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VALUE OF THE DATA 36 

● The urban residential building stock synthetic dataset is valuable to the scientific community 37 

as it provides a comprehensive and detailed set of data for analyzing the energy 38 

performance of 1 million urban buildings. Researchers can use this dataset to gain insights 39 

into energy consumption patterns and efficiency in urban residential structures. 40 

● The dataset includes four different types of Irish residential buildings, mainly focusing on 41 

Dublin City, allowing researchers to study a wide range of building characteristics and energy 42 

profiles. This diversity enhances its value for various research applications. This highlights 43 

the novelty and local specificity of the dataset. 44 
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● The dataset generated for the Irish building stock, mainly focusing on Dublin City, was 46 

developed before establishing a regional database covering all dynamic building parameters. 47 

This highlights the novelty and local specificity of the dataset. 48 

● The datasets contain 19 input parameters, including detailed information on HVAC systems, 49 

building fabric properties (U-values for walls, roofs, floors, doors, and windows), and 50 

renewable energy systems, these data enable researchers to perform sophisticated energy 51 

performance analyses and simulations. 52 

● The primary output parameter, EUI (kWh/(m2*year)), provides a crucial metric for evaluating 53 

and comparing the energy efficiency of different buildings. This information can inform 54 

energy-efficient building design and retrofitting efforts. 55 

● The inclusion of EPC data, categorized on an A to G rating scale, allows researchers to assess 56 

the overall energy performance and certification status of the buildings in the dataset The 57 

dataset also contains output parameters for heating and lighting, which are essential for 58 

understanding specific energy end-uses within residential buildings. This information can 59 

guide energy-saving strategies and policy development. These data have the potential to 60 

support sustainability research and can be used to evaluate and develop strategies for 61 

enhancing sustainability and efficiency in the urban built environments. Policymakers and 62 

practitioners can leverage this dataset to inform urban planning and energy management 63 

initiatives. 64 

BACKGROUND 65 

Stakeholders play a crucial role in analyzing the energy performance of urban buildings to develop 66 

effective policies for mitigating energy consumption and reducing CO2 emissions. However, the task 67 

of collecting and analyzing energy data for buildings on a large urban scale is complicated and time-68 

consuming, demanding substantial resources. To address this challenge, we employ a methodology 69 

to generate synthetic urban building stock data through a data-driven and parametric simulation 70 

approach. These datasets are then utilized in implementing a data-driven machine learning strategy 71 

to predict the energy performance of urban residential buildings, encompassing both ensemble-72 

based machine learning and end-use demand segregation methods. The datasets contain the 73 

relevant parameters, including heating, lighting, equipment, photovoltaic, and hot water, providing 74 

valuable support to stakeholders such as energy policymakers and urban planners in making well-75 

informed decisions for large-scale retrofitting initiatives. 76 

DATA DESCRIPTION 77 

This dataset, comprising over 1 million rows and 32 columns, offers a detailed analysis of residential 78 

urban building stock, focusing on energy efficiency and building characteristics. It serves as a helpful 79 

resource for understanding urban residential buildings, particularly in the context of energy 80 

consumption and efficiency (Table 1). The dataset contains 19 building input features (Table 2). Half 81 

of the dataset is simulated based on the 2030 Dublin weather file data, while the other half is based 82 

on historical Dublin weather file data, providing a comprehensive statistical climate analysis. The 83 

dataset includes Irish building stock comprising Bungalows (27%), Detached houses (24%), Semi-84 

Detached houses (25%), and Terraced houses (24%). This combination allows for comparative 85 

analysis across different residential structures. Approximately 60% of the buildings employ 86 

renewable energy sources, highlighting a significant shift towards sustainable energy practices.  87 



 
 

 

 88 

 89 

 90 

Table 1 Brief Summary of urban building stock datasets for building energy performance analysis  91 

Category Details Summary 

Total Records 1 million Comprehensive dataset with a large 

sample size. 

Total Columns 32 Divided into 19 input features and 13 

output features. 

Building Types Bungalow, Detached, 

Semi-Detached, 

Terraced 

Balanced representation: Bungalow (27%), 

Detached (24%), Semi-Detached (25%), 

Terraced (24%). 

Weather Data  Historical ,2030 Equal distribution between historical and 

2030 profile. 

Renewable Energy Usage Yes, No Significant use of renewables (60% of 

buildings). 

Building Energy Rating A to G, 15 categories Most common rating: 'C' (approx. 19%). 

Insulation U-Values Floors, Doors, Roofs, 

Windows, Walls 

Critical for assessing thermal efficiency. 

Energy Efficiency Metrics HVAC Efficiency, 

Building Orientation, 

Lighting and Equipment 

Density, etc. 

Essential for understanding energy 

consumption patterns. 

Energy Use Intensity (EUI) Average 241 kWh/m² Standardized measure for energy efficiency 

comparison. 

Energy Consumption Heating, Water 

Systems, Lighting, 

Equipment, etc. 

Detailed insights into various aspects of 

energy usage. 

Photovoltaic Power Average 518 kWh Indicates moderate solar energy utilization. 

Conversion Factors Heating (avg. 0.65), 

Electricity (avg. 2.08) 

Efficiency of energy conversion processes. 

 92 

The dataset contains detailed information on the U-Value for floors, doors, roofs, windows, and 93 

walls. These five key metrics related to building insulation are measured in W/m²K. The average U-94 

Value for floor insulation is 0.37, with a range from 0.15 to 1.6, indicating variability in floor 95 

insulation efficiency. Door insulation has a higher average U-Value of 2.28, with a wider range 96 

extending up to 5.7, suggesting greater diversity in door insulation quality. Roof, window, and wall 97 

insulations have average U-Values of 0.88, 2.44, and 1.03 respectively, each with a significant spread 98 

in values. Lighting density and occupancy levels are measured, averaging 4.58 W/m² and 3.52 99 

persons respectively. Equipment density, another significant factor in energy consumption, has an 100 

average of 9.92 W/m². The dataset includes heating setpoint and setback temperatures, averaging 101 

20.14°C and 11.79°C respectively, which are important for heating energy calculations. Air change 102 

rate, a measure of ventilation, averages 1.53 air changes per hour, a critical component in assessing 103 

indoor air quality and energy loss. These factors are crucial for understanding the end-use energy 104 



 
 

 

demands of buildings. In summary, this dataset provides a comprehensive view of the factors 105 

influencing energy performance in urban residential buildings. The range of data from insulation 106 

values to internal building factors offers a holistic understanding of the energy dynamics in 107 

residential environments. This information is invaluable for energy performance analysis and aids in 108 

identifying areas for improvement and sustainable development in urban residential architecture. 109 

Table 2 Statistical summary of all building input features across urban building stock datasets 110 

Feature Units Mean Std Dev Min Max 

Floor_Insulation_U-Value W/m²K 0.37 0.28 0.15 1.6 

Door_Insulation_U-Value W/m²K 2.28 1.41 0.81 5.7 

Roof_Insulation_U-Value W/m²K 0.88 0.73 0.07 2.28 

Window_Insulation_U-Value W/m²K 2.44 1.58 0.73 5.75 

Wall_Insulation_U-Value W/m²K 1.03 0.76 0.1 2.4 

HVAC_Efficiency % 2.84 1.32 0.3 4.5 

Domestic_Hot_Water_Usage Liter/m²/day 1.65 1.15 0.5 3.5 

Building_Orientation Degree 124.8 111.85 0 315 

Lighting_Density W/ m² 4.58 2.75 1 9 

Occupancy_Level Person 3.52 1.71 1 6 

Equipment_Density W/m² 9.92 6.86 1 21 

Heating_Setpoint_Temperature °C 20.14 1.67 18 23 

Heating_Setback_Temperature °C 11.79 1.37 10 14 

Air_Change_Rate 

Air changes per 

hour  1.53 1.57 0.35 3 

Window_to_Wall_Ratio % 37.5 25.86 0 70 

 111 

On the other hand, there are 13 output features (Table 3). The dataset outlines detailed energy 112 

consumption metrics, such as heating usage, water systems energy, interior lighting and equipment 113 

energy, and total heating energy. These parameters are vital for assessing the energy efficiency of 114 

residential buildings. This data is essential for identifying key areas of energy consumption in 115 

residential buildings. The inclusion of photovoltaic power data (averaging 518 kWh/yr) suggests a 116 

focus on solar energy utilization in these buildings. The negative values of total electricity energy 117 

indicate that the building generates energy from photovoltaics and exports it to the grid. The 118 

Heating and Electricity Primary Conversion Factors (averaging 0.65 and 2.08 respectively) offer 119 

insights into the effectiveness of energy conversion processes in these buildings. One of the most 120 

important output features is the EUI. With an average of 241 kWh/m², the EUI data helps benchmark 121 

the energy efficiency of buildings, providing a standardized measure for comparison. Overall, the 122 

Building Energy Rating spans 15 categories (A1 to G) based on the Irish Building rating standard, with 123 

'G' being the most frequent. This suggests a wide range of energy efficiencies in urban residential 124 

buildings. All input and output features are non-null, indicating a dataset with complete information 125 

for every entry.  126 

This dataset is a valuable resource for researchers and policymakers focusing on urban residential 127 

energy efficiency. Its comprehensive nature, covering various building types and a wide range of 128 

energy-related features, makes it uniquely suited for in-depth analyses. Including historical and 2030 129 

weather data enhances its applicability for longitudinal studies. The detailed data on building 130 



 
 

 

insulation, orientation, and density factors, combined with extensive energy consumption metrics, 131 

allows for a holistic understanding of energy dynamics in residential buildings. The energy ratings 132 

provide a straightforward way to gauge the efficiency of buildings, potentially guiding efforts 133 

towards energy optimization and sustainable development in urban residential sectors. Overall, the 134 

dataset not only reflects current energy practices but also serves as a guidepost for future energy 135 

sustainability initiatives in urban residential system modeling. 136 

Table 3 Statistical summary of all building output features across urban building stock datasets 137 

Feature Units Mean Std Dev Min Max 

Total_Building_Area m2 103.51 17.37 85.91 130.81 

Heating_Usage kWh/year 18390.56 13531.47 206.51 107361.3 

Water_Systems_Energy kWh/year 5956.09 7825.23 202.8 25403.65 

Interior_Lighting_Energy kWh/year 1146.38 723.98 207.96 2879.78 

Interior_Equipment_Energy kWh/year 3066.85 2209.87 243.97 8174.23 

Total_Heating_Energy kWh/year 12434.47 12828.89 0 106752.9 

Photovoltaic_Power kWh/year 518.36 471.71 0 1233.25 

Total_Electricity_Energy kWh/year 3720.79 2549.69 -690.26 11054.02 

Heating_Conversion_Factor Numeric 0.65 0.68 0.24 3.61 

Electricity_Primary_Conversi

on_Factor Numeric 2.08 0 2.08 2.08 

Heating_Primary_Conversio

n_Factor Numeric 1.87 0.4 1.1 2.08 

Energy_Use_Intensity kWh/(m2*year) 241.38 148 -9.43 650 
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Figure 1 The correlation with all input parameters with final output energy use intensity 140 

The correlation coefficients between various input building parameters and the final output EUI in 141 

the datasets provide insights into how different factors influence energy consumption (Figure 1). 142 

Firstly, the insulation values (U-Values) for the floor, door, roof, window, and wall show positive 143 

correlations ranging from 0.24 to 0.35. This suggests that higher U-Values, which indicate poorer 144 

insulation quality, are associated with increased EUI. HVAC Efficiency shows a strong negative 145 

correlation (-0.68) with EUI. This is the most significant correlation in the dataset and implies that 146 

higher HVAC efficiency substantially reduces energy use, highlighting the importance of efficient 147 

heating and cooling systems in residential buildings. Domestic Hot Water Usage and Air Change Rate 148 

indicate a moderately strong relationship with EUI, underscoring the energy impact of hot water 149 

systems in residential settings. Building Orientation, Equipment Density, and Heating Setpoint 150 

Temperature, both with correlations of 0.35, suggest a notable impact on EUI. In contrast, 151 

Occupancy Level shows a very low negative correlation (-0.06), suggesting that the number of 152 

occupants has a negligible direct impact on EUI. The Window to Wall Ratio shows no correlation 153 

(0.00) with EUI, indicating that in this dataset, the proportion of windows to wall space does not 154 

significantly impact energy consumption. 155 

Lastly, Lighting Density and Heating Setback Temperature show relatively lower correlations (0.24 156 

and 0.19, respectively), suggesting a modest influence on EUI. These factors, while important, may 157 

not be as impactful as HVAC efficiency or insulation quality. In summary, this analysis reveals that 158 

HVAC efficiency, insulation, and domestic hot water usage are key drivers of energy use in Irish 159 

residential buildings. 160 



 
 

 

EXPERIMENTAL DESIGN, MATERIALS AND METHODS 161 

The primary motivation behind Ireland's residential building stock dataset is to employ a data-driven 162 

approach for assessing energy performance and predicting it on an urban scale [1]. The dataset 163 

generation process contains initial data requirement, building archetypes development, and 164 

parametric simulation. 165 

Initial data requirement  166 

In the experimental design, the first step is the gathering comprehensive urban buildings data is a 167 

challenging task, mainly due to the limited availability of specific building details. This initial data 168 

requirement  process involves gathering raw building data from multiple  sources to create an 169 

extensive database of urban building inventories. This data includes anonymous secondary data, 170 

such as building energy performance certificates, building census datasets, and weather information. 171 

These secondary data sources collectively contribute to generating a complete building stock 172 

dataset, making efficient use of available resources through parametric simulations. In the context of 173 

Ireland, data on residential buildings is largely derived from Energy Performance Certificates (EPCs), 174 

known locally as Building Energy Rating (BER) certificates, managed by the Sustainable Energy 175 

Authority of Ireland (SEAI). The dataset originating from EPCs is comprehensive, covering more than 176 

200 attributes of buildings such as their construction, heating solutions, usage estimates, carbon 177 

dioxide emissions, and both estimated actual and theoretical energy usage.  However, gap in Irish 178 

EPC data primarily due to the lack of dynamic elements and the challenge of incorporating 179 

projections of future conditions.  Additionally, EPC data currently encompasses only about half of 180 

Dublin City's residential buildings. To address these  challenge, this study aims to generate synthetic 181 

data that will encompass a comprehensive range of building characteristics, including those not yet 182 

known, to facilitate future analyses and machine learning modeling Similarly, the Central Statistics 183 

Office (CSO) of Ireland carries out a national census every four years, gathering data that includes 184 

information on the housing stock, thereby offering insights into the distribution of buildings across 185 

various locales. Consequently, the census provides information on the number of buildings in 186 

different geographic areas. Furthermore, weather data for Dublin is obtained from the standard 187 

EnergyPlus dataset, featuring historical records and projected weather patterns for 2030, provided 188 

by Meteonorm. This information is crucial for evaluating the influence of climate conditions on the 189 

effectiveness of building retrofitting strategies under different climate change scenarios. 190 
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Figure 2 The geometric model  of Irish residential building archetypes for energy parametric simulation for Dublin City [1] 192 

Building Archetypes Development: 193 

In this study, the Irish residential sector is represented through four main building archetypes: 194 

terraced houses, detached houses, semi-detached houses, and bungalows  (Figure 2). Each building 195 

archetype serves as a benchmark model for parametric simulation analysis and  aiding in the 196 

development of a synthetic representation of the building stock. Modeling these archetypes requires 197 

the collection of both geometric and non-geometric information  198 

The first phase entails the identification of these critical parameters from the current building stock 199 

in Dublin. Geometric information is gathered for different building types across Ireland, adhering to 200 

the standards prescribed by Irish building regulations. Non-geometric aspects are ascertained 201 

through the examination of existing databases on building energy efficiency and through 202 

comprehensive reviews of existing articles. For instance, data from the Irish Energy Performance 203 

Certificate (EPC) is invaluable, providing essential physics data for buildings, like the U-values for 204 

walls, roofs, floors, and windows, and their respective ranges. Through previous studies, other 205 

significant non-geometric elements that influence the energy efficiency of the Irish building stock 206 

have been pinpointed 207 

The compiled datasets encompass geometric details such as the total floor area, roof area, the ratio 208 

of window area to wall area, the number of floors, the number of distinct zones within a building, 209 

and its orientation. For example, the total floor area for terraced houses is recorded at 91.66 square 210 

meters, whereas detached houses exhibit a larger floor area of 130.81 square meters. These 211 

parameters are crucial for providing a deeper understanding of the energy efficiency and distinct 212 

characteristics of various types of buildings, enabling precise simulations and analyses of energy 213 

performance specific to the Irish context.  214 
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Parametric Simulation: 216 

In the parametric simulation step, parametric selection is of utmost importance for  creating 217 

synthetic datasets using building   archetype. The accuracy of energy models for buildings depends 218 

significantly on the selection of both input and output variables, which must cover the range of 219 

variations essential for synthesizing data. This study incorporates 19 input variables to model 220 

archetypes of Irish residential buildings, inspired by prior research in the area  [2].  However, certain 221 

advanced features were not addressed in these prior studies. As a result, we have integrated several 222 

additional parameters, including those related to HVAC systems, to conduct a comprehensive 223 

analysis encompassing HVAC (Heating, Ventilation, and Air Conditioning)  systems, primary heating 224 

factors, and renewable parameters (Table 4).  225 

Moreover, the proposed approach simplifies the model by using Design-Builder templates to 226 

represent construction specifics, thereby reducing the complexity of interrelated variables. For 227 

example, the physical attributes of building materials—like their thickness, conductivity, density, and 228 

heat capacity are represented through U-values in existing templates. This method effectively 229 

narrows down the input variables needed for UBEM, enhancing computational efficiency by omitting 230 

variables that are dependent on each other.  231 

Energy Use Intensity (EUI) is a principal metric in this analysis, measuring a building's annual primary 232 

energy usage per square meter of total floor space, expressed in kWh/(m2·year). The Energy 233 

Performance Certificate (EPC) data from Ireland offers deep insights into building energy efficiency, 234 

classifying buildings on an A1 to G scale based on their EUI values. An A1 rating indicates the highest 235 

energy efficiency, characterized by lower energy use and CO2 emissions, while a G rating denotes the 236 

lowest efficiency. The dataset encompasses data on heating, lighting, devices, solar photovoltaic 237 

systems, and water heating, providing a holistic view for analysis. 238 

 239 

An A1-rated building represents the pinnacle of energy efficiency, often associated with lower 240 

energy consumption and reduced CO2 emissions. In contrast, a G-rated building signifies the lowest 241 

level of energy efficiency. Furthermore, this dataset contains information pertaining to heating, 242 

lighting, equipment, photovoltaic systems, and hot water, making it a comprehensive source of data 243 

for analysis. In this methodology, jEPlus is employed as the parametric tool for physics-based 244 

parametric simulation. jEPlus uses EnergyPlus for thermal simulation and integrates DesignBuilder 245 

construction templates to incorporate diverse parameter values. EnergyPlus is a widely-used 246 

building energy simulation software, serving as the core thermal simulation engine within jEPlus. It 247 

accurately models the thermal behavior of buildings by considering factors such as heating, cooling, 248 

lighting, and more. EnergyPlus requires climate data, geometric and non-geometric input data for 249 

simulations. Weather data is crucial as it determines external conditions throughout the year. The 250 

chosen Dublin City EnergyPlus Weather (EPW) file provides detailed weather data for Dublin, 251 

Ireland. Information about the building's geometry is shown in (Figure 2). Similarly, consider 19 input 252 

parameters for the simulation of each building archetype. The validation process involves comparing 253 

parametric simulation results with real-world data or benchmark values. The developed archetypes 254 

are validated in existing studies using the current Irish EPC software for building performance 255 

analysis.  256 
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Table 4 Parameters needed for parametric simulation of archetype. 258 

Input Parameters Minimum Maximum 

Building Type Semi Detached, Detached, House, Terrace, Bungalow 

Location Dublin 

Weather Historical, 2030 

Wall U-value 0.09 2.4 

Window U-value 0.73 5.75 

Floor U-value 0.15 1.6 

Roof U-value 0.07 2.28 

Door U-value 0.81 5.7 

Orientation 0 315 

Equipment Density 1 21 

HVAC Efficiency/COP 0.3 4.5 

Domestic Hot Water 0.5 3.5 

Air Change Per Hour 0.35 3 

Lighting Density 1 9 

Occupancy 1 6 

Heating Setpoint 18 23 

Heating Setback 10 14 

Window-to-Wall Ratio 0 70 

Renewables Yes/No 

 259 

 260 

The challenge of simulating data across a wide array of parameter combinations is formidable due to 261 

their complexity. Sampling methods such as Simple Random Sampling (SRS) and Latin Hypercube 262 

Sampling (LHS) are commonly used for synthetic data generation. SRS is a basic method where each 263 

sample is chosen randomly and independently from the population. On the other hand, LHS is a 264 

more sophisticated approach, striving for a more evenly distributed sample spread across the data's 265 

entire range. LHS is designed to maintain a balanced combination of parameter values, facilitating a 266 

more thorough design space exploration. This study uses the LHS method to generate a sample of 1 267 



 
 

 

million buildings, aiming to build a robust machine-learning model. This approach ensures 268 

comprehensive coverage of the energy rating data for Irish buildings in the resulting distribution. 269 

LIMITATIONS 270 

The data required to generate a synthetic dataset of 1 million buildings, including building geometry, 271 

non-geometric data, census information, and weather data, originate from various sources and 272 

come in different formats. This leads to data inconsistencies. Consequently, these inconsistencies 273 

and the absence of standardized urban-scale data present a significant and ongoing barrier. 274 

However, it is essential to note that the accuracy and implementation of the model depend on the 275 

quality and availability of input data, which may vary in different contexts and countries. Moreover, 276 

developing synthetic data for various building archetypes in different contexts might require 277 

additional computational time. The primary limitation of this study arises from its reliance on pre-278 

defined geometric parameters to construct different building archetypes. While this approach allows 279 

for a comprehensive exploration of various design possibilities, it overlooks the practical constraints 280 

imposed by non-geometric factors. In real-world scenarios, buildings are often shaped by a 281 

multitude of non-geometric parameters such as construction materials, occupancy behavior, and 282 

economic considerations. These factors significantly influence the final architectural form and its 283 

energy efficiency. Furthermore, the value and further use of the dataset generated in this study 284 

must be examined in light of this limitation. For practitioners, policymakers, and researchers 285 

interested in energy-efficient building designs, the utility of this dataset hinges on its ability to reflect 286 

realistic and commonly encountered building configurations. Future studies could focus on 287 

integrating a more balanced approach that considers both geometric and non-geometric 288 

parameters, thereby ensuring that the resulting dataset is diverse and reflective of typical building 289 

types and refurbishment practices observed in various regions and periods. 290 

ETHICS STATEMENT 291 

The authors have read and follow the ethical requirements for publication in Data in Brief and 292 

confirming that the current work does not involve human subjects, animal experiments, or any data 293 

collected from social media platforms. 294 

CRediT AUTHOR STATEMENT 295 

Usman Ali: Conceptualization, Methodology, Writing, Original draft preparation. Sobia Bano: 296 

Writing- Reviewing and Editing. Mohammad Haris Shamsi: Writing- Reviewing and Editing. 297 

Divyanshu Sooda: Acquisition of data. Cathal Hoare: Writing- Reviewing and Editing. Wangda Zuo: 298 

Writing- Reviewing. Neil Hewitt: Writing- Reviewing. James O’Donnell: Supervision, 299 

Conceptualization, Writing- Reviewing and Editing. 300 

ACKNOWLEDGEMENTS 301 

This publication has emanated from the US-Ireland R&D Partnership supported by the Science 302 

Foundation Ireland through 20/US/3695, the U.S. National Science Foundation through Award 303 

Number 2217410, and the Department for the Economy in Northern Ireland through USI 167. We 304 

would also acknowledge NexSys project supported by the Science Foundation Ireland through Award 305 

Number SFI/21/SPP/3756. The opinions, findings, and conclusions or recommendations expressed in 306 



 
 

 

this material are those of the author(s) and do not necessarily reflect the views of the funding 307 

agencies. 308 

DECLARATION OF COMPETING INTERESTS 309 

The authors declare that they have no known competing financial interests or personal relationships 310 

that could have appeared to influence the work reported in this paper. 311 

REFERENCES 312 

 313 

[1]  U. Ali, S. Bano, M. H. Shamsi, D. Sood, C. Hoare, W. Zuo, N. Hewitt and J. O'Donnell, “Urban 

building energy performance prediction and retrofit analysis using data-driven machine learning 

approach,” Energy and Buildings, 2023.  

[2]  U. Ali, S. Bano, M. H. Shamsi, D. Sood, C. Hoare and J. O'Donnell, “Residential building energy 

performance prediction at an urban scale using ensemble machine learning algorithms,” in 

European Conference on Computing in Construction, 2023.  

 314 

 315 

 316 

 317 

 318 

 319 

 320 




