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Abstract

Using Direct Ink Write (DIW) technology in a rapid and large-scale production requires reliable quality control for printed
parts. Data streams generated during printing, such as print mechatronics, are massive and diverse which impedes extracting
insights. In our study protocol approach, we developed a data-driven workflow to understand the behavior of sensor-measured
X- and Y-axes positional errors with process parameters, such as print velocity and velocity control. We uncovered patterns
showing that instantaneous changes in the velocity, when the build platform accelerates and decelerates, largely influence
the positional errors, especially in the X-axis due to the hardware architecture. Since DIW systems share similar mechatronic
inputs and outputs, our study protocol approach is broadly applicable and scalable across multiple systems.

Introduction

Direct Ink Write (DIW) is an extrusion-based advanced
manufacturing (AM) technology that additively builds 3D
parts. DIW has been gaining popularity in AM as a versatile
manufacturing technique. The inks can comprise a diverse
range of materials, provided that they can be fine-tuned for
optimal printability. Therefore, DIW can fabricate complex
3D structures for a wide range of applications such as func-
tional materials [1], microfluidic networks [2], and energy
materials [3].
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Assessing the quality of DIW printed parts remains a
major challenge as there are no existing standard procedures
or protocols, to the best of our knowledge. DIW printing
processes can often be complex, making it difficult to iden-
tify root causes of defects in the printed parts. To ensure
rapid, high-quality and large-scale production, the process
parameters in relation to the printing processes need to be
investigated and then optimized. Data-driven approaches as
adopted in Industry 4.0 [4] provide a framework for investi-
gating root causes for defects in DIW systems.
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To realize the Industry 4.0 movement [4], we approach
AM from the fourth paradigm of scientific research [5],
using big data to draw insights. Inspection modalities in
AM can be a multitude of available in situ sensors and/or ex
situ characterization and can amass large, potentially rich
and diverse datasets for each manufactured part. Machine
learning (ML) has also become enormously popular within
the decade quickly integrating its predictive capabilities with
large datasets like advanced manufacturing [6, 7]. However,
ML models can only be as good as the quality of data that
is fed into the models, described as garbage-in-garbage-out;
poor quality can result in ML models that are misleading and
incorrect [8]. Current standards in industry do not account
for strict inspection and quality checks for data, as most are
generated on a part-by-part basis, but have instead focused
traditionally at ensuring good quality of the final part. While
generally more data is good for training ML models, data
curation and management becomes a workflow bottleneck
for drawing insights due to the sheer volume and diversity
of the data.

Evaluating large and diverse datasets requires a study
protocol approach to alleviate the bottleneck for generating
insights. A study protocol is defined as a comprehensive plan
of action that details the goals of the study, design, method-
ology, and analysis [9]. Conducting a study protocol prior
to research has shown to increase work efficiency, facili-
tates proper documentation and communication, ensures

Data Generation Data Cleaning

integrity, and prevents research waste [10, 11]. Study pro-
tocols are routine in many medical research and clinical tri-
als for establishing unbiased methodology, guiding clinical
decision-making, avoiding faulty assumptions, and ensuring
adherence towards ethical research standards [12—14]. Addi-
tionally, data governance tools such as FAIR principles can
be integrated into the study protocol workflow such that the
datasets and their relevant ML models are Findable, Acces-
sible, Interoperable and Reusable [15, 16]. Herein, we dem-
onstrate a data-driven workflow, as shown in Fig. 1, to sys-
tematically clean, curate and analyze a DIW build platform
mechatronics to investigate error behavior during operation.

Methods
DIW dataset acquisition

The DIW dataset was obtained using the Aerotech X-, Y-,
Z-axes positioning stage printer with error detection system
(see Fig. 2a for schematic). The measured errors in posi-
tion, velocity, and acceleration from the error detection sys-
tem is the difference between the instructions to the printer
and the measured values from the motor encoders for each
motion axis. Motor encoders thus provide the actual posi-
tions, velocities, and accelerations of the platform’s kinemat-
ics. The printed parts are a five-layered structure that can
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Fig. 1 Data-driven workflow to explore and analyze error behavior in the DIW printing process at a granular level from mechatronics data
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Fig.2 a Three axes stage setup schematic for direct ink write. Figure
adapted from Washington State University Manufacturing Processes
and Machinery Lab [27]. b Print shape and terminologies of Simple

have different print shapes and layer spacing, as shown in
Fig. 2b. Since the Z-axis positional errors were measured to
be significantly smaller than the other axes, we will focus
here on the positional errors in X- and Y-axes. The impact
from the shape of 3D structures, layer spacing variation and
material properties are measurable quantities that will be
explored in future work. The prints were done with a 1000
mm/s > acceleration rate and prescribed velocities ranging
from 28 - 42 mm/s, with increments of 1.75 mm/s. Velocity
controls, which assist in maintaining velocities between each
print path command input through the printing process can
be toggled on and off. Data generated from the printer for
197 parts were stored in . hd£5 file format.

Computing infrastructure and code packages

Data ingestion, wrangling, and analyses were performed
using our CRADLE™ distributed and HPC infrastruc-
ture [17]. Data cleaning and wrangling were performed
in Posit™ RStudio [18, 19] using the tidyverse [20],
arrow [21], and janitor [22] packages, and the data in
.hdf5 format was accessed using the rhdf5 [23] pack-
age. Exploratory data analysis was performed using the
ggplot?2 [24] and plotly [25] packages, and statistical
analyses were performed using the stats [18] package.

Data wrangling and cleaning

Multiple measurement file paths generated from the printer
were compiled into a data frame and metadata for each file

10 20 30

Cubic (SC) and Face Centered Tetragonal (FCT) patterns. ¢ Initial
data visualization investigating the X-axis positional error as a func-
tion of print time for all printed parts

were assigned from their filename. The metadata includes
part ID, print shape and print velocity, and other print
parameters that help identify each file as a unique entity.
Duplicate files were checked and removed based on the
metadata of each measurement file. Corrupted files were
checked by determining the file size of each measurement
file and selecting the file with the largest size. Duplicate and
corrupted measurement files result from errors not associ-
ated with the build platform mechatronics during the print-
ing process, such as ink clog at the nozzle. Once duplicate
and corrupted files were removed, mechatronics data were
extracted from each measurement file and compiled into a
single data frame with an automated code. This compilation
resulted in a data frame of approximately 1.8 million rows
and 53 columns, including the metadata, and has been stored
as a parquet file for faster data reading and writing.

Data labeling using machine learning

Initial exploratory data analysis of mechatronics data, as
illustrated in Fig. 2c for absolute X-axis position error as a
function of time, showed cluttered data points and indistin-
guishable patterns. Therefore, it was imperative to separate
the relevant print part data from the periphery to have a
better understanding of the printing process. We explored
a machine learning algorithm called hierarchical density-
based clustering and used the hdbscan () function from
the dbscan [26] package. Hierarchical density-based clus-
tering is an unsupervised machine learning algorithm that
identifies clusters based on the density of data points and
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establishes a hierarchy to determine if two clusters are dif-
ferent from each other. Data relevant to printed parts, which
were highly clustered towards the center of the print path
(labeled as “part”), can then be separated from the outer
path (labeled as “non-part”). Given the large dimensions
of the dataset, the clustering algorithm was parallelized
using SDLEfleets a resource manager implemented in
CRADLE™, and performed on HPC for computational
efficiency.

The general layer for simple cubic (SC) and face-centered
tetragonal (FCT) is a serpentine path. The serpentine path
is made from individual line segments connected perpen-
dicularly from each end. To generate labels for each of these
line segments, we identified conditions where any changes
in the velocity inputs signified a change in the direction and,
therefore a new line segment. In this particular dataset, we
only have print paths that traverse exclusively in the X- or
Y-axis, making this method sufficient for labeling each line
separately. The line segments were classified into two cat-
egories: lines along the longer path of the serpentine pat-
tern, and “rurns” which describe the shorter path of the
serpentine pattern.

Lastly, to label individual segments within a line, we
explored the velocity profile of the print process for each
part. We generated three categories to describe the behavior
throughout one line segment: (1) the “Acceleration” region,
which describes the leading section within the line segment;
(2) the “Deceleration” region, which corresponds to the
trailing section of a line segment (or approaching a turn in
the print path), and (3) the “Constant Velocity” region, in
which no change in velocity is observed. To better under-
stand the error behavior in these regions as a function of
time and to compare it across different regions, a new time
variable was calculated such that the beginning of each
region in every line segment was set to t = 0.

Results

Exploratory data analysis was performed to investigate the
positional error behavior of the printer during printing. After
data wrangling and labeling, we observed distinct patterns
arising from extracting all of the positional errors from each
axis, as shown for the X-axis positional error in Fig. 3a as a
function of time when looking at one layer print. The oscil-
lations from the positive into the negative values indicate
directional changes in the print, as the path travels through
the serpentine pattern. To negate the effect of the direction-
ality of the print, the absolute values of the error from each
positional axis were explored. Within one line, we then
explored the three regions in a line segment where obvi-
ous changes in error occur, as shown in Fig. 3b. A sudden
change in the error magnitude is defined by a rapid increase
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in error followed by a decay. The sudden changes coincide
with instantaneous changes in the velocity profile, suggest-
ing that acceleration or deceleration increases the error. The
“Acceleration” region also has higher error magnitudes than
the “Deceleration” region, and therefore, acceleration has
higher impact on the positional error than deceleration.
Furthermore, periods of constant velocity decreased error
over time; however, the error stabilization required some
time even after the printer reached the prescribed velocity,
indicated by a decaying slope at the beginning of the “Con-
stant Velocity” region.

Next, we investigated the impact of acceleration and
deceleration on the error in the three axes under different
prescribed velocities. To better elucidate this behavior, we
applied a cubic regression model, as shown in Fig. 4a, b, and
c. The X-axis position error has the most profound change in
comparison with the other axes. We observed both accelera-
tion and deceleration errors increasing in both maximum
error and time when the prescribed velocity increases. The
Y-axis position error shows a magnitude less than the X-axis
with the acceleration slightly decreasing the maximum error
and deceleration slightly increasing the maximum error
while the prescribed velocities are increasing. The positional
error had the least effect in the Z-axis. In all axes, the turn
region showed no appreciable change in error magnitude.
Similarly, we also applied cubic regression models to inves-
tigate the influence of the velocity control. In Fig. 4d, e, and
f, for the X-, Y-, and Z-axis respectively, the errors do not
show significant differences when the velocity control is tog-
gled on or off, with the exception of having a different trend
in the “Deceleration” region of the Y-axis.

Discussion

The DIW printing process involves configuration of multiple
print parameters and interaction of different components.
Due to the complexity of the printing process, understand-
ing which factors alter the overall error behavior requires
a thorough and systematic workflow. In this dataset, we
explored the effects of acceleration and velocity changes on
positional errors during printing by investigating individual
lines of each layer print. We restricted the scope of the study
exclusively in the X- or Y-axis direction; we did not explicitly
look at the effects when the stage traverses in the Z-axis. We
note that the greatest degree of the errors occurred near the
edges in the “Acceleration” and “Deceleration” regions,
where new print command inputs are typically observed.
The abrupt changes in positional error greatly impact move-
ment in the X-axis and can be attributed to the tolerance
stack from the X-axis kinematic hardware setup. Velocity
control is one of the motion control systems that influences
the motion of the build platform and allows for better print
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resolutions. Although velocity control had minimal impact
on positional error in this study, it is worth investigating
prints with more complex geometries where curvature is
present, or applications that generally require high precision
or finer print resolutions.

In this ongoing work, we have developed a systematic
approach, a study protocol, to model how positional error is
affected. The study protocol is designed to be iterative, allow-
ing newly generated data to be incorporated into the mod-
els. Our approach permits repeatability in our workflows and
reproducibility in our model creation at large scales, and allows
the flexibility to introduce new variables into the models. The

0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

Time (s)

inferential statistical models developed after data labeling
allows understanding of the error behavior at a granular level
in the printing process. Machine learning can then be applied
for error predictions and reduction once we understand what
factors influence errors from interpretable models.

Conclusion
As part of the study protocol, a data-driven workflow was

developed to systematically explore the positional error
behavior from the build platform mechatronic data. We
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then uncovered patterns in the error behavior and extracted
insights at a granular level that could otherwise be over-
looked. The advantage of having study protocol prevents
data siloing through standardized data curation and anal-
ysis. Additionally, data quality checks embedded in the
study protocol ensures high-fidelity ML models. Emer-
gent or existing AI/ML technologies can then be applied
towards curated datasets, combined from a fleet of DIW
printers to truly transform advanced manufacturing.
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