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Abstract

This paper presents a methodology of digital shearography for determining the size of the smallest
detectable defect and the depth under different loading magnitudes for the purpose of
nondestructive testing. Digital Shearography, an interferometric nondestructive testing (NDT)
technique, has been proven to be a useful tool for material inspections and evaluations, especially
for detecting delaminations/disbonds in composite materials and honeycomb structures. A
commonly asked question in the field of NDT is about measuring sensitivity - specifically, what
is the smallest detectable delamination/disbond and how deep can these be detected? Although
various attempts to find the smallest detectable defect by shearography have been made, a
numerical model for determining the size of the smallest detectable defect and the depth has not
yet been developed. This paper did a study in this aspect, especially for NDT of delamination and
disbond in polymers and honeycomb structures. First, a mechanical model based on the thin plate
theory to calculate the expected bending of close-to-surface defects was proposed; the model built
a relationship among the deformation caused by a defect, the size and the depth of the defect, as
well as the load and the material properties. Second, the relationship between the relative
deformation measured by shearography and the deformation induced by a defect was established
based on the optimized shearing amount and the sensitivity of digital shearography. Based on these
analyses, relationships between the size of the smallest detectable defect and the depth under
different load amounts were established for different defect shapes. Finally, experimental
validation based on different sizes of prefabricated defects were conducted to verify these
relationships. The experimental results show that the model developed can provide useful
estimation for NDT by digital shearography, especially with helping test engineers estimate the
size of the smallest detectable defect and the depth with corresponding loading magnitudes.

Keywords: Digital shearography, NDT, the smallest detectable size, effect of defect depth, effect
of defect shape, impact of loading magnitude

1. Introduction

Honeycomb core sandwich composites and composites like glass/carbon fiber reinforced plastic
(GFRP and CFRP) have superior strength-to-weight ratios, high resistance to corrosion and fatigue,
and are widely used in aerospace and automotive industry. Unfortunately, these kinds of materials
easily produce disbonds between the inner core and outer skin for honeycomb structures and
delaminations between the laminated layers for GFRP and CFRP due to impact loading, aging,
imperfect manufacturing, etc. Different NDT methods have already been applied to test for such
kinds of defects [1-3]. However, optical methods such as thermography, holography, electronic
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speckle pattern interferometry (ESPI), and shearography are emerging as strong candidates for
new industrial NDT tools because of their whole field, non-contacting, and non-contaminating
properties [4-9]. Among these optical methods, the shearographic method seems more efficient
and practical for NDT testing [10-15]. Shearography is a coherent-optical method that is similar
to Holography and ESPI, but displays many advantages for industrial applications due to its direct
measurement of strain information: (1) A rigid body movement generates a displacement, but no
strain, thus, shearography is relatively insensitive to environment interruptions and it is more
practical for industrial application; (2) defects in objects usually induce strain concentrations, thus,
it is easier to reveal defects with strain anomalies than with displacement anomalies; (3)
shearography uses a self-reference interferometric system which has low requirement for laser
coherent length and enables the use of economical and practical diode laser or multi diode lasers
if a larger area is inspected. These substantial advantages have led to shearography being one of
the best NDT tools for composite materials, especially for honeycomb structures [16-18].

Digital shearography, also called electronic shearography or TV shearography, uses a digital
camera as the recording device combined with different measurement and evaluation algorithms
to enable a real time measurement and quantitative evaluation of shearogram [19-20]. In the past
two decades, digital shearography has been widely used in the field of NDT of composite materials
[21-25]. The main application is to detect disbonds in honeycomb structures and delaminations in
GFRP and CFRP composite materials [26-28]. Although there exist many advantages of digital
shearography, a successful shearographic inspection depends on highlighting the contribution of
defect-induced surface deformation and the smallest measurable deformation of the shearographic
system. The defect-induced deformation is a complex parameter which is related to loading
magnitude, loading method, shearing amount, defect size, depth, shape, and so on [29]. In the past
two decades, quite a number of researchers conducted studies on shearographic NDT for different
sizes and/or depths under different loading methods. E.C. Krutul, R.M. Groves et al. reported in
2011 a modelling of opto-mechanical measurement system, including shearography instrument,
loading technique and the response of the object under test and the comparison of the simulation
results with experimental results. This approach is suitable to understand the response of
components under load and to predict anomalies such as defects [30]. In the next year (2012), G.
De Angelis et al. reported a new numerical-experimental model to detect size and depth of flat
bottom holes in metallic and laminated composite structures by digital shearography based on
dynamic response of defects to applied stresses [31]. Another numerical-experimental model to
test defected materials by digital shearography based on thermal loading was reported by D. Akbari
et al. in 2013 [32]. Hybrid methods based on experimental and computational investigations using
shearographic test results and finite element analysis software and/or Matlab to predict internal
defects were reported by X. Chen et al. (2015), Y. Fuetal. (2017) and J.F. Vandenrijt et. al. (2019),
respectively [33-35]. Although these studies have provided useful information in the area of
shearographic NDT, a systematic study to show the relationships between the size of the smallest
detectable defects and the depths under different loading magnitudes for NDT by the shearographic
testing method has not yet been conducted.

In this paper, we developed a mechanical model to quantitatively present the relationships between
the size of the smallest detectable defects and the depths under different loading magnitudes for
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NDT by the shearographic testing method. A mechanical model based on the elastic mechanics
and the plate theory was first built. The differential equation of the deformation and the solutions
of the deformation were then presented for different defect shapes at given boundary conditions.
Although thermal loading is the easiest loading method, vacuuming or and some internal pressure
is more effective loading method because such kind of loading will tear apart disbonds and
delaminations which cause the surface deformation larger and make NDT of the defects easier.
Using this loading method, numerical equations for determining the size of the smallest detectable
defect and the depth based on the smallest measurable deformation or the relative deformation of
digital shearography were developed. Experimental validation was conducted and the results
agreed with the numerical equations.

2. A Brief Review of Digital Shearography

2.1 Principle of shearography
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Fig. 1. Principle of digital Shearography

Fig. 1 shows the typical shearographic setup in which a modified Michelson interferometer is used
as a shearing device. By tilting mirror 1 by a very small angle, the system can cause two non-
parallel rays of light scattered from two different object points to interfere with each other. The
distance and the orientation between these two points are called the shearing amount and the
shearing direction, respectively. As the object surface is diffusely reflective, the interference of the
scattered rays yields a random pattern known as speckle pattern. When the object is slightly
deformed, the speckle pattern will be slightly changed. A visible fringe pattern, called shearogram,
can be observed by conducting a digital subtraction of the intensities of the two speckle patterns,
which will be explained in detail below.



2.2 Formation of shearogram
The intensity “I” of the speckle pattern before loading can be expressed by [36]:
I=A+ Bcos ¢ (D)

where A is the background, B is the modulated term which is related to the image contrast
y (y =B/A), and ¢ is the phase difference between two points with the shearing distance in the
shearing direction. Fig. 2a shows the intensity image of the speckle pattern before loading.

After the object is loaded, the phase difference between the two points becomes ¢’ = ¢+A¢@, where
A¢ is the relative phase change, resulting from a relative deformation between P; and P>. The
intensity of the speckle pattern after loading then becomes the follows:

I'’=A+Bcos ¢ =A+ Bcos (¢p+ A¢) 2)

Fig. 2b shows the intensity image of the speckle pattern after loading. A fringe pattern, or
shearogram, which is shown in Fig. 2c, can be obtained by a direct subtraction between the
intensity images of the speckle patterns before and after loading. Because the intensity value must
be positive, the absolute value will be displayed, represented as follows:

I’—I|:B|cos(¢+A¢)—cos(¢)| 3)

Is=

(a) (b) (c)

Fig. 2. Intensity images of the speckle pattern before loading (a), after loading (b), and the
shearogram obtained by a digital subtraction between these two intensity images (c)

Dark fringes appear on the shearogram when ;= 0, i.e. A =2nnz(n =1, 2, 3...). The shearogram is
therefore displayed as a highly visible fringe pattern. Due to the relative phase difference between
two adjacent fringes being equal to 27, the phase at each fringe can be determined by counting the
shearogram fringes. Then the relative deformation can be determined based on the relationship
between the relative phase change and the relative deformation between points Py and P».



For digital shearography NDT, the angle between the illumination direction of the laser and the
observation direction of the digital camera is usually small or close to zero, Under this condition,
the relative deformation Aw between the two points with the shearing amount in the out-of-plane
direction is given by [37]:

Aw = (A)471) A (4)

where A is the wavelength of the laser used.

Eq. (4) shows that the relative deformation Aw is proportional to the relative phase difference 4¢.
Thus, the measuring sensitivity for the relative deformation depends on the smallest measurable
A¢. In the shearographic interferometry, the relative phase difference A¢ can be determined by the
intensity subtraction method as shown in Fig. 2 and the phase shift method. In the intensity
subtraction method, the smallest measurable value of the relative phase difference 4¢is 2rbecause
the smallest integer number is 1. Therefore, the smallest measurable Aw is A/2 based on Eq. (4).
In the phase shift method, phase values less than 2z can be measured. According to the methods
to produce phase shifts, they can be divided into two categories: temporal phase shift digital
shearography (TPS-DS) and spatial phase shift digital shearography (SPS-DS). The temporal
phase shift method needs to record multiple frames and introduce phase shift between each frame
in time series. It is highly accurate and is usually used for static measurements (also for dynamic
if vibration is harmonic) [38], while the spatial phase shift method introduces the phase shift in
space series and requires only a single frame for phase determination [39-40] which is well suited
for dynamic measurements. Usually, the spatial phase shift method has a relatively complicated
optical setup and a small aperture requirement which demands higher laser power. With the
continuous improvement in technology in recent years, the spatial phase shift method has begun
to be used in the commercial digital shearographic system [39-42], however, the temporal phase
shift technique is still by far the most popular method used in the commercial digital shearography
system due to its simple optical setup and easy implementation. All phase maps in the following
sections were obtained by the temporal phase shift method.

Compared to the intensity subtraction method in which the smallest measurable phase is 27, the
phase shift method has much higher phase measurement sensitivity. Considering speckle noise,
smooth algorithm, and other factors, the measurement sensitivity of phase shift method-based
digital shearography can reach between 27/5 and 27710, which is about 5 to 10 times higher phase
measuring sensitivity than the intensity subtraction method, depending on the test environment,
hardware setup, and software algorithm. According to Eq. (4), the measuring sensitivity of relative
deformation Aw [Aw = (A/4 1) A@] can reach between A/10 and A/20. The application of phase shift
methods has led to tremendous enhancement of the measuring sensitivity in digital shearography.
Therefore, smaller defects can be found. A comparison of shearographic tests using intensity
subtraction and phase shift methods are shown in Fig. 3.
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Fig. 3. Comparison between the intensity subtraction version (left) and the phase-shift method
(right), a smaller defect in the middle become visible in the phase shift shearography

3. Digital Shearography for Non-Destructive Testing (NDT)
3.1. Principle of shearography for NDT

The fundamentals of shearography for NDT is to find internal defects/delaminations by measuring
the surface anomalies from the distribution of Aw caused by a minor loading. Fig. 4 shows how
the shearography works for NDT. When an object with an internal defect (Fig. 4a) is loaded, such
as by a vacuum loading (Fig. 4b), the surface in the defect area will cause a relatively larger
deformation (Fig. 4c) than other areas, and the maximal deformation occurs in the middle of the
defect area. Shearography measures a relative deformation “Aw” between two points with a
shearing amount (Fig. 4d). If the shearing amount selected is half or more than the size of the
defect, the maximum relative deformation Aw measured by shearography is equal to the maximal
deformation in the defect area, denoted as wuax as shown in Fig. 4d. Usually, the smallest sized
defect which should be detected is known or is set by the user of the materials; therefore, an
optimized shearing amount can be selected and the maximum measurable relative deformation is
the maximum deformation wy.x in the defect area.

Now, the question is what kind of defects can be found? If the deformation caused by a loading in
the defect area is larger than the smallest measurable deformation wmax by the digital shearography,
such kinds of defect should be detectable. According to the discussions in section 2.2, the smallest
measurable deformation wmax is ranged from A/10 and A/20, depending on the test environment,
the hardware setup, and software algorithm. The deformation caused by the loading is also related
to the defect size S, the depth ¢ from the surface, material properties, etc. (Fig. 5). In order to
estimate the smallest detectable defect, the analysis of the relationship among these parameters is
mandatory.
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Fig. 4. Fundamentals of shearography for NDT: (a) an object with a defect, (b) deformation after
a loading, (c) the shape of the deformation, and (d) relationship between the relative deformation
and the shearing amount

3.2. Relationship among the deformation caused by loading, the size and depth of the smallest
detectable defect

3.2.1. Mechanical model

In order to discuss the relationship between the deformation caused by loading in the defect area
and the size and the depth of the smallest detectable defect, a numerical method to calculate the
deformation should be studied first. Fig. 5 shows deformations of a disbond between a surface
sheet and a honeycomb core in a honeycomb structure and a delamination in a CFRP or GFRP
panel under a pulling force, such as a vacuum loading, respectively. It should be emphasized here
that the study is based on the fact that the defect is not far from the object surface. The depth of
the defect 7 should be less than 1/5 ~ 1/8 of the defect size and the loading is perpendicular to the
surface. With these assumptions, the top parts of the defects can be counted as plates. From a
mechanical point of view, these deformations are equivalent to the deformation of the plate under
a loading of internal pressure as shown in Fig. 6. If the size of the hole underneath the plate is S
and S = 2a (a is the radius of a circular shape or the half side of a rectangular shape) and the
thickness of the top plate is #, the deformation shown in Fig. 6 can approximately be considered as
the model of deformation in the area of the disbond or the delamination shown in Fig. 5.



Fig. 5. Defects and the deformation under a pulling force: a disbond in a honeycomb structure
(left), and a delamination in a CFRP/GFRP panel (right)

Fig. 6. An equivalent deformation for a plate with a hole underneath under an internal pressure.

If the loading is perpendicular to the surface and the thickness ¢ is much smaller than the size of §
[t < (1/5~1/8)xS], the upper part of the hole can approximately be regarded as a plate fastened all
around under pure bending and twist. According to the elastic mechanics and the plate theory, the
differential equations of the deformation for the plate shown in Fig. 6 is given by [43]:

2w = 22 5)

where w is the out-of-plane deformation, Ap is the magnitude of internal pressure, D is the
flexural rigidity, V?and D are shown as follows:

2 9*w | 9w
Ve = 0x? 0y? (6)
E¢3
T o12(1- W) (7)

In Eq. (7), E is the elastic modulus of the material, v is the Poisson ratio, and t is the
thickness of the plate which is equivalent to the depth of defects. The solution of Eq. (5) depends
on the shape of the defect, the method of loading and boundary conditions. In our study, we will
discuss defects in two shapes, one is circular and the other is rectangular or square.



3.2.2. Deformations of defects with different shapes

Circular defect

First, we will discuss the deformation of a defect with a circular shape. Assuming that the circular
defect has a radius of “a”, its depth is #, and the origin of coordinates is in the middle of the defect,
the loading and the boundary conditions are listed below:

- Loading method: internal pressure (a uniform load),
- Boundary conditions: Fastened all around, i.e. w ‘ x=a = 0, OW/0x | x=a =0,

Under these conditions, the solution of differential Eq. (7) for deformation w is given by [44]:

w=2h a2 =@ +yA) ®)

and the maximum deformation wmax occurs in the middle of the plate, i.e. at x =0 and y = 0:

=22t ©

Wmax ‘ circular = g4 p

where Ap is the magnitude of the internal pressure, a is the radius of the defect which is
half of the size of the defect S, i.e. S = 2a. Substituting Eq. (7) for the flexural rigidity D in Eq. (9),
the maximum deformation wmax can be rewritten as follows:

_ 4
= 0.01172 “EJ P (10)

Winax | circular

Rectangular and square defect
If the defect is a rectangular shape with a size of 2ax2b (2a is the long side and 2b the short side).
under the same loading method (i.e. an internal pressure) and boundary conditions (i.e. fastened

all around) as the circular defect, the maximum deformation in the middle of the plate is given by
[44]:

| _ 16 a* b* Ap 1
Wmax | rectangular = 7 [3(a*+ b*)+2a? b?] D (11)

If the ratio of the short side (2b) to the long side (2a) is denoted » (¥ = 2b/2a) and the defect size
S is expressed as 2a, Eq. (11) can be simplified by substituting Eq. (7) for D:

8rt (1-v?) st4p
Winax | rectangular — 0.01543 [3r*++212+3] E t3 (12)

For a square defect a = b, 1.e. r =1, Eq. (11) can further be simplified as:

(1-v%) st 4p

Wanax | square = 0.01543 = — (13)



3.2.3. Relationship between smallest detectable defects and the depth under given loads

Egs. (10 - 13) present the relationship of the maximum deformations in the middle of the defects
with the material properties, the size and depth of defects, and the loading magnitude for defects
with circular, rectangular, and square shapes, respectively. They can also be rewritten as an
expression of depth of the defect t, in term of the defect size S (S = 2a), the loading 4p and the
maximum deformation in the middle of the defects wiax:

(1-#) 2
R

‘ _ S*ap L
t (S’ Ap’Wmax) circular — 0.22714 [ 3 (14)

Wmax

8r4 I (1-2) X stup L
£ 5,49, ner) | rectanguiar = 024896 s s RS R ITZ2E - 19)

(1-»)

1 stap. t
t (S, Ap, Winax) ‘square = 0.24896 | E Bl ’

(16)

Wmax

If a defect under a certain loading causes a deformation and the maximum deformation wy.x in the
center of the defect shown in equations above reaches the smallest measurable deformation by
shearography, then such a defect is detectable by shearography. Substituting the smallest
measurable deformation value, i.e. the measuring sensitivity of deformation, into Wy in the
equations, the corresponding values of S and 7 are the size of the smallest detectable defect and the
depth. Therefore, the relationships between the size of the smallest detectable defect S and the
depth # under a vacuum or a pressure loading can be determined by Egs. (14 - 16) for defects with
circular, rectangular, and square shapes, respectively.

What is the measuring sensitivity of deformation by digital shearography? As described in section
2.2 and 2.3, shearography measures a relation deformation Aw. In the intensity subtraction method,
the measuring sensitivity of 4w is A/2, whereas, it can reach 5 to 10 times higher if a phase shift
technique is introduced, depending on different conditions such as the test environment, the optical
setup, and the software algorithm. Although 10 times higher measuring sensitivity needs an
optimized condition, it is relatively easy to reach 5 to 6 times higher measuring sensitivity, i.e. the
measuring sensitivity of Aw reaches to A/10to A/12.

According to the discussion in section 3.1, if the shearing amount is selected as a half size or bigger
than half the size of a defect, the maximum relative deformation Aw measured by shearography is
equal to the maximal deformation in the defect area as explained in Fig. 4d, i.e. the measuring
sensitivity of digital shearography for a relative deformation is actually equal to the measuring
sensitivity of wpar. In order to find the defect, the wyax caused by a loading should bigger than the
measuring sensitivity of shearography, e.g. from A/10 to A/12.

Substituting the wpax with A/12, the relationships between the size of the smallest detectable defect
S and the depth ¢ can be determined by Egs. (14 — 16) for defects with circular, rectangular and
square shapes, respectively. If an He-Ne laser is used in the setup, the value of /12 = 53 nm. Figs.
7 - 9 show these relationships under different loading magnitudes if the material is aluminum, i.e.
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E =70 GPa, v=0.33. The data in the x- and y-axes in the figures represent the size of the smallest
detectable defect and the depth, respectively. The right part below the curves stand for the sizes of
defects which are bigger than smallest detectable defect, and thus the defects are detectable and
considered visible. The left part above the curve stands for the sizes of defects which are smaller
than smallest detectable defect, and thus the defects are not detectable, and considered invisible.

Using different material properties (i.e. the Young’s Module “E” and the passion ratio “v”), the
curves for different materials, such as for GFRP or CFRP panels, can be created based on equations
(14), (15) and (16).
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Fig. 7. Relationships between the size of the smallest detectable defect S and the depth ¢ with a
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Fig. 8. Relationships between the size of the smallest detectable defect S and the depth ¢ with a
rectangular defect shape at different » values (» = b/a, E=70 GPa, v=0.33 and wmax=53 nm)
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Fig. 9. Relationships between the size of the smallest detectable defect S and the depth ¢ with a
square defect shape under different pressure (£ = 70 GPa, v=0.33 and wmax= 53 nm)

4. Experiments

4.1 Specimen preparation

According to Eq. (14), defects were simulated by flat bottomed holes with different depths and
sizes in aluminum plates with a total thickness of 12.7 mm (0.5 in) and a diameter of 166 mm.
Five cylindrical holes were made 12.2 mm deep for one specimen with the diameter sizes ranging
from 3, 4, 5, 5.9 and 8.2 mm, and 11.7 mm deep for the other specimen with the diameter sizes
ranging from 5, 5.9, 8.2, 9.9 and 12 mm, respectively. With this design, the depth of the five
simulated defects is # = 0.5 mm for the first specimen and # = 1 mm for the second specimen with
boundary conditions of all around fixed.
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Fig. 10 shows one of the samples with # =1 mm. The 6 penetrating holes equidistantly distributed
on the outer ring are used for fixing. The other 5 blind holes inside are used to simulate 5 defects
of different sizes.

Fig. 10. The specimen of # =1 mm with 5 simulated defects made by 5 flat bottomed blind holes
of different diameters, left: back side, right: front side to be tested

4.2 Experimental setup and results

Fig. 11 shows the experiment setup. The aluminum plate was fixed in a cylindrical chamber which
was connected to pressure pipe to generate a pressure load. The front surface of the aluminum
plate was illuminated by an expanded He-Ne laser (50 mW) with a wavelength of 632.8 nm and
tested by digital shearography with the phase shift technique. The camera has one mega pixel
numbers and the shearing device is a modified Michelson Interferometer in which a Piezoelectric
Transducer (PZT) driven mirror is used for the phase shift method. The shearing is in the x-
direction, however, the shearing direction doesn’t affect the results of the test if the defect is
circular, square, or rectangular in shape, as discussed in this paper. The shearing direction will
affect the test result when the defect is a narrow and long (much bigger than shearing amount) slot.
Regarding shearographic tests of narrow and long slots, please refer to literature [45]. The shearing
amount is 6 mm which is bigger than half of the diameter of each hole of the two specimens. Due
to manufacturing limitations in our facilities, only cylindrical flat bottomed holes were made, i.e.
only the defects with circular shape were experimentally tested.
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Fig. 12 shows the shearographic test results for the aluminum plate with five prefabricated defects
whose depth # = 1 mm and whose size (diameter) ranges from S =5, 5.9, 8.2, 9.9 and 12 mm,
respectively. When the internal pressure reaches Ap = 80 kPa, three of the 5 defects can be found
with the S = 8.2, 9.9, and 12 mm defects, respectively, marked in red circles. Please note that the
noisy areas in the outer ring are the locations of fastening studs shown in Fig. 10 and are not defects.
To clearly demonstrate the results with a better spatial resolution, the measurements were zoomed
to each defect area (about 65 mm x 50 mm) to increase the pixel number between two adjacent
fringes. By using one-megapixel camera, the display in the small area enhances the spatial
resolution from the previous about 7 pixels/mm to about 15 pixels/mm. High spatial resolution
means more pixel numbers between two adjacent fringes and more pixels lead to more grayscale
points/values between two adjacent fringes. Therefore, the fringe pattern, the butterfly fringe
pattern of shearography, becomes clearer. A comparison between the simulated curve of the
smallest detectable defect size at £ = 1 mm and the shearograms measured in each defect area of
the aluminum plate at Ap = 80 kPa is shown in Fig. 13. As indicated above, the aluminum plate
has 5 simulated defects whose size (diameter) ranges from S =5, 5.9, 8.2, 9.9 and 12 mm, which
correspond to the five shearograms in each defect area (from left to right), respectively. The
experimental results agree with the numerical curve at = 1.0 mm. According to the numerical
curve, only defects larger than 8 mm can be detected at the given thickness and loading, and the
experimental results have proved this as well. The shearograms in the areas with defect size of 5.0
mm and 5.9 mm don’t show a butterfly pattern, so these two defects can’t be detected (see the left
two shearograms), whereas, the right three shearograms shows a clear butterfly pattern indicating
that the defects of size 8.2, 9.9, and 12 mm can be detected.
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Fig. 15. A comparison between the simulated curve of the smallest detectable defect size and the

shearograms measured in the area of each defect of the aluminum plate with five prefabricated
defects with their depth 7 = 0.5 mm at Ap = 80 kPa.

To further validate the numerical curve, the other plate with five prefabricated defects of depth =
0.5 mm and size ranging from S = 3, 4, 5, 5.9, and 8.2 mm, respectively, was tested by the digital
shearographic setup. Fig. 15 shows the test result of the whole plate, three of the five defects, sizes
5.0, 5.9, and 8.2, were found at 4p = 80 kPa. A comparison between the numerical curve and the
shearograms measured in the area of each defect with depth # = 0.5 mm is shown in Fig. 16.
According to the numerical curve, only defects larger than 4.9 mm can be detected at the given
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thickness and the load. The defects of size 3 mm and 4 mm can’t be detected (see the left two
shearograms), but defects with sizes of 5 mm, 5.9 mm, and 8.2 mm can be detected (see the right
three shearograms). These experimental results again show very good agreement with the
numerical curve at £ = 0.5 mm and 4p = 80 kPa.

5. Analysis and Discussion

Experimental tests have been conducted to verify the numerical equations/curves developed in
section 3. The experimental results have shown the reliability of the simulated equations/curves.
In this section we will analyze the impact of various parameters on the test results and discuss
application scopes and conditions of these numerical equations/curves.

There are five parameters in all of three developed models from Egs. (14 - 16): the size of the
smallest detectable defect S, the corresponding depth ¢, the loading magnitude Ap, the measuring
sensitivity of the deformation in the middle of the defect wyax, and the term of material properties
(E and v). In this part, the impacts of these parameters on the size of the smallest detectable defect
S will be analyzed. We still use the formula of the circular defects, i.e. Eq. (14), as an example for
the analysis. Let’s rewrite Eq. (14) as an expression of the size of the smallest detectable defect S,
in term of thickness ¢, the load Ap, the measuring sensitivity of the deformation in the middle of
defect Wmax, and the term of material properties (£ and v):

E 1 1 13

1 .=
S (49, Winax) | cireutar = 44 = 1 [ Winaxl* [ 51 63 (17)

Eq. (17) shows that the size of the smallest detectable defect S is proportional to (Wmax)”?, [E/(1-
/)]7, and £, and inversely proportional to the loading Ap’’#. That means that a higher measuring
sensitivity (i.e. smaller measurable wax), less rigid materials (i.e. a smaller Young modulus), and
a larger loading Ap can lead to finding a smaller S. However, the effect of each parameter on the
S is not significant, because their impacts is only proportional to one-quarter power of these terms.
An obvious influence on the S is the depth of the defect # which is proportional to S with three-
quarters power. That means that a reduction of a defect depth will obviously enable the detection
of a smaller defect, in other words, an increase in the depth of a defect will make it much more

difficult to find.

Taking the circular defect as examples, i.e. Eq. (14), let’s conduct a quantitative analysis below.
5.1. Impact of the measuring sensitivity of shearography:

Fig. 16 shows two curves depicting the relationships between the size of the smallest detectable
defects S and the depth ¢ at different test sensitivity of shearography “wma” (Wmax 1s smallest
measurable deformation in the defect center). One is Wyq = 106 nm and the other is Wi = 53 nm.
Looking at the line of = 1 mm, while the test sensitivity for wpuax 1s increased from 106 nm to 53

nm, i.e. the test sensitivity is doubled, the size of the smallest detectable defect S is changed from
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9.7 mm to 8.1 mm (about a 16% reduction). It is clear that the higher the test sensitivity, the smaller
the defect size can be found, but its impact is not significant because S is only proportional to the
1/4" power of Winax.

For circular defects
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Fig. 16. Relationships between the size of the smallest detectable defect S and the depth 7 at
different test sensitivity wmax (£ = 70 Gpa, v =0.33 and 4p = 80 kPa)

5.2. Impacts of the material properties and the load magnitude

The impacts of the material property term [E/(1-17)] and the load magnitude Ap on the size of the
smallest detectable defect S is similar to the measuring sensitivity presented in section 5.1 because
S is only proportional to the 1/4" power of material property’s term and inversely proportional to
the 1/4™ power of the loading magnitude. Therefore, the degree of influence on S is similar to the
discussion in Section 5.1, 1.e. if the Young modulus E decreases by half or the magnitude of loading
Ap is doubled, the smallest detectable defect S will only be reduced by about 16%.

5.3. Impact of the depth of defect

The impact of the defect depth on the size of the smallest detectable defect can be found from Fig.
7. When the defect depth ¢ is doubled, e.g. increases from 1 mm to 2 mm, looking at the curve of
Ap = 80 kPa, the size of the smallest detectable defect S changes from 8.1 mm to 13.7 mm which
is about a 69% change. This is because S is proportional to 3/4 power of . Therefore, the depth of
a defect ¢ has a more obvious impact than the other three parameters. An increase of the depth of
defects will lead to more difficulty in finding small defects.

5.4. Effect of defect shapes:
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Regarding the effect of defect shapes, the square shape is the easiest shape to find small defects,
the circular shape is similar to the square shape, and the rectangular shape with its small r value,
1.e. very narrow defect, is the most difficult to detect. These phenomena can be observed from Figs.
7 - 9. It should be noted that the relationships between the size of the smallest detectable defect S
and the depth 7 for an elliptical defect has not been presented due to its complexity, but because of
its similarity to the rectangular equation, Eq. (15) can be approximately used to estimate ellipsoidal
defects.

5.5. Applicability of the simulated models

The differential equation of the deformation presented in Eq. (5), and the analytical solutions (Egs.
(14-16)) are according to the plate theory. The upper part of a defect, i.e. the part from the top
surface to the delamination or disbond, can be approximately regarded as a plate if the thickness ¢
is much smaller than the defect size S [usually, ¢ <(1/5~1/8)S]. Therefore, the analytical Egs. (14-
16) are suited for detecting near surface defects. Take ¢ <S5/6 as an example: if a defect size S= 12
mm, the equations and the curves developed are suited to detect defects whose depth is smaller
than 2 mm, and if the defect size S = 36 mm, the equation and the curved are suited to detect
defects whose depth ¢ is smaller than 6 mm. This relationship gives a estimation between the defect
size and the depth which it can be detected.

Regarding the materials suited for the models developed, the analytical Eqgs. (14 to 16) are suited
for any isotropic and quasi-isotropic materials as long as the Young’s modulus and Poisson ratio
can be considered independent of the directions. The composite materials for which the analytical
solutions can be directly applied are:

e Sheet Molding Compound (SMC) Carbon Fiber substrates, which have short fibers,
randomly oriented.

e Short Fiber reinforced composites, which can have carbon or glass fiber reinforcements,
and may have a thermoplastic matrix.
e Sandwich structures with an isotropic face sheet (usually having a honeycomb-type core).

When dealing with woven fibers in regular patterns, some corrections may be necessary. For the
purpose of the shearographic detection of delamination defects, the deformation calculated with
the classical theories is adequate for quasi-isotropic composite substrates (such as - 60°/0°/60° or
0/-45°/45°/90°). However, for more accurate results a correction factor to account for the shear
stress between the plies can be used [46]. In these cases, the Young’s modulus and Poisson ratio
can be considered independent of the x and y coordinates.

This model is not easily applicable, instead, to unidirectional fiber composites, because of the
lack of significant structural stiffness in the direction perpendicular to the fibers.

This model is also not suitable for detecting very deep defects without increasing the defect size.
In this case, hybrid methods, such as shearography combined with the FEM method, have been
reported [47-48]. They are effective under some specific conditions and occasions; however, in
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general cases, shearography is not the best method to test very deep defects unless its size is large.
This is because no surface information can be used for FEM or other numerical methods if the
surface deformation caused by a load can’t reach the measuring sensitivity of shearography, and
this phenomenon is very possible if the defects are located very deep from surface. For detecting
deep and small defects, methods like ultrasonic and x-ray techniques should be applied.

5.6. Boundary conditions and the loading methods

Regarding the determination of “visible” and “invisible” defects in the S - ¢ curve, if a defect point
falls right on the curve, theoretically, this defect size at the corresponding thickness is detectable
under the given load magnitude. Any point in the area that is smaller than this size and larger than
the thickness, i.e. points above the curve, will not be detectable. However, practically, the boundary
conditions of actual defects are not 100% identical to the models. The boundary condition in the
models developed is tightened all around representing the strictest boundary condition. If a defect
can be found under this condition, then it will definitely be found in other boundary conditions.
Thus, the visible areas, i.e. on and below the curve, are pretty accurate. However, points in the
invisible region slightly above the curve could be visible depending on the actual boundary
condition of defects, that means, a transition area exists slightly above the curve but it is difficult
to indicate exactly in the figure due to the unknown boundary condition of the defects. Therefore,
it is recommended that numerical models and curves be used to estimate the smallest detectable
size and depth rather than use them for exact determination of the smallest detectable defect size.

Finally, it should be noted that the models developed correspond to a vacuum or a pressure loading.
In a shearographic test, the best loading method is vacuum because it creates a pulling force as
shown in Fig. 4b. A pulling force can separate delamination or disbond and cause a larger
deformation and make the NDT of the defects easier. Although the vacuum loading is the best
loading method, it is not the easiest loading method. The easiest loading method is by heating
however the models presented in this paper is not suited for a heating loading. This is a future work
and hopefully can be developed in the near future.

6. Conclusion

A numerical and experimental study of digital shearography for determining the size of the
smallest detectable defect and the relationship with different parameters has been conducted.
Numerical models to detect defects close to surface (usually, the defect depth 7 is smaller than 1/5
to 1/8 size of defect) and to determine the size of the smallest detectable defect by shearography
under a vacuum and a pressure loading have been developed which provides first hand materials
for test engineers before starting their investigations. The numerical models developed show that
higher sensitivity for deformation measurement by shearography, less rigid material, larger loading
magnitude, and shallower defects can lead to finding smaller defects. Of these four parameters, the
most significant impact on defect inspection is the depth of the defect. An increase in the depth of
the defect will obviously lead to more difficulty in finding the defect. The other three parameters:
sensitivity for measuring deformation, material properties, and load magnitude, have the same
weight for defect inspection and less impact than the defect depth «. This is because the size of the
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smallest detectable defect S is proportional to one-quarters power of each of the three parameters,
but three-quarters the power of the defect depth ¢. The experimental validation of shearography
demonstrated a very good agreement with the numerical models developed, which shows that the
numerical models are a promising method to provide useful estimation for NDT by digital
shearography. The models established in Eqs. (14-16) can be used to assist in the shearography
inspection by estimating the size and depth of the smallest detectable defect with the corresponding
load magnitudes.
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