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Abstract

Stakeholders such as urban planners and energy policymakers use building energy per-
formance modeling and analysis to develop strategic sustainable energy plans with the aim
of reducing energy consumption and emissions from the built environment. However, incon-
sistent energy data and the lack of scalable building models create a gap between building
energy modeling and traditional planning practices. An alternative approach is to conduct
a large-scale energy usage survey, which is time-consuming. Similarly, existing studies rely
on traditional machine learning or statistical approaches for calculating large-scale energy
performance. This paper proposes a solution that employs a data-driven machine learn-
ing approach to predict the energy performance of urban residential buildings, using both
ensemble-based machine learning and end-use demand segregation methods. The proposed
methodology consists of five steps: data collection, archetype development, physics-based
parametric modeling, machine learning modeling, and urban building energy performance
analysis. The devised methodology is tested on the Irish residential building stock and gen-
erates a synthetic building dataset of one million buildings through the parametric modeling
of 19 identified vital variables for four residential building archetypes. As a part of the
machine learning modeling process, the study implemented an end-use demand segregation
method, including heating, lighting, equipment, photovoltaic, and hot water, to predict the
energy performance of buildings at an urban scale. Furthermore, the model’s performance
is enhanced by employing an ensemble-based machine learning approach, achieving 91% ac-
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curacy compared to the traditional approach’s 76%. Accurate prediction of building energy
performance enables stakeholders, including energy policymakers and urban planners, to
make informed decisions when planning large-scale retrofit measures.

Keywords: building energy performance, data-driven approaches, urban building energy
modeling, machine learning, building retrofit

Nomenclature

BEM Building Energy Modeling

BEPS Building Energy Performance Simulator

BER Building Energy Rating

CEA City Energy Analyst

CityBES City Building Energy Saver

CSO Central Statistics Office

DEAP Dwelling Energy Assessment Procedure

DT Decision Tree

EPBD European Union Energy Performance of Buildings Directive

EPC Energy Performance Certificate

GB Gradient Boosting

HGB Histogram-Based Gradient Boosting

HV AC Heating Ventilation, and Air Conditioning

KNN K-Nearest Neighbor

LGBM Light Gradient Boosted Machine

LR Linear Regression

NN Neural Network
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RF Random Forest

SEAI Sustainable Energy Authority of Ireland

SV R Support Vector Regression

UBEM Urban Building Energy Modeling

UMI Urban Modeling Interface

XGB Extreme Gradient Boosting

1. Introduction

The operation of buildings accounted for 30% of global energy consumption and 27% of
total energy sector greenhouse gas emissions (GHG) in 2021 [1]. Within this context, 8%
comprised direct emissions occurring within buildings, while 19% represented indirect emis-
sions resulting from the production of electricity and heat used in buildings. To address these
environmental concerns, the member nations of the European Union (EU) have established a
legislative infrastructure to advance sustainable strategic planning initiatives and strengthen
energy efficiency within the building sector using the Energy Performance of Buildings Direc-
tive (EPBD). The primary objective of this directive is to facilitate the adoption of policies
and measures that will enable the achievement of a highly energy-efficient and decarbonized
building stock by the years 2030 and 2050, respectively[2].

The rise in annual energy consumption, especially in urban areas, is expected to increase
carbon emissions significantly [1]. As a result, there is a growing focus on reducing energy
use and emissions from the building sector. Urban planners and policymakers are exploring
innovative strategies to make existing buildings more sustainable, including creating compre-
hensive sustainable energy plans. Furthermore, long-term renovation strategies are necessary
to achieve a higher level of sustainability and reduce carbon emissions from buildings. These
plans aim to minimize overall energy consumption and CO2 emissions by analyzing data on
the energy performance of buildings on a large scale. As a result, the EU has implemented
the aforementioned EPBD to ensure that member states develop the buildings database com-
prising Energy Performance Certificates (EPCs). However, even with this mandate, building
stock databases typically cover only 30-50% of the total building stock [3].

Moreover, available data are often inadequate for stakeholders such as urban planners,
energy policymakers, utility planners, and manufacturers to create effective and sustainable
energy conservation measures. Gathering accurate and comprehensive data for urban mod-
eling poses a significant challenge [4]. The limited availability and accessibility of data at
the urban scale make it difficult to understand the urban context thoroughly. This poses
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a hurdle for researchers and practitioners who aim to develop accurate and reliable models
that capture the complexities of urban systems. Overcoming this issue requires innovative
approaches and collaborations to improve data collection and sharing mechanisms, ensuring
a more comprehensive and representative urban modeling and analysis. Similarly, estimating
the energy performance of the entire building stock is challenging due to numerous factors
that impact energy usage, including the building envelope, the geometry of buildings, the
behavior of occupants, heating and cooling systems, and the weather conditions [5, 6].

Generally, there are two main approaches to estimating building energy performance:
physical and data-driven models [7]. Physical models are based on detailed building physics
and are analyzed using simulation tools such as EnergyPlus, ESP-r, and TRNSYS [5]. The
simulation of these tools requires extensive building characteristics, including geometric and
non-geometric information [6]. On the other hand, the data-driven approach predicts energy
usage based on historical data, employing statistical or machine learning algorithms [8].
Unlike the physical modeling approach, this method does not require a deep understanding
of the building. This approach has gained significant popularity in the building energy sector
because it allows prediction and estimation of energy consumption with limited building
information [6]. Similarly, data-driven models can uncover complex relationships between
various characteristics of buildings and energy consumption, which can be challenging to
identify using traditional methods.

In recent years, researchers implemented various data-driven approaches in building en-
ergy demand prediction. These approaches use historical data and employ statistical and
machine learning (ML) algorithms to develop data-driven models [6, 9, 10, 11, 12]. Machine
learning algorithms can be broadly classified into supervised and unsupervised learning tech-
niques, with supervised learning further divided into regression and classification algorithms
[13]. Supervised learning algorithms commonly used in building energy demand prediction
include a nearest neighbor, naive Bayes, rule induction, deep learning, Support Vector Ma-
chines (SVM), and neural networks [14, 15, 13]. On the other hand, unsupervised learning
techniques are applied without any corresponding output variable for inputs [14]. Unsu-
pervised learning algorithms commonly implemented in this domain include clustering and
association rules of k means [16, 11]. However, previous studies employing the data-driven
methodology primarily concentrated on forecasting the energy consumption of individual
buildings. [17]. This limited focus is mainly due to the need for more high-quality and reli-
able data on a large scale. In addition, these studies have relied on only a few parameters to
forecast the potential energy consumption of the building [18].

The novelty of this research lies in the integration of parametric simulations, ensemble-
based machine learning approaches, and segregation methods to predict building energy
performance at an urban scale using limited resources. Parametric simulation techniques
can create synthetic data encompassing a wide range of relevant scenarios for stakeholders.
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This study implements ensemble-based machine learning algorithms to predict building en-
ergy performance on an urban scale by segregating end-use demands such as electricity, hot
water, and heating. Furthermore, this research identifies the key building characteristics for
each end-use demand prediction. The research additionally analyses the impact of retrofit
measures and future stakeholder policies using historical and future weather data.

This paper is structured as follows. Section 2 describes an overview of the existing work
done on the prediction of the energy performance of urban buildings. Section 3 outlines the
methodology devised, including an explanation of the steps followed in the development of
the machine learning model. The results of the Irish case study are presented in Section
4, followed by discussions of possible implications and improvements in the case study in
Section 5. Section 6 includes conclusions and potential challenges, and future work.

2. Literature Review

Urban building energy modeling can effectively analyze building energy performance and
facilitate sustainable energy planning. The most common modeling approaches, such as
physics-based or data-driven approaches, differ based on implementation and data require-
ments, as described in the following sections.

2.1. Physics-based urban building energy modeling

The physics-based urban building energy modeling approach also referred to as the engi-
neering or simulation approach, uses simulation techniques along with data related to build-
ing characteristics, construction, weather conditions, and data from heating-cooling systems
to compute the consumption of end-use energy [19, 20]. The physics-based approach can
simulate and estimate building energy usage or production on site, incorporating renewable
energy technologies [13]. These models determine the end-use energy consumption of each
building by type and rating using measurable data [7].

In the context of cities, the bottom-up archetype method has been widely used to analyze
the overall impact of energy efficiency strategies and new technologies at a regional or na-
tional scale [5, 21]. Each building archetype is modeled in the simulation engine to estimate
energy consumption, with these estimates then scaled up to represent the regional or na-
tional building stock [22]. These approaches heavily rely on quantitative data obtained from
building physics. These methods require various inputs, such as the thermal properties (U
values) of the building components (walls, windows, roof, floor, doors), internal and external
temperatures, heating system patterns, ventilation rates, appliance quantities, occupancy,
schedules, and internal loads [7, 6]. In addition, these models require numerous assumptions
to establish the behavior of the occupants and a substantial amount of technical data to
estimate energy consumption.
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One of the most prominent projects, the City Building Energy Saver (CityBES), offers
a platform for modeling and analyzing the thermal performance of different retrofit scenar-
ios [23]. CityBES uses the EnergyPlus simulation engine to model buildings and analyze
retrofit at the district or city scale [24]. Another project, The CitySim project, involves
a decision support tool that assists energy planners and stakeholders in minimizing energy
usage and emissions while incorporating various optimization and retrofit analyses [25]. Ur-
ban Modeling Interface (UMI) integrates the EnergyPlus simulation engines, Daysim, and a
Python module for the operational energy, daylighting, and walkability of urban buildings
[26]. MIT’s UBEM (Urban Building Energy Model) platform uses the EnergyPlus simu-
lation engine to model approximately 83,541 buildings by integrating official GIS datasets
and a custom building archetype library [27]. URBANopt (Urban Renewable Building And
Neighborhood Optimization) provides an EnergyPlus and OpenStudio-based simulation soft-
ware development kit (SDK) to simulate the energy performance of low-energy districts and
campus-scale thermal and electrical analyses [28].

One of the significant challenges in modeling at an urban scale is the availability of both
building geometric and non-geometric data. Few recent studies have focused on the gener-
ation of new building geometric data. UBEM.io, a novel web-based framework, automates
the generation of urban-scale building geometries based on widely available inputs such as
shapefiles, LiDAR, and tax assessor data[29]. Soroush et al. developed a detailed urban
building energy model using the CityGML format for 3D urban geometry and employed
spatial joining to incorporate the features required for archetype selection [30]. Ali et al.
proposed urban building energy and microclimate modeling by generating 3D city models
from sources such as Google Earth, Microsoft Footprints, and OpenStreetMap [31]. Irene et
al. developed a modeling framework to assess the potential of creating energy communities
by combining UBEM capabilities with the rooftops’ potential for solar generation [32].

With increased data availability and more sophisticated modeling techniques, it has be-
come crucial to devise a generalized UBEM framework and improve the existing work to
facilitate the modeling and analysis of different use cases. Previous studies provide a limited
view of the different building energy aspects in an urban setting. This stems mainly from the
fact that simulating each building individually, along with their interdependencies, requires
significant time and resources [33]. Furthermore, these methods usually deploy a physics-
based simulation engine, which can be computationally demanding and time-consuming due
to the intricate nature of urban systems”

Data-driven urban building energy modeling can address the aforementioned challenges
by estimating building energy consumption using basic knowledge of the buildings’ features.
However, this approach still has research gaps, as discussed in the next section.
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2.2. Data-driven urban building energy modeling

In urban energy modeling, a data-driven approach can predict and assess buildings’ en-
ergy usage by considering various factors related to the characteristics of the buildings[7, 19].
This approach is based on the analysis of existing data sources that include building stock
datasets, billing data (such as electricity and gas consumption), survey data, and socioeco-
nomic variables [7]. Data-driven urban energy modeling is conducted mainly using machine
learning and statistical approaches. Recent studies on urban energy have increasingly focused
on using machine learning algorithms over traditional statistical techniques [7].

Rahman et al. used deep recurrent neural networks to predict medium- to long-term
electricity use in commercial and residential buildings [34]. Meanwhile, Kontokosta and Tull
devised statistical models to determine the energy consumption of electricity and natural gas
in more than a million buildings in New York City [35]. Feifeng et al. proposed a semi-
supervised learning method for predicting energy use intensity (EUI) using 34,456 unlabeled
samples [36]. Zhang et al. proposed a data-driven framework for the prediction of energy
usage and greenhouse gas emissions, which considered various factors such as building charac-
teristics, geometry and urban morphology [37]. Similarly, Seo et al. developed a data-driven
model to predict the energy demand for heating of 10,000 low-income households in South
Korea [38]. Razak et al. developed a machine learning model that forecasts annual average
energy use based on building design features in the initial development stages [18]. Ngo et
al. used ensemble machine learning models to forecast building energy consumption over
24 hours [39]. Lastly, Wurm et al. developed a workflow for modeling the heat demand of
building stock on an urban scale, using deep learning algorithms [40].

Although a significant amount of research has been conducted on predicting energy con-
sumption in individual buildings using their specific characteristics, more studies have yet to
explore using data-driven models for predicting energy consumption on a larger scale. The
main challenge lies in the lack of high-quality data in sufficient quantities to train prediction
models effectively. This underscores the need for a robust building energy modeling approach
capable of accurately predicting the energy performance of entire building stocks, even when
faced with limited resources for complex decision-making analysis. Furthermore, previous
research on predicting building energy consumption has been limited by considering only a
small set of parameters ([18]). Fewer recent studies have started incorporating crucial factors
such as U-values, HVAC systems, and renewable energy systems into their machine-learning
algorithms to estimate better energy performance in buildings ([37]). However, only a few
studies have specifically investigated the impact of parameters such as U values, HVAC sys-
tem types, and the presence of renewable energy systems on the estimation of the energy
performance of buildings using machine learning algorithms ([18, 39, 40, 41]).

Predicting the energy performance of buildings at an urban scale poses a significant chal-
lenge for urban planners and policymakers. The accurate prediction of energy consumption
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and the identification of opportunities for enhancing energy efficiency are crucial for fostering
sustainable development in cities. There is significant potential to expand current research
and establish a comprehensive methodology for data-driven building energy modeling on an
urban level.

However, one major issue that arises in an urban context is the availability of data. Ob-
taining comprehensive and reliable data at an urban scale can be challenging, as it requires
collecting and integrating information from multiple sources [4]. Addressing this issue is es-
sential to enable effective energy planning and modeling techniques, empowering stakeholders
to make informed decisions and drive positive change in urban energy management.

These findings highlight the importance of adopting a holistic approach to building energy
modeling, considering all relevant factors, to accurately predict building energy performance
and align with the objectives of various stakeholders. Therefore, this research proposes a
methodology that combines and harnesses the strengths of physics-based and data-driven
approaches to accurately predict the energy performance of buildings on an urban scale. In
the physics-based approach, parametric simulation methods are employed to generate syn-
thetic data that encompass all possible scenarios relevant to stakeholders. Similarly, ensemble
machine learning and end-use demand segregation methods are used in the data-driven ap-
proach instead of relying on a single model to achieve accurate predictions of building energy
performance on an urban scale.

3. Methodology

This study proposes a novel methodology that uses supervised machine learning algo-
rithms to predict building energy performance on a large scale. This research aims to identify
the most effective model using physics and data-driven approaches. The prediction method-
ology for the energy performance of urban buildings involves five steps (Fig. 1).

1. The initial step involves collecting data from various sources such as building stock,
census, weather, and geographical data.

2. The next step involves developing building archetypes using existing building stock
data to identify representative baseline models.

3. The subsequent step focuses on parametric simulation to develop appropriate synthetic
data.

4. The step of developing machine learning models predicts building energy performance
on a large scale using an ensemble or segregation method.

5. Finally, the urban building energy performance analysis step analyzes the modeling
process results for planning and decision-making purposes.
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Figure 1: Overarching methodology for urban building energy performance prediction using machine learning.

3.1. Data Collection

The data collection process involves gathering various inputs for urban building energy
performance prediction using machine learning, including building stock data, weather infor-
mation, census data, reports on energy policies, and construction data [5].

The building stock data are necessary for conducting physics-based simulations that en-
compass buildings’ geometry and non-geometry data. This includes data such as building
envelope specifications, shapes, number of floors, type of building, geometry, geographical po-
sition, and window opening ratios ([42]). Typically, the geometric data required for building
energy modeling is gathered from building stock and energy performance certificate databases
and existing construction databases such as TABULA, EPISCOPE, and building typology
databases ([43]).

Along with geometric data, non-geometric data are also required for modelings, such as
user occupancy patterns, equipment loads, HVAC systems, and usage patterns also need to be
modeled. One of the significant challenges in this regard is the availability of non-geometric
building information on a large scale. Non-geometric building data can be obtained through
the building archetypes approach, using available national census databases, statistical sur-
veys, and energy performance certificate data.

Weather data sets are essential to accurately model energy use in building thermal simu-
lations ([44]). The most commonly used climate data sets, such as the typical meteorological
year data (TMY), have been available for a long time and describe the local climate ([45]).
Another helpful resource are EnergyPlus Weather format (EPW) files, which can be accessed
online for more than 3,034 locations. These files are arranged by region and country of the
World Meteorological Organization. Furthermore, this study incorporates future weather
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files to assess the impact of weather conditions on retrofit measures under various climate
scenarios, aiming to achieve the energy policy targets set by policymakers, such as those for
2030 or 2050. The sources of these future weather files can vary, including resources like
Meteonorm, WeatherShift, and CCWorldWeatherGen [46].

Similarly, the modeling process relies on additional sources such as census data, reports on
energy policies, and construction data. These sources offer valuable insights into demographic
patterns, energy consumption trends, and infrastructure development, facilitating a more
comprehensive analysis and meeting the requirements of urban systems.

3.2. Building Archetypes Development

Several buildings on an urban scale often share similar characteristics and can be classified
into building archetypes. In the context of urban building energy simulation, a building
archetype, referred to as a reference building, is a representative model that captures the
typical characteristics and performance of a specific category or group of buildings within
a large building stock. The parametric simulation framework uses each building archetype
as a baseline model. These data can be sourced from established national building stock
databases, such as the TABULA or EPC databases [43]. Building archetypes or reference
buildings serve as standardized models that simplify the simulation process by providing
a baseline or template for analysis. They are typically developed based on existing data
collection, statistical analysis, and empirical studies of buildings within the target building
stock. Moreover, simulating any building archetype requires geometric and non-geometric
data for each baseline model. These building archetypes are the starting point for parametric
modeling of different buildings to develop a synthetic stock.

3.3. Parametric Simulation

Parametric simulation provides an optimal solution, mainly when only sparse data sets
are available for energy modeling. To execute complex parametric simulations involving
multiple parameters, a parametric tool is used to perform numerous simulations using a
Building Energy Performance Simulator (BEPS) model ([47]). This study uses jEPlus as a
parametric tool for energy simulations. Furthermore, jEPlus uses EnergyPlus for simulation
and incorporates DesignBuilder construction templates to integrate diverse parameter val-
ues. Parametric simulation using EnergyPlus presents a robust approach to assess the energy
performance of buildings and investigate various design alternatives. In the parametric sim-
ulation, EnergyPlus facilitates a systematic exploration of the design parameters, providing
insights into their impact on energy consumption, comfort, and other performance metrics.

The selection of parametric features plays a crucial role in developing parametric simulation-
based models and generating synthetic datasets. The accuracy of the building energy model
is highly dependent on the careful selection of each parameter in this process. These pa-
rameter values, which encompass the necessary variations for synthetic data generation, can

10



be obtained from literature surveys that are specific to the relevant climate environments
([48, 3]).

In the parametric simulation process, various essential parameters are commonly used
that include construction characteristics such as walls, windows, floors, roofs, internal gains,
occupancy density, and heating or cooling systems. They all contribute to the overall energy
performance assessment and are integral to the parametric simulation. By considering these
parameters and their variations, parametric simulation enables the exploration of different
design alternatives and their impact on energy consumption, comfort levels, and other per-
formance metrics. It allows for a comprehensive evaluation of the energy efficiency of the
building and helps to make decisions about design optimizations. Therefore, selecting the
appropriate parameters and their values, based on literature surveys and specific climate en-
vironments, is crucial to create accurate and representative synthetic datasets and ensuring
the reliability of parametric simulation-based models.

However, dealing with the complexity of many parameters makes it nearly impossible to
generate simulated data for all possible combinations. Sampling methods such as Simple Ran-
dom Sampling (SRS) and Latin Hypercube Sampling (LHS) are used to generate synthetic
data to address this challenge ([49, 50]). Simple Random Sampling (SRS) is a straightforward
method in which each sample is randomly and independently selected from the population.
On the other hand, Latin Hypercube Sampling (LHS) is a more advanced sampling method
that aims to achieve a more uniform distribution of samples across the entire range of the
data. LHS ensures that each parameter value combination is balanced, allowing for a more
comprehensive design space exploration. These methods allow for generating representa-
tive synthetic datasets encompassing a range of parameter combinations, facilitating a more
comprehensive analysis of design alternatives and optimizing energy modeling outcomes.

3.4. Machine Learning Modeling

This process involves formulating machine learning models to estimate the building en-
ergy performance (Fig. 2). Synthetic building stock data, generated from the parametric
simulation step, is intended to serve as input for the development of machine learning models.

3.4.1. Data Preprocessing

The process begins with data preprocessing, during which inconsistencies within the
dataset are identified and eliminated before the data are used for further analysis and model
development.

3.4.2. Data Splitting

The pre-processed data is divided into two subsets to ensure optimal training of the
model: a training dataset used for training the model and a test dataset for evaluating the
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Figure 2: Process of machine learning modeling to predict Energy Use Intensity (EUI) using machine learning
models.

performance of the trained model. Two standard techniques for data splitting are random
data splitting and cross-validation.

Random data splitting is a straightforward method in which data is randomly divided
into training and testing datasets, typically in an 80-20% split ratio. However, this method
may cause problems with uneven data distribution, and an incorrect selection of training and
testing datasets can also adversely affect the machine learning model’s performance [51]. On
the other hand, cross-validation is a more sophisticated method that is often used to strike
a balance between minimal bias and variance in the trained model. This study adopts the
k-fold cross-validation algorithm for data splitting to prevent overfitting or underfitting the
model.

3.4.3. Non-segregation Models Development

This paper implements and compares three different machine learning model approaches
to predict building energy performance, namely: the single model approach, end-use demand
segregation method, and ensemble-based segregation method. In the single model approach,
also referred to as the ”non-segregation” method, this study conducts a comparative analysis
of various machine learning algorithms, assessing their predictive accuracy, efficiency, and
suitability for building energy performance modeling. Over recent years, machine learning
models have garnered considerable attention in data-driven modeling. Among the most fre-
quently used models are Linear Regression (LR), Neural Network (NN), Decision Tree (DT),
Random Forest (RF), K-Nearest Neighbor (KNN), Gradient Boosting (GB) and Support
Vector Regression (SVR) [7]. Some of the popular implementations of gradient boosting in-
clude XGBoost (Extreme Gradient Boosting), Histogram-Based Gradient Boosting (HGB),
and LGBM (Light Gradient Boosted Machine). These algorithms have demonstrated excep-
tional performance in energy forecasting and prediction, particularly in the context of energy
modeling, due to their extensive use and success in previous studies ([17, 11]). By assessing
the effectiveness of these models, this study aims to discern the most efficient approach to
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Figure 3: Methodology for end-use demand segregation modeling to predict Energy Use Intensity (EUI) using
machine learning.

predict building energy performance using machine learning techniques.

3.4.4. End-use demand segregation Models Development

End-use demand segregation methods use different machine learning models to predict
each end-use demand. This strategy diverges from the traditional approach of employing a
single machine-learning model. This modification aims to achieve superior predictive per-
formance (Fig. 3). The workflow includes developing distinct regression machine learning
models for each end-use demand, such as heating, cooling, lighting, and hot water. The pre-
dictions of these end-use demands are aggregated to calculate the final energy performance
of the building, measured in terms of Energy Use Intensity (EUI). The prediction for each
end-use demand is multiplied by its corresponding primary energy factor. The resulting
values for heating, cooling, equipment, lighting, and hot water are then aggregated and pho-
tovoltaic energy generation is deducted from them to calculate the total energy consumption
of the building. This cumulative total is then divided by the building area to calculate the
Energy Use Intensity (EUI), a measure of the energy performance of the building as defined
in Equation (1). Finally, the EUI is classified into an Energy Performance Certificate (EPC)
label or rating,
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Figure 4: Methodology for ensemble machine learning modeling approach for enhanced predictive perfor-
mance in machine learning models

EUI =
(Eheating × PEFheating) + (Ecooling × PEFcooling)

Atotal

+
(Elighting × PEFlighting) + (Eequipment × PEFequipment)

Atotal

+
(Ehotwater × PEFhotwater)− (EPV × PEFPV)

Atotal

(1)

where Eheating, Ecooling, Elighting, Eequipment, Ehotwater, and EPV represent the energy con-
sumption (or generation for EPV ) for each respective category in kilowatt hours per year
(kWh/year).PEFheating, PEFcooling, PEFlighting, PEFequipment, PEFhotwater, and PEFPV

are the primary energy factors (PEFs) for each respective category. Atotal represents the
total floor area of the building in square meters (m2).

3.4.5. Ensemble and segregation Models Development

The workflow further implements ensemble machine learning methods to test multiple
learning algorithms and obtain better predictive performance. Ensemble techniques are
commonly used in machine learning to enhance model accuracy by mitigating overfitting
and increasing generalizability. By leveraging the complementary strengths of multiple mod-
els, ensemble learning provides more stable predictions and improves accuracy compared to
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the conventional approach of using a single model. There are two main ensemble learn-
ing techniques that differ mainly by kind of model, data sampling, and decision function.
Therefore, ensemble learning techniques can be classified as stacking and voting techniques.

The stacking method, also known as stacking generalization, was introduced by Wolpert
[52]. The goal is to reduce the generalization error of different machine learning models.
The final Meta-Model comprises the predictions of an ”n” number of machine learning-based
models through the k-fold cross-validation technique. On the other hand, the voting ensem-
ble method is one of the most intuitive and easy to understand. The voting ensemble method
comprises a number ”n” of machine learning models, and the final prediction is the one with
”the most votes” or the highest weighted and averaged probability. Generally, ensemble
learning techniques use multiple best-prediction performance machine learning models. The
study implements a stacking-based ensemble method to predict each end-use demand, en-
hancing model accuracy and predicting building energy performance. This method combines
predictions from multiple models by training another model to consolidate its output, often
resulting in more accurate and robust predictions compared to the voting ensemble method
(Figure 4).

3.4.6. Models Performance

To evaluate the effectiveness of machine learning models, commonly used performance
indices such as R-Squared (R2), Mean Absolute Error (MAE), and Root Mean Squared
Error (RMSE) are employed ([7, 11]). A model with the lowest RMSE and MAE values and
a R2 value nearest to 1 is deemed superior among all models. Finally, in order to assess the
model’s accuracy, the predicted value of EUI (expressed in kWh/(m2 ∗ year)) is transformed
into an Energy Performance Certificate (EPC) label or rating. Furthermore, precision and
recall are crucial metrics used for a detailed analysis of each class. Precision assesses the
accuracy of positive predictions made by the model, whereas recall quantifies the model’s
capability to detect all positive instances within the dataset [3].

3.4.7. End-use Features Extraction

The final step of this process is to find the importance of features for each end-use demand
using the developed machine learning model. Feature importance refers to the determination
of the relevance or contribution of individual features in a machine learning model to make
accurate predictions. It helps in understanding which features have the most significant
impact on the model’s predictions.

One popular method for calculating feature importance is SHAP (SHapley Additive ex-
Planations). SHAP values provide a unified measure of feature importance by considering
the contribution of each feature value to the prediction for a specific instance while also ac-
counting for interactions between features. By using SHAP values, we can gain insight into
which features impact the model’s predictions the most. This information can be valuable
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for understanding the underlying relationships in the data and identifying the key drivers or
factors that influence the target variable.

3.5. Urban Building Energy Performance Analysis

In the final phase of the methodology, the developed machine learning model predicts the
energy performance of the entire building stock. The availability of comprehensive building
stock data can help stakeholders analyze the building stock at an urban scale and suc-
cessfully implement sustainable energy policies. Furthermore, the developed model can be
applied to practical application scenarios, such as implementing and evaluating proposed
retrofit measures as part of national-level policy decisions. These measures, often proposed
at the national level, aim to improve the energy performance of existing buildings through
modifications and improvements. For example, this could include installing heat pumps or
integrating renewable energy systems like solar panels. The proposed models can evaluate
their impact before implementation and identify potential energy savings. This predictive
capability reduces the risk of implementing ineffective or inefficient measures, ensuring that
resources are used optimally. It also helps fine-tune such measures to fit better the specific
needs and constraints of the building stock.

In general, the developed model offers a holistic approach to urban-scale energy man-
agement and policy implementation, creating a more sustainable built environment. Using
modeling outcomes, stakeholders can navigate the complexities of urban building stock anal-
ysis and energy policy implementation, even without extensive knowledge of building dynam-
ics. This empowers policymakers and stakeholders alike to make informed decisions when
retrofitting existing building stock to improve energy efficiency and mitigate environmental
impact.

4. Case Study

The primary objective of this case study is to test the proposed methodology by cal-
culating the energy performance of Ireland’s residential building stock. This methodology
seamlessly integrates a data-driven approach with parametric simulation modeling to predict
the energy performance of buildings on an urban scale. This case study follows the same
structure as the proposed methodology discussed in the previous section, with subsequent
subsections following the same order.

4.1. Data Collection

Collecting urban-scale building stock data is challenging as individual building informa-
tion is often unavailable [4]. The data collection process involves acquiring raw building
data from various sources to implement the proposed methodology, including building stock
datasets, building census datasets, weather data, and data from energy policymakers’ reports.
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Table 1: Building data requirements and associated data sources for Irish case study

Data Type Case Study Data Source Publisher
Building Stock Irish EPC (BER) Database

[53]
SEAI

Geographic data GeoDirectory [54, 55] An Post/ Ordnance Survey
Ireland

Census Irish Cenus database [56] Central Statistics Office
Weather Dublin EPW File [45] EnergyPlus and Meteonorm
Energy policymakers’ Re-
ports

Irish Climate Action Plan
[57]

Governemnt of Ireland

In Ireland, building stock data are available as Energy Performance Certificates (EPCs)
maintained by the Sustainable Energy Authority of Ireland (SEAI). The EPC (also called the
Building Energy Rating (BER) certificate) dataset of the Irish residential stock represents
the measured building stock and comprises more than 200 building characteristics. These
features include building fabric, heating systems, estimated end-use, CO2 emissions, and
estimated delivered and primary energy consumption. Each entry in the Irish EPC dataset
contains an energy rating for the respective building, ranked its energy performance on a
graded scale from A1 to G based on the estimated energy consumption per square meter
per year [53]. In 2023, the Irish EPC dataset contained approximately 1,126,817 residential
buildings, with a significant proportion of building ratings within the range of C1 to D2 (Fig.
5). The dataset’s most common types of buildings are semi-detached and detached houses.

The Irish census, conducted every four years by the Central Statistics Office (CSO), col-
lects various data points on the building where the respondent resides. Therefore, the census
provides the number of buildings in each geographic area [56]. According to the CSO 2022
dataset, Ireland has approximately 1,841,152 residential buildings. Similarly, the GeoDirec-
tory database provides statistical and geographical information on Ireland’s entire building
stock [54]. The Q4 2022 GeoDirectory report, published by An Post (Irish Postal Service) and
Ordnance Survey Ireland, comprises geocoded addresses of 2,100,905 residential buildings in
Ireland. Detached dwellings remained the most prevalent type of residence (30.7% of the
national total), followed by terraced dwellings (28.2%) and semi-detached dwellings (24.7%).
This study focuses on Dublin City in Ireland and the Dublin EPC dataset, which includes
339,494 of the 624,758 residential buildings, representing the highest proportion of the entire
Irish building stock. This suggests that EPC data are available for only approximately 54%
of the residential building stock of Dublin City ([53]). This study employs machine learning
algorithms to predict the energy rating of the remaining 46% stock using limited variables
(Fig. 5). Furthermore, the weather data for Dublin are obtained from the default EnergyPlus
dataset, which includes historical data and also incorporates future weather files for 2030 by
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Figure 5: Irish EPC building energy rating chart used to determine building energy performance, percentage
of total EPC vs. Non-EPC residential buildings

Meteonorm. This allows us to assess the impact of weather conditions on retrofit measures
in various climate scenarios.

Similarly, energy policy reports are necessary to explore future scenarios. Irish national
reports, such as the Climate Action Plan 2023, are used to test scenarios in this case study.
This provides valuable insight into future plans and strategies for Irish residential buildings.
These reports outline the goals, roadmaps, and goals set by policymakers to address climate
change, reduce greenhouse gas emissions, and improve energy efficiency in the residential
sector [57].

4.2. Building Archetypes Development

The parametric simulation framework uses each building archetype as a baseline model.
In this case study, four building types are considered as archetypes of the Irish residential
building stock [44]. These types are selected to represent the primary variations of building
types based on data from the CSO, Irish EPC, and GeoDirectory datasets. These building
archetypes serve as the starting point for the parametric modeling of different buildings,
helping to develop a synthetic stock representation. These four different types of residential
buildings also exist in the GeoDirectory database, namely terraced houses, detached houses,
semi-detached houses, and bungalows (Fig. 6).

Building archetypes require both geometric and non-geometric data to model each base-
line model. The initial step involves identifying the non-geometric and geometric parameters
associated with the existing building stock of Dublin. This information is essential for per-
forming a parametric simulation using the archetypes. Geometric information collected from
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Table 2: Geometric and non-geometric parameters of baseline archetypes used in the Irish case study

Geometric Parameters (Default Model Values)
Parameters Unit Terraced Detached Semi-

detached
Bungalow

Total Floor Area m2 91.66 130.81 107.69 85.91
Net Conditioned Area m2 91.66 130.81 107.69 85.91
Gross Roof Area m2 65.66 115.68 81.76 130.43
Window to Wall Ratio
on NWSE facades

% 0.4/0/0.4/0 0/0.5./0/0.5 0.4/0/0.4/0 0.4/0/0.4/0

Number of Stories
(Height 2.7 meters)

Numeric 2 2 2 1

Number of Zone Numeric 10 13 10 8
Orientation degree 0 90 0 0

Non-GeometricParameters (Default Model Values)
Wall U-value W/m2K 0.5 0.5 0.5 0.5
Window U-value W/m2K 3 3 3 3
Floor U-value W/m2K 0.5 0.58 0.5 0.58
Roof U-value W/m2K 0.33 0.33 0.33 0.33
Door U-value W/m2K 2.041 2.041 2.041 2.041
Lighting Density W/m2 2.92 2.95 2.92 3.025
Occupancy Person 3 4 3 4
Equipment Density W/m2 1.47 1.61 1.47 1.56
Heating setpoint °C 21 21 21 21
Heating setback °C 12 12 12 12
HVAC Efficiency/
COP

Numeric 0.8 0.8 0.8 0.8

DHW l/m2/day 1.5 1.5 1.5 1.5
ACH Numeric 0.94 0.87 0.94 0.74
Renewables W 2400 2400 2400 2400
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(a) Terraced (b) Detached (c) Bungalow (d) Semi-Detached

Figure 6: 3D geometery of Irish residential building archetypes for energy parametric simulation [44, 48]

various types of Irish buildings is based on existing studies and Irish building regulations
guidelines. However, non-geometric parameters are determined using current building en-
ergy performance databases and literature surveys. For example, the Irish EPC provides
values for essential building physics parameters, such as U-values for walls, roofs, floors, and
windows, along with their respective ranges. Other relevant non-geometric parameters that
impact the energy performance of the Irish building stock have been identified based on pre-
vious research [44, 48]. The geometric and non-geometric parameters of baseline archetypes
with default values used for the Irish case study are shown in Table (2) [44, 48].

4.3. Parametric Simulation

The selection of parametric features is pivotal in developing physics-based models based
on parametric simulation and generating synthetic datasets after the archetype development
process. The accuracy of the building energy model relies on the careful selection of each input
and output parameter in this process. These parameter values embody the necessary varia-
tions for synthetic data generation. In this study, 19 input parameters are used to simulate
Irish residential building archetypes. The selection of these parameters is based on existing
studies on residential buildings [48, 3]. However, these previous studies do not include cer-
tain advanced features. Therefore, several additional parameters, including HVAC systems,
are incorporated to conduct a complete analysis of HVAC systems, primary heating factors,
and renewable parameters (Table 3). Furthermore, this study employed a building feature
reduction approach by integrating Design-Builder construction templates and reducing the
number of dependent features. For instance, building elements require material features such
as thickness, conductivity, density, and specific heat. In this study, existing templates were
used, and U-values were used to represent these features. This approach ultimately results
in a reduction of the required parameters as inputs to the UBEM and further reduces the
model computing time by eliminating dependent parameters.

One of the primary output parameters in this study is the Energy Use Intensity (EUI),
also referred to as the final primary energy use per building’s total floor area per year,
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Table 3: Parameters needed for parametric simulation of archetypes

No Parameters Unit Minimum Maximum Source

P1 Building type Categorical
Semi Detached, Detached, House,

Terrace, Bungalow
[53]

P2 Location Categorical Dublin [56]
P3 Weather Categorical Historical, 2030 EPW
P4 Wall U-value W/m2K 0.09 2.4 [48, 58]
P5 Window U-value W/m2K 0.73 5.7 [48, 58]
P6 Floor U-value W/m2K 0.15 1.23 [48, 58]
P7 Roof U-value W/m2K 0.07 2.3 [48, 58]
P8 Door U-value W/m2K 0.81 5.9 [48, 58]
P9 Orientation degree 0 315 [48, 58]
P10 Lighting density W/m2 1 9 [48, 58]
P11 Occupancy Person 1 6 [56]
P12 Equipment density W/m2 1 21 [48, 58]
P13 Heating setpoint °C 18 23 [48, 58]
P14 Heating setback °C 10 14 [48, 58]
P15 HVAC efficiency or

COP
0.45 to 4 0.3 4.5 [53]

P16 Domestic hot water l/m2/day 0.5 3.5 [48, 58]
P17 Air changes per hour Numeric 0.35 3 [59, 53]
P18 Window-to-wall ratio % 30 70 [48, 58]
P19 Renewables W Yes/No [53]
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Figure 7: Distribution of 1 million residential buildings synthetic data in terms of the Irish building energy
rating labels

measured in kWh/(m2 ∗ year). Irish EPC data provide information on building energy
performance or certificate ratings in terms of EUI (kWh/(m2 ∗ year)), which is further
interpreted on an A1 to G rating scale. An A1-rated building demonstrates the highest
level of energy efficiency, typically associated with the lowest energy consumption and CO2

emissions. On the other hand, a building with a G rating represents the least energy-efficient
rating (Fig. 5). Furthermore, this study focuses on the end-use demand segregation method
to calculate the Energy Use Intensity. Therefore, each end-use demand, including heating,
lighting, equipment, photovoltaic, and hot water, is considered an output parameter in the
parameter simulation process.

This study employs jEPlus as a parametric tool for physics-based parametric simulation.
A jEPlus uses the capabilities of EnergyPlus for thermal simulation and integrates Design-
Builder construction templates to incorporate diverse parameter values. A sample of 1 million
buildings is generated using the Latin hypercube sampling (LHS) method to construct a re-
liable machine learning model. This sampling process ensures that the resulting distribution
covers all energy rating data for Irish buildings (Fig. 7).
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4.4. Machine Learning Modeling

This process involves formulating an urban-scale building energy performance machine
learning model. The process begins with generated synthetic building stock data from the
previous step, which are preprocessed to remove outliers and improve the data set’s quality
before implementing machine learning models. Subsequently, the data is divided into two
subsets to create training and testing datasets. This study uses a 10-fold cross-validation
method during data division to mitigate the risk of overfitting, rather than using a random
data selection for training and testing.

Ten different machine learning algorithms are analyzed to assess their abilities to predict
EUI building energy performance based on a given dataset. These regression algorithms have
shown exceptional performance in energy forecasting and prediction, particularly within the
context of energy modeling ([17, 11, 7]). The algorithms include XGBoost (XGB), LightGBM
(LGBM), Gradient Boosting (GB), Histogram-based Gradient Boosting (HGB), Random
Forest (RF), Neural Network (NN), Decision Tree (DT), Linear Regression (LR), K-Nearest
Neighbors (KNN) and Support Vector Machine (SVM). The performance of each developed
model is evaluated using metrics such as R-Squared (R2), Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE). A model is considered superior if it achieves values closer
to zero for RMSE and MAE and values close to zero for R2. The target feature is EUI, which
is used to predict building energy performance using regression models. Furthermore, the
final predicted EUI is also converted into an energy rating based on the Irish EPC rating
(Fig. 5). Finally, the model’s performance is further tested using an accuracy estimation of
the energy rating, with the model producing the highest accuracy being considered the best
learning model.

This study conducts a comparative analysis of three different machine learning models
proposed in this research to evaluate which one is best suited for predicting building energy
performance. These approaches include the single-model approach (non-segregation method),
the end-use demand segregation method, and the ensemble-based segregation method. In
the non-segregation method, EUI predicted using all ten machine learning models. Similarly,
the workflow then develops learning models using the segregation method for each end-use
demand, such as heating, interior lighting, photovoltaic power and water systems in the
interior equipment. The process implemented and tested ten machine learning models for
each end-use demand (Table 4). The results show that the XGB model showed the best
performance in predicting the demand for heating with an RMSE of 683.17. For interior
lighting, interior equipment, photovoltaic power and water systems, the XGB, LGBM, RF
and DT models reported an RMSE of 0, indicating excellent performance.

In addition, models such as LR, KNN, and SVM exhibited relatively higher root mean
square errors (RMSE) in all categories, indicating less accurate predictions. The results
demonstrate that the RMSE for most end-use demands is nearly 0. This can be attributed
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Table 4: Comparative analysis of machine learning models to predict end-use demand in kWh/yr using
RMSE metrics

Models Heating Interior
Lighting

Interior
Equipment

Photovoltaic
Power

Water
Systems

XGB 683.17 0 0 0.02 0
LGBM 801.69 0 0 0 0
HGB 1256.58 0.02 0.06 0.06 0.21
GB 2809.86 67.72 193.83 16 13.56
RF 1613.23 0 0 0 0
NN 3400.93 1.01 18.94 6.85 16.78
DT 2430.7 0 0 0 0
LR 5162.23 181.24 546.94 172.78 6440.26
KNN 5106.97 175.26 483.64 310.06 5629.45
SVM 7330.98 192.2 575.37 175.56 7976.76

to the fact that end-use demands calculated in EnergyPlus are derived using static calcula-
tions, meaning that values are determined based on fixed parameters and equations without
accounting for variability or randomness. Therefore, machine learning models can easily learn
and map these fixed relationships between input features and end-use demands, resulting in
a near-perfect fit to the data. Furthermore, the SHAP method is employed to gain further
insight into the main features that affect the model output (Table 5). The findings reveal
significant factors that affect energy consumption in buildings. The rate of air changes per
hour emerged as the most influential feature, highlighting the importance of ventilation in
determining heating demand. The heating setpoint and wall U-value also ranked high, un-
derscoring the importance of temperature control and insulation in regulating energy usage.
The type of building appeared consistently throughout the ranking, indicating its substan-
tial influence on overall energy demand and usage patterns. The relevance of orientation and
weather in photovoltaic power generation emphasizes the need to consider building direction
for optimal energy production. These results provide valuable information for stakehold-
ers to understand these critical features and design effective strategies aimed at reducing
energy consumption, improving energy efficiency, and promoting sustainability in the built
environment.
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Table 5: List of important features with rank that affect end-use demand machine learning models using
SHAP method

Rank Heating Lighting Equipment Photovoltaic Water Systems
1 Air changes per hour Lighting density Equipment density Renewables Building type
2 Heating setpoint Building type Building type Orientation Domestic hot water
3 Wall U-value Weather
4 Building type
5 Occupancy
6 Window U-value
7 Equipment density
8 Weather
9 Roof U-value
10 Lighting density
11 Heating setback
12 Floor U-value

Figure 8: Comparative analysis RMSE and accuracy of machine learning models using with and without
end-use demand segregation method to predict EUI

25



Table 6: Comparative analysis of method and machine learning models for predicting EUI using model
performance metrics

Methods Models RMSE MAE R-squared Accuracy
Non-Segregation XGB 13.89 9.72 0.99 76%
Segregation XGB 7.69 4.67 1 89%
Ensemble Segregation XGB, LGBM, HGB 6.48 3.9 1 91%

Finally, the prediction of each end-use demand is multiplied by its respective Irish primary
energy factor, and these values are then summed to determine the total energy consumption of
the building. This cumulative total is then divided by the area of the building to calculate the
EUI, a measure of the energy performance of the building. The results illustrate the significant
improvement in the performance of various machine learning models in predicting EUI with
and without applying segregation methods (Fig. 8). Firstly, non-segregation scenario, the
XGB model demonstrates the best performance on all metrics, boasting an RMSE of 13.89,
MAE of 9.72, and an accuracy of 76% in terms of building rating. LGBM follows closely
in performance. However, as we move down the table, the performance degrades, with the
SVM having an RMSE of 71.96, MAE of 50.98, R-squared of 0.76 and accuracy of 29%. This
suggests that the Gradient Boosts models, such as XGB and LGBM, are better suited for
this problem of non-segregation.

Secondly, when considering the EUI Segregation scenario, there is a notable enhancement
in the performance of several models. Specifically, the XGB and LGBM models excel with
good R-squared values and substantially lower RMSE and MAE values compared to those
without the segregation method. These models achieve substantially higher accuracy, with
XGB reaching 89% and LGBM reaching 87%. This signifies that segregation could efficiently
capture the underlying data patterns, aiding these models in making more precise predic-
tions. However, it is essential to note that some models, such as NN, LR, KNN, and SVM,
continue to demonstrate suboptimal performance even in the segregation scenario. The Neu-
ral Network (NN) model shows relatively less improvement compared to other models, which
might suggest that it does not benefit as much from segregation in this particular context.
The poor performance of SVM persisted even with segregation, indicating that this model
might not be suitable for this dataset irrespective of the data processing method.
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Figure 9: Confusion matrix shows the performance of the ensemble-based segregation model for each building
rating.

These results indicate that incorporating segregation in the analysis improves the perfor-
mance of most models, particularly XGB, LGBM, and HGB. These findings highlight the
importance of considering segregation in the machine learning process to obtain more accu-
rate predictions for EUI values and emphasize the potential for future research to explore
novel approaches to improve the performance of models that are lagging.

The modeling process is further improved using ensemble learning techniques to combine
the best-developed models (XGB, LGBM, and HGB) based on performance. By comparing
the interpretation of these models, this study seeks to identify the most effective approach
for predicting building energy performance using machine learning techniques.

These results highlight the importance of EUI segregation and the effectiveness of ensem-
ble modeling in improving the accuracy of end-use demand prediction (Table 6). In general,
non-segregation method, the XGB model achieved an RMSE of 13.89, with an accuracy of
76%. On the contrary, the XGB model segregation method results in a significantly lower
RMSE of 7.69, indicating reduced prediction errors compared to the previous method. The
accuracy improves to 89%, suggesting more accurate predictions in most cases. Finally,
the ensemble-based segregation approach, combining the XGB, LGBM, and HGB models,
achieves the lowest RMSE of 6.48, demonstrating a further reduction in prediction errors com-
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Table 7: Retrofit Scenarios to analyze the pre or post-effect on building energy performance at urban scale

Retrofit
Scenarios

Window
U-value

Wall
U-value

Roof U-value HVAC Renewables

Scenario I 1.4 0.21 0.16 Heat Pump No
Scenario II 1.4 0.21 0.16 Heat Pump Yes

pared to the previous methods. Accuracy reaches 91%, indicating a higher level of correct
predictions than the other methods. The confusion matrix shows that the model performs
well with all energy ratings of the building (Fig. 9). The findings suggest that the combi-
nation of models can enhance prediction capabilities and provide more reliable estimates for
decision-making processes.

4.5. Urban Building Energy Performance Analysis

In the urban building energy performance analysis phase, the developed model is applied
to practical application scenarios, implementing retrofit measures outlined in Ireland’s Na-
tional Climate Action Plan 2023. The objective is to retrofit existing residential buildings
with below B2 ratings and install heat pumps. Two different scenarios are developed, improv-
ing the U values of windows, walls and roofs as recommended by Part L of the Irish Building
Regulations and upgrading the HVAC system from a boiler to a heat pump. Additionally,
the scenarios include options with and without renewables. (Table 7).

Both retrofit scenarios are applied to a dataset of 10,000 buildings with ratings below B2
and boilers as the HVAC system. This dataset size of 10,000 buildings allows for a sufficiently
large sample to analyze and apply retrofit scenarios effectively, covering all inefficient building
ratings from B3 to G. In general, there is a significant improvement in the distribution of
energy ratings in buildings. Furthermore, implementing both retrofit scenarios in sample
buildings resulted in a notable improvement, as indicated by the change in the distribution
curve from lower energy ratings to higher ones (Fig. 10). However, the results indicate that
in Scenario I, where the heat pumps are installed with windows, walls, and roofs refurbished,
only 2,725 buildings achieved a rating of B2 and above.

In contrast, Scenario II, which included renewable installations, showed a slight improve-
ment, with 3,467 buildings reaching higher ratings. These results demonstrate that both
scenarios could only improve the higher rating of a relatively small percentage of buildings,
ranging from 27% to 34%. It highlights the need for deeper retrofitting measures to achieve
higher ratings, including heat pumps and renewables (Fig. 10).

The results are further examined using historical and future weather conditions, utilizing
a 2030-year weather file. The emission scenarios considered in this study are based on a
Representative Concentration Pathway (RCP), which is a greenhouse gas concentration tra-
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Figure 10: Impact on the distribution of 10,000 building sample pre or post-retrofit scenarios

Figure 11: Impact of historical and future weather conditions on the post-retrofit scenarios
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jectory adopted by the IPCC [60]. The 2030 weather file is based on RCP 4.5, described by
the IPCC as an intermediate scenario and the most probable baseline scenario, considering
the exhaustible nature of non-renewable fuels. The study shows no significant differences
when using the future weather file. However, due to global warming and projected average
temperature increases of 1–1.6°C, heating demand is expected to decrease in the future, po-
tentially leading to an improvement in building energy ratings [61]. Furthermore, the rating
distribution for buildings is expected to change, primarily through using photovoltaics as
renewable energy sources (Fig. 11).

The results demonstrate that the proposed methodology helps urban planners, energy
policymakers, utility planners, and manufacturers in evaluating the implementation of retrofit
measures on a large scale. Additionally, this case study highlights that fabric renovation in
buildings is insufficient as a standalone solution. In conjunction with the installation of the
heat pump, it is crucial to address other factors such as the airtightness of the building and
the control of the heating to effectively improve the energy performance of the building, as
evidenced by the importance of the characteristics.

5. Discussion

The proposed data-driven methodology offers a potential solution by enabling the analysis
of the energy performance of residential buildings on a large scale, facilitating the decision-
making process. The methodology uses limited available data to generate a synthetic dataset
of 1 million buildings. This dataset is then used to develop a machine-learning model explic-
itly designed for the urban context. However, the data required to implement the proposed
methodology, such as building geometry and non-geometry data, census information, and
weather data, originate from various sources and come in different formats, leading to data
inconsistencies. Consequently, due to these inconsistencies and the absence of standardized
urban-scale data, available data present a significant and ongoing barrier to accurately im-
plementing urban-scale modeling. The developed model allows for the prediction of various
retrofit scenarios, even with limited resources. Segregation and ensemble-based methods
improve the overall performance of the model, resulting in a significant 15% improvement.
However, it is essential to note that the accuracy and implementation of the model depend
on the quality and availability of input data and may vary in different contexts and countries.
Moreover, developing synthetic data for different building archetypes in other contexts might
require additional computational time.

Furthermore, the study identifies the key characteristics that influence the building de-
mand for end-use. This finding enables policymakers to prioritize these influential features
when considering retrofit measures. By focusing on these critical factors, policymakers can
effectively allocate resources and implement targeted retrofit strategies to improve building
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energy efficiency. However, it should be acknowledged that the importance of characteristics
may differ for different sample data, weather conditions, or urban contexts.

Finally, the proposed solution is a valuable tool for urban planners, energy policymak-
ers, utility planners, and manufacturers in evaluating and implementing retrofit scenarios
at the urban scale. However, the models inherently depend on the quality of the data in-
put. Therefore, incorrect synthetic data that do not closely represent real-world conditions
might not accurately capture the complexities and uncertainties of the actual urban context.
Furthermore, machine learning models are often considered ’black boxes,’ which could lead
to a lack of understanding of the underlying reasons behind the predictions. This lack of
knowledge makes it difficult for policymakers and planners to trust and fully understand
the recommendations. Additionally, the complexity and computational requirements of ma-
chine learning models and parametric simulations can be prohibitive, necessitating significant
computational resources.

6. Conclusion and Future Work

Stakeholders analyze the energy performance of buildings on an urban scale to develop
effective policy measures that reduce energy consumption and CO2 emissions. However,
collecting and analyzing building energy performance data on a large scale is complex and
time-consuming, requiring multiple resources. To address this challenge, we propose a novel
methodology that uses machine learning algorithms to predict the energy performance of
an entire urban building stock. This methodology allows stakeholders to make informed
decisions and implement targeted interventions to promote sustainable urban development.
In this paper, we implement the end-use demand segregation method and the ensemble-based
approach to develop a robust learning model to predict building energy performance. This
approach improves the predictive performance of machine learning and supports informed
decision-making in building energy performance assessment.

The methodology tested on Dublin City by developing a synthetic building dataset of 1
million residential buildings using parametric analysis of 19 key parameters identified from
four building archetypes. The results show that the segregation method is highly effective
for predicting EUI based on the given dataset, compared to the traditional single model
approach. Among the ten different machine learning algorithms compared, variations of the
Gradient Boosting algorithm (XGB, LGBM, and HGB) are found to be the most efficient
and accurate models to predict building energy performance. Furthermore, the ensemble-
based approach further improved the results, achieving an accuracy of 91%. Comparing the
ten different models revealed that the ensemble-based segregation method is highly effective
in predicting EUI, with an improvement in the energy rating of the building resulting in
an increase in accuracy 15%. Accurate prediction of building energy performance enables
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stakeholders, such as energy policymakers and urban planners, to make informed decisions
when planning large-scale retrofit measures.

In general, the proposed methodology offers valuable information and tools to support
urban planners and energy policymakers in addressing the challenges of sustainable planning
and energy efficiency on an urban scale. The data-driven approach, coupled with feature anal-
ysis and predictive modeling, empowers decision-makers to make informed choices and drive
positive change in urban energy systems. The findings of this study offer valuable assistance
to energy policymakers and urban planners by providing information that can contribute
to the development of effective retrofit measures. These measures aim to decrease building
energy consumption and mitigate carbon emissions. By incorporating the knowledge gained
from this study, policymakers and planners can make well-informed decisions that facilitate
sustainable urban development and address the pressing issue of climate change. Further-
more, the study helps policymakers and urban planners evaluate the feasibility and impact
of implementing retrofit measures on a larger scale. This comprehensive approach supports
the formulation and execution of strategies to address energy efficiency and environmental
concerns.

Future research directions could investigate the influence of different mid-rise or high-rise
apartments and non-residential archetype models on the predictive performance of machine
learning algorithms. Furthermore, the integration of cloud computing parametric simulation
could further enhance the research results. Currently, this research focuses on annual energy
use and could be expanded to analyze seasonal and monthly variations.
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generation of building stock data from remote sensing for urban heat demand modeling,
ISPRS International Journal of Geo-Information 10 (1) (2021) 23.

[41] A. S. Mohammed, P. G. Asteris, M. Koopialipoor, D. E. Alexakis, M. E. Lemonis, D. J.
Armaghani, Stacking ensemble tree models to predict energy performance in residential
buildings, Sustainability 13 (15) (2021) 8298.

[42] F. Johari, G. Peronato, P. Sadeghian, X. Zhao, J. Widén, Urban building energy model-
ing: State of the art and future prospects, Renewable and Sustainable Energy Reviews
128 (2020) 109902.

[43] T. Loga, B. Stein, N. Diefenbach, Tabula building typologies in 20 european coun-
tries—making energy-related features of residential building stocks comparable, Energy
and Buildings 132 (2016) 4–12.

[44] U. Ali, M. H. Shamsi, C. Hoare, E. Mangina, J. O’Donnell, A data-driven approach for
multi-scale building archetypes development, Energy and buildings 202 (2019) 109364.

[45] W. Wang, S. Li, S. Guo, M. Ma, S. Feng, L. Bao, Benchmarking urban local weather
with long-term monitoring compared with weather datasets from climate station and
energyplus weather (epw) data, Energy Reports 7 (2021) 6501–6514.

[46] M. P. Tootkaboni, I. Ballarini, M. Zinzi, V. Corrado, A comparative analysis of different
future weather data for building energy performance simulation, Climate 9 (2) (2021)
37.

36



[47] Y. Zhang, I. Korolija, Performing complex parametric simulations with jeplus, in:
SET2010-9th International Conference on Sustainable Energy Technologies, 2010, pp.
24–27.

[48] J. Egan, D. Finn, P. H. D. Soares, V. A. R. Baumann, R. Aghamolaei, P. Beagon,
O. Neu, F. Pallonetto, J. O’Donnell, Definition of a useful minimal-set of accurately-
specified input data for building energy performance simulation, Energy and Buildings
165 (2018) 172–183.

[49] Y. Choi, D. Song, S. Yoon, J. Koo, Comparison of factorial and latin hypercube sampling
designs for meta-models of building heating and cooling loads, Energies 14 (2) (2021)
512.

[50] W. Tian, Y. Heo, P. De Wilde, Z. Li, D. Yan, C. S. Park, X. Feng, G. Augenbroe, A
review of uncertainty analysis in building energy assessment, Renewable and Sustainable
Energy Reviews 93 (2018) 285–301.

[51] Y. Ye, M. Strong, Y. Lou, C. A. Faulkner, W. Zuo, S. Upadhyaya, Evaluating perfor-
mance of different generative adversarial networks for large-scale building power demand
prediction, Energy and Buildings 269 (2022) 112247.

[52] D. H. Wolpert, Stacked generalization, Neural networks 5 (2) (1992) 241–259.

[53] Building Energy Rating Certificate Database by SEAI, https://ndber.seai.ie/

BERResearchTool/ber/search.aspx, [Online; accessed 25-Oct-2023].

[54] K. McDonagh, Geodirectory technical guide, an post and ordnance survey ireland (2023).

[55] Ordnance Survey Ireland, https://www.osi.ie, [Online; accessed 25-Oct-2023].

[56] Census of Population 2022 - Profile 1 Housing in Ireland by Central Statis-
tics Office, https://www.cso.ie/en/releasesandpublications/ep/p-cpsr/

censusofpopulation2022-summaryresults/, [Online; accessed 25-Oct-2023] (2022).

[57] Ireland Climate Action Plan 2023, https://www.gov.ie/en/publication/

7bd8c-climate-action-plan-2023/, [Online; accessed 25-Oct-2023].

[58] U. Ali, M. H. Shamsi, M. Bohacek, C. Hoare, K. Purcell, E. Mangina, J. O’Donnell,
A data-driven approach to optimize urban scale energy retrofit decisions for residential
buildings, Applied Energy 267 (2020) 114861.

[59] J. Laue, Ashrae 62.1: using the ventilation rate procedure, Consult Spec Eng 55 (2018)
14–17.

37

https://ndber.seai.ie/BERResearchTool/ber/search.aspx
https://ndber.seai.ie/BERResearchTool/ber/search.aspx
https://www.osi.ie
https://www.cso.ie/en/releasesandpublications/ep/p-cpsr/censusofpopulation2022-summaryresults/
https://www.cso.ie/en/releasesandpublications/ep/p-cpsr/censusofpopulation2022-summaryresults/
https://www.gov.ie/en/publication/7bd8c-climate-action-plan-2023/
https://www.gov.ie/en/publication/7bd8c-climate-action-plan-2023/


[60] Intergovernmental Panel on Climate Change (IPCC, https://www.ipcc.ch, [Online;
accessed 25-Oct-2023].

[61] P. Nolan, J. Flanagan, High-resolution climate projections for ireland–a multi-model
ensemble approach, Environmental Protection Agency (2020).

38

https://www.ipcc.ch

	Introduction
	Literature Review
	Physics-based urban building energy modeling
	Data-driven urban building energy modeling

	Methodology
	Data Collection
	Building Archetypes Development
	Parametric Simulation
	Machine Learning Modeling
	Data Preprocessing
	Data Splitting
	Non-segregation Models Development
	End-use demand segregation Models Development
	Ensemble and segregation Models Development
	Models Performance
	End-use Features Extraction

	Urban Building Energy Performance Analysis

	Case Study
	Data Collection
	Building Archetypes Development
	Parametric Simulation
	Machine Learning Modeling
	Urban Building Energy Performance Analysis

	Discussion
	Conclusion and Future Work
	Acknowledgments

