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ABSTRACT: The graph representation of complex materials Polymer-unit Graph

plays a crucial role in the field of inorganic and organic materials * & Explainability

investigations for developing data-centric materials science, such as /\ ) S
those using graph neural networks (GNNs). However, the ) %, | Neutal
currently prevalent GNN models are primarily employed for ho) eaatie

investigating periodic crystals and organic small molecule data, yet
they still encounter challenges in terms of interpretability and
computational efficiency when applied to polymer monomers and
organic macromolecules data. There is still a lack of graph
representation of organic polymers and macromolecules specifically
tailored for GNN models to explore the structural characteristics.
The Polymer-unit Graph, a novel coarse-grained graph representa-
tion method introduced in study, is dedicated to expressing and analyzing polymers and macromolecules. By incorporating the
Polymer-unit Graph into the GNN models and analyzing the organic semiconductor (OSC) materials database, it becomes possible
to uncover intricate structure—property relationships involving branched-chain engineering, fluoridation substitution, and donor—
acceptor combination effects on the elementary structure of OSC polymers. Furthermore, the Polymer-unit Graph enables visualizing
the relationship between target properties and polymer units while reducing training time by an impressive 98% and minimizing
molecular graph representation models. In conclusion, the Polymer-unit Graph successfully integrates the concept of Polymer-unit into
the field of GNNs, enabling more accurate analysis and understanding of organic polymers and macromolecules.
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1. INTRODUCTION For OSCs, a significant amount of literature has been
accumulated since their initial discovery in 1956,' this vast
body of literature contains valuable experimental data related
to OSCs. By harnessing and fully utilizing this wealth of data,

Organic semiconductor (OSC) materials offer significant
advantages such as remarkable flexibility, ductility, and cost-
effective preparation,’ as well as immense potential applica-

tions in fields such as photovoltaic materials,”’ field effect we can undoubtedly accelerate the development process of
transistors,*™” light-emitting diodes,®” and more. Among the OSC materials. In recent years, the utilization of graph neural
numerous physical and chemical properties associated with network (GNN) models has gained significant traction in the
OSC materials, carrier mobility and molecular frontier orbital field of materials science.'”'” These models have been applied
energy levels are particularly crucial. In order to develop in various aspects, including the accurate prediction of material
organic polymer materials with high charge carrier mobility properties with minimal computational resources. 72! By
and appropriate molecular orbital energy levels, extensive leveraging the power of GNNs, researchers can efficiently
testing of different material structures within a large parameter explore and analyze the structure—properties relationships,
space is necessary. This requires continuous exploration and shedding light on the underlying mechanisms that govern

refinement of the initial materials to improve their properties. material behavior.2223 Additionally, GNNs have been
oy . . * )
However, the traditional trial and error process of developing

organic polymers is time-consuming. Fortunately, with the
ongoing advancements in technology, researchers are actively
working toward expediting this process and implementing
more efficient strategies.

Deep learning is a data-driven scientific field that employs
algorithms to reveal hidden relationships within data sets,
offering valuable insights for experimental scientific pursuits.
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Figure 1. Overview of the application of the Polymer-unit Graph. (a) The generation diagram of the OSC Polymer-unit Graph. (b) Schematic
diagram of the Message passing GNN. (c) The OSC Polymer-unit Graph has been applied to enhance the interpretability of MPNN models for

acquiring structure—mobility relationships in organic polymers.

instrumental in the development of new materials that are
specifically tailored to exhibit desired properties, opening up
new possibilities for designing materials with targeted
functionalities.”* ™' Indeed, the crystal graph convolutional
neural network (CGCNN) is a specialized GNN that is
designed specifically for processing and predicting properties of
crystalline materials.”> The CGCNN employs a residual
structure to effectively propagate information across multiple
channels, thereby addressing the issue of gradient vanishing.
To avoid an increase in parameter count, expansive
convolution is utilized to capture long-range dependencies.
This model implements the convolutional representation of
generalized crystal graphs for periodic crystal systems and
enables a property prediction with DFT-level accuracy. The
Messaging Passing Neural Network Framework (MPNN) was
proposed by Gilmer et al.** in 2017. The mol-MPNN model is
based on the MPNN framework. This model successfully
predicts 13 targets in the QM9 data set, which consists of 130k
small molecules with atomic numbers less than 9.”° The
application of GNNs has proven to be highly effective in
addressing the challenges associated with small molecules and
crystal materials.

OSC materials are mostly organic polymers and organic
macromolecules. While there has been significant research on
deep learning for organic polymer materials,”*~** the develop-
ment of GNN models specifically tailored to capture the unit-
structural characteristics of these organic polymers has been
limited. This limitation arises from the challenges and
complexities of accurately representing polymer structure in
digital format,®” highlights the need for tailored graph
representation of organic polymers and macromolecules for
exploring structural characteristics. Consequently, it becomes
imperative to devise simplified methods for inputting structural
representations that are well-suited for polymer GNN models.

Polymers and macromolecules are often formed by a series
of reactions from a number of small molecular precursors,
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namely, polymer-unit (also named as repeat units),>>*" in the

same way that tens of thousands of English words can be
formed using only 26 letters, a wide range of polymers can be
generated from a limited number of polymer units through
their different combinations. In 1993, Sumpter and Noid*'
proposed a method of using polymer repeat units (namely,
polymer-units) as nodes in neural networks (prior to the
proposal of GNN), which successfully predicted nine proper-
ties for 357 different polymers with an average prediction error
rate of only 3%. Thus, the effectiveness of deep learning based
on polymer unit nodes is evident. Queen® et al. utilized a
combination of small molecular acids and alcohols as
polymerization components (a total of 17 varieties) to
generate 247 different types of polyester through permutations
and combinations. They conducted measurements on the glass
transition temperature (T,) and intrinsic viscosity (IV) of each
polyester sample, ultimately establishing a comprehensive
polyester database. The researchers also developed a model
called POLYMERGNN, where each polyester is represented as
an acid and alcohol pair, which is incorporated into the
molecular graph and trained collaboratively as two independ-
ent GNN blocks. The prediction of T, and IV can be achieved
using POLYMERGNN by inputting the types and ratios of
acids and alcohols. The D—A type OSC is a crucial constituent
in the realm of OSC materials.”” The advantage of D—A type
OSC materials lies in the ability to achieve optimal frontier
molecular orbital energy levels through precise adjustment of
donor and acceptor groups within the polymers.”> The donor
and acceptor groups, commonly referred to as small organic
molecules, include well-known donor units such as thiophene
and selenophene, as well as the widely used acceptor units
benzothiazole (BT) and pyrrole pyrrodione (DPP). These donor
and acceptor units also belong to the category of polymer-
units.

The role of the polymer unit in the study of polymer is
crucial, making it highly significant to incorporate the concept

https://doi.org/10.1021/acs.jctc.3c01385
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of “polymer-unit” into GNN research within the polymer field.
Recently, we proposed a Python-based script named polymer-
unit-recognition script (PURS),"* which is a program for
recognizing the polymer-unit based on SMILES." Its purpose
is to identify the polymer-unit composition of polymers and
macromolecules from SMILES. The Polymer-unit Fingerprint
(PUPp) is specifically designed to enable the application of the
“polymer-unit” concept in classical machine Iearning models
such as Random Forest,"® Support Vector Machine,"” and K-
neighbor Algorithm.*>** The PUFp, however, is limited to a one
dimension one-hot vector and lacks the specific properties of
polymer-units (node information) as well as the connection
relationships between polymer-units (edge information),
making it unsuitable for application in GNN models. The
GNN model excels in discerning implicit relationships from
intricate inputs and is adept at handling more intricate and
high-dimensional input data.’>' Consequently, it enables the
design of a more informative input to articulate the “polymer-
unit”.

The molecular graph serves as a graph representation of the
molecular structure, depicting atoms and chemical bonds as
nodes and edges of the graph. The utilization of molecular
graph inputs is frequently observed in MPNN models
employed for small molecules.”> However, the characteristics
of polymer materials include a large number of atoms and a
complex structure (with nested ring structures and various
branch chains), which makes the molecular graph complex and
difficult to explain. In this work, we propose a coarse-grained
graph representation method called the Polymer-unit Graph,
which introduces the concept of “polymer-unit” into molecular
graphs. The polymer’s repeated units (polymer-unit) are
considered as the graph’s nodes, while the interconnection
between polymer-unit is regarded as the edge matrix of the
graph. Node features are generated using graph embedding
methods.>” The utilization of Polymer-unit Graph enhances the
representation of the polymer’s structure in the GNN model,
allowing for a more visualizable and explainable analysis. The
utilization of the Polymer-unit Graph presents a fresh
perspective to enhance the interpretability of GNN models.
It allows for an analysis of the structure—activity relationship in
OSC materials from the standpoint of polymer-units. The
interaction between polymerization units in organic macro-
molecules and polymer materials plays a significant role in
determining the macroscopic properties of these OSC
materials. Therefore, analyzing the structure—activity relation-
ship from the perspective of polymerization units holds
immense scientific value in the field of such materials.”* ™’

As Figure 1 shows, the application of Polymer-unit Graph in
MPNN models provides promising results. The polymer unit
method wutilizes coarse-grained techniques, which provide
greater chemical significance when applied to organic polymers
and macromolecular materials. This approach forms coarse-
grained units consisting of common small molecular groups
and branched chains, enhancing the interpretability of these
materials.

To explore the application of the polymer-unit in
interpretability and visualization, an OSC polymer-unit Graph
was integrated with the gn—exp58 model, resulting in the PU-gn-
exp model. This model is utilized to investigate the structure—
property relationships of OSC materials. The PU-gn-exp model
can effectively identify the polymer-unit that enhances carrier
mobility through mechanisms such as fluorination, branch
chain engineering, and donor—acceptor combination. Combin-
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ing the OSC Polymer-unit Graph with the baseline model mol-
MPNN to create PU-MPNN, and testing both models using
the OSC materials database. PU-MPNN demonstrated a
remarkable 98% reduction in training time compared to mol-
MPNN while maintaining the same level of prediction accuracy
measured by the mean square error (MSE). This showcases
the efficiency of Polymer-unit Graph as an alternative with a
similar prediction performance. This research focuses on these
key innovations:

e The concept of Polymer-unit Graph is effectively
employed in the context of GNNs.

The interpretable model (gn-exp) is utilized to apply the
Polymer-unit Graph, enabling the exploration of
structure—property relationships of organic macro-
molecules/polymers based on polymer-units, providing
valuable insights into their functionalities.

The Polymer-unit Graph is an efficient technique that
improves the computational efficiency of prediction
models for organic macromolecules/polymers. It
reduces training time to only 2% of the baseline
model, benefiting researchers and practitioners in this

field.
Our findings highlight the significant benefits of applying the

polymer-unit concept within a GNN model for organic
polymers and macromolecular materials. This approach not
only enables effective analysis of the structure—property
relationship but also enhances the computational efficiency.
Consequently, this work facilitates in-depth mechanistic
research on organic polymer materials, contributing to
materials innovation in this field.

2. RESULTS AND DISCUSSION

2.1. Polymer-Unit Graph Generation. The generation of
Polymer-unit Graphs can be partitioned into three steps (Figure
1a): (1) Identification of polymer-units; (2) Formation of the
polymer-unit database; and (3) Generation of polymer-unit
Graphs from the polymer-unit database index.

1. The PURS program is utilized for identification of
polymer-units, wherein these polymer-units and their
interconnections are determined based on the SMILES
codes present in the input data sets.

. The polymer-units identified from the OSC data set
were converted into standard SMILES codes using the
Rdkit program,”™ ensuring uniqueness and completeness
of the data set. This process led to the establishment of a
polymer-unit database for the OSC data set. To
represent the structural information on each polymer-
unit, we utilized one-dimensional vectors, which
essentially serve as a graph embedding representation.
The reason for utilizing graph embedding as the feature
of nodes, instead of directly using the molecular graph
data of the aggregate unit as node feature, is driven by its
capability to avoid issues associated with dimensional
inconsistencies of node features and to uphold a
reasonable feature space dimension. After conducting
extensive testing on numerous graph embedding
methods, we identified two approaches that showed
the most promising results: MACCS code® (166 bit),
and Genwl graph embedding method®' (280 bit)
utilizing the Weisfeiler Lehman algorithm.

. The OSC Polymer-unit Graph for each data consists of
nodes and edges, as shown in Figure la. The node

https://doi.org/10.1021/acs.jctc.3c01385
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information consists of a collection of graphs embedding
the representation that corresponds to the polymer-unit
indexed from the polymer-unit library. The PURS
program not only recognizes polymer-unit but also
identifies the topological connectivity between these
units, referred to as the edge index. The edge
information represents the bond between two poly-
mer-units and is given by an 8 X 1 one-dimensional
vector which divided into three parts. The first part
indicates the index number of the connected polymer-
units in the polymer-units library. The second part
includes the atomic numbers of the connected atoms
and their bond length. The third part is a one-hot vector
that encodes stereochemical information, denoting the
presence or absence of a chiral center and its type,
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considering three possibilities: clockwise circular ar-
rangement with respect to the reference atom, counter-
clockwise circular arrangement with respect to the
reference atom, or a nonchiral state.

The sample molecule (Figure 2c) illustrates the difference
between the molecular graph (Figure 2a) and the OSC
Polymer-unit Graph (Figure 2b). The OSC Polymer-unit Graph
involves the process of identifying polymer-units and
converting them into graph features, while the molecular
graph directly generates a node feature for each atom. For the
example molecule, the node matrix of the molecular Graph is
65 X 31 and the edge matrix is 68 X 2 X 11, while the node
matrix of the OSC Polymer-unit Graph is S X 167 and the edge
matrix is 4 X 2 X 8. By comparison, it can be seen that OSC
Polymer-unit Graph actually encapsulates the structural

https://doi.org/10.1021/acs.jctc.3c01385
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information on polymers in the form of graph embedding in
the node information, taking the polymer-units as the nodes,
while simplifying the connection relationship between the
nodes.

2.2. Polymer-Unit Graph Enhances the Visualization
and Interpretability. GNNs are commonly employed for
decision-making in intricate situations, yet the rationale behind
their choices often remains obscure. In 2019, Federico
Baldassarre and Hossein Azizpour used the gradient method
and decomposition method to investigate the interpretability
of GNNSs on both toy and chemical data sets, proposing the
gn-exp, an interpretable GNN model.”® This study represents
the pioneering work in exploring the interpretability of GNNs
and successfully used PyTorch’s® automatic differentiation
function to implement three distinct interpretability methods
[sensitivity analysis (SA), guided backpropagation (GBP), and
layer-wise relevance oropagation (LRP)] on the MPNN
model. Here, the gn-exp model is therefore selected as the
baseline for investigating the application of Polymer-unit Graph
on interpretable GNN. Additionally, we employ the LRP
method because of its excellent interpretability, which has
demonstrated superior performance in chemical tasks, as our
chosen analytical technique.

Here, the PU-gn-exp model is constructed by reforming the
input part of the gn-exp model, as illustrated in Figure 3a. Prior
to inputting the polymer structure into gn-exp, the OSC
Polymer-unit Graph is generated through the PURS program.
PU-gn-exp utilizes a 166 bit MACCS as the characteristic value
for each node. In addition, in the visualization part, since PU-
gn-exp returns the correlation index of each node, it is
necessary to assign the correlation index to each atom based on
the atom-PU correspondence generated by PURS. The PU-gn-
exp model follows the default setting of the baseline gn-exp
model, which includes three layers. Each layer consists of three
components: edge update aggregation, node update aggrega-
tion, and overall graph update and aggregation; these
components are further explained in the Methods Section.
Both the PU-gn-exp and gn-exp models were trained as
classification models, achieving satisfactory accuracy and
providing reliable analysis results (Figure S1). The target
labels (carrier mobility) in this task are categorized into four
groups based on the magnitude of their values (SI-Transform
gn-exp into a classification model), following the specific
classification method outlined in Table 1. The hyper-
parameters of gn-exp and PU-gn-exp are adjusted based on
the default settings, considering the specific requirements of
the training task (Tables S1 and S2).

Figure 3b displays the visualization result of the correlation
between structure and mobility for OSC polymers, and the

Table 1. Distribution of the OSCs Data Set”

parameter p-type n-type
total data number 566 275
u> 10 15 1

10> pu > 4 67 24

4> pu>1 134 80
1>pu>0 350 170
average atomic number 76 83
maximum atomic number 182 159

“u represents the carrier mobility. All OSCs data are available in the
Supporting Information.
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correlation between each atom/polymer unit and the target
property (mobility) is represented by a color bar. The color
bar on the right illustrates the relationship between correlation
and color. Positive and negative correlation values indicate
whether the correlation is positive or negative. In Figure 3b,
the left column shows the visualization result of the baseline
gn-exp model on OSC data, while the right column depicts the
visualization result of the PU-gn-exp model. Specifically, Figure
3b(1) illustrates the visualization result for hole mobility as the
target attribute, and Figure 3b(2) showcases the visualization
result for electron mobility as the target attribute. Here, the
utilization of the OSC Polymer-unit Graph in gn-exp has
significant implications. By incorporation of the Polymer-unit
Graph, the interpretability and visualization of MPNN are
enhanced. This is because the correlation between key
properties like carrier mobility is found to rely more
prominently on the interactions between polymer-units, rather
than on atom—level interactions. To better showcase the
improved interpretability of the PU-gn-exp model in OSC
materials, we have included additional cases in Figures S3 and
S4, demonstrating visual comparisons of carrier mobility
between PU-gn-exp and its baseline model in the OSC data
set. The visualization of polymer-units serves as a valuable tool
for experimental scientists, enabling them to make adjustments
to the composition of the OSC materials. Since polymers are
primarily synthesized using these polymer-units, the visual
representation facilitates a deeper understanding of the
relationships between the polymer structure and its perform-
ance in terms of carrier mobility. It should be noted that
visualization results for the same structure may show significant
discrepancies depending on whether the smallest unit is
considered as the aggregation unit or the atom. However, these
discrepancies do not undermine the validity of the model
Instead, they highlight the distinct differences between PU-
level structure—activity analysis and atomic-level analysis. For
instance, when examining the structure P17 in Figure 3 b1, the
baseline model’s visual analysis revealed a positive correlation
among sulfur atoms, while the visual results from PU-gn-exp
indicated an overall negative correlation with thiophene. The
presence of sulfur atoms in organic systems as electron donors
can aid in mitigating charge localization,*®” thus establishing a
positive correlation with sulfur atoms. Conversely, an excessive
amount of thiophene units can impede the crystallinity of OSC
materials,®® leading to a negative correlation.

The OSC Polymer-unit Graph, which is based on polymer-
units, provides a more accurate representation of the
structure—property relationship regarding OSC mobility.
Figures 4 and S depict the structure-mobility relationship
analysis of hole and electron mobility in the OSC data,
respectively. The mobility values presented in Figures 4 and S
are all obtained from relevant literature sources.”*>¢>76+¢978!
The classification accuracies of visual analysis models were
81.96% (hole mobility) and 88.20% (electron mobility),
respectively. In the figures, the colorbar on the right illustrates
the corresponding relationship between color and correlation.
Structures with a high positive correlation are represented in
orange, while structures with a high negative correlation are
depicted in blue. Structures with weak correlation appear to be
colorless. The PU-gn-exp model provides an effective method
for studying the structure—activity relationship, as shown in
Figures 4 and S. In Figure Se, the visualization of a single data
set may not provide a clear explanation since the polymer-
ization units of a polymer are mostly positively correlated
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Figure 4. Present study offers a visual analysis of the correlation between mobility and molecular structure in P-type OSCs. The horizontal axis
represents three representative OSC materials: diketopyrrolopyrrole (DPP), isoindigo (IID), and cyclopentadithiophene (CDT). The vertical axis
corresponds to three typical effects that enhance mobility: branch chain engineering, fluorination, and donor—acceptor (D—A) combinations. (a)
DPP-type OSCs of branch chain engineering effect, (b) IID-type OSCs of branch chain engineering effect, (c) CDT-type OSCs of branch chain
engineering effect, (d) DPP-type OSCs of fluorination effect, (e) IID-type OSCs of fluorination effect, (f) CDT-type OSCs of fluorination effect
and D—A combinations effect, (g) DPP-type OSCs of D—A combinations effect, and (h) IID-type OSCs of D—A combinations effect.

throughout the period. However, by comparing the structural
changes between two polymers with nearly identical structures,
it can be inferred that the inclusion of fluorinated isoindigo
structure leads to a higher correlation compared to the
nonfluorinated isoindigo structure. This inference is further
supported by comparing the experimental data of the two
polymers, where the polymer with the fluorinated isoindigo
structure exhibits a higher mobility (9.7 cm?/V-s"' compared
to the nonfluorinated isoindigo structure 6.67 cm?/V-s*?). This
validation confirms the accuracy of the model’s explanation.
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Each box in the figure shows slight changes in the molecular
structure, enabling the verification of the analytical rationality
of the PU-gn-exp model through comparison.

The PU-gn-exp model accurately identifies the polymer-units
that enhance the target property of carrier mobility. This is
illustrated in Figures 4 and S, where the analysis reveals the
following key points:

1. In the column of branched-chain engineering (Figures
4a—c and Sa—c), it is evident that polymers with higher
mobility have stronger correlations in their branch

https://doi.org/10.1021/acs.jctc.3c01385
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Figure 5. Present study offers a visual analysis of the correlation between mobility and molecular structure in N-type OSCs. The horizontal axis
represents four representative OSC materials: diketopyrrolopyrrole (DPP), isoindigo (IID), cyclopentadithiophene (CDT), and bithiophene imide
(BTI). The vertical axis corresponds to three typical effects that enhance mobility: branch chain engineering, fluorination, and donor—acceptor
(D—A) combinations. (a) DPP-type OSCs of branch chain engineering effect, (b) IID-type OSCs of branch chain engineering effect, and (c) NDI-
type OSCs of branch chain engineering and fluorination effect; (d) DPP-type OSCs of fluorination effect, (e) IID-type OSCs of fluorination effect,
and (f) BTI-type OSCs of fluorination effect; and (g) DPP-type OSCs of donor—acceptor (D—A) combinations effect, (h) IID-type OSCs of
donor—acceptor (D—A) combinations effect, (i) NDI-type OSCs of donor—acceptor (D—A) combinations effect, and (j) BTI-type OSCs of
donor—acceptor (D—A) combinations effect.

chains compared to polymers within the same box
(which are identical except for the branch chains). For
example, in Figure 4b, the correlation of ethylene-glycol
(OEG) chains is higher than that of ordinary alkyl
chains, indicating a stronger relationship. The introduc-
tion of the OEG group can increase the glass transition
temperature (T,) of the polymer, improving its
stability.”>** Similarly, in Figure Sa, fluoroalkyl chains
show a higher correlation compared to ordinary alkyl
chains. The presence of alkyl fluoride chain leads to self-
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assembly effects, enhancmg the crystalline regularity of

polymer molecules.””

. In the column of fluorination (Figures 4d—f and Sc—f),

the presence of fluorinated molecules in the polymer
unit exhibits a stronger correlation, enhancing inter-
molecular 1nteract10ns and promoting crystallinity within
the polymer.”> By incorporating fluorine atoms into the
backbone structure of the polymer semiconductor, the
planarity of the backbone chain is improved. This, in
turn, leads to a reduction in the z#—x stacking distance
between the carrier chains.**"’

https://doi.org/10.1021/acs.jctc.3c01385
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Figure 6. Statistical bar charts depicting highly correlated polymer-units. (a) The top five main chain polymer-units that exhibit the strongest
mobility correlation in p-type OSCs. (b) The top five main chain polymer-units that exhibit the strongest mobility correlation in n-type OSCs. (c)
The top five side chain polymer-units which exhibit the strongest mobility correlation in p-type OSCs. (d) The top five side chain polymer-units

that exhibit the strongest mobility correlation in n-type OSCs.

3. In the case of D—A combinations, the varying
combinations of donor—acceptor pairs influence the
mobility outcomes by affecting the compatibility of
molecular frontier orbitals and geometric factors such as
planarity and steric hindrance. The OSC material
efficiently injects or extracts charge from the electrode
due to its suitable frontier molecular orbital energy level,
while its high planarity results in a larger 7—7 conjugated
area.”” For instance, in Figure 4h, the polymer with
thiophene groups shows higher mobility and correlation
compared to the one with selenophene groups,
indicating that the molecular frontier orbitals of
thiophene align more favorably with the fluorinated
IID group.”’ Similarly, in Figure 5j, the increased
polymerization of BTI results in lower mobility, and
the correlation of the BTT backbone decreases. This can
be attributed to the larger BTI backbone causing
increased steric hindrance, which adversely affects the
morphology of OSC films.”** The examples in Figure
4h and Figure 5j can be argued to represent optimized
geometric factors achieved through the selection of
appropriate D—A combinations.

By considering the joint effects of branched-chain engineer-
ing, fluorination, and D—A combinations in the mobility
analysis of OSC data, PU-gn-exp successfully identifies the
structure—activity relationships of four typical polymer
structures: DPP, IID, CDT, and BTI. This analysis
convincingly demonstrates the analytical validity of the PU-
gn-exp model.

2.3. Statistical Analysis Based on Polymer-Units. The
OSC Polymer-unit Graph is composed of polymer-units as
nodes. It aims to identify which polymer-unit shows a stronger
correlation with the target properties. The statistical analysis
focuses on the node correlation of PU-gn-exp model, with the
mobility of electrons and holes as the labels. The correlation
index obtained by the LRP algorithm is independent among
the data and does not consider the influence of target values
across different data. The enhancement of carrier mobility is a
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crucial optimization objective in the development of OSC
materials, and data with high mobility hold evident
significance. Therefore, we incorporate the target value as a
weight in the process of statistical correlation. The correlation
Rel; for each Polymer-unit i is calculated by

Zj ,ul.relﬁ

num;

Rel, =
(1)

where i represents the species of PU, j represents each data
point (i.e., each polymer), H; is the target attribute value of the
data j, and num; is the total number of PU; in the data set.

Figure 6 illustrates the top polymer-units in the n-type and
p-type OSC materials that exhibit the highest correlation to the
labeled data. Based on this figure, we can categorize the highly
correlated polymer-units into the following categories:

2.3.1. Benzothiazole. The benzothiazole (BTz) type
structure is characterized by significant electron deficiency as
well as remarkable rigidity and planarity. Moreover, BTz—DPP
type D—A OSCs are particularly suitable for producing OSC
films using shear coating technology. By utilizing this
technique, the crystallinity of thin film OSC polymers can
reach high values, up to 100 Dka, resulting in improved
mobility.”’ There are three BTz polymer-units in both Figure
6a and Figure 6b.

2.3.2. Fluorinated Main Chain Polymer-Unit. The first
polymer-unit in Figure 6a and the third polymer-unit in Figure
6b are both fluorinated main chain polymer-units. These
fluorinated polymer-units offer distinct advantages. First, the
presence of fluorine atoms enhances the van der Waals force
between the ring structures, promoting a higher degree of
coplanarity." This enhances the charge transport properties
within the polymer structure. Second, fluorine atoms possess
strong electron-stabilization properties, promoting a reduction
in the LUMO level. This reduction facilitates better alignment
and docking of orbital energy levels for the donor—acceptor
groups, resulting in improved charge transfer and overall
performance of the OSC materials.*
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2.3.3. Side Alkyl Chain. The length of the alkyl chain arm
has a significant impact on the arrangement of the main chain
of the polymer, thereby influencing the carrier transport
performance. Figure 6¢,d demonstrates the strong correlation
of the side chain structure with a C,, or a Cg chain arm. To
enhance the planarity of the polymer main chain, it is essential
to position the branch points of the alkyl chain arms at least
one or more carbon atoms away from the main chain. The
polymer-units 2,4,5 in Figure 6¢, as well as the polymer-units 1
and 4 in Figure 6d, all exhibit structures for which the arm
branch points are positioned more than one carbon atom away
from the main chain.’

Comparing Figures 4 and S, the positive mobility correlation
of ethylene glycol (OEG) or alkyl fluoride chains is higher than
that of ordinary alkyl chains. However, the statistical average in
eq 1 in Figure 6 shows that the correlation of ordinary alkyl
chains is higher than that of other alkyl chains. This seeming
contradiction arises because Figures 4 and 5 compare
individual cases, while Figure 6 is a statistical average weighted
by mobility. In systems with high mobility such as BTz—
cyclopentadithiophene (CDT), the side chain typically consists
of ordinary alkyl chains. These results suggest that exploring
the introduction of stronger atomic interaction branch chains,
such as fluoroalkyl or oxysilyl chains, in high mobility systems
may be worthwhile.””

Although there is no universally accepted standard for
assessing the accuracy of the visual model, it is still crucial to
compare the visual outputs of PU-gn-exp to those of the
baseline model. The mobility structure—activity analysis
diagram of the PU-gn-exp model and the gn-exp model for all
data in the OSC data set has been included in the Supporting
Information. Additionally, a bar chart depicting the node-
correlation statistical analysis of the gn-exp model is available in
the Supporting Information. It should be noted that the
prediction accuracy of PU-gn-exp slightly decreased compared
to the baseline model (n-type OSC: 88.2—89.6%; p-type OSC:
81.96—83.2%), see Figure S1. This does not mean that the
interpretability of the structure—activity relationship based on
polymerization units is lower than the molecular graph. The
gn-exp model is a MPNN model, in which atomic-level nodes
continuously converge during the MPNN process, leading to a
final polyatomic structure centered on the original node atom.
The fact that accurate predictions are obtained from the
aggregation of atoms does not necessarily imply that an
explanation based on individual atoms is more plausible. The
visualization result generated by the LRP principle involves
propagating the correlation responsible for producing the
predicted outcome back to the input node. The explanatory
comparison of OSC mobility in the PU-gn-exp and gn-exp
models can be found in Figures S5 and 6.

The summary of the three types of highly correlated
polymer-units in the transport mechanism of OSCs provides a
comprehensive understanding of their performance. This
analysis confirms the validity of the statistical analysis
conducted on the highly correlated polymer-units. The PU-
gn-exp method effectively identifies and analyzes polymer-units
that exhibit a strong correlation with the label (carrier
mobility). Polymer-unit Graph can not only enhance the
interpretability of the MPNN model but also improve the
operation efficiency of the machine learning model. The PU-
MPNN model (See Figure S2a for details) is set up to
demonstrate a significant reduction in runtime, equivalent to
only 0.02 of the baseline model’s (mol-MPNN) runtime
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(Figure S2b). The decrease in training time can be attributed
to the simplification of graph nodes by the OSC Polymer-unit
Graph, thereby reducing the computational complexity
involved in message passing between nodes. Additionally, the
PU-MPNN model exhibits lower memory consumption
compared to the baseline model. Specifically, when the Batch
Size is set to 8, the PU-MPNN model can halve the memory
consumption compared to the baseline. In the PU-MPNN
model, the message passing operation primarily focuses on
facilitating feature transfer between nodes while utilizing the
OSC Polymer-unit Graph to streamline the node count and
sparsify the input matrix. As a result, the inherent capability of
the message passing algorithm in handling sparse matrices
contributes to accelerated model performance.”"”*

3. CONCLUSIONS

The aim of this paper is to explore the utilization of the
“Polymer-unit Graph” in the GNN model for analyzing the
structures of organic polymer monomers and macromolecules.
In terms of visualization and interpretability, our study finds
that polymer materials such as OSCs exhibit enhanced
interpretability in models. This is because their physical
properties are primarily determined by the combination of
polymer-units rather than a combination of atoms. Therefore,
the PU-gn-exp model proves to be more effective in analyzing
the structure—activity relationship of OSC polymers. In
supervised learning, the PU-MPNN model achieves a notable
reduction in training time, requiring only 2% of the training
time for the baseline model while maintaining the same level of
prediction accuracy. This demonstrates the successful integra-
tion of Polymer-unit Graph into a GNN model, resulting in
improved analytical performance and operational efficiency.

Of course, the application of polymer-units in GNNs does
have limitations. The OSC Polymer-unit Graph presented in
this study is specifically designed for macromolecules and
polymers with intricate structures composed of multiple
polymer-units. OSC Polymer-unit Graph is not suitable for
small molecule data due to the fact that many small molecules
only consist of one or two polymer-units. Additionally, as the
OSC Polymer-unit Graph is graph-structured data, it can only
be used for GNN models. However, by leveraging the polymer
unit concept in machine learning, this limitation can be
overcome. In a previous study,”* we utilized the arrangement
of polymer-units as molecular fingerprints to train various
classifiers, including random forests, support vector machines,
and multilayer perceptron models. The classification accuracy
achieved was over 80%.

The utilization of polymer-units in machine learning models
opens up various avenues for exploration:

(1) The Polymer-unit Graph employed in this research is
specifically applied to the GNN model. However, apart
from GNN, there are several other deep learning models
suitable for organic macromolecules and polymers, such
as the RNN model and the Transformer model. Further
investigation into the application of polymer-units in
these models could provide valuable insights.

(2) In this study, polymer-units are identified based on the

SMILES code rule, which is commonly used for

investigating organic photoelectric materials like

OFET, OLED, and OPV materials. The concept of

polymer-unit can also be extended to the field of biology.

Proteins, for instance, are formed through dehydration
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and condensation reactions of amino acids. By
identifying peptide bonds resulting from these reactions,
proteins can be represented as combinations of amino
acids. Exploring the use of polymer-units in the
biological context could yield interesting findings.
(3) The three-dimensional arrangement of organic materials,
including aspects like chirality and coplanarity, signifi-
cantly influences their properties. Therefore, incorporat-
ing the three-dimensional configuration into polymer-
units for expression is a valuable endeavor. Researching
ways to integrate and represent the three-dimensional
aspects of organic materials within polymer-units could
provide deeper insights into their structure—property
relationships.

Overall, the implementation of polymer-units in deep
learning models offers a broad scope for further research and
exploration, encompassing different model architectures,
expanding into biological contexts, and addressing the
incorporation of three-dimensional configurations for a more
comprehensive understanding of organic materials.

4. METHODS

4.1. OSC Data Set. The data set utilized in this study
consisted of 697 OSCs data, which were obtained from
relevant literature."*»**7%***~%! The parameters for each
datum point include the SMILES representing the monomer
structure, electron mobility, and hole mobility of the material
device, and HOMO and LUMO values obtained from DFT
calculations. The distribution of this data set is presented in the
following table:

4.2. Polymer-Unit-Recognition Script. For each data
collected in the OSC database, the PURS program is used to
identify the polymer-units contained within it and the
connection relationship between polymer-units.** The meth-
odology of polymer-unit recognition, as outlined in “Polymer-
Unit Fingerprint (PUFp): An Accessible Expression of
Polymer OSCs for Machine Learning”, is comprehensively
elucidated within this document. The SMILES codes for all
polymer-units are standardized using the RDKIT>’ program.
Due to the correspondence between standard SMILES code
and molecular structure, identifying the uniqueness of a
primitive is straightforward. Polymer-units in the OSC
database are categorized into a database after eliminating
duplicates.

4.3. Graph-Network-Explainability. The graph-network-
explainability model was proposed by Federico and Hossein in
2019, wherein they extensively investigated the explainability
of GNN models.”® This model is composed of two
components: the GNN component and the model analysis
module. The GNN model is built upon the GN model
proposed by Battaglia et al. in 2018.”> The GN model is a
GNN model that is built upon the MPNN framework. It
accepts input graphs containing a node (E = (¢)), edge (V =
{V}), and graph-level information (u). The graph should be
updated with the three update functions ¢ and the three
aggregate functions p in each layer of the model:

elé = (be(ek) Vikr Vskr u)?il = pe—w(Ei/) (2)
v = d)v(?i/x Vi u)e = p"""(E) 3)
u = PE, T, wT = p ) (4)
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The symbols rk and sk denote the sender and receiver,
respectively, in relation to edge k. E; represents all the edges of
a connecting node i, E’ represents the set of all the edges
updated by the ¢° function, and V' represents the set of all the
nodes updated by the ¢” function. The processing layers
maintain the graph’s structure while updating only its nodes,
not its edges.

The mapping f:(E,V,u) — y can generate an output for the
entire graph or for a specific node or edge. In the context of
graph network explainability, all ¢ employed refers to a
combination of linear transformations and ReLU activation
functions, while all p denote sum/mean/max pooling
operations.

The Analysis module offers three mechanisms for selection:
SA, GBP, and LRP. The present work adopts the LRP
principle, which demonstrates superior performance in test
scenarios. The LRP principle aims to transform the output
signal of the GNN into a linear combination of input signals.
The LRP principle employed by graph-network explainability
can be interpreted as a repeated Taylor decomposition,
assuming that the correlation sum of each layer in the neural
network remains constant. Consequently, the correlation sum
of the output layer can be decomposed into the input
correlation sum:

ZR(x) - = ZR(I) = = f(x) (s)

The LRP principle is mainly concerned with which character-
istics of the input contribute the most to the output, and it can
deal with positive and negative correlations, respectively, so
that the correlation between the input and the output provides
more in-depth analysis. The LRP relies on back-propagation of
a neural network, which involves accumulating correlations
from the output to the input. This is accomplished through the
utilization of the pytorch autograd module.

4.4. Density Functional Theory Calculations. The
frontier molecular orbit (HOMO and LUMO) of all OSC
data in this paper are calculated by DFT. The DFT is
calculated using the Gaussian 09 package.”* For geometric
optimization and frequency calculations, the density functional
method selected was B3LYP, and the selected basis group was
6-31G*. Because some OSC materials have heavy elements,
the relativistic effect correction term gd3bj was used.

4.5. MACCS Fingerprint.° MACCS fingerprint is a
System of Molecular descriptors known as the “Molecular
Access System”. MACCS is a fixed length of binary bits to
describe the structural characteristics of molecules, where each
bit represents a molecular structure. That is, MACCS can
represent this molecular structure as a set of fixed length binary
codes. This article uses the MACCS conversion interface of the
RDKit platform, which is 166 bits.

4.6. GenWL graph Embedding Method.®" The Graph
embedding method is a technique for converting the graph
representation to the vector representation.”” Weisfeiler—
Lehman (WL) is a graph embedding algorithm that checks the
isomorphism of graphs by iterating node labels. GenWL is an
extended version based on the classic WL algorithm, and its
improvement to the WL algorithm is to add a measure of
similarity between two graphs—the tree editing distance.”'

4.7. Code Available. We provide all of the code for OSC
Polymer-unit Graph on our open-source GitHub repository,
which can be found at https://github.com/xinyuel23-q/
Python-based-polymer-unit-recognition-script-PURS-2.0.
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