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Abstract 
 

This paper presents a methodology of digital shearography for determining the size of the smallest 

detectable defect and the depth under different loading magnitudes for the purpose of 

nondestructive testing. Digital Shearography, an interferometric nondestructive testing (NDT) 

technique, has been proven to be a useful tool for material inspections and evaluations, especially 

for detecting delaminations/disbonds in composite materials and honeycomb structures. A 

commonly asked question in the field of NDT is about measuring sensitivity - specifically, what 

is the smallest detectable delamination/disbond and how deep can these be detected? Although 

various attempts to find the smallest detectable defect by shearography have been made, a 

numerical model for determining the size of the smallest detectable defect and the depth has not 

yet been developed. This paper did a study in this aspect, especially for NDT of delamination and 

disbond in polymers and honeycomb structures. First, a mechanical model based on the thin plate 

theory to calculate the expected bending of close-to-surface defects was proposed; the model built 

a relationship among the deformation caused by a defect, the size and the depth of the defect, as 

well as the load and the material properties. Second, the relationship between the relative 

deformation measured by shearography and the deformation induced by a defect was established 

based on the optimized shearing amount and the sensitivity of digital shearography. Based on these 

analyses, relationships between the size of the smallest detectable defect and the depth under 

different load amounts were established for different defect shapes. Finally, experimental 

validation based on different sizes of prefabricated defects were conducted to verify these 

relationships. The experimental results show that the model developed can provide useful 

estimation for NDT by digital shearography, especially with helping test engineers estimate the 

size of the smallest detectable defect and the depth with corresponding loading magnitudes. 

 

Keywords: Digital shearography, NDT, the smallest detectable size, effect of defect depth, effect 

of defect shape, impact of loading magnitude  

 

1. Introduction 
 

Honeycomb core sandwich composites and composites like glass/carbon fiber reinforced plastic 

(GFRP and CFRP) have superior strength-to-weight ratios, high resistance to corrosion and fatigue, 

and are widely used in aerospace and automotive industry. Unfortunately, these kinds of materials 

easily produce disbonds between the inner core and outer skin for honeycomb structures and 

delaminations between the laminated layers for GFRP and CFRP due to impact loading, aging, 

imperfect manufacturing, etc. Different NDT methods have already been applied to test for such 

kinds of defects [1-3]. However, optical methods such as thermography, holography, electronic 
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speckle pattern interferometry (ESPI), and shearography are emerging as strong candidates for 

new industrial NDT tools because of their whole field, non-contacting, and non-contaminating 

properties [4-9].  Among these optical methods, the shearographic method seems more efficient 

and practical for NDT testing [10-15]. Shearography is a coherent-optical method that is similar 

to Holography and ESPI, but displays many advantages for industrial applications due to its direct 

measurement of strain information: (1) A rigid body movement generates a displacement, but no 

strain, thus, shearography is relatively insensitive to environment interruptions and it is more 

practical for industrial application; (2) defects in objects usually induce strain concentrations, thus, 

it is easier to reveal defects with strain anomalies than with displacement anomalies; (3) 

shearography uses a self-reference interferometric system which has low requirement for laser 

coherent length and enables the use of economical and practical diode laser or multi diode lasers 

if a larger area is inspected. These substantial advantages have led to shearography being one of 

the best NDT tools for composite materials, especially for honeycomb structures [16-18]. 

 

Digital shearography, also called electronic shearography or TV shearography, uses a digital 

camera as the recording device combined with different measurement and evaluation algorithms 

to enable a real time measurement and quantitative evaluation of shearogram [19-20]. In the past 

two decades, digital shearography has been widely used in the field of NDT of composite materials 

[21-25]. The main application is to detect disbonds in honeycomb structures and delaminations in 

GFRP and CFRP composite materials [26-28]. Although there exist many advantages of digital 

shearography, a successful shearographic inspection depends on highlighting the contribution of 

defect-induced surface deformation and the smallest measurable deformation of the shearographic 

system. The defect-induced deformation is a complex parameter which is related to loading 

magnitude, loading method, shearing amount, defect size, depth, shape, and so on [29]. In the past 

two decades, quite a number of researchers conducted studies on shearographic NDT for different 

sizes and/or depths under different loading methods. E.C. Krutul, R.M. Groves et al. reported in 

2011 a modelling of opto-mechanical measurement system, including shearography instrument, 

loading technique and the response of the object under test and the comparison of the simulation 

results with experimental results. This approach is suitable to understand the response of 

components under load and to predict anomalies such as defects [30]. In the next year (2012), G. 

De Angelis et al. reported a new numerical-experimental model to detect size and depth of flat 

bottom holes in metallic and laminated composite structures by digital shearography based on 

dynamic response of defects to applied stresses [31]. Another numerical-experimental model to 

test defected materials by digital shearography based on thermal loading was reported by D. Akbari 

et al. in 2013 [32]. Hybrid methods based on experimental and computational investigations using 

shearographic test results and finite element analysis software and/or Matlab to predict internal 

defects were reported by X. Chen et al. (2015), Y. Fu et al. (2017) and J.F. Vandenrijt et. al. (2019), 

respectively [33-35]. Although these studies have provided useful information in the area of 

shearographic NDT, a systematic study to show the relationships between the size of the smallest 

detectable defects and the depths under different loading magnitudes for NDT by the shearographic 

testing method has not yet been conducted.  

In this paper, we developed a mechanical model to quantitatively present the relationships between 

the size of the smallest detectable defects and the depths under different loading magnitudes for 

https://www.sciencedirect.com/topics/engineering/laminated-composite-structure
https://www.sciencedirect.com/topics/engineering/shearography
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NDT by the shearographic testing method. A mechanical model based on the elastic mechanics 

and the plate theory was first built. The differential equation of the deformation and the solutions 

of the deformation were then presented for different defect shapes at given boundary conditions. 

Although thermal loading is the easiest loading method, vacuuming or and some internal pressure 

is more effective loading method because such kind of loading will tear apart disbonds and 

delaminations which cause the surface deformation larger and make NDT of the defects easier. 

Using this loading method, numerical equations for determining the size of the smallest detectable 

defect and the depth based on the smallest measurable deformation or the relative deformation of 

digital shearography were developed. Experimental validation was conducted and the results 

agreed with the numerical equations. 

       

2. A Brief Review of Digital Shearography 
 

2.1 Principle of shearography 

 

 
Fig. 1. Principle of digital Shearography 

 

Fig. 1 shows the typical shearographic setup in which a modified Michelson interferometer is used 

as a shearing device. By tilting mirror 1 by a very small angle, the system can cause two non-

parallel rays of light scattered from two different object points to interfere with each other. The 

distance and the orientation between these two points are called the shearing amount and the 

shearing direction, respectively. As the object surface is diffusely reflective, the interference of the 

scattered rays yields a random pattern known as speckle pattern. When the object is slightly 

deformed, the speckle pattern will be slightly changed. A visible fringe pattern, called shearogram, 

can be observed by conducting a digital subtraction of the intensities of the two speckle patterns, 

which will be explained in detail below. 
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2.2 Formation of shearogram 
 

The intensity “I” of the speckle pattern before loading can be expressed by [36]: 
 

I = A + B cos         (1) 
 

where A is the background, B is the modulated term which is related to the image contrast 

γ (γ =B/A), and  is the phase difference between two points with the shearing distance in the 

shearing direction. Fig. 2a shows the intensity image of the speckle pattern before loading.  

 

After the object is loaded, the phase difference between the two points becomes ’ = +, where 

 is the relative phase change, resulting from a relative deformation between P1 and P2. The 

intensity of the speckle pattern after loading then becomes the follows:   

 

I’ = A + B cos ’ = A + B cos ( + )     (2) 

 

Fig. 2b shows the intensity image of the speckle pattern after loading. A fringe pattern, or 

shearogram, which is shown in Fig. 2c, can be obtained by a direct subtraction between the 

intensity images of the speckle patterns before and after loading. Because the intensity value must 

be positive, the absolute value will be displayed, represented as follows: 

 

  Is = I’ – I = Bcos ( +) – cos ()     (3) 

 

 
(a)                                      (b)                                         (c) 

 

Fig. 2. Intensity images of the speckle pattern before loading (a), after loading (b), and the 

shearogram obtained by a digital subtraction between these two intensity images (c)   

 

Dark fringes appear on the shearogram when Is= 0, i.e.  = 2n (n =1, 2, 3…). The shearogram is 

therefore displayed as a highly visible fringe pattern. Due to the relative phase difference between 

two adjacent fringes being equal to 2, the phase at each fringe can be determined by counting the 

shearogram fringes. Then the relative deformation can be determined based on the relationship 

between the relative phase change and the relative deformation between points P1 and P2. 
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For digital shearography NDT, the angle between the illumination direction of the laser and the 

observation direction of the digital camera is usually small or close to zero, Under this condition, 

the relative deformation w between the two points with the shearing amount in the out-of-plane 

direction is given by [37]: 
 

  w = (/4) Δ         (4) 
 

where  is the wavelength of the laser used.  

 

Eq. (4) shows that the relative deformation w is proportional to the relative phase difference Δ. 

Thus, the measuring sensitivity for the relative deformation depends on the smallest measurable 

Δ. In the shearographic interferometry, the relative phase difference Δ can be determined by the 

intensity subtraction method as shown in Fig. 2 and the phase shift method. In the intensity 

subtraction method, the smallest measurable value of the relative phase difference Δ is 2 because 

the smallest integer number is 1. Therefore, the smallest measurable w is /2 based on Eq. (4). 

In the phase shift method, phase values less than 2π can be measured. According to the methods 

to produce phase shifts, they can be divided into two categories: temporal phase shift digital 

shearography (TPS-DS) and spatial phase shift digital shearography (SPS-DS). The temporal 

phase shift method needs to record multiple frames and introduce phase shift between each frame 

in time series. It is highly accurate and is usually used for static measurements (also for dynamic 

if vibration is harmonic) [38], while the spatial phase shift method introduces the phase shift in 

space series and requires only a single frame for phase determination [39-40] which is well suited 

for dynamic measurements. Usually, the spatial phase shift method has a relatively complicated 

optical setup and a small aperture requirement which demands higher laser power. With the 

continuous improvement in technology in recent years, the spatial phase shift method has begun 

to be used in the commercial digital shearographic system [39-42], however, the temporal phase 

shift technique is still by far the most popular method used in the commercial digital shearography 

system due to its simple optical setup and easy implementation. All phase maps in the following 

sections were obtained by the temporal phase shift method.  

 

Compared to the intensity subtraction method in which the smallest measurable phase is 2, the 

phase shift method has much higher phase measurement sensitivity. Considering speckle noise, 

smooth algorithm, and other factors, the measurement sensitivity of phase shift method-based 

digital shearography can reach between 2/5 and 2/10, which is about 5 to 10 times higher phase 

measuring sensitivity than the intensity subtraction method, depending on the test environment, 

hardware setup, and software algorithm. According to Eq. (4), the measuring sensitivity of relative 

deformation w [w = (/4) ] can reach between /10 and /20. The application of phase shift 

methods has led to tremendous enhancement of the measuring sensitivity in digital shearography. 

Therefore, smaller defects can be found. A comparison of shearographic tests using intensity 

subtraction and phase shift methods are shown in Fig. 3. 
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Fig. 3. Comparison between the intensity subtraction version (left) and the phase-shift method 

(right), a smaller defect in the middle become visible in the phase shift shearography 

 

3. Digital Shearography for Non-Destructive Testing (NDT) 
 

3.1. Principle of shearography for NDT 
 

The fundamentals of shearography for NDT is to find internal defects/delaminations by measuring 

the surface anomalies from the distribution of w caused by a minor loading. Fig. 4 shows how 

the shearography works for NDT. When an object with an internal defect (Fig. 4a) is loaded, such 

as by a vacuum loading (Fig. 4b), the surface in the defect area will cause a relatively larger 

deformation (Fig. 4c) than other areas, and the maximal deformation occurs in the middle of the 

defect area. Shearography measures a relative deformation “w” between two points with a 

shearing amount (Fig. 4d). If the shearing amount selected is half or more than the size of the 

defect, the maximum relative deformation w measured by shearography is equal to the maximal 

deformation in the defect area, denoted as wmax as shown in Fig. 4d. Usually, the smallest sized 

defect which should be detected is known or is set by the user of the materials; therefore, an 

optimized shearing amount can be selected and the maximum measurable relative deformation is 

the maximum deformation wmax in the defect area.  

 

Now, the question is what kind of defects can be found? If the deformation caused by a loading in 

the defect area is larger than the smallest measurable deformation wmax by the digital shearography, 

such kinds of defect should be detectable. According to the discussions in section 2.2, the smallest 

measurable deformation wmax is ranged from /10 and /20, depending on the test environment, 

the hardware setup, and software algorithm. The deformation caused by the loading is also related 

to the defect size S, the depth t from the surface, material properties, etc. (Fig. 5). In order to 

estimate the smallest detectable defect, the analysis of the relationship among these parameters is 

mandatory. 
 

 

 

 

 

 

 

 

 

 



7 
 

 
 

Fig. 4. Fundamentals of shearography for NDT: (a) an object with a defect, (b) deformation after 

a loading, (c) the shape of the deformation, and (d) relationship between the relative deformation 

and the shearing amount 

 

3.2. Relationship among the deformation caused by loading, the size and depth of the smallest 

detectable defect 
 

3.2.1. Mechanical model 
 

In order to discuss the relationship between the deformation caused by loading in the defect area 

and the size and the depth of the smallest detectable defect, a numerical method to calculate the 

deformation should be studied first. Fig. 5 shows deformations of a disbond between a surface 

sheet and a honeycomb core in a honeycomb structure and a delamination in a CFRP or GFRP 

panel under a pulling force, such as a vacuum loading, respectively. It should be emphasized here 

that the study is based on the fact that the defect is not far from the object surface. The depth of 

the defect t should be less than 1/5  1/8 of the defect size and the loading is perpendicular to the 

surface. With these assumptions, the top parts of the defects can be counted as plates. From a 

mechanical point of view, these deformations are equivalent to the deformation of the plate under 

a loading of internal pressure as shown in Fig. 6. If the size of the hole underneath the plate is S 

and S = 2a (a is the radius of a circular shape or the half side of a rectangular shape) and the 

thickness of the top plate is t, the deformation shown in Fig. 6 can approximately be considered as 

the model of deformation in the area of the disbond or the delamination shown in Fig. 5. 
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Fig. 5. Defects and the deformation under a pulling force: a disbond in a honeycomb structure 

(left), and a delamination in a CFRP/GFRP panel (right) 

 

 
Fig. 6. An equivalent deformation for a plate with a hole underneath under an internal pressure. 

 

If the loading is perpendicular to the surface and the thickness t is much smaller than the size of S 

[t  (1/51/8)xS], the upper part of the hole can approximately be regarded as a plate fastened all 

around under pure bending and twist. According to the elastic mechanics and the plate theory, the 

differential equations of the deformation for the plate shown in Fig. 6 is given by [43]:   
 

𝛻2𝛻2𝑤 =  
 𝑝

𝐷 
      (5) 

    

where w is the out-of-plane deformation, p is the magnitude of internal pressure, D is the 

flexural rigidity,  2 and D are shown as follows: 

𝛻2 =  
𝜕2𝑤

𝜕𝑥2
+  

𝜕2𝑤

𝜕𝑦2
     (6) 

𝐷 =  
𝐸 𝑡3

12 (1− 2)
      (7) 

In Eq. (7), E is the elastic modulus of the material,  is the Poisson ratio, and t is the 

thickness of the plate which is equivalent to the depth of defects. The solution of Eq. (5) depends 

on the shape of the defect, the method of loading and boundary conditions. In our study, we will 

discuss defects in two shapes, one is circular and the other is rectangular or square. 
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3.2.2. Deformations of defects with different shapes 

 

Circular defect 

First, we will discuss the deformation of a defect with a circular shape. Assuming that the circular 

defect has a radius of “a”, its depth is t, and the origin of coordinates is in the middle of the defect, 

the loading and the boundary conditions are listed below:  
 

- Loading method: internal pressure (a uniform load), 

- Boundary conditions: Fastened all around, i.e. wx=a = 0, w/xx=a = 0,  
 

Under these conditions, the solution of differential Eq. (7) for deformation w is given by [44]: 

 

𝑤 =
 𝑝

64 𝐷 
 [ 𝑎2 − (𝑥2  + 𝑦2)]2      (8) 

 

and the maximum deformation wmax occurs in the middle of the plate, i.e. at x = 0 and y = 0: 

 

𝑤𝑚𝑎𝑥𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 =
 𝑝

64 𝐷 
 𝑎4     (9) 

 

 where p is the magnitude of the internal pressure, a is the radius of the defect which is 

half of the size of the defect S, i.e. S = 2a. Substituting Eq. (7) for the flexural rigidity D in Eq. (9), 

the maximum deformation wmax can be rewritten as follows: 

 

𝒘𝒎𝒂𝒙𝒄𝒊𝒓𝒄𝒖𝒍𝒂𝒓 =  𝟎. 𝟎𝟏𝟏𝟕𝟐 
(𝟏−𝟐)

𝑬
  

𝑺𝟒  𝒑

𝒕𝟑     (10) 

 

Rectangular and square defect 

If the defect is a rectangular shape with a size of 2ax2b (2a is the long side and 2b the short side). 

under the same loading method (i.e. an internal pressure) and boundary conditions (i.e. fastened 

all around) as the circular defect, the maximum deformation in the middle of the plate is given by 

[44]: 

 

𝑤𝑚𝑎𝑥𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
16 𝑎4 𝑏4

4 [ 3(𝑎4+ 𝑏4)+2𝑎2 𝑏2]
 
𝑝

𝐷
     (11) 

 

If the ratio of the short side (2b) to the long side (2a) is denoted r (r = 2b/2a) and the defect size 

S is expressed as 2a, Eq. (11) can be simplified by substituting Eq. (7) for D: 

 

𝒘𝒎𝒂𝒙𝒓𝒆𝒄𝒕𝒂𝒏𝒈𝒖𝒍𝒂𝒓 = 𝟎. 𝟎𝟏𝟓𝟒𝟑 
𝟖 𝒓𝟒

 [𝟑𝒓𝟒+𝟐𝒓𝟐+𝟑]
 
(𝟏−𝒗𝟐)

𝑬
 
𝑺𝟒𝒑

𝒕𝟑    (12) 

 

 For a square defect a = b, i.e. r =1, Eq. (11) can further be simplified as: 

 

𝒘𝒎𝒂𝒙𝒔𝒒𝒖𝒂𝒓𝒆 =  𝟎. 𝟎𝟏𝟓𝟒𝟑 
(𝟏−𝒗𝟐)

𝑬
 
𝑺𝟒 𝒑

 𝒕𝟑    (13) 
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3.2.3. Relationship between smallest detectable defects and the depth under given loads  

 

Eqs. (10 - 13) present the relationship of the maximum deformations in the middle of the defects 

with the material properties, the size and depth of defects, and the loading magnitude for defects 

with circular, rectangular, and square shapes, respectively. They can also be rewritten as an 

expression of depth of the defect t, in term of the defect size S (S = 2a), the loading p and the 

maximum deformation in the middle of the defects wmax: 

 

𝑡 (𝑆,𝑝, 𝑤𝑚𝑎𝑥)𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 = 0.22714 [
 (1−2)

 𝐸
 ]

1

3 [ 
𝑆4  𝑝

𝑤𝑚𝑎𝑥
 ]

1

3     (14) 

𝑡 (𝑆,𝑝, 𝑤𝑚𝑎𝑥)𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = 0.24896 [
8 𝑟4

 [3𝑟4+2𝑟2+3]
]

1

3[
 (1−2)

 𝐸
 ]

1

3 [ 
𝑆4  𝑝

𝑤𝑚𝑎𝑥
 ]

1

3   (15)  

𝑡 (𝑆,𝑝, 𝑤𝑚𝑎𝑥)𝑠𝑞𝑢𝑎𝑟𝑒 = 0.24896 [
 (1−2)

 𝐸
 ]

1

3 [ 
𝑆4  𝑝

𝑤𝑚𝑎𝑥
 ]

1

3      (16) 

 

If a defect under a certain loading causes a deformation and the maximum deformation wmax in the 

center of the defect shown in equations above reaches the smallest measurable deformation by 

shearography, then such a defect is detectable by shearography. Substituting the smallest 

measurable deformation value, i.e. the measuring sensitivity of deformation, into wmax in the 

equations, the corresponding values of S and t are the size of the smallest detectable defect and the 

depth. Therefore, the relationships between the size of the smallest detectable defect S and the 

depth t under a vacuum or a pressure loading can be determined by Eqs. (14 - 16) for defects with 

circular, rectangular, and square shapes, respectively. 

 

What is the measuring sensitivity of deformation by digital shearography? As described in section 

2.2 and 2.3, shearography measures a relation deformation w. In the intensity subtraction method, 

the measuring sensitivity of w is /2, whereas, it can reach 5 to 10 times higher if a phase shift 

technique is introduced, depending on different conditions such as the test environment, the optical 

setup, and the software algorithm. Although 10 times higher measuring sensitivity needs an 

optimized condition, it is relatively easy to reach 5 to 6 times higher measuring sensitivity, i.e. the 

measuring sensitivity of w reaches to /10 to /12. 

 

According to the discussion in section 3.1, if the shearing amount is selected as a half size or bigger 

than half the size of a defect, the maximum relative deformation w measured by shearography is 

equal to the maximal deformation in the defect area as explained in Fig. 4d, i.e. the measuring 

sensitivity of digital shearography for a relative deformation is actually equal to the measuring 

sensitivity of wmax. In order to find the defect, the wmax caused by a loading should bigger than the 

measuring sensitivity of shearography, e.g. from /10 to /12.  

 

Substituting the wmax with /12, the relationships between the size of the smallest detectable defect 

S and the depth t can be determined by Eqs. (14 – 16) for defects with circular, rectangular and 

square shapes, respectively. If an He-Ne laser is used in the setup, the value of /12  53 nm. Figs. 

7 - 9 show these relationships under different loading magnitudes if the material is aluminum, i.e. 
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E = 70 GPa,  = 0.33. The data in the x- and y-axes in the figures represent the size of the smallest 

detectable defect and the depth, respectively. The right part below the curves stand for the sizes of 

defects which are bigger than smallest detectable defect, and thus the defects are detectable and 

considered visible. The left part above the curve stands for the sizes of defects which are smaller 

than smallest detectable defect, and thus the defects are not detectable, and considered invisible.  

 

Using different material properties (i.e. the Young’s Module “E” and the passion ratio “”), the 

curves for different materials, such as for GFRP or CFRP panels, can be created based on equations 

(14), (15) and (16). 

 

                 
Fig. 7. Relationships between the size of the smallest detectable defect S and the depth t with a 

circular defect shape under different pressures (E=70 GPa, =0.33 and wmax=53 nm) 

 

 



12 
 

                         
Fig. 8. Relationships between the size of the smallest detectable defect S and the depth t with a 

rectangular defect shape at different r values (r = b/a, E=70 GPa,  =0.33 and wmax=53 nm) 

 

                  

Fig. 9. Relationships between the size of the smallest detectable defect S and the depth t with a 

square defect shape under different pressure (E = 70 GPa,  =0.33 and wmax= 53 nm) 
       1 
 2 

4. Experiments 3 
 4 
4.1 Specimen preparation 5 

 6 

According to Eq. (14), defects were simulated by flat bottomed holes with different depths and 7 

sizes in aluminum plates with a total thickness of 12.7 mm (0.5 in) and a diameter of 166 mm. 8 

Five cylindrical holes were made 12.2 mm deep for one specimen with the diameter sizes ranging 9 

from 3, 4, 5, 5.9 and 8.2 mm, and 11.7 mm deep for the other specimen with the diameter sizes 10 

ranging from 5, 5.9, 8.2, 9.9 and 12 mm, respectively. With this design, the depth of the five 11 

simulated defects is t = 0.5 mm for the first specimen and t = 1 mm for the second specimen with 12 

boundary conditions of all around fixed. 13 

 14 
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Fig. 10 shows one of the samples with t = 1 mm. The 6 penetrating holes equidistantly distributed 15 

on the outer ring are used for fixing. The other 5 blind holes inside are used to simulate 5 defects 16 

of different sizes.  17 

 18 

  19 
Fig. 10. The specimen of t = 1 mm with 5 simulated defects made by 5 flat bottomed blind holes 20 

of different diameters, left: back side, right: front side to be tested 21 

 22 

4.2 Experimental setup and results 23 

Fig. 11 shows the experiment setup. The aluminum plate was fixed in a cylindrical chamber which 24 

was connected to pressure pipe to generate a pressure load. The front surface of the aluminum 25 

plate was illuminated by an expanded He-Ne laser (50 mW) with a wavelength of 632.8 nm and 26 

tested by digital shearography with the phase shift technique. The camera has one mega pixel 27 

numbers and the shearing device is a modified Michelson Interferometer in which a Piezoelectric 28 

Transducer (PZT) driven mirror is used for the phase shift method. The shearing is in the x-29 

direction, however, the shearing direction doesn’t affect the results of the test if the defect is 30 

circular, square, or rectangular in shape, as discussed in this paper. The shearing direction will 31 

affect the test result when the defect is a narrow and long (much bigger than shearing amount) slot. 32 

Regarding shearographic tests of narrow and long slots, please refer to literature [45]. The shearing 33 

amount is 6 mm which is bigger than half of the diameter of each hole of the two specimens. Due 34 

to manufacturing limitations in our facilities, only cylindrical flat bottomed holes were made, i.e. 35 

only the defects with circular shape were experimentally tested. 36 

 37 
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 38 
Fig. 11. The setup of digital shearography for the experimental validation  39 

 40 

Fig. 12 shows the shearographic test results for the aluminum plate with five prefabricated defects 41 

whose depth t = 1 mm and whose size (diameter) ranges from S = 5, 5.9, 8.2, 9.9 and 12 mm, 42 

respectively. When the internal pressure reaches p = 80 kPa, three of the 5 defects can be found 43 

with the S = 8.2, 9.9, and 12 mm defects, respectively, marked in red circles. Please note that the 44 

noisy areas in the outer ring are the locations of fastening studs shown in Fig. 10 and are not defects. 45 

To clearly demonstrate the results with a better spatial resolution, the measurements were zoomed 46 

to each defect area (about 65 mm x 50 mm) to increase the pixel number between two adjacent 47 

fringes. By using one-megapixel camera, the display in the small area enhances the spatial 48 

resolution from the previous about 7 pixels/mm to about 15 pixels/mm. High spatial resolution 49 

means more pixel numbers between two adjacent fringes and more pixels lead to more grayscale 50 

points/values between two adjacent fringes. Therefore, the fringe pattern, the butterfly fringe 51 

pattern of shearography, becomes clearer. A comparison between the simulated curve of the 52 

smallest detectable defect size at t = 1 mm and the shearograms measured in each defect area of 53 

the aluminum plate at p = 80 kPa is shown in Fig. 13. As indicated above, the aluminum plate 54 

has 5 simulated defects whose size (diameter) ranges from S = 5, 5.9, 8.2, 9.9 and 12 mm, which 55 

correspond to the five shearograms in each defect area (from left to right), respectively. The 56 

experimental results agree with the numerical curve at t = 1.0 mm. According to the numerical 57 

curve, only defects larger than 8 mm can be detected at the given thickness and loading, and the 58 

experimental results have proved this as well. The shearograms in the areas with defect size of 5.0 59 

mm and 5.9 mm don’t show a butterfly pattern, so these two defects can’t be detected (see the left 60 

two shearograms), whereas, the right three shearograms shows a clear butterfly pattern indicating 61 

that the defects of size 8.2, 9.9, and 12 mm can be detected.      62 

 63 
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 64 
Fig. 12. Shearographic test results for the aluminum plate with five prefabricated defects whose 65 

thickness is t =1 mm, and three of which were founded at p = 80 kPa 66 

 67 

 68 
Fig. 13. A comparison between the simulated curve and the shearograms measured in the area of 69 

each defect of the aluminum plate with five prefabricated defects at t = 1 mm and p = 80 kPa. 70 

 71 
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 72 
Fig. 14. Shearographic test results for the aluminum plate with five prefabricated defects whose 73 

thickness t = 0.5 mm, and three of which were founded at p = 80 kPa 74 

 75 

 76 
Fig. 15. A comparison between the simulated curve of the smallest detectable defect size and the 77 

shearograms measured in the area of each defect of the aluminum plate with five prefabricated 78 

defects with their depth t = 0.5 mm at p = 80 kPa. 79 

 80 

To further validate the numerical curve, the other plate with five prefabricated defects of depth t = 81 

0.5 mm and size ranging from S = 3, 4, 5, 5.9, and 8.2 mm, respectively, was tested by the digital 82 

shearographic setup. Fig. 15 shows the test result of the whole plate, three of the five defects, sizes 83 

5.0, 5.9, and 8.2, were found at p = 80 kPa. A comparison between the numerical curve and the 84 

shearograms measured in the area of each defect with depth t = 0.5 mm is shown in Fig. 16. 85 

According to the numerical curve, only defects larger than 4.9 mm can be detected at the given 86 
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thickness and the load. The defects of size 3 mm and 4 mm can’t be detected (see the left two 87 

shearograms), but defects with sizes of 5 mm, 5.9 mm, and 8.2 mm can be detected (see the right 88 

three shearograms). These experimental results again show very good agreement with the 89 

numerical curve at t = 0.5 mm and p = 80 kPa. 90 

 91 

5. Analysis and Discussion 92 

 93 

Experimental tests have been conducted to verify the numerical equations/curves developed in 94 

section 3. The experimental results have shown the reliability of the simulated equations/curves. 95 

In this section we will analyze the impact of various parameters on the test results and discuss 96 

application scopes and conditions of these numerical equations/curves.  97 

 98 

There are five parameters in all of three developed models from Eqs. (14 - 16): the size of the 99 

smallest detectable defect S, the corresponding depth t, the loading magnitude p, the measuring 100 

sensitivity of the deformation in the middle of the defect wmax, and the term of material properties 101 

(E and ). In this part, the impacts of these parameters on the size of the smallest detectable defect 102 

S will be analyzed. We still use the formula of the circular defects, i.e. Eq. (14), as an example for 103 

the analysis. Let’s rewrite Eq. (14) as an expression of the size of the smallest detectable defect S, 104 

in term of thickness t, the load p, the measuring sensitivity of the deformation in the middle of 105 

defect wmax, and the term of material properties (E and ): 106 

 107 

𝑆 (𝑡,𝑝, 𝑤𝑚𝑎𝑥)𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 = 4.4 [
 𝐸

 (1−2)
 ]

1

4 [ 𝑤𝑚𝑎𝑥]
1

4 [ 
1 

 𝑝
 ]

1

4 𝑡
3

4    (17) 108 

 109 

Eq. (17) shows that the size of the smallest detectable defect S is proportional to (wmax)
1/4, [E/(1-110 

2)]1/4, and t3/4, and inversely proportional to the loading p1/4. That means that a higher measuring 111 

sensitivity (i.e. smaller measurable wmax), less rigid materials (i.e. a smaller Young modulus), and 112 

a larger loading p can lead to finding a smaller S. However, the effect of each parameter on the 113 

S is not significant, because their impacts is only proportional to one-quarter power of these terms. 114 

An obvious influence on the S is the depth of the defect t which is proportional to S with three-115 

quarters power. That means that a reduction of a defect depth will obviously enable the detection 116 

of a smaller defect, in other words, an increase in the depth of a defect will make it much more 117 

difficult to find.  118 

 119 

Taking the circular defect as examples, i.e. Eq. (14), let’s conduct a quantitative analysis below.  120 

 121 

5.1. Impact of the measuring sensitivity of shearography:  122 

 123 

Fig. 16 shows two curves depicting the relationships between the size of the smallest detectable 124 

defects S and the depth t at different test sensitivity of shearography “wmax” (wmax is smallest 125 

measurable deformation in the defect center). One is wmax = 106 nm and the other is wmax = 53 nm. 126 

Looking at the line of t = 1 mm, while the test sensitivity for wmax is increased from 106 nm to 53 127 

nm, i.e. the test sensitivity is doubled, the size of the smallest detectable defect S is changed from 128 
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9.7 mm to 8.1 mm (about a 16% reduction). It is clear that the higher the test sensitivity, the smaller 129 

the defect size can be found, but its impact is not significant because S is only proportional to the 130 

1/4th power of wmax. 131 

 132 
Fig. 16. Relationships between the size of the smallest detectable defect S and the depth t at 133 

different test sensitivity wmax (E = 70 Gpa,   = 0.33 and p = 80 kPa) 134 

 135 

5.2. Impacts of the material properties and the load magnitude 136 

 137 

The impacts of the material property term [E/(1-2)] and the load magnitude p on the size of the 138 

smallest detectable defect S is similar to the measuring sensitivity presented in section 5.1 because 139 

S is only proportional to the 1/4th power of material property’s term and inversely proportional to 140 

the 1/4th power of the loading magnitude. Therefore, the degree of influence on S is similar to the 141 

discussion in Section 5.1, i.e. if the Young modulus E decreases by half or the magnitude of loading 142 

p is doubled, the smallest detectable defect S will only be reduced by about 16%.  143 

 144 

5.3. Impact of the depth of defect 145 

 146 

The impact of the defect depth on the size of the smallest detectable defect can be found from Fig. 147 

7. When the defect depth t is doubled, e.g. increases from 1 mm to 2 mm, looking at the curve of 148 

p = 80 kPa, the size of the smallest detectable defect S changes from 8.1 mm to 13.7 mm which 149 

is about a 69% change. This is because S is proportional to 3/4 power of t. Therefore, the depth of 150 

a defect t has a more obvious impact than the other three parameters. An increase of the depth of 151 

defects will lead to more difficulty in finding small defects.  152 

 153 

5.4. Effect of defect shapes:  154 

 155 
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Regarding the effect of defect shapes, the square shape is the easiest shape to find small defects, 156 

the circular shape is similar to the square shape, and the rectangular shape with its small r value, 157 

i.e. very narrow defect, is the most difficult to detect. These phenomena can be observed from Figs. 158 

7 - 9. It should be noted that the relationships between the size of the smallest detectable defect S 159 

and the depth t for an elliptical defect has not been presented due to its complexity, but because of 160 

its similarity to the rectangular equation, Eq. (15) can be approximately used to estimate ellipsoidal 161 

defects. 162 

 163 

5.5. Applicability of the simulated models 164 

 165 

The differential equation of the deformation presented in Eq. (5), and the analytical solutions (Eqs. 166 

(14-16)) are according to the plate theory. The upper part of a defect, i.e. the part from the top 167 

surface to the delamination or disbond, can be approximately regarded as a plate if the thickness t 168 

is much smaller than the defect size S [usually, t  (1/51/8)S]. Therefore, the analytical Eqs. (14-169 

16) are suited for detecting near surface defects. Take t  S/6 as an example: if a defect size S = 12 170 

mm, the equations and the curves developed are suited to detect defects whose depth is smaller 171 

than 2 mm, and if the defect size S = 36 mm, the equation and the curved are suited to detect 172 

defects whose depth t is smaller than 6 mm. This relationship gives a estimation between the defect 173 

size and the depth which it can be detected.  174 

 175 

Regarding the materials suited for the models developed, the analytical Eqs. (14 to 16) are suited 176 

for any isotropic and quasi-isotropic materials as long as the Young’s modulus and Poisson ratio 177 

can be considered independent of the directions. The composite materials for which the analytical 178 

solutions can be directly applied are: 179 

• Sheet Molding Compound (SMC) Carbon Fiber substrates, which have short fibers, 180 

randomly oriented. 181 

• Short Fiber reinforced composites, which can have carbon or glass fiber reinforcements, 182 

and may have a thermoplastic matrix. 183 

• Sandwich structures with an isotropic face sheet (usually having a honeycomb-type core). 184 

When dealing with woven fibers in regular patterns, some corrections may be necessary. For the 185 

purpose of the shearographic detection of delamination defects, the deformation calculated with 186 

the classical theories is adequate for quasi-isotropic composite substrates (such as - 60°/0°/60° or 187 

0/-45°/45°/90°). However, for more accurate results a correction factor to account for the shear 188 

stress between the plies can be used [46]. In these cases, the Young’s modulus and Poisson ratio 189 

can be considered independent of the x and y coordinates. 190 

 191 

This model is not easily applicable, instead, to unidirectional fiber composites, because of the 192 

lack of significant structural stiffness in the direction perpendicular to the fibers. 193 

 194 

This model is also not suitable for detecting very deep defects without increasing the defect size. 195 

In this case, hybrid methods, such as shearography combined with the FEM method, have been 196 

reported [47-48]. They are effective under some specific conditions and occasions; however, in 197 
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general cases, shearography is not the best method to test very deep defects unless its size is large. 198 

This is because no surface information can be used for FEM or other numerical methods if the 199 

surface deformation caused by a load can’t reach the measuring sensitivity of shearography, and 200 

this phenomenon is very possible if the defects are located very deep from surface. For detecting 201 

deep and small defects, methods like ultrasonic and x-ray techniques should be applied. 202 

 203 

5.6. Boundary conditions and the loading methods 204 

 205 

Regarding the determination of “visible” and “invisible” defects in the S - t curve, if a defect point 206 
falls right on the curve, theoretically, this defect size at the corresponding thickness is detectable 207 
under the given load magnitude. Any point in the area that is smaller than this size and larger than 208 
the thickness, i.e. points above the curve, will not be detectable. However, practically, the boundary 209 
conditions of actual defects are not 100% identical to the models. The boundary condition in the 210 

models developed is tightened all around representing the strictest boundary condition. If a defect 211 

can be found under this condition, then it will definitely be found in other boundary conditions. 212 
Thus, the visible areas, i.e. on and below the curve, are pretty accurate. However, points in the 213 
invisible region slightly above the curve could be visible depending on the actual boundary 214 

condition of defects, that means, a transition area exists slightly above the curve but it is difficult 215 
to indicate exactly in the figure due to the unknown boundary condition of the defects. Therefore, 216 

it is recommended that numerical models and curves be used to estimate the smallest detectable 217 
size and depth rather than use them for exact determination of the smallest detectable defect size.  218 
 219 

Finally, it should be noted that the models developed correspond to a vacuum or a pressure loading. 220 

In a shearographic test, the best loading method is vacuum because it creates a pulling force as 221 

shown in Fig. 4b. A pulling force can separate delamination or disbond and cause a larger 222 

deformation and make the NDT of the defects easier. Although the vacuum loading is the best 223 

loading method, it is not the easiest loading method. The easiest loading method is by heating 224 

however the models presented in this paper is not suited for a heating loading. This is a future work 225 

and hopefully can be developed in the near future. 226 

 227 

6. Conclusion 228 

 229 

A numerical and experimental study of digital shearography for determining the size of the 230 

smallest detectable defect and the relationship with different parameters has been conducted. 231 

Numerical models to detect defects close to surface (usually, the defect depth t is smaller than 1/5 232 

to 1/8 size of defect) and to determine the size of the smallest detectable defect by shearography 233 

under a vacuum and a pressure loading have been developed which provides first hand materials 234 

for test engineers before starting their investigations. The numerical models developed show that 235 

higher sensitivity for deformation measurement by shearography, less rigid material, larger loading 236 

magnitude, and shallower defects can lead to finding smaller defects. Of these four parameters, the 237 

most significant impact on defect inspection is the depth of the defect. An increase in the depth of 238 

the defect will obviously lead to more difficulty in finding the defect. The other three parameters: 239 

sensitivity for measuring deformation, material properties, and load magnitude, have the same 240 

weight for defect inspection and less impact than the defect depth t. This is because the size of the 241 
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smallest detectable defect S is proportional to one-quarters power of each of the three parameters, 242 

but three-quarters the power of the defect depth t. The experimental validation of shearography 243 

demonstrated a very good agreement with the numerical models developed, which shows that the 244 

numerical models are a promising method to provide useful estimation for NDT by digital 245 

shearography. The models established in Eqs. (14-16) can be used to assist in the shearography 246 

inspection by estimating the size and depth of the smallest detectable defect with the corresponding 247 

load magnitudes. 248 
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