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Abstract
Using Direct Ink Write (DIW) technology in a rapid and large-scale production requires reliable quality control for printed 
parts. Data streams generated during printing, such as print mechatronics, are massive and diverse which impedes extracting 
insights. In our study protocol approach, we developed a data-driven workflow to understand the behavior of sensor-measured 
X- and Y-axes positional errors with process parameters, such as print velocity and velocity control. We uncovered patterns 
showing that instantaneous changes in the velocity, when the build platform accelerates and decelerates, largely influence 
the positional errors, especially in the X-axis due to the hardware architecture. Since DIW systems share similar mechatronic 
inputs and outputs, our study protocol approach is broadly applicable and scalable across multiple systems.

Introduction

Direct Ink Write (DIW) is an extrusion-based advanced 
manufacturing (AM) technology that additively builds 3D 
parts. DIW has been gaining popularity in AM as a versatile 
manufacturing technique. The inks can comprise a diverse 
range of materials, provided that they can be fine-tuned for 
optimal printability. Therefore, DIW can fabricate complex 
3D structures for a wide range of applications such as func-
tional materials [1], microfluidic networks [2], and energy 
materials [3].

Assessing the quality of DIW printed parts remains a 
major challenge as there are no existing standard procedures 
or protocols, to the best of our knowledge. DIW printing 
processes can often be complex, making it difficult to iden-
tify root causes of defects in the printed parts. To ensure 
rapid, high-quality and large-scale production, the process 
parameters in relation to the printing processes need to be 
investigated and then optimized. Data-driven approaches as 
adopted in Industry 4.0 [4] provide a framework for investi-
gating root causes for defects in DIW systems.
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To realize the Industry 4.0 movement [4], we approach 
AM from the fourth paradigm of scientific research [5], 
using big data to draw insights. Inspection modalities in 
AM can be a multitude of available in situ sensors and/or ex 
situ characterization and can amass large, potentially rich 
and diverse datasets for each manufactured part. Machine 
learning (ML) has also become enormously popular within 
the decade quickly integrating its predictive capabilities with 
large datasets like advanced manufacturing [6, 7]. However, 
ML models can only be as good as the quality of data that 
is fed into the models, described as garbage-in-garbage-out; 
poor quality can result in ML models that are misleading and 
incorrect [8]. Current standards in industry do not account 
for strict inspection and quality checks for data, as most are 
generated on a part-by-part basis, but have instead focused 
traditionally at ensuring good quality of the final part. While 
generally more data is good for training ML models, data 
curation and management becomes a workflow bottleneck 
for drawing insights due to the sheer volume and diversity 
of the data.

Evaluating large and diverse datasets requires a study 
protocol approach to alleviate the bottleneck for generating 
insights. A study protocol is defined as a comprehensive plan 
of action that details the goals of the study, design, method-
ology, and analysis [9]. Conducting a study protocol prior 
to research has shown to increase work efficiency, facili-
tates proper documentation and communication, ensures 

integrity, and prevents research waste [10, 11]. Study pro-
tocols are routine in many medical research and clinical tri-
als for establishing unbiased methodology, guiding clinical 
decision-making, avoiding faulty assumptions, and ensuring 
adherence towards ethical research standards [12–14]. Addi-
tionally, data governance tools such as FAIR principles can 
be integrated into the study protocol workflow such that the 
datasets and their relevant ML models are Findable, Acces-
sible, Interoperable and Reusable [15, 16]. Herein, we dem-
onstrate a data-driven workflow, as shown in Fig. 1, to sys-
tematically clean, curate and analyze a DIW build platform 
mechatronics to investigate error behavior during operation.

Methods

DIW dataset acquisition

The DIW dataset was obtained using the Aerotech X-, Y-, 
Z-axes positioning stage printer with error detection system 
(see Fig. 2a for schematic). The measured errors in posi-
tion, velocity, and acceleration from the error detection sys-
tem is the difference between the instructions to the printer 
and the measured values from the motor encoders for each 
motion axis. Motor encoders thus provide the actual posi-
tions, velocities, and accelerations of the platform’s kinemat-
ics. The printed parts are a five-layered structure that can 

Fig. 1   Data-driven workflow to explore and analyze error behavior in the DIW printing process at a granular level from mechatronics data
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have different print shapes and layer spacing, as shown in 
Fig. 2b. Since the Z-axis positional errors were measured to 
be significantly smaller than the other axes, we will focus 
here on the positional errors in X- and Y-axes. The impact 
from the shape of 3D structures, layer spacing variation and 
material properties are measurable quantities that will be 
explored in future work. The prints were done with a 1000 
mm/s 2 acceleration rate and prescribed velocities ranging 
from 28 - 42 mm/s, with increments of 1.75 mm/s. Velocity 
controls, which assist in maintaining velocities between each 
print path command input through the printing process can 
be toggled on and off. Data generated from the printer for 
197 parts were stored in .hdf5 file format.

Computing infrastructure and code packages

Data ingestion, wrangling, and analyses were performed 
using our CRADLETM distributed and HPC infrastruc-
ture [17]. Data cleaning and wrangling were performed 
in PositTM RStudio [18, 19] using the tidyverse [20], 
arrow [21], and janitor [22] packages, and the data in 
.hdf5 format was accessed using the rhdf5 [23] pack-
age. Exploratory data analysis was performed using the 
ggplot2 [24] and plotly [25] packages, and statistical 
analyses were performed using the stats [18] package.

Data wrangling and cleaning

Multiple measurement file paths generated from the printer 
were compiled into a data frame and metadata for each file 

were assigned from their filename. The metadata includes 
part ID, print shape and print velocity, and other print 
parameters that help identify each file as a unique entity. 
Duplicate files were checked and removed based on the 
metadata of each measurement file. Corrupted files were 
checked by determining the file size of each measurement 
file and selecting the file with the largest size. Duplicate and 
corrupted measurement files result from errors not associ-
ated with the build platform mechatronics during the print-
ing process, such as ink clog at the nozzle. Once duplicate 
and corrupted files were removed, mechatronics data were 
extracted from each measurement file and compiled into a 
single data frame with an automated code. This compilation 
resulted in a data frame of approximately 1.8 million rows 
and 53 columns, including the metadata, and has been stored 
as a parquet file for faster data reading and writing.

Data labeling using machine learning

Initial exploratory data analysis of mechatronics data, as 
illustrated in Fig. 2c for absolute X-axis position error as a 
function of time, showed cluttered data points and indistin-
guishable patterns. Therefore, it was imperative to separate 
the relevant print part data from the periphery to have a 
better understanding of the printing process. We explored 
a machine learning algorithm called hierarchical density-
based clustering and used the hdbscan() function from 
the dbscan [26] package. Hierarchical density-based clus-
tering is an unsupervised machine learning algorithm that 
identifies clusters based on the density of data points and 

Fig. 2   a Three axes stage setup schematic for direct ink write. Figure 
adapted from Washington State University Manufacturing Processes 
and Machinery Lab [27]. b Print shape and terminologies of Simple 

Cubic (SC) and Face Centered Tetragonal (FCT) patterns. c Initial 
data visualization investigating the X-axis positional error as a func-
tion of print time for all printed parts
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establishes a hierarchy to determine if two clusters are dif-
ferent from each other. Data relevant to printed parts, which 
were highly clustered towards the center of the print path 
(labeled as “part”), can then be separated from the outer 
path (labeled as “non-part”). Given the large dimensions 
of the dataset, the clustering algorithm was parallelized 
using SDLEfleets a resource manager implemented in 
CRADLETM, and performed on HPC for computational 
efficiency.

The general layer for simple cubic (SC) and face-centered 
tetragonal (FCT) is a serpentine path. The serpentine path 
is made from individual line segments connected perpen-
dicularly from each end. To generate labels for each of these 
line segments, we identified conditions where any changes 
in the velocity inputs signified a change in the direction and, 
therefore a new line segment. In this particular dataset, we 
only have print paths that traverse exclusively in the X- or 
Y-axis, making this method sufficient for labeling each line 
separately. The line segments were classified into two cat-
egories: lines along the longer path of the serpentine pat-
tern, and “turns” which describe the shorter path of the 
serpentine pattern.

Lastly, to label individual segments within a line, we 
explored the velocity profile of the print process for each 
part. We generated three categories to describe the behavior 
throughout one line segment: (1) the “Acceleration” region, 
which describes the leading section within the line segment; 
(2) the “Deceleration” region, which corresponds to the 
trailing section of a line segment (or approaching a turn in 
the print path), and (3) the “Constant Velocity” region, in 
which no change in velocity is observed. To better under-
stand the error behavior in these regions as a function of 
time and to compare it across different regions, a new time 
variable was calculated such that the beginning of each 
region in every line segment was set to t = 0.

Results

Exploratory data analysis was performed to investigate the 
positional error behavior of the printer during printing. After 
data wrangling and labeling, we observed distinct patterns 
arising from extracting all of the positional errors from each 
axis, as shown for the X-axis positional error in Fig. 3a as a 
function of time when looking at one layer print. The oscil-
lations from the positive into the negative values indicate 
directional changes in the print, as the path travels through 
the serpentine pattern. To negate the effect of the direction-
ality of the print, the absolute values of the error from each 
positional axis were explored. Within one line, we then 
explored the three regions in a line segment where obvi-
ous changes in error occur, as shown in Fig. 3b. A sudden 
change in the error magnitude is defined by a rapid increase 

in error followed by a decay. The sudden changes coincide 
with instantaneous changes in the velocity profile, suggest-
ing that acceleration or deceleration increases the error. The 
“Acceleration” region also has higher error magnitudes than 
the “Deceleration” region, and therefore, acceleration has 
higher impact on the positional error than deceleration. 
Furthermore, periods of constant velocity decreased error 
over time; however, the error stabilization required some 
time even after the printer reached the prescribed velocity, 
indicated by a decaying slope at the beginning of the “Con-
stant Velocity” region.

Next, we investigated the impact of acceleration and 
deceleration on the error in the three axes under different 
prescribed velocities. To better elucidate this behavior, we 
applied a cubic regression model, as shown in Fig. 4a, b, and 
c. The X-axis position error has the most profound change in 
comparison with the other axes. We observed both accelera-
tion and deceleration errors increasing in both maximum 
error and time when the prescribed velocity increases. The 
Y-axis position error shows a magnitude less than the X-axis 
with the acceleration slightly decreasing the maximum error 
and deceleration slightly increasing the maximum error 
while the prescribed velocities are increasing. The positional 
error had the least effect in the Z-axis. In all axes, the turn 
region showed no appreciable change in error magnitude. 
Similarly, we also applied cubic regression models to inves-
tigate the influence of the velocity control. In Fig. 4d, e, and 
f, for the X-, Y-, and Z-axis respectively, the errors do not 
show significant differences when the velocity control is tog-
gled on or off, with the exception of having a different trend 
in the “Deceleration” region of the Y-axis.

Discussion

The DIW printing process involves configuration of multiple 
print parameters and interaction of different components. 
Due to the complexity of the printing process, understand-
ing which factors alter the overall error behavior requires 
a thorough and systematic workflow. In this dataset, we 
explored the effects of acceleration and velocity changes on 
positional errors during printing by investigating individual 
lines of each layer print. We restricted the scope of the study 
exclusively in the X- or Y-axis direction; we did not explicitly 
look at the effects when the stage traverses in the Z-axis. We 
note that the greatest degree of the errors occurred near the 
edges in the “Acceleration” and “Deceleration” regions, 
where new print command inputs are typically observed. 
The abrupt changes in positional error greatly impact move-
ment in the X-axis and can be attributed to the tolerance 
stack from the X-axis kinematic hardware setup. Velocity 
control is one of the motion control systems that influences 
the motion of the build platform and allows for better print 
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resolutions. Although velocity control had minimal impact 
on positional error in this study, it is worth investigating 
prints with more complex geometries where curvature is 
present, or applications that generally require high precision 
or finer print resolutions.

In this ongoing work, we have developed a systematic 
approach, a study protocol, to model how positional error is 
affected. The study protocol is designed to be iterative, allow-
ing newly generated data to be incorporated into the mod-
els. Our approach permits repeatability in our workflows and 
reproducibility in our model creation at large scales, and allows 
the flexibility to introduce new variables into the models. The 

inferential statistical models developed after data labeling 
allows understanding of the error behavior at a granular level 
in the printing process. Machine learning can then be applied 
for error predictions and reduction once we understand what 
factors influence errors from interpretable models.

Conclusion

As part of the study protocol, a data-driven workflow was 
developed to systematically explore the positional error 
behavior from the build platform mechatronic data. We 

Fig. 3   Uncovering patterns 
within one layer print showing 
positional error in the X-axis 
as a function of print time. a 
Positive and negative error 
oscillating over time, with dif-
ferent colors representing each 
line segment in a layer print. b 
Comparing absolute position 
error in the X-axis as a function 
of time for different line regions 
(columns) and print velocities 
(rows)
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then uncovered patterns in the error behavior and extracted 
insights at a granular level that could otherwise be over-
looked. The advantage of having study protocol prevents 
data siloing through standardized data curation and anal-
ysis. Additionally, data quality checks embedded in the 
study protocol ensures high-fidelity ML models. Emer-
gent or existing AI/ML technologies can then be applied 
towards curated datasets, combined from a fleet of DIW 
printers to truly transform advanced manufacturing.
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