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Abstract— In this paper, we explore distributed edge computa-
tion offloading (DECO) that offloads computation to distributed
edge devices connected wirelessly, which perform the offloaded
computation in parallel. By integrating edge computing with
parallel computing, DECO can substantially reduce the total
computation delay. In particular, we study the fundamental
problem of minimizing the total completion time of DECO.
We show that the time-sharing based communication resource
allocation always outperforms the bandwidth-sharing scheme,
so that it suffices to focus on the time-sharing based commu-
nication scheduling. Based on the time-sharing scheme, we first
establish some structural properties of the optimal communica-
tion scheduling policy. Then, given these properties, we develop
an efficient algorithm that finds the optimal allocation of com-
putation workloads. Next, based on the optimal computation
allocation, we characterize the optimal scheduling order of
communications, which exhibits an elegant structure: the optimal
order is in the non-decreasing order of the ratio between a
device’s computation rate and its communication time. Last,
based on the optimal computation allocation and communication
scheduling, we show that the optimal device selection problem
is a submodular minimization problem, so that it can be solved
efficiently using some existing methods. We further extend the
study to the setting where devices are subject to maximum com-
putation workload constraints, and develop an efficient algorithm
that finds the optimal computation workload allocation. Our
results provide useful insights for the optimal computation-
communication co-design for DECO. We evaluate the theoretical
findings using extensive simulations in both practical settings and
controlled settings, which demonstrate the performance of DECO
in practice and also the efficiency of our proposed schemes and
algorithms for DECO.

Index Terms— Edge computing, distributed and parallel com-
puting, communication scheduling, delay minimization.

I. INTRODUCTION

DGE computing has emerged as a promising paradigm
that performs a substantial amount of computing, storage,
networking, and management functions on devices at or close
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to end users (referred to as “edge devices”). This trend is
largely enabled by the proliferation of smart devices with
powerful computing capabilities, which are often not fully
utilized. Compared to cloud computing which performs com-
puting in remote data centers, edge computing can offload
a large amount of data traffic from the core network to the
edge network, which can greatly reduce the communication
delay incurred in the network. One main driving force for
the popularity of edge computing is many emerging applica-
tions of Al that require very low service latency, including
augmented reality (AR) [2], virtual reality (VR) [3], and
autonomous vehicle [4]. These applications are empowered
by recent advances in machine learning (ML), which typically
rely on computationally intensive processing of large amounts
of data.

On the other hand, distributed computing is a traditional
computing paradigm that uses distributed devices to perform
computing cooperatively in parallel. One main advantage
of this approach is that it can greatly reduce computation
time by parallelizing computation and distributing computation
workloads to different devices, rather than performing all the
computation on a single device. One well-known example
of distributed computing is cloud computing in data cen-
ters, which utilizes large clusters of interconnected computer
servers for parallel computing.

To exploit the potential of edge computing, it is promising
to leverage distributed edge computation offloading (DECO),
which offloads computation to distributed edge devices con-
nected wirelessly, so that the devices can perform the offloaded
computation in parallel. This approach is enabled by widely
available edge devices with under-utilized computation capa-
bilities which can be connected by wireless networks in a
distributed manner. To accelerate many emerging applications
that require very low latency, it is beneficial to offload and dis-
tribute a large computation workload from a single end device
to multiple devices at the network edge. One key advantage of
this approach is computation parallelization which reduces the
computation delay. For example, if a computation workload is
offloaded from one device and distributed to N devices with
the same computing power, and if communication delays are
not counted (which certainly should and will be considered),
then the computation delay will reduce by a fold of N, which
is very substantial.

In this paper, we study distributed edge computation offload-
ing (DECO) that exploits wirelessly connected edge devices
to perform offloaded computation in parallel. Our goal is
to minimize the total completion time of DECO. To this
end, we will study the optimal allocation of computation
workloads (also referred to as “computation allocation™) to the
edge devices. We will also investigate the optimal scheduling
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of communications among the devices in a wireless edge
network. We will further study the optimal selection of devices
that participate in the computation offloading. We will seek
fundamental understandings and develop efficient algorithms
with provable performance guarantees for DECO.

The cross-layer design, analysis, and optimization of DECO
in wireless edge networks are non-trivially different from
prior studies. First of all, the computation workload alloca-
tion and communication scheduling problems have non-trivial
coupling, as the optimal solution to each problem depends
on the solution to the other problem. Therefore, these two
issues should be designed jointly in a judicious manner. More-
over, compared to existing works on distributed computing,
DECO needs to take into account the features of wireless
networks, including interference among wireless devices and
diverse communication rates of wireless links. In particular,
due to interference constraints among communications, the
communication scheduling problem is highly challenging.
Furthermore, DECO aims to minimize the total completion
time of all computations and communications involved in
the computation offloading under their precedence constraints,
which is a complex objective and is quite different from
existing studies on edge computation offloading and wireless
network scheduling.

The main contributions of this paper can be summarized as
follows.

o We propose a framework of distributed edge computation
offloading (DECO), which offloads computation from an
end device to distributed edge devices connected wire-
lessly, so that the edge devices can perform the offloaded
computation in parallel. Based on this framework, we for-
mulate the problem of allocating computation workloads
to the devices and scheduling communications between
the devices for minimizing the total completion time of
the computation offloading.

e We show that the time-sharing based communication
resource allocation is always better than the bandwidth-
sharing scheme. This result provides the insight that the
time-sharing scheme reduces the communication time of
each device by using all the bandwidth for that device,
so that it increases the available time of that device for
computation.

« Based on the time-sharing scheme, we first establish
some structural properties of the optimal communi-
cation scheduling, which show that it is optimal to
be non-preemptive, be non-idle, and schedule forward
communications before backward communications. Then,
given these properties, we develop an efficient algorithm
that finds the optimal allocation of computation work-
loads. Next, based on the optimal computation allocation,
we characterize the optimal scheduling order of com-
munications, which exhibits an elegant structure: the
optimal order is in the non-decreasing order of the ratio
between a device’s computation rate and its commu-
nication time. Last, based on the optimal computation
allocation and communication scheduling, we show that
the problem of selecting the optimal set of partici-
pating devices is a submodular minimization problem.
Therefore, the optimal device selection can be found
efficiently using some existing methods (e.g., the ellipsoid
method). Our results provide some useful insights for
the optimal computation-communication co-design for
DECO.
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o We further extend the study to the setting where each
device is subject to a maximum computation work-
load constraint. For this case, we develop an efficient
algorithm that finds the optimal computation workload
allocation.

e We evaluate the performance of the proposed schemes
and algorithms for DECO using extensive simulations
in both practical settings and controlled settings. The
simulation results demonstrate the performance of DECO
compared to benchmarks in practice, and also the effi-
ciency of the proposed optimal schemes and algorithms
for DECO.

The rest of this paper is organized as follows. Section II
reviews related work. In Section III, we describe a frame-
work of distributed computing offloading in wireless edge
networks. We first show in Section IV that the time-sharing
based communication resource allocation outperforms the
bandwidth-sharing scheme. Then Section V focuses on the
optimal computation allocation and communication schedul-
ing. We study the optimal device selection in Section VI.
We extend the study to the setting with maximum computation
workload constraints in Section VII. Simulation results are
discussed in Section VIII. Section IX concludes this paper
and discusses future work.

II. RELATED WORK

Edge Computation Offloading. Edge computing has
attracted growing research interests in the past few years [5].
Many works have used edge devices for video applications that
require low service delays, such as for video rendering [6],
and virtual reality [7], [8]. One important application studied
in these works is real-time video inference [9], [10], [11].
Computation offloading from mobile devices to edge servers
has also been studied [12], [13], [14], [15]. Another major
research direction of edge computing is edge caching [16].
Learning users’ interested contents for caching has also been
studied [17]. Cooperative networks of caches have also been
studied [18], [19]. However, existing works on edge compu-
tation offloading have not considered offloading computation
to multiple edge devices in parallel, with the goal of reducing
the computation offloading delay.

Distributed and Parallel Computing. There have been
many studies on the design of distributed algorithms and
computation allocation for reducing computation delays [20],
[21], [22], [23], [24], [25]. Some of these works have stud-
ied the impacts of the network on computing [26], [27],
[28]. Some other works have considered the throughput
of networked computers for processing computations [29].
Recent studies have considered the cross-layer design of
distributed computing and networking for improving com-
putation delay [30] or throughput [31], [32]. On the other
hand, many works have studied communication scheduling
in data center networks [33]. A large body of these works
have focused on the scheduling of co-flows under distributed
computing frameworks, in particular MapReduce [34], [35],
[36]. However, existing works on distributed computing have
not considered distributing computation by wireless devices
in parallel for reducing the computation delay, which should
take into account the features of wireless networks, such as
interference.

Wireless Network Scheduling. Wireless network schedul-
ing has been studied extensively for more than a decade.
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Most of the works have focused on the throughput of wireless
networks [37], including recent works on deadline-constrained
throughput [38] and with distributed scheduling [39]. Many
other works have considered the total utility of data flows
in the network [40] which depends on the throughput. Much
fewer works have studied the delay performance of wireless
network scheduling [41]. On the other hand, some works
have studied the cross-layer design of scheduling, routing,
and/or congestion control for various objectives, including
for throughput [42], [43], delay [44], or utility [45]. How-
ever, existing works on wireless network scheduling have not
considered using distributed wireless devices to perform com-
putation in parallel, with the goal of reducing the computation
delay.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe a framework of distributed
computation offloading in wireless edge networks. Based on
this framework, we then formulate the problem of minimizing
the total completion time of the computation offloading.

Distributed Edge Computation Offloading (DECO). We
consider a wireless end device which aims to perform a
computation job. The computation job is divided into multiple
computation tasks and offloaded to nearby edge devices in a
distributed manner, so that the computations can be performed
by the devices in parallel. By exploiting the computing power
of distributed edge devices, this parallelization can greatly
reduce the total delay of computation offloading.

In this paper, we assume that the computation job has a
parallel structure,' such that it can be decomposed into mul-
tiple computation tasks in parallel, as illustrated in Fig. 1 (a).
The parallel structure can capture many applications where
the computation job can be parallelized. For example, for
graphic rendering [46], a graphic can be partitioned into mul-
tiple segments such that different segments can be processed
independently in parallel. For another example, an image
recognition job can involve recognizing a set of different
objects of interest (person, vehicle, building, animal, etc)
from an image. Then the job can be divided into parallel
tasks, where each task is to recognize a subset of all the
objects of interest. For a computation job that cannot be fully
parallelized, sometimes they can be partly parallelized. For
instance, for image classification using a deep neural network
(DNN) model, although different layers of the model have
to be processed in order, some layer(s) can be parallelized
individually (i.e., one layer can be divided into parallel parti-
tions with each partition consisting of some neurons in the
layer). In this case, our proposed DECO can apply to the
parallelizable part of the computation job.

Computation Task. Each computation task takes some data
as input, execute some instructions (e.g., arithmetic operation,
comparison, branching such as “if...then...”) based on the
input data, and produces some data as output. The workload of
a computation task (e.g., the number of arithmetic operations)
generally varies for different computation tasks. For example,
for the aforementioned image recognition job, the workload of
a computation task can be determined by how many different
objects are to be recognized in the task. Some computation

'In general, a computation job consists of interdependent computation tasks
which can be represented by a directed acyclic graph (DAG). Our future work
will explore this general setting which is challenging.
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Fig. 1. (a) A computation job can be divided into parallel computation tasks:
Each device represents a computation task; each directed edge represents a
communication task. (b) The computation tasks constituting the computation
job are offloaded to edge devices connected by wireless links.
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tasks cannot be performed in parallel and have to be performed
in order. This is the case when the output of a computation
task is used as the input of another computation task, such
that the latter cannot start until the former is completed.
The precedence relations between computation tasks of the
computation job can be represented by a directed acyclic graph
(as illustrated in Fig. 1 (a)).

In this paper, we assume that the total computation workload
w of the computation job is fully divisible, such that it can be
arbitrarily divided into any workloads w;, Vi € A of parallel
computation tasks i, Vi € A with Zie ~ Wi = w. For ease
of exposition, without loss of generality, we assume that the
workloads of computation tasks 0 and N +1 are 0. The results
of this paper may be extended to case where the total workload
w is not fully divisible.?

Communication Task. For two computation tasks that have
to be performed in order, the output of the first task has to be
communicated to the second task as the input. The message
passing between two computation tasks is referred to as a
communication task. The workload of a communication task
(typically captured by the amount of data to be transferred)
can vary for different communication tasks.

The communication tasks involved in the computation
offloading consist of forward communications (FMs, from
computation task 0 to each computation task i € A) and
backward communications (BMs, from each computation task
i € N to computation task N + 1). For example, for the
aforementioned image recognition job, in forward communi-
cations, the end device sends the image and what objects to
recognize to each edge device; in backward communications,
each edge device sends the result of object recognition to the
end device. We assume that the workloads of forward and
backward communication are independent of the associated
computation tasks’ workloads w;, i € N 3 This is the case
when the amounts of input and output data of a computation
task are independent of the computation workloads.

Wireless Edge Network. We consider a set of edge devices
N = {1,2,--- N} that perform the offloaded computation
tasks. Each computation task ¢ is allocated to and performed

2The optimal workload allocation found in this paper can be used to find
feasible workload allocation in the case where the total workload is not fully
divisible. For example, we can use the feasible workloads that are the closest to
the optimal workloads found in the fully divisible case. Under some conditions
(e.g., the total workload can be divided into arbitrary partitions where each
partition is a multiple of some minimum workload unit), some performance
guarantee of the feasible workload allocation can be provided.

3We will study the setting where the workload of a communication task
depends on that of the associated computation task (e.g., with a proportional
relation) in future work.
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by edge device i as illustrated in Fig. 1 (b). The computation
rate of a device is the computation workload that the device
can complete per unit time, which quantifies the computation
capability (depending on e.g., CPU, memory) of the device,
and can vary for different devices. Let r; denote the compu-
tation rate of each edge device 1.

The edge devices are connected by wireless links. Due to
interference, only wireless links without mutual interference
can transmit data concurrently. The communication rate of a
wireless link is the communication workload that the link can
complete per unit time, which quantifies the communication
capability (depending on e.g., transmit power, channel condi-
tion) of the link, and can vary for different wireless links. The
communication rates of each device :’s FM and BM at time
t are determined by and proportional to the bandwidth b;(¢)
used by device ¢ at time ¢ for its FM and BM, respectively.

We consider a single-hop wireless network such that each
device can transmit data to each other device directly. The net-
work is subject to complete interference constraints (e.g., [38],
[39], [40]), such that multiple devices transmitting at the same
time must use disjoint frequency bands (i.e., no more than one
device can transmit concurrently in the same frequency band).
This is a reasonable setting when devices are close to each
other, which is usually the case in wireless edge networks (e.g.,
WiFi network). As a result, the total bandwidth used by all
devices at any time must be no greater than the total available
bandwidth b of the network (i.e., Y\ bi(t) < b, V). Let s;
and d; denote the forward communication time and backward
communication time of each edge device ¢, respectively, when
all the available bandwidth b of the network is allocated to
edge device 1.

We assume that the computation rates of devices and
communication rates of wireless links are known® (which can
be estimated before computation offloading). As a result, the
times of performing computation and communication tasks
are known. We also assume that communications among the
devices are coordinated by a central controller (e.g., WiFi
access point), such that there is no contention or interference
in the network. This can be achieved, e.g., using the point
coordination function protocol of WiFi.

Total Completion Time. The total completion time (also
referred to as “total delay”) for DECO is the total time it takes
to complete all the computation and communication tasks of
the computation job, subject to the precedence constraints
among computation tasks and communication tasks.

Based on the framework described above, our goal is to
solve the following problem.

Definition 1 (Total Completion Time Minimization for
DECO): We aim to optimize the allocation of computation
workloads w;, Vi € N to each edge device i € N, the
schedules of communications between the end device and the
edge devices (represented by the bandwidth b;(t), V¢ used
by each edge device i € N for its FM and BM), and the
selection of the edge devices participating in the computation
offloading, under the precedence constraints among computa-
tions and communications and the total bandwidth constraints
of communications, in order to minimize the total completion
time of the computation offloading.

Note that, given the computation workload w; of each
device ¢, the optimal schedule of its computation is obvious:

4We will study the setting where computation and communication rates are
unknown and stochastic in future work.
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device 1 C1 M1

M1
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device 2 c2 M2 c2
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device 3 C3 M3 ,Tl
(a) t (b) t
Fig. 2. Schedule of communications based on (a) bandwidth-sharing;

(b) time-sharing. The axes in all the figures of this paper represent time,
and their labels are omitted for brevity for the rest of the paper.

any computation schedule that starts after device ¢’s FM
and ends before device i’s BM and completes its compu-
tation workload w; is optimal. Therefore, we only consider
computation workload allocation in Definition 1 rather than
computation scheduling.

Also note that although it is possible to mathematically
formulate the above problem rigorously, we choose to not
do it here because 1) it is a prohibitively complex problem
formulation as it involves a huge space of possible policies
(including time-sharing and bandwidth-sharing based com-
munication scheduling) and complex constraints (particularly
precedence constraints among computations and commu-
nications, interference constraints among communications);
2) such a complete mathematical problem formulation is not
used to solve the problem in this paper.

IV. TIME-SHARING VS BANDWIDTH-SHARING BASED
COMMUNICATION RESOURCE ALLOCATION

In this section, we study the multiple access scheme for
communication resource allocation in the wireless edge net-
work. Due to interference among wireless devices in the
network edge, the devices need to share the limited wireless
communication resource either in time or in bandwidth to
avoid mutual interference. We investigate the performance of
the time-sharing versus the bandwidth-sharing scheme in terms
of reducing the total delay of DECO.

We first consider a simple bandwidth-sharing scheme where
each device is allocated with a fixed proportion of the total
bandwidth in the edge network for communication (as illus-
trated in Fig. 2 (a)). It can be easily seen that this scheme is
not efficient, as there are times when the total bandwidth is
not fully utilized, such that the algorithm delay can be reduced
if some unused bandwidth would have been utilized. There-
fore, we consider a more complex bandwidth-sharing scheme
where the total bandwidth is always fully utilized when some
device(s) needs communication (as illustrated in Fig. 2 (b)),
and the proportion of bandwidth allocated to a device can
vary over time. This scheme appears to be efficient. However,
for this schedule, we can find a time-sharing based schedule
as in Fig. 2 (b), which achieves a total delay no greater than
that in Fig. 2 (b). Intuitively, communication scheduling based
on time-sharing is more efficient than based on bandwidth-
sharing, as the former reduces the communication time of each
device by using all the bandwidth for that device, so that it
increases the available time of that device for computation
before the communication starts. This observation is essen-
tially due to the intricate coupling between computation and
communication, as a device’s computation should precede its
communication.
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Based on the discussions above, next we formally show that
time-sharing always performs at least as well as bandwidth-
sharing based communication scheduling.

Theorem 1: For any bandwidth-sharing based communica-
tion schedule, there exists a time-sharing based communication
schedule which achieves a total delay no greater than that of
the bandwidth-sharing based schedule.

The proofs of all theoretical results of this paper are pro-
vided in the appendix (in the order in which the corresponding
results are given in this paper). As a result of Theorem 1,
it suffices to only consider time-sharing based communication
scheduling, which will be the focus in the rest of this paper.

V. OPTIMAL COMPUTATION WORKLOAD ALLOCATION
AND OPTIMAL COMMUNICATION SCHEDULING

In this section, based on the time-sharing based communi-
cation scheduling studied in Section IV, we study the optimal
allocation of computation workloads and the optimal schedul-
ing of communications that minimize the total completion
time of DECO. We assume that all the available edge devices
participate in the computation offloading. In Section VI,
we will relax this assumption and study the optimal selection
of the participating devices, based on the optimal computation
allocation and communication scheduling. Note that once the
optimal computation allocation and communication scheduling
are determined, the optimal scheduling of computations on the
devices can be easily determined: each computation starts once
its corresponding FM ends.

We note that there is non-trivial interdependence between
computation allocation and communication scheduling: the
optimal design for one problem depends on the design for
the other problem. In the following, we will first show some
general structural properties that are satisfied by the optimal
communication scheduling. Then, given any communication
scheduling policy with these properties, we will characterize
the optimal computation allocation. Next, based on the optimal
computation allocation policy, we will characterize the optimal
communication scheduling.

A. Structural Properties of Optimal
Communication Scheduling

In general, a communication scheduling policy can be
preemptive such that the network can interrupt the execution
of a communication at any time and start to execute another
communication [47]. However, we can show that it suffices to
focus on non-preemptive policies.

Lemma 1: 1t is optimal for the communication scheduling
policies to be non-preemptive.

Lemma 1 shows that it is not beneficial to preempt an
ongoing communication to execute another communication.
Intuitively, this is because preemptive scheduling is typically
better than non-preemptive scheduling when tasks become
available at different times and the objective is to minimize the
total delay of tasks [47]. In contrast, for the problem here, the
communications are always available (subject to that a BM is
after the corresponding FM), and the objective is to minimize
the algorithm delay which is equal to the maximum delay (i.e.,
total completion time) of communications.

Then we show that it is optimal to schedule all the FMs
before all the BMs.

Lemma 2: Tt is optimal to schedule all FMs before all BMs.

Lemma 2 provides the insight that it is always beneficial
to schedule any FM before any BM compared to the other

|BM1|

| rm1 | {C1

| Fv2 | ic2 | BM2 |

|FM3i 3 | BM3 |

Fig. 3. Each axis shows the schedule of computations (Cs) and communi-
cations (FMs and BMs) for a device.

way, as it allows for more time to execute the computations
associated with these communications.

Next we show that it is optimal for the wireless network to
keep busy between FMs and between BMs.

Lemma 3: 1t is optimal for the communication scheduling
policies to be non-idle between FMs and between BMs,
respectively.

The non-idle optimal policy in Lemma 3 means that the
wireless network has no idle period between any two FMs
and between any two BMs. However, there can be some idle
period between the last FM and the first BM (i.e., between time
t; and time ¢, in Fig. 3). Lemma 3 provides the insight that
the wireless network should keep performing communications
without any idle period, so as to complete communications as
soon as possible, unless it is necessary to wait for some period
during which the devices can perform computations.

B. Optimal Computation Workload Allocation

In this subsection, we study the optimal allocation of
computation workloads to devices, given any communication
scheduling policy that satisfies the structural properties dis-
cussed in Section V-A.

The optimal computation allocation can be found by an
efficient algorithm that consists of up to three phases as
described in Algorithm 1. Note that olf (or of) denotes the
index of the device whose FM (or BM, respectively) is at
the ¢th position among all devices. In particular, in Phase 1,
we first allocate computation workloads as much as possible
to devices such that all these workloads can be completed
before the last FM ends (i.e., before time ¢; in Fig. 3). If the
total workload of the algorithm can be fully allocated in
this way, we have found the optimal computation allocation.
Otherwise, in Phase 2, we allocate computation workloads as
much as possible to devices such that all these workloads can
be completed after the first BM starts (i.e., after time to in
Fig. 3). If the remaining workload of the algorithm can be fully
allocated in this way, we have found the optimal computation
allocation. Otherwise, in Phase 3, we allocate the further
remaining workload of the algorithm to devices such that it
can be completed after the last FM ends and before the first
BM starts (i.e., between time ¢; and time ¢, in Fig. 3). It can
be seen that the computational complexity of Algorithm 1
is O(N), as each phase of the algorithm involves at most
N iterations. We establish the optimality of Algorithm 1 as
follows.

Proposition 1: For any communication scheduling policy
that satisfies the structural properties in Lemmas 1, 2, and 3,
Algorithm 1 finds the optimal allocation of computation work-
loads to devices.

Proposition 1 provides some interesting insights regard-
ing the optimal computation allocation characterized by
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Algorithm 1 Optimal Computation Workload Alloca-
tion

1 input: computation rates {r;}, FM order {0/},
BM order {0}, FM and BM times {s;} and {d;},
total computation workload w;

w;=0,VieN,j=1;

// Phase 1;

while w > 0 and j < N —1 do

Wot = min(rO]f Zf\;jﬂ So{’w>;
6 W =W — W,
J
7| j=J7+1

8 end
9 // Phase 2;

10 j=0N,;

11 while w > 0 and j > 2 do

2| w= min(r, S o, 0);

wm e W N

13 Wop = Wop + w';

14 w=w—w

15 | j=7—-1

16 end

17 // Phase 3;

18 if w > O then

19 for j € N do

20 | wy = wywr) Fien s
21 end

22 end

23 output: optimal computation workload {w;}.

Algorithm 1. Intuitively, the optimal policy should reduce
the idle computing periods of devices as much as possible,
so as to minimize the algorithm delay. To this end, it allocates
workloads to the idle period of each device after its FM
ends and before the last FM (among all devices) ends, and
to the idle period after the first BM (among all devices)
starts and before its BM starts, until there is no such idle
period. The workloads allocated to these idle periods do not
increase the algorithm delay, as it remains equal to the total
delay of all forward and BMs. If there is some workload
of the algorithm that remains unallocated after the above
allocation, it is allocated to all devices in proportional to their
computation rates, such that it incurs an equal computation
delay to all the devices. This delay increases the algorithm
delay beyond the delay incurred by communications. As a
result of Proposition 1 and Algorithm 1, we can see that
when the total workload of the algorithm is sufficient (above
some threshold), each device keeps performing its computation
between its forward and BMs. Otherwise, some device is
forced to be idle between its forward and BMs.

C. Optimal Communication Order

In this subsection, based on the structural properties of the
optimal communication scheduling in Section V-A and the
optimal computation allocation in V-B, we study the opti-
mal scheduling order of communications. Due to symmetry
between FMs and BMs, we focus on the scheduling order of
BMs, as the results for FMs follow similarly. In particular,
we consider the optimal scheduling order that minimizes the
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Fig. 4. (a) It is optimal that the longest communication M1 is scheduled
first; (b) It is optimal that the fastest computing device (which is device 1)
finishes its computation last.
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| c3 [m3]

algorithm delay, given the total computation workload w of
the algorithm. Based on the optimal computation allocation
found by Algorithm 1, we can transform this problem to an
equivalent “dual” form: how to schedule the BMs, such that
the total computation workload v that can be completed after
the first BM starts (i.e., after time ¢y in Fig. 3) is maximized?
This equivalent problem is given by

N

i1
max T ds).
{og,we/\/}; "?(; o)

We first consider the case where devices have uniform
computation rates but can have diverse communication times.
The optimal scheduling order is given as follows.

Proposition 2: When devices have uniform computation
rates, it is optimal to schedule communications in the descend-
ing order of devices’ communication times.

Proposition 2 means that the optimal policy schedules the
longest communication (i.e., with the largest delay) first, and
the second longest next, etc, as illustrated in Fig. 4(a). This
result provides the following insight: it is better to schedule
a longer communication earlier than a shorter one, since it
allows for more time for other device(s) to perform computing.
As a result, the computing capabilities of devices are most
efficiently utilized and thus the total delay is minimized.

Then we consider the case where devices have uniform
communication times but can have diverse computation rates.
The optimal scheduling order is given below.

Proposition 3: When devices have uniform communication
times, it is optimal to schedule communications in the ascend-
ing order of devices’ computation rates.

Proposition 3 means that the optimal policy schedules the
communication of the slowest device first, and that of the
second slowest device next, etc, as illustrated in Fig. 4(b).
The insight from this result is as follows: it is better to
utilize a faster-computing device for a longer period than a
slower-computing device, so that the computing capabilities
of devices are most efficiently utilized and thus the total delay
is minimized.

Next we consider the general case where devices can have
diverse computation rates and also diverse communication
times.

Theorem 2: It is optimal to schedule communications in
the non-increasing order of the ratio between a device’s
computation rate and its communication time, i.e., 7;/d;.

Theorem 2 provides an elegant result: the optimal com-
munication order is simply in the non-increasing order of
the computation-rate-to-communication-time ratio r; /d;. Intu-
itively, similar to Propositions 2 and 3, to maximize the total
computation workload that can be completed, we can expect
that a device with a higher computation rate or a smaller
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Fig. 5. It is optimal to use 2 devices as in (b) rather than 3 devices as in (a).

communication time should be more likely to have its com-
munication scheduled earlier. Indeed, these two properties are
satisfied by the optimal communication order which is accord-
ing to the ratio r;/d;. This general result also degenerates to
those in the special cases where devices have homogeneous
computation rates or communication times. However, the proof
for that the optimal communication order is exactly according
to the form of the ratio between r; and d; is non-trivial. The
key idea of the proof is a switching argument (described in
the appendix).

D. Comparison of DECO and Cloud Offloading
and Non-Offloading

In this subsection, we provide some theoretical analysis to
compare DECO with cloud offloading and non-offloading. For
ease of exposition, consider a simplified case of our proposed
DECO scheme, where a total workload of w is divided and
offloaded from an end device to N edge devices. Suppose the
end device and all the edge devices have the same computation
rate r, and all the edge devices have the same communication
time d with the end device. Let dy and ry be the cloud’s
communication time with the end device and the cloud’s
computation rate, respectively, with dyp > d and ro > r.
We obtain that, under the optimal workload allocation and
the optimal communication order, the optimal total completion
time for DECO is 2Nd+max{w/(Nr)—(N—1)d,0}. We also
obtain that the total completion time is 2dy + w/ro for cloud
offloading, and is w/r for non-offloading. Then we can see
that, given N, if Nd < dy and dy — Nd is large enough,
and Nr < rg and rg — Nr is small enough, and w is small
enough, then DECO outperforms cloud offloading. otherwise,
if dg < Nd and r¢9 > Nr, then cloud offloading outperforms
DECO. We can also see that, given NV, if d is small enough and
w is large enough (or r is small enough), then DECO outper-
forms non-offloading; otherwise, non-offloading outperforms
DECO.

VI. OPTIMAL DEVICE SELECTION

In the previous section, it is assumed that all edge
devices participate in the computation offloading (i.e., perform
offloaded computation), so that each device performs forward
and backward communications regardless of the computation
workload allocated to that device (e.g., even when no workload
is allocated). However, it is important and interesting to note
that it may not be optimal to use as many devices as possible
to perform offloaded computation. This is because using an
additional device incurs extra communication times which can
increase the total completion time. This increase can outweigh
the decrease in the total completion time of computations due
to utilizing the additional device for computing, as illustrated
in Fig. 5. Thus motivated, in this section, we investigate
how to select participating devices of computation offloading

to minimize the total completion time. The optimal device
selection problem is given by
min ¢(S 1
min ¢(S) (1)
where ¢(S) is the optimal total completion time under the
optimal computation workload allocation and optimal commu-

nication order given in Section V when the set of participating
devices is S, which is given by

S|—1 S S i—1
| max{w-3 2 (7 s, )T S0 ) 0
- S
ZL:‘I T

IS S|

+ Z s; + Z d;
i=1 i=1

where {0{ } and {0%} are the optimal communication orders of
the FMs and BMs, respectively, for the devices in S according
to Theorem 2.

We first consider the cases when devices have uniform
computation rates or uniform communication times. For these
two cases, we can show that the optimal set of devices to
select are those with the smallest communication times or the
highest computation rates.

Lemma 4: When devices have uniform computation rates
(or uniform communications times), if a device is in the
optimal set of participating devices, then each device with
a smaller communication time (or higher computation rate,
respectively) is also in the optimal set.

Lemma 4 is intuitive as a device with a smaller commu-
nication time or higher computation rate should be preferred
over one with a larger communication time or lower compu-
tation rate, respectively. Based on this result, we can use an
efficient exhaustive search to find the optimal set of devices.
In particular, we can calculate the minimum total offloading
delay for all possible numbers of the “best” devices (i.e., the
k devices with the smallest communication times or highest
computation rates where k € {1,2,---,N}), and then find
the optimal number of the “best” devices. The computational
complexity of this linear exhaustive search is O(N).

Then we consider the general case where devices can have
diverse computation rates and also diverse communication
times. To determine the optimal set of devices, we may use
an exhaustive search that calculates the minimum offloading
delay for all possible sets of devices (using the optimal
computation allocation given in Algorithm 1 and the optimal
communication order given in Theorem 2), and then finds
the optimal set among them. However, the computational
complexity of the exhaustive search is O(2"V) which can be too
high. Therefore, we use a greedy algorithm instead as follows:
we start with the empty set, and in each iteration we add to
this set the device not selected that can reduce the offloading
delay the most, until no such device exists. The computational
complexity of this greedy algorithm is O(N).

Next we observe the following important property of the
device selection problem.

Lemma 5: The total completion time g¢(S) is a non-
negative, non-monotonic submodular function of the set of
participating devices S.

The proof of Lemma 5 is non-trivial due to the complex
dependence of ¢(S) on the set of participating devices S.
Lemma 5 provides the insight that the marginal decrease of
the total completion time g(S) by adding more participating

9(S
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devices is diminishing. Due to the submodular property of
g(S) given in Lemma 5, we immediately have the result below
(the proof is omitted as it follows directly from Lemma 5).

Theorem 3: The optimal device selection problem (1) is a
submodular minimization problem.

Since problem (1) is a submodular minimization problem,
it can be equivalently transformed into a convex optimization
problem via the Lovasz extension. Then this convex problem
can be solved efficiently in polynomial time using some
existing methods (such as the ellipsoid method), and this
solution can be easily converted to the solution to the original
problem (1).

VII. OPTIMAL COMPUTATION WORKLOAD ALLOCATION
UNDER MAXIMUM WORKLOAD CONSTRAINTS

In the previous two sections, it is assumed that any compu-
tation workload can be allocated to an edge device. However,
a device’s computation resource may be limited, e.g., the
device can only perform computation up to some time or some
amount of energy consumption. In this case, each device has a
maximum computation workload. In this section, based on the
framework and problem formulation in Section III, we study
the optimal computation workload allocation and communica-
tion scheduling when devices’ computation workload is upper
bounded.

First, it can be shown that the structural properties of
the optimal communication scheduling without the workload
constraints, which are time-sharing, non-preemptive, non-
idle, and scheduling all forward communications before all
backward communications, still hold in the case with the
workload constraints (following similar proofs for Theorem 1
and Lemmas 1, 2, and 3). For ease of exposition, we assume
that each device’s forward communication time and backward
communication time are the same. We also assume that
the total maximum computation workload of devices (i.e.,
> _ien li) is larger than the total workload to be completed W.

Under the maximum workload constraints, the optimal
workload allocation can be found by an efficient algorithm as
described in Algorithm 2. Similar to Algorithm 1, Algorithm 2
first allocates computation workloads as much as possible
to devices such that they can be completed before the last
FM ends and after the first BM starts, under the maximum
workload constraint of each device. If the total workload W
cannot be fully allocated in this way, it allocates the remaining
workload to devices such that it is completed after the last FM
ends and before the first BM starts. In particular, it iteratively
allocates the workload to all the devices that have not reached
their maximum workload constraints, until the constraint is
reached for some device, or the total workload W is fully
allocated. We can see that the computational complexity of
Algorithm 2 is O(NN). The optimality of Algorithm 2 is given
below.

Proposition 4: For any given communication order,
Algorithm 2 finds the optimal computation workload
allocation under the maximum workload constraints of
devices.

Similar to Proposition 1, Proposition 4 provides some
insights on the optimal workload allocation given by
Algorithm 2: the optimal policy should reduce the idle com-
puting periods of devices as much as possible, under the
maximum workload constraints.

In general, under the maximum workload constraints, the
optimal communication order is difficult to find.
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Algorithm 2 Optimal Computation Workload Alloca-
tion Under Maximum Workload Constraints

1 input: computation rates {r;}, FM order {0/},
BM order {0?}, maximum workload constraints {/;},
total computation workload w;

2fori=1,---,N do

ot
| wi = min{r (SN di o+ S0 ), ks

3
4 end

5w = qu\;1 w;;

6 if w’' < w then

7 fori=1,--- N do

8 | wi = wi 4 ri(w—w') /(X sen Ts):

9 end

10 else

1 while W > w do

12 N « the set of devices with {; > w;

j i meets argmin;ea (l; — w;)/7i;

13 if W —w > (> ,cpr7s)(lj —wy)/r; then
14 for i € N/ do

15 ‘ wi:wi—k(lj—wj)ri/rj;

16 end

17 W= e Wi

18 end

19 else

20 for i € N/ do

21 | wi = wi + i (W = w)/(Cgeps 7s)s
22 end

23 end

24 end

25 end
26 end

27 output: optimal workload allocation {w;}.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DECO approach via extensive simulations. The simulation
results consist of two parts. In the first part, to demonstrate
the performance of DECO in practice, we evaluate DECO for
a realistic application in practical settings, by comparing its
performance with that of two benchmarks as below.

o Non-offloading: The end device performs all computa-
tions without offloading any computation to the edge
devices.

o Cloud offloading: The end device offloads all computa-
tions to a cloud server which performs all computations.

In the second part, to demonstrate the performance of the
schemes and algorithms proposed in this paper for DECO,
we evaluate various design components of DECO (i.e., time-
sharing based communication resource allocation, computation
workload allocation, communication order, device selection) in
controlled settings.

A. Comparing DECO With Non-Offloading and
Cloud Offloading

In this subsection, we compare the performance of DECO
with the benchmarks of non-offloading and cloud offloading in
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Fig. 6. DECO vs benchmarks: impact of total computation workload.
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Fig. 7. DECO vs benchmarks: impact of edge computation rate.

practice. We use the optimal workload allocation and optimal
communication order for DECO. We evaluate the impacts of
various system parameters on the comparison between DECO
and the benchmarks.

We consider a realistic application in practical settings
described as below. We consider the image classification task
using the residual neural network (ResNet) [48] based on the
CIFAR-10 [49] datasets. Some system parameters are set as
follows by default: the computation rates of the end device,
edge devices, and the cloud are set to 1.36 trillion FLOPS,
10 trillion FLOPS, and 20 trillion FLOPS, respectively; the
end-to-edge communication rate and the end-to-cloud commu-
nication rate are set as 100 Mbps and 40 Mbps, respectively.
The CIFAR-10 datasets consist of 10 classes of natural images
with a total of 50K training images and a total of 10K
testing images, with each image of size 32 x 32. Running the
ResNet with 34 parameter layers for one image requires about
3.4 — 3.6 billion FLOPs (we follow the same pre-processing
of global contrast normalization and Zero component analysis
(ZCA) whitening as [50]). We set 1 computation workload unit
as 4K image classification tasks. After offloading tasks to the
edge/cloud, the edge/cloud sends the results of classification
back to the client, and the size of the results is randomly
distributed from 1 — 3 MB [9].

1) Impact of Total Computation Workload: Fig. 6 shows
the performance of DECO and the benchmarks as the total
computation workload varies. We see that DECO always
outperforms non-offloading, and outperforms cloud offloading
when the workload is less than 5. This is because the cloud
has more computation power than the edge, and thus is the
better choice when the computation workload is large.

2) Impact of Edge Computation Rate: We set the end-
to-edge communication rate as 50 Mbps, the end-to-cloud
communication rate as 30 Mbps, and the total workload as
5. Fig. 7 shows that the total completion time of DECO
decreases as the edge computation rate increases, which is
because less computation time is needed. We see that DECO
is better than non-offloading and cloud offloading, when the
edge computation rate is larger than 15.

3) Impact of Edge Communication Rate: We set the end-to-
edge communication rate as 30 Mbps, and the total workload

0
0 20 40 60 80 100
Communication rates of edge server

Fig. 8. DECO vs benchmarks: impact of edge communication rate.
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Fig. 9. DECO vs benchmarks: impact of edge device number.

as 7. Fig. 8 shows that the total completion time of DECO
decreases as the edge communication rate increases, which
is because less communication time is needed. We see that
DECO outperforms cloud offloading and non-offloading when
the edge communication rate is larger than 20.

4) Impact of Edge Device Number: We set the end-to-cloud
communication rate as 30 Mbps, and the total workload as 7.
Fig. 9 shows that DECO always outperforms cloud offloading
and non-offloading. We also see that the total completion time
of DECO decreases as the number of edge devices increases
from 1 to 4. However, when there are too many edge devices
(i.e., 5 or 6 edge devices), the total completion time no longer
decreases. This is because too many edge devices takes too
much time for communications, which cannot be compensated
from fast computations.

B. Evaluating Design Components of DECO

In this subsection, we evaluate the impacts of various design
components (i.e., time-sharing based communication resource
allocation, computation workload allocation, communication
order, and device selection) on the performance of DECO
using simulation results. To thoroughly demonstrate the perfor-
mance, we choose various settings for system parameters.We
set the default values of system parameters as follows: N = 3,
w =10, s; =1, d; = 1, r;, = 1, Vi. For the case of diverse
{s;} and {d;} or diverse {r;}, they are set by sampling from a
uniform distribution over [0, 2]. The maximum workload con-
straints {l;} are set by sampling from a uniform distribution
over [0, 4].

1) Time-Sharing Based Communication Scheduling: To
show the optimal communication schedule, we compare the
total completion time of the bandwidth-sharing based scheme
with the time-sharing based scheme.

Fig. 10 illustrates the total delay as the total computation
workload varies, where the bandwidth-sharing scheme evenly
allocates the total bandwidth to 3 devices. We note that the
time-sharing scheme significantly and steadily outperforms the
bandwidth-sharing scheme. Fig. 11 illustrates the comparison
when the number of devices changes. From Fig. 11, we can
see that the total completion time of the time-sharing scheme
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is always no greater than the bandwidth-sharing scheme.
In addition, we observe that the total delay can increase
for both of the schemes when the number of devices is too
large. This implies that it is not optimal to select as many
participating devices, since the bottleneck of reducing the total
delay can change from computation times to communication
times.

2) Computation Workload Allocation: To illustrate the
efficiency of the optimal computation allocation (OCA),
we compare the total delay under OCA found by Algorithm 1,
and under equal computation allocation (ECA) that allocates
equal workloads w/N to all devices.

Fig. 12 illustrates the total delay under OCA and under
ECA, when the total computation workload w varies. We can
see that the delay under OCA is always no greater than that
under ECA, which demonstrates the better performance of
OCA. We can also see that the delay is non-decreasing with
w, which is because a larger workload takes more time to
complete. We note that the performance gap is 0 when w is
small. This is because in this case, all the workloads can be
completed before the last FM ends or after the first BM starts,
such that the delay is equal to the total time of FMs and BMs,
which is the same for both allocations. We further observe
that the performance gain of OCA compared to ECA for
diverse communication times and computation rates (DMDC)
is more than that for uniform communication times and diverse
computation rates (UMDC), or for diverse communication
times and uniform computation rates (DMUC). This is because
when communication times or computation rates are diverse
rather than uniform, OCA is more different from ECA, so that
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OCA is more beneficial. Fig. 13 illustrates the total delay
when the number of devices varies. We note that OCA
always outperforms ECA. We also note that when more than
1 device (but not too many devices) are used, the total delay is
substantially smaller than when only 1 device is used, which
is the conventional edge computation offloading strategy.

3) Communication Order: To illustrate the efficiency of the
optimal communication order (OCO), we compare the total
delay under OCO given by Theorem 2, and under an arbitrary
communication order (ACO) that schedules communications
in the ascending order of devices’ indices.

Fig. 14 illustrates the total delay under OCO and under
ACO, as the the total computation workload w varies.
As expected, we can see that OCO always outperforms ACO,
and the delay is non-decreasing with w. Similar to Fig. 12,
we note that the performance gap is 0 when w is small, which
is because in this case the delay is equal to the total time
of communications, which is the same for both scheduling
orders. We can also observe that the performance gain of
OCO compared to ACO for DMDC is more than that for
UMDC or DMUC. Similar to Fig. 12, the reason is that when
communication times or computation rates are diverse rather
than uniform, OCO is more different from ECA and thus
is more beneficial. Fig. 15 illustrates the total delay when
the number of devices varies. We note that OCO always
outperforms ACO. Fig. 16 illustrates the total delay under
the optimal computation allocation (OCA) or/and the optimal
communication order (OCO), as the total workload increases.
We note that OCA+OCO always outperforms OCA only,
which demonstrates that OCO is beneficial when OCA is used.
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4) Device Selection: To illustrate the impact of the selection
of participating devices, we compare the total delay as the
number of selected devices varies. Fig. 17 illustrates the
comparison as the number of selected devices N varies. We
can see that the delay first decreases and then increases with
N. This is because the delay reduction due to the computation
workload completed by an additional device first outweighs
the delay increase due to the communications of that device,
and then the former effect is dominated by the second effect.
We can also observe that the delay under OCA-OCO is better
than under OCA or OCO only.

To illustrate the performance of the optimal device selection
(ODS), we compare its performance with that of random
device selection (RDS) and greedy device selection (GDS),
when the optimal computation workload allocation and opti-
mal communication order are used. As the benchmark, RDS
randomly selects the set of participating devices from all
available devices, while GDS greedily adds a device from
available devices to the set of participating devices, until the
total completion time does not decrease. Both Figs. 18 and 19
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show that GDS outperforms RDS, and ODS outperforms
both GDS and RDS, which demonstrates the benefits of the
proposed ODS. Moreover, Fig. 19 shows that the total delay of
ODS is always decreasing as the number of available devices
increases, while the total delay of RDS and GDS saturates or
even becomes worse when the number of available devices is
large.

5) Impacts of Maximum Workload Constraints: To illustrate
the efficiency of the optimal computation allocation under
devices’ maximum workload constraints (OCA-Con), we com-
pare the total delay under OCA-Con given by Algorithm 2
with the equal computation allocation under the maximum
workload constraints (ECA-Con) that allocates equal work-
loads to all devices. The total workload is set to 6 and the
maximum workload constraint is set to 1.2.

Fig. 20 illustrates the total delay as the total computation
workload varies. We note that OCA and ECA are always
better than OCA-Con and ECA-Con, respectively, which is
because of the maximum workload constraints. Moreover,
OCA-Con always outperforms ECA-Con, which demonstrates
the benefit of the OCA-Con. Fig. 21 illustrates the total
delay as the number of devices varies. Note that the total
workload can be completed by 5 or more devices under
the maximum workload constraints. We see that OCA-Con
always outperforms ECA-Con. This is because ECA-Con must
perform computation after the last FM ends and before the
first BM starts, while OCA-Con does not need to do so which
reduces the total delay.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have explored DECO by studying the
minimization of the total completion time of computation
offloading using distributed edge devices connected by a
wireless network. In particular, we have shown the benefit
of time-sharing based communication resource allocation,
and characterized the optimal communication scheduling, the
optimal computation allocation, and the optimal selection of
participating devices for minimizing the total completion time.
The optimal policies have been developed by addressing the
non-trivial coupling between these issues, while taking into
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account the features of wireless networks. The results have
provided useful insights into the optimal policies.

For future work, one immediate direction is to investigate
the case where communication and computation delays are
unknown and stochastic. Another important setting is when
the computation workload of the offloaded job is not arbitrarily
divisible. We will also study the setting when the workloads
of communications depend the corresponding workloads of
computations.

APPENDIX

Proof of Theorem 1

Given any computation schedule, consider any feasible
bandwidth-sharing based communication schedule. We show
that for any pair of two devices’ FMs or BMs, we can construct
a new feasible time-sharing based schedule for this pair of
two communications such that the total completion time is
not increased. We consider three cases as follows.

Case 1) One FM and one BM. Suppose WLOG that
device i’s FM F'M; and device j’s BM BM; are considered.
If FM; ends at t§ no later than when BM; starts at tj (..,
7 < t7), then they are already based on time-sharing. Now
suppose F'M; ends after BM; starts (ie., t7 < tf). Since

function f(t) j; ft ;(t)dt is continuous and
non-decreasing in ¢ and satisfies f = — j; (t)dt <
0 and f(t¢) ft ;(t)dt > 0, there must exist some t, with
8 <to < t§ such that f(to) ft t)dt = 0.

Therefore the total amount of bandwrdth time unrt of BM,;
before tg (glven by ft (t)dt) is equal to that of F'M; after ¢

(given by ff ;(t)dt). Then we can construct a new schedule
of FM; and BMj by reallocating the bandwidth of BM;
for each tlmetbefore to to F'M; (ie., bj(t) = bi(t) + b;(t )
bj(t) = 0, vVt < to) and reallocating the bandwidth of F'M; for
¢ach time ¢ after to to BM (1e Vi(t) = b;(t) + bi(t), Vvt >

to). Since fts ft ;(t)dt, the total communication

workload of’ each of FM; and BMj in the new schedule
remains the same. Moreover, as F'M; in the new schedule ends
earlier than in the old schedule while BM; in the new schedule
starts later than in the old schedule, they are compatible with
the computation schedule of devices ¢ and j. Furthermore,
since the new schedule only reallocates bandwidths from BM;
to F'M;, FM; and BMj; in the new schedule are compatible
with the communications of other devices. Therefore, the new
schedule is feasible. Since the new F'M; ends at ¢ty and the
new DM starts at to, the new schedule is also based on
time-sharing.

Case 2) Two BMs. Suppose WLOG that device :’s BM BM;
starts before device j’s BM BMj starts. If BM; ends no later
than when BM; starts, then they are already based on time-
sharing. Now suppose BM; ends at t after BM; starts at ¢;
(ie., t7 < tf). Using a similar argument as in Case 1, there

must exist some ty with ts <ty <t such that fts (t)dt —

ftto bi(t)dt = 0. Then we can construct a new schedule of

BM; and BMj by reallocating the bandwidth of BMj; for
each time ¢ before ¢y to BM,; (i.e., bj(t) = b;(t) + b;(t),
b;» (t) = 0, Vt < tp) and reallocating the bandwidth of BM;
for each time ¢ after o to BM; (i.e., b(t) = b;(t) + bi(2),
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Yt > o), where b;(t) is device i’s bandwidth at time ¢ in the
new schedule. Using similar arguments as in Case 1, we can
show that the new schedule is feasible and also based on time-
sharing.

Case 3) Two FMs. We can use similar arguments as in
Case 2 to prove this case. The difference is that we use the
arguments in a reverse manner in time. Specifically, we can
construct a new schedule of F"M; and F'M; (where F'M; ends
after F'M; starts and before I'M; ends) by reallocating the
bandwidth of F'M; for each time ¢ after some time ¢y to F'M;
and reallocating the bandwidth of F'M for each time ¢ before
to to F'M;. We can show that the new schedule is feasible and
also based on time-sharing.

Next we show that we can use the construction arguments
in the above three cases iteratively to eventually find a new
schedule of all devices’ forward and BMs which is feasible
and based on time-sharing. It consists of the following three
steps.

Step 1. We first apply the argument in Case 1 iteratively to
each pair of one device’s FM and another device’s BM, in an
arbitrary order. For example, we can apply it first for (F'M;,
BMs5), and then (F'M,, BMs3), ...and then (F'M,, BMy),
and then (F'Msy, BM3), ..., until (FMy, BMpy_1). We note
that each use of the argument results in the new FM ending
before the old FM ends and also before the new BM starts.
Therefore, it can be seen that after the sequence of arguments,
each FM ends before each BM starts.

Step 2. Based on the schedule obtained in Step 1, we then
apply the argument in Case 2 iteratively to each pair of two
devices’ BMs in a certain order. In particular, we first find the
BM that starts the earliest among all BMs (say, BM7). Then
we apply the argument for (BM;, BM>), and then (BMj,
BMs), ..., until (BM,, BMpy). We note that each use of the
argument results in the new BM; starting at the same time
as the old BM;, while ending before the old BM; ends and
also before the new BM starts. Thus, after this sequence of
arguments, BM; remains the earliest to start among all BMs,
while it is based on time-sharing with respect to each other
BM. Next, based on the new schedule, we find the BM that
starts the second earliest among all the BMs (say, BM5). Then
we apply the argument for (BMs,, BMs), and then (BMo,
BMy), ..., until (BMs, BMy). Following a similar argument
as above, BM, remains the second earliest to start, while
it is based on time-sharing with respect to each other BM.
We continue this argument for the remaining BMs. Eventually,
we obtain a feasible schedule of all BMs which are based on
time-sharing with respect to each other.

Step 3. Based on the schedule obtained in Step 2, we then
can use similar arguments as in Step 2 for all FMs, and thus
can obtain a feasible schedule of all FMs which are based on
time-sharing with respect to each other. This completes the
proof.

Proof of Lemma 1

The main idea of the proof is an exchange argument.
WLOG, suppose FM M1 is interrupted by FM M2 into two
parts, such that the 2nd part of M1 starts after M2 (or part
of M2) is completed, as illustrated in Fig. 22 (a). If M1 is
interrupted for multiple times, the proof follows by applying
the exchange argument multiple times. Now we exchange
the scheduling order of the 1st part of M1 and M2 (or the
interrupting part of M2), as illustrated in Fig. 22 (b). We can
see that the order exchange does not affect the schedules of
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[wi] [mi][ o1 [ w1 T o1 ]
M2 M2] c2 [m2]

(a) (b)

Fig. 22.
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An exchange argument for the proof of Lemma 1.

C1 BM1
FM2 C2

Fig. 23. An exchange argument for the proof of Lemma 2.
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[me] [ co ]
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M2 Cc2

Fig. 24. A shifting argument for the proof of Lemma 3.

computations C1 and C2, as well as the schedule of any
communication or computation on the devices other than
devices 1 and 2. As a result, the delay of the algorithm remain
the same. This completes the proof.

Proof of Lemma 2

The main idea of the proof is an exchange argument.
According to Lemma 1, it suffices to focus on non-preemptive
scheduling. WLOG, suppose FM FMI is scheduled after
BM BM2, as illustrated in Fig. 23 (a). Now we exchange
the scheduling order of FM1 and BM2, as illustrated in
Fig. 23 (b). We can see that the order exchange does not
affect the schedules of computations C1 and C2, as well as
the schedule of any communication or computation on the
devices other than devices 1 and 2. As a result, the delay of
the algorithm remain the same. This completes the proof.

Proof of Lemma 3

The main idea of the proof is a shifting argument. Accord-
ing to Lemma 1 and Lemma 2, it suffices to focus on
non-preemptive scheduling policies that schedule all FMs
before all BMs. WLOG, suppose there is an idle period of the
wireless network between FM M1 and FM M2, as illustrated
in Fig. 24 (a). If there are multiple idle periods, the proof
follows by applying the exchange argument multiple times.
Now we shift M2 to be right after M1, as illustrated in
Fig. 24 (b). We can see that the shifting does not affect the
schedules of computations C1 and C2, as well as the schedule
of any communication or computation on the devices other
than devices 1 and 2. As a result, the delay of the algorithm
remain the same. If M1 and M2 are BMs, we can shift M1
to be right before M2, and the same argument applies. This
completes the proof.

Proof of Theorem 2

Based on problem, it suffices to show that the total com-
putation workload scheduled after the first BM starts is
maximized when BMs are scheduled in the non-increasing

[ m1 ] c1 | m2] [Mi] c1 [wm2]

[mMo]ca| [calme]|
(a) (b)

[M2] c2 [wm2]

Fig. 25. A shifting argument for the proof of Proposition 1.

order of the ratio d;/r;. Consider any order of devices
e (01,02, -+ ,on). Then the total computation workload
scheduled after the first BM starts under order O is given by

N-1 N
f(O) - Z do, Z To;
=1

j=i+1
Suppose the order O is not in the non-increasing order of
d;/r;. Then there must exist a pair of two neighbor devices o;
and 041 in order O with d,, /r,, < do,,,/T0o,,,- Then con-
sider a new order O’ = (01, ,0i41,04, - ,0n) Obtained
from order O by swapping the positions of o; and 0;1. Then
we have that the total computation workload scheduled after
the first BM starts under order OO’ is given by

N N
(O =d,, ZT‘D + -t do,, (1o, + Z To;)
=2 j=it2
N N
tdo, Y o At doy Y T,
j=i+2 J=N

Since we have
f(ol) - f(O) = d0i+1T01 - dOirOi+l >0

where the inequality follows from d, /7o, < do,,,/To, .1 O’
is a better order than O in terms of the total computation
workload. Based on order (0, we can use the argument
above iteratively such that the total computation workload
improves after each iteration, until there does not exist two
neighbor devices o; and 0,41 With do, /10, < do,\/To,;-
This completes the proof.

Proof of Proposition 1

The main idea of the proof is a shifting argument. We first
note that a lower bound of the algorithm delay is the total
delay D of all forward and BMs. Therefore, if Algorithm 1
terminates in Phase 1 or Phase 2, then it finds a feasible
schedule of all the computation workloads of the algorithm,
such that the algorithm delay is equal to D. Suppose the
Algorithm 1 terminates in Phase 3, and the remaining total
unallocated computation workloads is not allocated to the
devices in proportional to their computation rates. Then there
must be some device that is idle for some period after all
FMs and before all BMs, as illustrated in Fig. 25 (a). In this
case, we can always shift some workload from some other
device to this device without increasing the algorithm delay,
until there is no such idle period, as illustrated in Fig. 25 (b).
This completes the proof.

Proof of Lemma 5

For ease of exposition, we ignore the computation work-
loads that can be completed before the last FM ends (i.e.,
before time ¢; in Fig. 3). Let ¢’(S) be the time difference
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between when the last FM ends and when the last BM ends
(i.e., between time t; and time ¢y in Fig. 3), when the set of
selected devices is S. Then it suffices to show that ¢’(S) is a
submodular function of S.

Let k; be the ratio between device 7’s communication time
and its computation rate, i.e., k; = d;/r;. Let f be the total
workload to be allocated to the selected devices. Consider two
devices i # k and assume WLOG that k; > k. Let f1, f1’,

fa2, and f>' be the total workload that can be allocated after the
first BM starts (i.e., time t5 in Fig. 3), when the set of selected
devices is S, SU{i}, SU{k}, and S U {k,i}, respectively.
Then we have

fi= Z kjirjr,

Jles,j#l
/
fl = E klejTl+ E k’ijTi’l’j,
Jles,j#l Jjes
fa= 5 kjirjr + E kgjrery,
IS, j#L jes
!/
f2 = E kjirjre + E krjrir; + E kijrir; + Kigrity,
Jles,j#l JES jes

where k;; = max{k;, k;}, Vi, j.
For ease of exposition, assume WLOG that f > f2'. Note
that we have

, , . f—h f—=H
S — S = - _dh
g (8)—g'(Su{i}) SesTi Sestitm
(a)
, , . J = f f=r
S kWY)—qg' (S k, = - — ;.
g (SU{k})—g (SU{k,i}) SiesTs SesTitr

()

Then it suffices to show that (a) > (b). Multiplying (a) and
(b) with the four denominators in them, we have that

(f = )OO +r)O_ri+r) O _rj+ritrs)

Jjes JjES jes
— (=1 Qi+ ) Qi+ i+ )
jes  jes jes
= (A =) Qo) Qi+ )
jes  jes jes

()
+(f—f1)7”z‘(z7“j +Tk)(z7"j+7“i+7”k)

Jjes JjeSs

(d)

and

(f=L)O_ O ri+r)Q_r+ri+7k)

jeSs JjeS jes
—(F= YOO+ )OO+ k)
Jjes Jje€S jes
= (' = )i+ O )OO+ i)
jes jes  jes

(e)
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+(f = f2)7"z‘(z Tj)(z i+ i)
jes  jes

()

Thus we have

(c) = (e) = —kikﬁrk(z Tj)(z T+ T’f)(z i)

jES JjES jES
+O ke O )OO v+ ek ()
JES jes jES

and

(d) = (f) = Q_ rikwgrrs Q) Oy +ra)rs

Jjes JjeS Jj€ES
H(f = )@Y et e+ ). ()
JjES

(9)
Next we have

(2) + 3) = kirare Q) O _rp) (O vy + 1)

jes  jes  jes
+ k(Y ) () ri i)
JES jESs jES
— ki Q) Qi )y +ri)+(9)
JjES JjeSs jeS
=k r)O i+ i) + k(O r) O ritri)
jes  jes jes  jes
— kO i+ )OO i)+ (9)
JES JES JES
= ke r)OQ i 1) = kiri (Y v+ re)]
jes  jes jes
rirk(D_r5) + (9) 4)
jes
where the last equality follows from k;;, = k; since k; > k.
Since

f=t=0 rikyrir; + (O ri)kiirir
JjES jES
+ kiwrire + (f — f3)
> () rpkigrivs + O ri)kerers + kikrivk,
Jjes jes
we have
(9) = (Z 7 )kijriry + (Z i) kiiTEry + Kikrirk
Jes jes
Tﬂ’k(2 Z T’j =+ T =+ ’I“k.)
JES
> (2k; erri + Qkirkri)rkri(z ;).
jes jes

Therefore we can see that (4)> 0. This completes the proof.

Proof of Proposition 4

When there is no time gap between the end of the last
FM and the start of the first BM (i.e., t; = to as illustrated
in Fig 26), we say that there is no extra computation time.
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