subgenome (πB = 1.19 × 10−3) is the 
highest, that of the A subgenome (πA = 9.14 × 10−4) is inter-
mediate, and that of the D subgenome (πD = 2.01 × 10−4) is 
the lowest (only ∼10% that of the A and B subgenomes), 
consistent with previous studies (Cheng et al. 2019; Hao 
et al. 2020; Zhou et al. 2020) (Supplemental Fig. S5, B and 
C). The fixation index (FST) values, which describe the genetic 

C DB

A

Figure 1. Population structure, genetic diversity, and LD decay of the 355 common wheat accessions investigated. A) Population structure of the 
common wheat accessions inferred using different numbers of clusters (K = 2 to 6). At K = 3, the cultivars from China and the United States were 
separated. Landraces were gradually separated into minor subpopulations with increasing K. AFG, Afghanistan; ARM, Armenia; CHN, China; IND, 
India; IRN, Iran; IRQ, Iraq; JPN, Japan; PAK, Pakistan; SYR, Syrian; TJK, Tajikistan; TUR, Turkey; UZB, Uzbekistan. B) PCA plot of the first 2 dimensions of 
the genotype data from all accessions. C) Statistics for genetic diversity and population differentiation. The size of the circle represents the number 
of accessions in each subpopulation. The numbers in the circles indicate the number of accessions and nucleotide diversity (π) in the corresponding 
subpopulation. The values between pairs of subpopulations show the population divergence (FST). D) Decay of LD in the wheat genome.   
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differentiation level between 2 populations, were 0.093 for 
CHN_CV vs. Landrace and 0.092 for USA_CV vs. Landrace 
(Fig. 1C; Supplemental Fig. S6). Both of these values are higher 
than that reported between improved cultivars and landraces 
of upland cotton (Gossypium hirsutum) (FST = 0.04) (Fang 
et al. 2017) and lower than that reported for soybean 
(Glycine max) (FST > 0.106) (Zhou et al. 2015). Notably, 
the genetic differentiation between CHN_CV and USA_CV 
(FST = 0.097) was higher than that between Landrace and 
the cultivars (FST = 0.093, 2-tailed t test, P = 2.40 × 10−45 

for CHN_CV vs. Landrace and FST = 0.092, 2-tailed t test, 
P = 1.69 × 10−59 for USA_CV vs. Landrace), which may reflect 
genetic drift or different breeding strategies. The rate of LD de-
cay (indicated by a decrease in r2 to half of its maximum value) 
was 4.2 Mb for all samples, which is comparable to previous 
findings (Pang et al. 2020). LD decay rates varied among differ-
ent populations, including 4.03 Mb for Landrace, 6.15 Mb for 
CHN_CV, and 7.18 Mb for USA_CV (Fig. 1D). 

Modern cultivars from China and the United States 
have experienced different degrees of phenotypic 
change during wheat improvement 
As mentioned above, modern cultivars have reduced genetic 
diversity compared to landraces (Supplemental Fig. S5A). 
The genetic differentiation of the cultivars from China and 
the United States is higher than that observed between the 
cultivars and landraces (Supplemental Fig. S6A). These differ-
ences could be associated with improvement selection acting 
on distinct genetic variants controlling traits important for 
agricultural productivity in different environments. One of 
the major targets of breeding is to increase productivity, which 
can be achieved by altering distinct combinations of compo-
nent traits (e.g. grain size, grain number, and number of spikes) 
with potential to positively affect yield. To test these hypoth-
eses, we phenotyped our panel for 21 key agronomic traits un-
der the same culture condition in 3 independent replicates for 
3 consecutive years (Supplemental Data Set 8). All 21 key agro-
nomic traits showed significant differences (2-tailed t test, P <  
0.01) between CHN_CV and USA_CV (Fig. 2; Supplemental 
Fig. S7 and Data Set 9). Furthermore, we observed convergent 
phenotypic changes in plant architecture and grain yield com-
ponents in both CHN_CV and USA_CV compared with 
Landrace (Fig. 2; Supplemental Fig. S7 and Data Set 9), which 
was associated with higher yield per plant (YPP), biomass per 
plant (BPP), and harvest index (HI). However, the extent of 
phenotypic changes differed between China and the United 
States. For example, PH, peduncle length (PL), spike length 
(SPL), and flag leaf length (FLL) were significantly reduced in 
both countries compared to landraces. However, the reduc-
tions in these 4 traits were clearly greater in China (27.61% 
to 48.72%) than in the United States (13.38% to 22.61%) 
(Fig. 2; Supplemental Fig. S7 and Data Set 9). These results im-
ply that genetic changes during modern breeding for these 
traits in China and the United States have been similar in dir-
ection but different in magnitude. 

Identification of candidate genes and loci for multiple 
agronomic traits by genome-wide association study 
To characterize the genetic basis underlying phenotypic 
changes in the American and Chinese breeding programs, 
we performed genome-wide association study (GWAS) of 
the 21 important agronomic traits and identified 5,931 mark-
er–trait associations (MTAs; Supplemental Data Set 10) as-
signed to 207 loci with a suggestive threshold (P < 1 ×  
10−6; false discovery rate [FDR] < 0.05; Supplemental Data 
Set 11). Among these associated loci, 6 are located in genom-
ic regions harboring known genes, such as Reduced height-2 
(Rht2) (Peng et al. 1999) for PH and PL, FRIZZY PANICLE 
(WFZP-A) (Du et al. 2021) for SN, PHOTOPERIOD 1 (PPD1) 
(Turner et al. 2005) for anthesis days (AD), heading days 
(HD), PH, and PL, Tipped 1 (B1/ALI-1) (DeWitt et al. 2019;  
Huang et al. 2019; Wang et al. 2019; Niu et al. 2020) for 
awn length (AL), WHEAT ORTHOLOG OF APO 1 (WAPO1) 
(Kuzay et al. 2019; Muqaddasi et al. 2019) for spikelet number 
(SN), and VERNALIZATION 3 (VRN3) (Yan et al. 2006) for AD 
and HD. These results validate the results of GWAS 
(Supplemental Fig. S8). We also identified 10 associations 
(3 for seed length [SL] and 1 each for tiller number during 
the mature stage [TNMS], seed width [SW], thousand kernel 
weight [TKW], HD, AD, sterile spikelet number [SSN], and 
SPL) located within the candidate genes carrying polymorph-
isms affecting gene function. 

The rice (Oryza sativa) homologs of all these wheat candi-
date genes are responsible for similar traits. For example, 2 
genes were associated with SL: TaAKT2, the homolog of 
the gene encoding a rice shaker potassium channel protein 
involved in regulating grain shape through the redistribution 
of K+, and TaPK4, encoding a mitochondria-associated pyru-
vate kinase that regulates grain filling (Hu et al. 2020; Tian 
et al. 2021) (Fig. 3, A to D). In addition, TaWTG1/TaOTUB1, 
which encodes a human OTUB1-like deubiquitinase that in-
fluences grain size and shape, was simultaneously associated 
with SL and SPL (Huang et al. 2017; Wang et al. 2017) (Fig. 3, 
A and B; Supplemental Fig. S9, A and E). Interestingly, we also 
identified TaOFP14 and TaGS9, 2 promising candidate genes 
for grain shape and TKW, whose corresponding homologs 
OsOFP14 and OsGS9 interact with each other to regulate 
grain shape and grain yield in rice (Zhao et al. 2018) (Fig. 3, 
A and D; Supplemental Fig. S9, D and H). Consistent with 
the documented roles of the corresponding rice homologs, 
TaIAGLU (homologous to rice OsIAGLU, which encodes an 
indole-3-acetic acid–conjugating enzyme), TaPIL13 (homolo-
gous to the atypical HLH gene OsPIL13), and TaRDR6 (hom-
ologous to rice RNA-DEPENDENT POLYMERASE 6) were 
associated with TNMS, HD, and SSN, respectively (Zhao 
et al. 2011; Song et al. 2012; Choi et al. 2013) (Fig. 3;  
Supplemental Fig. S9). 

For each of these candidate genes, we performed 
haplotype-based association analysis and demonstrated 
that haplotypes carrying putative polymorphisms causing 
missense and/or frameshift mutations in the corresponding 
gene(s) are significantly associated with phenotypic changes.  
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Figure 2. Phenotypic changes during modern wheat breeding in China and the United States. A) Summary of phenotypic changes of the 21 agro-
nomic traits investigated. The figure shows phenotypic changes of the 21 traits (upper panel) and a heatmap of the traits (lower panel). The numbers 
1 and 2 indicate the significance levels of phenotypic comparisons between CHN_CV vs. Landrace and USA_CV vs. Landrace. The numbers 3 and 4 
indicate the differences in phenotypes between CHN_CV vs. Landrace and USA_CV vs. Landrace. Up, Down, and NS indicate an increase, decrease, 
or no significant difference in pairwise comparisons of the average BLUP values of CHN_CV vs. Landrace and USA_CV vs. Landrace. YPP, yield per 
plant; HI, harvest index; SR, seed roundness; TNMS, tiller number during the mature stage; AL, awn length; AD, anthesis days; PL, peduncle length; 
FLL, flag leaf length; PH, plant height; SPL, spike length; TKW, thousand kernel weight; SNPS, seed number per spike; FLW, flag leaf width; SW, seed 
width; SD, stem diameter; BPP, biomass per plant; HD, heading days; TNSS, tiller number during the seedling stage; SL, seed length; SN, spikelet 
number; SSN, sterile spikelet number. B to F) Boxplots of the BLUP values of PH B), TKW C), SL D), HD E), and TNMS F) among subpopulations. 
The lower and upper lines of each box denote the 25th and 75th percentiles, respectively. The middle lines in the boxes represent medians. The 
upper whiskers indicate the maximum or 1.5× the interquartile range (IQR). The lower whiskers indicate the minimum or 1.5× the IQR. **P <  
0.01; *P < 0.05; NS, no significant difference (for A to F). G to I) Phenotypes of whole plants G), spikes H), and seeds I) represented by PI 
321967 for Landrace, Jimai 20 for CHN_CV, and Ripper for USA_CV.   
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Figure 3. GWAS identification of candidate genes and haplotype analysis. A) Manhattan plot of GWAS for SL. The candidate genes are marked 
above the significantly associated peaks. The dotted line represents the significance threshold (−log10(P) = 6). B to D) Candidate gene structure 
and haplotype analysis of TaWTG1/TaOTUB1 B), TaAKT2 C), and TaOFP14 D) based on putative polymorphic variations. The plots contain can-
didate gene structures and putative variations (upper), haplotypes (lower left), and boxplots of the corresponding phenotypic BLUP values. n in-
dicates the number of accessions in each haplotype. P indicates the P-value based on the 2-tailed t test. E) Manhattan plot of GWAS for TNMS. F) 
Gene structure and haplotype analysis of the candidate gene TaIAGLU.   
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We also identified genomic regions and candidate genes for 
other key agronomic traits (Supplemental Data Set 11). 
These findings will be useful for further functional dissection 
of trait variation in wheat and its improvement. 

Accumulation of favorable alleles in modern 
wheat cultivars 
To investigate the effects of improvement selection on alleles 
significantly associated with variation in major agronomic 
traits, we compared the favorable allele frequency (FAF) be-
tween the landraces and the cultivars from China and the 
United States. Favorable alleles were defined as alleles asso-
ciated with earlier HD and AD; reduced PH, PL, and SSN; 
and increased SPL, FLL, TKW, seed number per spike 
(SNPS), SW, tiller number during the seedling stage (TNSS), 
TNMS, SN, SL, YPP, BPP, HI, flag leaf width (FLW), seed round-
ness (SR), AL, and stem diameter (SD). We identified 71.98% 
(149/207) and 69.57% (144/207) of GWAS-associated leading 
SNPs with increased FAF in the CHN_CV and USA_CV sub-
groups compared with Landrace, respectively (Fig. 4A;  
Supplemental Data Set 10). Similar results (63.80%, 3,784/ 
5,931 in CHN_CV; 66.58%, 3,949/5,931 in USA_CV) were ob-
tained by directly analyzing all the GWAS hits (P < 1e−6;  
Fig. 4A; Supplemental Data Set 10). The increase in FAF for 
most loci suggests that positive selection at specific genomic 
regions underlies the corresponding agronomic traits. 

To assess differences in the direction of selection acting on 
alleles positively affecting agronomic traits in China and the 
United States, we investigated the direction of changes in 
FAF between the cultivars from these 2 regions and the land-
races. Among these loci, 67.15% (139/207) showed increased 
FAF and 25.60% (53/207) showed decreased FAF in both 
countries (Fig. 4, B and C; Supplemental Data Set 10), sug-
gesting that selection acted in similar directions in China 
and the United States. Furthermore, 7.03% (15/207) of loci 
showed different directions of selection between the 2 coun-
tries (Fig. 4, B and C; Supplemental Data Set 10), which is sug-
gestive of different targets between the 2 countries. For 
example, the FAF of lead SNP s_2D_023156697 (around 
Rht8) related to PH increased (by 0.77) in CHN_CV and 
slightly decreased (by 0.06) in USA_CV, which is consistent 
with the observation that the dwarf allele of Rht8 was widely 
used in the wheat cultivation area around the Yellow and 
Huai River Valleys of China (Xiong et al. 2022). For each agro-
nomic trait except FLW (33.3%), the proportions of variants 
showing increased FAF were >76.9% (Fig. 4, D to M;  
Supplemental Figs. S10 and S11), suggesting that modern 
wheat breeding in China and the United States favored the 
same beneficial alleles. 

To assess whether wheat improvement was accompanied 
by the accumulation of favorable alleles at multiple loci 
across the genome, we analyzed the allelic composition of 
each of the 355 wheat accessions at 207 trait-associated mar-
kers (Fig. 5A; Supplemental Data Set 12). We observed sub-
stantial increases in the proportions of favorable alleles at 

these loci (Wilcoxon test, P = 2.20 × 10−16 in CHN_CV vs. 
Landrace and P = 5.31 × 10−12 in USA_CV vs. Landrace) in 
the modern wheat populations from China and the United 
States (Fig. 5B). The accumulation of favorable alleles in 
each accession for all analyzed traits had additive effects 
(Fig. 5, C and D; Supplemental Fig. S12). The average pheno-
typic values for HD, AD, PH, PL, and SSN tended to decrease 
with increasing number of favorable alleles, while SPL, FLL, 
TKW, SW, TNSS, TNMS, SN, SL, YPP, BPP, HI, FLW, SR, and 
AL showed the opposite trend. These results suggest that 
pyramiding favorable alleles identified in this study could fa-
cilitate the breeding of high-yielding wheat varieties in the 
future. 

Shared and unique wheat breeding targets in China 
and the United States 
In addition to genetic loci underlying morphological features 
of wheat, genetic loci providing adaptation to local climatic 
and environmental conditions could also be targeted by se-
lection during wheat improvement (Wang et al. 2020). We 
used the cross-population composite likelihood ratio 
(XP-CLR) test (Chen et al. 2010) to identify selection signa-
tures associated with wheat improvement in China and the 
United States by comparing CHN_CV vs. Landrace and 
USA_CV vs. Landrace populations. Using the top 5% of 
XP-CLR scores as a threshold, we detected 2,037 and 1,866 se-
lective sweeps in CHN_CV and USA_CV, respectively, which 
covered 2,341.51 Mb (16.10%) and 2,198.84 Mb (15.11%) of 
the common wheat genome (IWGSC RefSeq v1.0; Fig. 6;  
Supplemental Fig. S13A and Data Sets 13 and 14) 
(International Wheat Genome Sequencing Consortium 
(IWGSC) 2018). These selected genomic regions show re-
duced nucleotide diversity compared with the rest of the 
genome, and the divergence between the cultivars and land-
races in these genomic regions has increased (2-tailed t test, 
P = 9.66 × 10−41; Supplemental Data Set 15). The selected re-
gions are distributed unevenly along the wheat chromo-
somes (Supplemental Fig. S13A), suggesting asymmetric 
selection among the 3 wheat subgenomes. The selected gen-
omic regions encompass 18,241 and 16,692 genes in 
CHN_CV and USA_CV, respectively (Supplemental Data 
Sets 13 and 14). Among these, 5,428 genes overlapped with 
the regions selected in both CHN_CV and USA_CV, indicat-
ing shared breeding targets between the 2 countries 
(Supplemental Fig. S13B and Data Sets 13 and 14). 

Genes with experimentally verified functions (known 
genes) related to plant architecture, growth period, starch 
synthesis, resistance to foliar diseases, and end-use quality 
were also located in the genomic regions of selective sweeps 
(Supplemental Data Sets 16 and 17). Rht-A1 and TaERF8-2B, 
which are associated with PH and grain yield, respectively, 
were located in selective sweeps detected in both popula-
tions of cultivars (Fig. 6, A and B; Supplemental Data Sets 
16 and 17) (Peng et al. 1999; Zhang et al. 2020). Rht-D1 
(Rht2), Rht18, and TaGA2ox8 showed evidence of selection  
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Figure 4. Changes in FAF during the modern wheat breeding process. A) Percentages of lead SNPs and MTAs with increased and decreased FAF. 
FAF_Up and FAF_Down indicate SNPs with increased or decreased FAF in CHN_CV vs. Landrace and USA_CV vs. Landrace. B) The percentages of 
lead SNPs and MTAs with simultaneously increased or decreased FAF. C) Heatmap of changes in FAF for 207 lead SNPs in each subpopulation. Each 
column stands for a lead SNP. D to H) Heatmap of FAF changes for MTAs (P < 1e−6) for PH D), TKW E), SL F), HD G), and TNSS H) in the sub-
populations. Red represents an increase in FAF, and blue represents a decrease. Each row represents an associated SNP. Cyan and pink in the first 
column indicate the lead SNPs and the remaining MTAs, respectively (P < 1e−6). White blanks in rows are used to separate each locus (containing 
lead SNP and MTAs). I to M) Dot plots of FAF changes for MTAs of PH I), TKW J), SL K), HD L), and TNSS M). Purple, light green, blue, and light red 
indicate points in the first, second, third, and fourth quadrants, respectively. The dashed lines represent x = 0, y = 0, and y = x.   
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only in China, whereas the Rht-B1 (Rht1) locus was uniquely 
selected in the United States (Peng et al. 1999; Ford et al. 
2018; Sun et al. 2018). Six known genes (Vrn2, TaFT3-1, 
TaFT4-1, TaGRP-2, TaVRT-2, and TaAGL12) controlling growth 
and development were found in the shared selective sweep re-
gions detected in both countries (Yan et al. 2004; Shimizu et al. 
2020). We also identified known genes related to growth per-
iod under country-specific selection. For example, the photo-
period gene PPD1 and the vernalization gene Vrn3 were 
selected only in China, while the MADS-box gene TaSEP3-A1 
was targeted in the United States (Fig. 6A; Supplemental 
Data Sets 16 and 17) (Yan et al. 2006; Nishida et al. 2013;  

Zhang et al. 2021). Furthermore, the selective sweep regions 
containing known genes involved in starch synthesis, grain 
yield, grain size, and flour quality are considered to have 
been under strong selection during modern wheat breeding 
for higher yield and end-use quality. Six known genes related 
to starch synthesis, grain yield, or flour quality (Glu-B3, 
TaGBSSII-2A, TaSSIIIb-2D, TaAGPS1-a, TaCwi-5D, and 
TaGW8-7B) are present in shared selective sweep regions. 
Twenty-two and 21 known genes associated with starch syn-
thesis, grain size, or grain yield traits have been selected in 
China and the United States, respectively (Fig. 6A;  
Supplemental Data Sets 16 and 17). 
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Figure 5. Genomic fingerprinting analysis of the 355 common wheat accessions for lead SNPs. A) The genomic fingerprints of the 355 common 
wheat accessions for 207 lead SNPs associated with key traits (each row indicates a lead SNP, and each column indicates an accession). Lead 
SNPs associated with the same trait are grouped together, and the trait names are marked to the left of the plot. Dark green, gray, purple, and light 
white indicate favorable, undesirable, heterozygous, and missing alleles, respectively. B) Density distribution of favorable alleles in each common 
wheat accession. C, D) Relationships between the number of favorable alleles and phenotypic values for TKW C) and HD D). The violin plots 
and boxplots were combined to display the distribution of the average values of phenotypic traits. The dashed lines represent linear relationships 
between the phenotypic values and number of favorable alleles, which is fitted by y ∼ x. R2 indicates the correlation coefficient of the phenotypic 
data and the number of favorable alleles.   
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Figure 6. Profiling of selective sweeps during modern wheat breeding. A) Genome-wide selective sweeps in CHN_CV vs. Landrace (upper) and 
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black horizontal dashed lines indicate the cutoffs of the top 5% of values.   
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Interestingly, some genes were under potential selection in 
only 1 country, whereas their homologs were selected in the 
other country. For example, the O-linked N-acetylglucosamine 
transferase gene TaOGT-6B (Fan et al. 2021), which regulates 
flowering time, was selected in China, whereas its homolog in 
the A subgenome (TaOGT-6A) was selected in the United 
States (Fig. 6B). TaGW8-7B, a gene related to grain size and 
TKW, is located in selective sweep regions detected in both 
countries. However, its homolog in the D subgenome 
(TaGW8-7D) was selected in China, whereas its A subgenome 
homolog (TaGW8-7A) was selected in the United States 
(Supplemental Fig. S14A) (Yan et al. 2019). Another set of 8 
known homoeologous gene triplets showed the same mode 
of country-specific selection (Supplemental Data Sets 16 and 
17). These results suggest that improvement selection targeted 
different homoeoalleles in different countries to achieve com-
mon breeding goals. 

Of the 207 loci detected in GWAS for the agronomic traits 
examined in our study, 90 and 59 are colocated with the se-
lective sweep regions detected in CHN_CV and USA_CV, re-
spectively. Among these, 36 loci are shared between China 
and the United States, implying that these loci were sub-
jected to convergent selection in the 2 countries. Finally, 54 
and 23 selected loci were unique to China and the United 
States, respectively (Supplemental Fig. S14B and Data Sets 
18 and 19). These results further demonstrate that breeding 
efforts in China and the United States targeted both shared 
and distinct genomic regions. 

Discussion 
Frequent extreme weather events, the growing population, 
and the genetic erosion of crops (Khoury et al. 2022) are put-
ting huge pressure on the global food supply. However, con-
ventional breeding approaches capable of increasing grain 
yield by approximately 1% annually for most crops, including 
wheat, cannot satisfy the rising food demand (Ray et al. 2013). 
Genetic improvement has proven to be successful for generat-
ing crops with higher yields, stronger adaptation, and better 
human end-use properties (Xie et al. 2015). Nevertheless, di-
verse strategies have likely been implemented in different geo-
graphical regions during crop improvement given the 
differences in farming systems, human preferences, and local 
climates. Therefore, investigating their genetic basis may 
pave the way for further advances in crop breeding. 

In this study, we developed a whole-genome diversity map 
for a panel of common wheat landraces and cultivars col-
lected from China and the United States and applied com-
parative population genomics and association genetics to 
investigate the impact of breeding on the plant architecture 
and genetic composition of regional wheat populations. We 
showed that plant architecture has been targeted conver-
gently, but with different magnitudes, in regional breeding 
programs to achieve the common breeding goals of higher 
yields, better quality, and wider adaptability. Considering 
the diverse origins of the materials examined in this study, 

some factors affecting local adaptation might not have 
been fully expressed under our experimental conditions. 
Consistent with the significant phenotypic changes during 
wheat improvement, wheat genetic diversity decreased ap-
proximately by 20% (18.9% in China and 29.1% in the 
United States), which is higher than the previously reported 
value (∼5%) (Cavanagh et al. 2013). Perhaps the ascertain-
ment bias associated with the inclusion of common variants 
into the SNP genotyping array used in that study did not al-
low the majority of the rare variants in the populations to be 
captured. 

We identified 207 loci underlying key agronomic traits by 
performing GWAS with tens of millions of markers in a panel 
of diverse germplasm. The beneficial allele frequency of most 
agronomic traits increased during modern wheat breeding in 
both countries, suggesting convergent positive selection at 
these loci. Despite the substantial differences in the genetic 
compositions of the cultivars from China and the United 
States, the same direction of phenotypic changes was ob-
served for 8 of the 21 agronomic traits investigated. This find-
ing is consistent with the direct or indirect contributions of 
the traits analyzed in this study to grain yield, which is the 
main target of breeding efforts. 

Furthermore, we identified a number of candidate select-
ive signatures representing potential breeding targets. 
These genomic regions contain genes involved in regulating 
plant architecture, starch synthesis, heading date, and grain 
yield and are partially shared between China and the 
United States. The partial sharing of candidate genes under 
selection is likely due to a series of factors, such as diverse en-
vironmental conditions, linkage drag, random genetic drift, 
different selection pressures, and multiple functionally 
equivalent mutations. The genomic regions under unique se-
lection in either China or the United States could serve as 
critical resources for incorporating successfully adapted al-
leles into future wheat improvement efforts. 

We also identified genes (for example: TaSSIIIb-2D encod-
ing a starch synthesis enzyme; Supplemental Data Sets 16 and 
17 and Fig. S15) that were convergently selected in China and 
the United States by targeting totally different haplotypes, 
suggesting that convergent selection in the 2 countries was 
achieved by targeting the same genes with different types 
of variants. Our results also highlight the role of polyploidy 
in the evolution of agronomic traits in wheat, as manifested 
by country-specific selection acting on the allelic variants of 
homoeologous genes from different subgenomes. The exist-
ence of region-specific targets of improvement selection sug-
gests that an underutilized genetic diversity is available for 
wheat improvement in each of the 2 analyzed populations 
of cultivars from China and the United States. 

In conclusion, we generated a comprehensive landscape of 
genomic variation in a diverse panel of wheat cultivars and 
landraces. We also constructed a genome-to-phenome asso-
ciation map and an atlas of selective sweeps linked to wheat 
improvement, representing valuable resources for future 
functional genetic studies and wheat improvement.  
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Materials and methods 
Wheat accessions and phenotypic measurements 
In total, we collected 355 common wheat (T. aestivum) ac-
cessions, including 180 landraces, 103 cultivars from China, 
and 72 cultivars from the United States. The 180 landraces 
originated from 13 countries around the Fertile Crescent 
and were selected from a worldwide population of landraces 
from the United States Department of Agriculture (USDA) 
to represent a pool of genetically diverse germplasms. The 
representativeness of the 180 landraces was evaluated by 
comparing them with 632 common wheat accessions, which 
were collected from 69 countries and described as a world-
wide landrace population (Balfourier et al. 2019). The 180 
landraces selected in this study revealed good representative-
ness and harbored more than 94% of the genetic diversity of 
the worldwide wheat landrace collection (Supplemental Fig. 
S1). The genetic diversity (π) was evaluated by identifying 
the common SNPs shared between the 180 and 632 land-
races. We also evaluated the representativeness of the 180 
landraces by examining the genetic distances of pairwise of 
accessions between the 180 landraces and 632 published 
landraces using the method reported by Schulthess et al. 
(2022). We calculated the identity by state (IBS) using the 
snpgdsIBSNum function of SNPRelate and the proportion 
of pairwise difference (PPD) between 2 samples using the fol-
lowing formula: IBS0/(IBS0 + IBS2). PPD values were used to 
evaluate the representativeness between 2 subpopulations 
(180 and 632 landraces). An accession was considered to 
have counterparts in the other subpopulation when its min-
imum genetic distance to all accessions of the other subpo-
pulation was less than the 95% quantile of the distances 
within the 632-member collection. A set of 103 and 72 culti-
vars developed after the Green Revolution were collected pri-
vately from breeding programs in China and the United 
States, respectively (Supplemental Data Set 1). 

All 355 common wheat accessions were planted (winter 
growing seasons) in 3 consecutive years (2013 to 2016) in 
Zhao County, Shijiazhuang City, Hebei province, China (38° 
05′N, 114°52′E). The accessions were randomly arranged in 
plots with a row and column spacing of 110 cm × 25 cm 
and 3 independent replicates. Five plants in the middle of 
each plot were selected to evaluate the agronomic perform-
ance of each accession. YPP represents the mean seed weight 
of 5 individual plants. TKW was calculated by dividing the 
YPP by the number of seeds per plant and then multiplying 
by 1,000. The number of seeds per plant, SL, SW, and SR were 
measured using a Crop Grain Appearance Quality Scanning 
Machine (SC-E, Wanshen Technology Company, Hangzhou, 
China). BPP is the average weight of 5 whole plants (without 
roots) during the mature stage, and HI was obtained by div-
iding YPP by BPP. HD and AD were calculated as the days 
from sowing to heading/anthesis of half of the spikes in a 
row at the spike emerging stage. TNSS and TNMS are the 
average of 5 plants during Zadok 29 (plants containing a 
main stem and 9 or more tillers) and mature stage, 

respectively. At maturity, PH (aboveground and excluding 
awns), PL, AL, SPL, SN, SSN, and SNPS (main spikes) were ob-
tained by averaging the values from 5 plants. After anthesis, 
FLL was measured as the distance from leaf bottom to leaf 
tip. FLW is the length of the widest part of the flag leaf. SD 
is the diameter of the peduncle stem (2 cm above the 
stem joint). 

DNA isolation and sequencing 
Young leaf tissue from each accession was sampled to extract 
genomic DNA using the cetyltrimethylammonium bromide 
(CTAB) method. PCR-free DNA libraries with an insert size 
of 350 bp were constructed and sequenced with the 
DNBSEQ platform at BGI-Shenzhen, yielding a total of 
∼8.0 × 1011 100-bp paired-end reads and an average depth 
of coverage at 14.52× for each accession. 

Variant calling, quality control, and annotation 
of genetic variants 
Raw reads were trimmed with Trimmomatic (version 0.36) to 
control read quality (Bolger et al. 2014). The clean reads were 
then mapped to the Chinese Spring wheat reference genome 
(IWGSC RefSeq v1.0) using the “mem” module in BWA with 
default parameters (Li and Durbin 2009). A genomic variant 
call format (GVCF) file for each sample was obtained using 
HaplotypeCaller in Genome Analysis Toolkit (GATK, 
Version 3.7-0-gcfedb67) (McKenna et al. 2010). All GVCF files 
were then used for joint genotyping to obtain a single VCF 
file for all wheat lines. Given the bias caused by misalignment, 
we discarded variant sites with too many (average coverage 
depth more than 30×) or too few (less than 3×) total aligned 
reads (DP < 1,700 or DP > 10,400). Variant quality 
was controlled based on the following criteria: “QD < 2.0 || 
FS > 60.0 || MQ < 40.0 || ReadPosRankSum < −8.0 || 
MQRankSum < −12.5” for SNPs and “QD < 2.0 || FS >  
200.0 || ReadPosRandSum < −20.0” for InDels. To further 
control variant quality, we removed variant sites with 
“QUAL < 150.” At the population level, we discarded variants 
with a missing rate > 25% and a heterozygosity > 30%. For 
InDels, we considered only InDels ≤ 8 bp. The MAF was set 
to 0.01 for statistical analysis of variants (76,874,471 SNPs 
and 5,208,800 InDels), including genetic diversity and genetic 
differentiation. SNPs with MAF > 0.05 (44,050,985) were 
used for GWAS and other analyses. 

To evaluate the accuracy of the SNPs identified in this 
study, we compared the genotypes of SNP sites shared be-
tween the resequencing data and the wheat 660K SNP array 
data (http://wheatomics.sdau.edu.cn/download.html) for 
343 of the 355 accessions. The flanking sequences of SNPs 
on the wheat 660K array were aligned to IWGSC RefSeq 
v1.0. Sequences with a maximum of 1 mismatch, without 
gaps, and aligned to only 1 position were retained for further 
analysis. Shared SNPs between the resequencing and SNP ar-
ray data were used to evaluate the genotyping accuracy of 
each accession.  
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To evaluate the variant effects (including SNPs and InDels), 
we annotated them with SnpEff using HC gene models in the 
RefSeq v1.0 genome assembly (International Wheat Genome 
Sequencing Consortium (IWGSC) 2018). Variants with a 
“HIGH” effect were regarded as deleterious, including start 
codon loss/gain, stop codon loss/gain, and splice acceptor/ 
donor variants. 

Statistical analysis of phenotypes 
To calculate the best linear unbiased prediction (BLUP) values 
for 21 agronomic traits, we fitted the phenotypic values into 
the following formula: Yij = μ + Linei + Yearj + (Line × Year)ij  

+ (Year × Rep)jn + errorijn (where μ represents the mean of 
the phenotypic values, Linei is the genotype effect of the ith 
accession, Yearj is the effect of the jth year, (Line × Year)ij 

and (Year × Rep)jn are the effects of genotype–year and 
year–replication interactions, respectively, and errorijn is the 
error of the random effect), using a mixed linear model in R 
with the lme4 package (Bates et al. 2014). Phenotypic compar-
isons between subpopulations were performed with ggsignif 
(version 0.6.3) and ggplot2 (Ahlmann-Eltze and Patil 2021). 

PCA 
Considering the large LD distance and high-density SNP dis-
tribution, we obtained a random subset of relatively inde-
pendent SNPs using PLINK1.9 (Purcell et al. 2007) with the 
following criteria: (i) the LD coefficient (r2) was less than 
0.4 for any pair of SNPs in a window of 1,000 consecutive 
SNPs with a step size of 10 SNPs (–indep-pairwise 1000 10 
0.4), and (ii) the SNPs on unanchored scaffolds (chrUn) 
were excluded from the subset. After pruning, a subset of 
304,744 SNPs was obtained for PCA using PLINK1.9. 

Population genetic diversity, differentiation, 
and structure 
The genetic diversity (π) in each subpopulation (Landrace, 
CHN_CV, and USA_CV) and the genetic differentiation 
(FST) between subpopulations were calculated using a 
500-kb sliding window and a step size of 100 kb with 
VCFtools (v0.1.16) (Danecek et al. 2011). The minimum FST 

values were set to 0 when we calculated the mean FST values. 
Genetic assignment analysis was conducted using the 

pruned subset of 304,744 SNPs with the ADMIXTURE pro-
gram (Alexander et al. 2009). A total of 10 independent 
runs of ADMIXTURE with different random seeds were per-
formed at each K and aligned with CLUMPP (Jakobsson and 
Rosenberg 2007). f3 statistics (Reich et al. 2009) were calcu-
lated to examine admixture or copopulation membership 
among all 3-way triplets between different subpopulations 
using TreeMix (Pickrell and Pritchard 2012). 

LD analysis 
To estimate and analyze the LD decay patterns for all samples 
and different populations, we randomly selected 1% of all 
SNPs using the parameter “--thin 0.01” in PLINK. We then 

calculated the squared correlation coefficient (r2) between 
pairwise SNPs using PopLDdecay with the parameter 
“-MaxDist 10000” (Zhang et al. 2019). 

GWAS and candidate gene prediction 
A GWAS was performed with a linear mixed model that ac-
counted for both population structure and kinship for all 21 
agronomic traits using the “mlma” module with the “--mlma” 
parameter in GCTA (Yang et al. 2011). The first 3 principal 
components mentioned above were used to control the 
population structure. A kinship matrix accounting for pedi-
gree relationships was calculated from the subset of inde-
pendent SNPs using GCTA. A threshold of 1 × 10−6 

(Benjamini–Hochberg FDR < 0.05) was used to identify sig-
nificantly associated SNPs, which were then delineated into 
QTLs based on physical distance. Significantly associated 
SNPs with a physical distance > 5 Mb were regarded as inde-
pendent QTLs. The SNP with the lowest P-value within a QTL 
was designated as the lead SNP to represent the correspond-
ing QTL. The 1-Mb genomic regions centered on the lead 
SNPs were used to identify candidate genes. Based on the 
VCF files annotated by SnpEff, missense or frameshift muta-
tions in the promising candidate genes were inferred to be 
the causal polymorphisms. Haplotype analyses were per-
formed based on the causal polymorphisms of the corre-
sponding candidate genes. Haplotypes in fewer than 10 
accessions were discarded. Phenotypic comparisons between 
2 haplotypes were performed by 2-tailed t tests. The coding 
sequences of candidate genes with different haplotypes were 
sequenced and compared with published reference se-
quences to avoid larger InDels. To obtain functional annota-
tions for genes in each candidate region, the encoded protein 
sequences of every gene were searched against the rice pro-
tein database (MSU Version 7.0) by BLASTp. An E-value 
threshold of 1 × 10−5 was used to identify rice homologs of 
the candidate genes. 

Frequency and genomic fingerprints of agronomically 
favorable alleles 
Based on the GWAS results, we analyzed the FAF of marker– 
trait-associated SNPs (MTAs, P < 1e−6) and lead SNPs in each 
subpopulation. The alleles with earlier HD and AD, reduced 
PH, PL, and SSN, or increased SPL, FLL, TKW, SNPS, SW, TNSS, 
TNMS, SN, SL, YPP, BPP, HI, FLW, SR, AL, and SD were desig-
nated as favorable alleles. Changes in FAF between CHN_CV 
vs. Landrace and USA_CV vs. Landrace were used for further 
analysis. To construct genomic fingerprints, we extracted a sub-
set of VCF files for leading SNPs. We used the numbers 0, 0.5, 
and 1 to represent undesirable, heterozygous, and favorable al-
leles at each locus, respectively (Supplemental Data Set 12). 

Detection of selective sweeps between landraces 
and cultivars 
We used a python version of the composite likelihood ap-
proach (XP-CLR) (Chen et al. 2010) to identify selective  
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sweeps during modern wheat improvement (https://github. 
com/hardingnj/xpclr). Landraces were regarded as the refer-
ence, and CHN_CV and USA_CV were used as the queries. 
We scanned for selective sweeps with a step size of 100 kb 
and a 500-kb sliding window across each chromosome 
(–size 500,000; --step 100,000). The maximum number of 
SNPs allowed in each window was set to 500 using the par-
ameter “--maxsnps 500.” The genomic regions with XP-CLR 
scores above the 95th percentile were considered to be un-
der selection. Adjacent selective sweep windows < 300 kb 
apart were merged. We regarded HC gene models in the 
IWGSC RefSeq v1.1 annotation in the selective sweep regions 
as potential breeding targets. The lead SNPs for each GWAS 
hit closest to selective sweeps (<500 kb) were regarded as 
overlapping hits. 

Statistical analysis 
Statistical analyses were performed as described in each fig-
ure legend. Statistical data are provided in Supplemental 
Data Set 20. 

Accession numbers 
Accession numbers of the genes discussed in the main text 
are provided in Supplemental Data Set 21. 
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