Katherine Bassett

Department of Civil & Environmental Engineering, Northeastern University 360 Huntington Avenue Boston, MA 02115 USA

Rachel Silcox

Department of Mechanical Engineering, University of Michigan 2350 Hayward Ann Arbor, MI 48109 USA

Jeffrey D. Will

Department of Electrical Engineering Valparaiso University

Sarah Hill Paul Smith

Department of Chemistry Valparaiso University

Ben Smith Brian Schmit Luke J. Venstrom Peter T. Krenzke¹

Department of Mechanical Engineering Valparaiso University 1900 Chapel Dr. Valparaiso, IN 46383 USA

Fungible, Multiyear Solar Thermochemical Energy Storage Demonstrated via the Cobalt Oxide Cycle

We present a proof of concept demonstration of solar thermochemical energy storage on a multiple year time scale. The storage is fungible, and can take the form of process heat or hydrogen. We designed and fabricated a 4-kW solar rotary drum reactor to carry out the solar-driven charging step of solar thermochemical storage via metal oxide reduction-oxidation cycles. During the summer of 2019, the solar reactor was operated in the Valparaiso University solar furnace to effect the reduction of submillimeter cobalt oxide particles in air at approximately 1000°C. A particle collection system cooled the reduced particles rapidly enough to maintain conversions of 84-94% for feed rates of 2.9–60.8 g min⁻¹. The solar-to-chemical storage efficiency, defined as the enthalpy of the reduction reaction at 1000°C divided by the solar energy input, reached 20%. Samples of the reduced cobalt oxide particles were stored in vials in air at room temperature for more than three years. The stored solar energy was released by reoxidizing samples in air in a benchtop reactor and by electrochemically reoxidizing samples to produce H₂. Measurements of the oxygen uptake by the reduced metal oxide confirm its promise as a medium to store and dispatch solar energy over long durations. Linear sweep voltammetry and bulk electrolysis demonstrate the promise of H₂ production at 0.55 V relative to the normal hydrogen electrode, 0.68 V below the 1.23 V potential required for conventional

Keywords: Thermochemical Energy Storage, Solar Reactor, Cobalt Oxide, Hydrogen

1 Introduction

11

12

13

14

15

With increasing adoption of sustainable but intermittent energy sources, the need for energy storage is growing. The solar resource is especially abundant, making means to store its energy in stable, dispatchable forms particularly desirable. Among solar energy storage approaches, solar thermochemical pathways are of interest because they produce chemical products with high energy density that can be stored for hours, days, or even years.

In this work, we demonstrate a multiyear thermochemical energy storage approach using a metal oxide energy carrier. Energy from concentrated sunlight is stored through the reduction of cobalt oxide particles, eq. (1), which we refer to as the charging step. Later the stored solar energy is released either through the oxidation of the reduced particles by gaseous oxygen, eq. (2), or through the electrochemical oxidation of the particles by water in an aqueous electrolyte to produce H_2 , eq. (3).

$$Co_3O_4 \rightarrow 3CoO + 1/2O_2$$
 (1)

$$3 \, \text{CoO} + 1/2 \, \text{O}_2 \rightarrow \text{Co}_3 \, \text{O}_4 \tag{2}$$

$$3 CoO + H_2O \rightarrow Co_3O_4 + H_2$$
 (3)

Revised manuscript submitted January 24, 2024. Portions of this article were published in the Proceedings of the 2023 ASME Energy Sustainability Conference.

Cobalt oxide is chosen as the energy carrier in this work because it has several advantageous characteristics. Similar to other metal oxides, the reduction reaction (eq. 1) requires elevated temperatures. In this case, the temperature is near 1000°C, for which central tower receiver systems are well suited to provide solar process heat. Cobalt oxide may be reduced in air at this temperature, avoiding the energetic and capital equipment costs of operating with low oxygen concentrations required by many other candidate metal oxide energy carriers. Reducing the metal oxide in air also allows the possibility to implement the solar-driven reduction in windowless receiver-reactors. Compared to other oxides reducible in air at these temperatures, cobalt oxide has warranted attention as a storage medium because of the high heat of reaction, ΔH_r = 844 kJ/kg-Co₃O₄ [1-3]. The reduced CoO can be stored indefinitely in room temperature air, making cobalt oxide an especially attractive candidate for solar energy storage over long

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

While both thermodynamic and certain practical characteristics of energy storage with cobalt oxide are promising, we acknowledge that its toxicity adds an important constraint to its implementation. Especially hazardous to aquatic life, any industrial implementation must ensure that the cobalt oxide is fully retained in a controlled system. Cobalt oxide is also carcinogenic, requiring special care to prevent inhalation when working with particles. In addition to concerns about cobalt oxide's toxicity, Buck *et al.* rightfully draw attention to anthropological concerns about its sourcing [4]. Still we find its technical characteristics warrant continued evaluation, as it holds promise both for solar thermal decoupled electrolysis [5] and thermochemical energy storage for high temperature power

¹Corresponding Author.

cycles [6].

There are two relevant strategies for releasing the energy stored in the reduced cobalt oxide. First, the energy may be released as process heat, for example by reacting the reduced cobalt oxide (CoO) with a flow of air at elevated temperatures. The energy released by the oxidation of the CoO is transferred to the air as sensible heat. This strategy is amenable to supplying process heat to a high-temperature, high-efficiency power cycle [6–13]. Anticipated thermal efficiencies exceed 50% for supercritical CO₂ Brayton cycles operating with turbine inlet temperatures over 700 °C [14, 15]. We note that cobalt structures have been studied as the storage medium for this energy release strategy by several research groups [6–9, 12, 13, 16]. For the charging step, cobalt oxide structures can be reduced under a flow of compressed air which has been heated to temperatures near 950°C in a solar receiver.

In the second energy release strategy, reduced cobalt oxide particles are supplied to an electrochemical cell to reduce the electrical work required to produce hydrogen with near room temperature water electrolysis. This latter approach was introduced by Palumbo et al. as the solar thermal decoupled electrolysis process [5, 17, 18]. A key feature of solar thermal decoupled electrolysis is that the solar driven reduction and non-solar electrochemical hydrogen production steps are decoupled in space and time. The cobalt oxide energy carrier has several characteristics which facilitate the hydrogen-producing electrolysis step. The solar-produced CoO is readily dissolved in an electrolyte and the solid product CoOOH (from which heating in air recovers Co₃O₄) precipitates from the solution [17]. Recently, the potential obstacle of anode passivation was addressed as we demonstrated the cobalt oxide product formed during hydrogen production is electrochemically active [18]. The most significant electrochemistry challenge is increasing the current density, though the use of high surface area porous electrodes is suggested as a potential solution [17], and inducing flow in the electrochemical cell shows some promise [18].

In this work, we investigate reduction of cobalt oxide particles, which may be paired with either energy release strategy. We also evaluate the capacity of the reduced cobalt oxide particles to supply the stored energy on demand, both by releasing the stored energy as process heat through reaction with air and by producing H₂ with an electrical work input lower than that for conventional electrolysis. We choose to work with cobalt oxide in particle form because they can serve as the medium both for thermochemical storage and as the solar receiver heat transfer "fluid." Particle receivers are one of three types selected for development by NREL in the Gen3 concentrated solar power roadmap, the other two being advanced molten salts and high pressure gases. Advantages of the particle pathway include high energy storage density, scalability, an ability to operate receivers at relatively higher fluxes and relatively lower parasitic energy requirements [19].

The solar reduction of cobalt oxide particles has been studied previously. Notably, at the DLR Neises $\it et al.$ demonstrated reduction of $\rm Co_3O_4$ to CoO in a windowed rotary kiln reactor in batch operation [1]. A controlled flow of air was employed both as the oxidizer gas and as a sweep gas to remove oxygen evolved during reduction. The average conversion of $\rm Co_3O_4$ to CoO was $\rm 40\text{-}50\%$ with a maximum conversion of $\rm 70\%$ for a single batch. Neises $\it et al.$ recommended the development of a continuously fed particle reactor with improved mixing as important advancements.

Rotary solar reactor-receivers are attractive for working with particles because of the high degree of mixing which can aid mass and heat transport. Prior applications of rotary reactor-receivers include rotary kilns for the calcination of CaCO₃ to produce lime [20, 21] and a conical rotary receiver for the thermal decomposition of ZnO [22]. Rotary particle receivers also lend themselves to scale up. A 2.5 MW rotary receiver has been designed and tested with receiver temperatures as high as 965°C [23, 24]. Continuously fed particle reactors have been modeled by Tescari *et al.* at DLR [21] and by Kopping *et al.* at Valparaiso University [25]. Importantly Kopping *et al.* showed that the reactor performance is insensitive to both the particle volume fraction and the degree of axial mixing

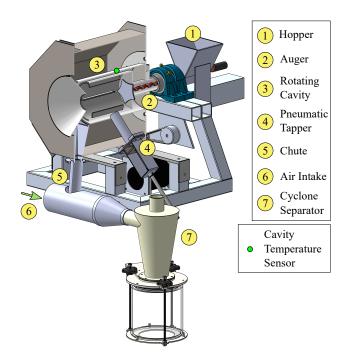


Fig. 1 The Rotary Drum Reactor.

in the reactor. Further, it was concluded that the feed rate of cobalt oxide particles could be adjusted to maximize efficiency [25]. Palumbo *et al.* describe the development and initial testing of a rotary drum reactor at Valparaiso University [26]. The initial testing evaluated feed rates of 4-30 g min⁻¹ with demonstrated conversion as high as 84.8%. From the results it was inferred that the cavity temperature must be maintained above 950°C to facilitate high conversion.

In this work, we present a complete demonstration of solar thermochemical energy charging, storage, and release using cobalt oxide particles. The demonstration is comprised of a new set of on-sun experiments where cobalt oxide particles were reduced in the 4 kW solar thermal rotary drum reactor developed at Valparaiso University with an improved feed system, the physical storage of the reduced particles for more than three years, and finally the ondemand release of the stored energy as process heat or H₂ in off-sun benchtop reactors. Based on the prior modeling and experimental assessment of the solar rotary drum reactor, the on-sun experimental program focuses on increasing the feed rate and conversion of the cobalt oxide particles [25, 26]. In the following sections, we describe the salient solar reactor features and our experimental program which demonstrates the viability of the concept.

2 The Rotary Drum Reactor

A windowless rotary drum reactor, shown in Fig. 1, was designed to effect the continuous solar-driven reduction of cobalt oxide particles in air at temperatures near 1000°C [26]. Concentrated sunlight enters the reactor through a 6 cm windowless aperture. The reactor features an auger-driven feeding system and a rotating Inconel 625 cavity, 21.6 cm long with 13.5 cm diameter, that generates a particle cloud for volumetric absorption.

Cobalt oxide (Co_3O_4) particles are stored in a stainless steel hopper ① and fed continuously through a stainless steel tube into the reactor by a steel auger ②. For clarity, circled numbers refer to the component locations and key in Fig. 1. A vibrator motor and stirrer mounted to the top of the hopper encourage continuous particle supply to the auger, while a stepper motor controls the speed of the auger to adjust the mass flow rate of cobalt oxide into the reactor. Particles enter the reactor cavity ③ through an opening in the center of the back wall, i.e. furthest from the aperture, and

drop to the lower cavity wall. To prevent sintering as the particles enter the reactor, a star-shaped Inconel plate shields the opening from direct exposure to concentrated sunlight. Once in the cavity, concentrated sunlight directly irradiates the suspended cobalt particles providing the process heat to facilitate their reduction.

The cavity rotates on a cantilevered tube supported by two pillow-block graphite bearings at the back of the reactor. A chain-drive rotates the internal cavity at a mean rate of 53 RPM to generate a particle cloud. For comparison, the rotary kiln demonstrated by Neises *et al.* operated at a maximum of 6 RPM [1], while the rotary drum CentRec receiver was operated at approximately 45 RPM [24]. Paddles welded to the inner surface of the rotating cavity aid mixing of the particle suspension. To reduce accumulation of particles on the cavity walls, a pneumatically driven piston ④ strikes the cavity once every 30 seconds. Rotation is temporarily halted during the piston strike. To encourage particle motion from back to front, the reactor is positioned with a 9° downward inclination.

The collection system consists of a blower, cyclone separator, and connecting ductwork. The blower is positioned downstream of the separator and ductwork to provide a favorable pressure gradient that pulls particles into the collection system from the cavity. Particles enter the collection system at the bottom front of the reactor through a chute ⑤. A camera mounted at the air intake ⑥ allows visual confirmation that particles are entering the collection system. The particles fall into a stainless steel collection tube and are cooled quickly with room temperature air drawn into the ductwork by the blower. Some larger particles accumulate in a tray positioned in the ductwork at the bottom of the collection tube. Smaller particles are captured in a glass jar by the cyclone separator ⑦. Downstream of the cyclone separator the air is filtered before exiting the blower.

3 Methods

3.1 On-Sun Solar Reduction. A series of on-sun experiments were conducted between July 11, 2019 and August 7, 2019 to determine the impact of the particle feed rate on the cobalt oxide conversion and thermal efficiency during the charging step of the cycle. On-sun testing was carried out at the solar furnace housed in the James S. Markiewicz Solar Energy Research Facility at Valparaiso University [27]. The solar furnace employs a horizontal, on-axis optical configuration in which a heliostat reflects solar radiation into a faceted, spherical concentrator. The concentrator is composed of 305 hexagonal shaped mirrors, has a focal length of 5.77 m, and a rim angle of approximately 20°. The concentrator focuses the radiation to an approximately 6-cm-diameter focal spot to which the solar reactor aperture was matched.

To produce $\mathrm{Co_3O_4}$ used in the solar reactor experiments, Alfa Aesar 400 mesh $\mathrm{Co(OH)_2}$ with particle sizes nominally less than 37 µm was heated in air at 750°C for 12–24 hours. Within measurement uncertainty, XRD confirmed 100% conversion to $\mathrm{Co_3O_4}$ after the heat treatment, with no measurable difference between 12 and 24 hour heating periods.

For each on-sun experiment, the Co₃O₄ is loaded into the hopper at room temperature outside the reactor. Mostly fresh Co₃O₄ was used. However, some particles were retained in the hopper and the auger feed system from prior experiments. The reactor cavity is empty before the experiment. Just before placing the reactor on sun, the solar input power is measured with a CCD camera and water-cooled Lambertian target which was calibrated against a calorimeter [28]. Once on-sun, the heat up period is usually one to two hours, depending on the solar resource, i.e. direct normal irradiance, for the day. The reactor cavity temperature is measured by a K-type thermocouple, positioned axially 21.7 cm from the aperture and 5.7 cm from the back wall of the rotating cavity. Radially, the thermocouple lies 8.4 cm from the cavity centerline, between the rotating cavity and 10 cm of insulation, such that we expect it to be close to the cavity wall temperature and slightly lower than the particle temperature. Once the cavity reaches its target temperature of approximately 1000° C, the cavity rotation, piston, cooling system, hopper vibration motor, hopper stirrer and feed auger are activated. Co_3O_4 is fed into the back of the cavity at a constant feed rate for a duration of 2–13 minutes at feed rates between 2.9 and 60.8 g min⁻¹ To stop feeding, the feed auger, hopper vibration motor and hopper mixer are shut off while all other components are left on until material has stopped exiting the cavity. Once feeding has completely stopped, the reactor is taken off sun by closing the louvers at the entrance to the solar furnace.

Longer feeding durations, 20–30 minutes, were accomplished in earlier experiments in the reactor as described by Palumbo *et al.* [26]. We targeted shorter durations to limit the total amount of cobalt used in our experiments. The exact duration was set during operation of each experiment with the primary goal of maintaining the cavity temperature above 960°C, for which the model developed by Kopping *et al.* predicts complete conversion [25]. Prior experiments with the solar rotary drum reactor resulted in low conversions, <50%, for temperatures below 950°C, but higher conversions for 69–85% for operation above 1000°C [26].

After each on-sun test, a total of 30–300 g of product material was collected separately from the tray just below the chute in the exhaust duct, the jar at the base of the cyclone separator, and the receiver cavity. Samples from the products collected at each location were characterized by X-Ray Diffraction (Rigaku Miniflex 600) to determine the composition of the sample within $\pm 5\%$ via Rietveld refinement of the resulting spectra.

For each experiment, the reactor efficiency was calculated according to eq. 4

$$\eta = \frac{m\,\bar{X}\,\Delta H_{\rm r}}{\dot{Q}_{\rm solar}\,t}\tag{4}$$

where m is the sum of masses collected from the tray at the base of the chute and the cyclone separator jar and \bar{X} is the mass weighted average conversion of cobalt collected from the same locations. The mass weighted average conversion is calculated according to eq. 5

$$\bar{X} = \frac{\sum_{i} m_{i} X_{i}}{\sum_{i} m_{i}} \tag{5}$$

where m_i is the mass collected from either the tray or cyclone seperator and X_i is the conversion measured at that location via XRD. The mass collected from the cavity was recorded, but not used in the calculation of efficiency or feed rate. The solar input power, \dot{Q} , is the nominal power reading of that day's experiment, recorded just before the reactor was placed on sun.

The particle feeding duration (t) is calculated with two methods. The first considers the time between engaging and disengaging the feeding system. The second considers the times when particles start and finish exiting the reactor through the chute, observed using the camera mounted at the air intake of the collection system.

- 3.2 Energy Storage. After recovery from the solar reactor's particle collection system, samples of reduced particles were stored in vials in the solar concentrator room of our solar furnace facility. The concentrator room has basic climate control such that its temperature normally fluctuates between 10 and 25°C. While operating the solar furnace, however, the room is opened to the outdoors. The solar furnace was operated on several occasions during the more than three year span of storage, primarily over the summer, such that samples may occasionally have reached temperatures of 30°C.
- **3.3 Off-Sun Oxidation Releasing Process Heat.** To show the potential of metal oxide redox cycles for on-demand release of stored solar energy as process heat, a sample of the reduced metal oxide was evaluated in an in-house developed benchtop reactor in an experiment conducted on January 13, 2023. Pictured in Fig. 2, the benchtop reactor supports an 0.82 g, 10 ± 1 mm long, packed bed of the metal oxide energy carrier particles on a #1 frit, with

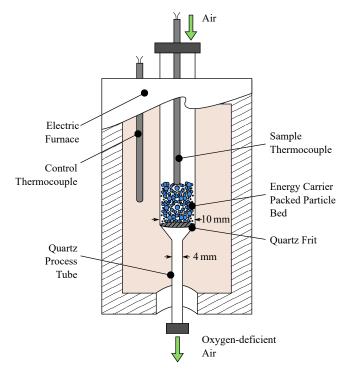


Fig. 2 The Benchtop Reactor

nominal pore size of $100-160 \, \mu m$, which is fused inside a $10.5 \, mm$ ID quartz tube. Downstream of the quartz frit, the inner diameter of the process tube is reduced to 4 mm to minimize dispersion effects.

To facilitate the release of the stored energy through oxidation of the cobalt oxide, a thermal mass flow controller (MKS GE50A Series) delivers compressed air at 194 sccm from top to bottom through the packed bed. A 313 sccm dilution flow of ultra high purity nitrogen is introduced at the reactor outlet to meet the minimum flow requirements for gas analysis. The oxygen content of the effluent gas is measured by a paramagnetic oxygen analyzer (Siemens Oxymat 6).

The quartz process tube and packed bed are heated in a furnace consisting of two Watlow VS102A12S-A001A heating elements. The furnace temperature is monitored by a control thermocouple and controlled with a PID ramp/soak program run in LabVIEW. The K-type control thermocouple is positioned between the process tube and furnace inner wall. A second K-type thermocouple is located inside the process tube, with its sheath in contact with the top of the packed particle bed. Each thermocouple is fully enclosed by an 0.1875 in diameter alumina sheath.

3.4 Off-sun Oxidation Producing Hydrogen. To show the potential of hybrid metal oxide redox cycles for on-demand production of hydrogen, a sample of the reduced metal oxide was used on September 28, 2023 in a bulk electrolysis experiment conducted in an electrochemical H-cell (Pine Research Instruments RRPG060) held at room temperature ($T=22^{\circ}C$). The H-cell separates the anode and cathode chambers of the cell via a medium frit with a porosity of $10-20~\mu m$, preventing the migration of the Co^{2+} reactant to the cathode where it could otherwise be reduced to Cometal and lower the selectivity² of the electrolysis to H₂ [17, 18]. The anode chamber included a 21cm x 13cm Pt-foil electrode and 20 mL of 45 wt.% potassium hydroxide (KOH) with 0.295 g of the reduced metal oxide sample added so that the electrolyte remained saturated with dissolved metal oxide during the experiment. The cathode chamber included a Pt-foil electrode of similar size to the

Pt-foil in the anode chamber and 20 mL of 45 wt.% potassium hydroxide (KOH) without sample added since the metal oxide is not a reactant in the cathodic half reaction. A Gamry 3000 Potentiostat was used to run bulk electrolysis in constant potential mode (Chronoamperometry). In this mode, the potentiostat held a constant potential of 0.45 V vs. Hg/HgO reference for 90 minutes. The surface of the resulting Pt anode was characterized with a Renishaw inVia Reflex Raman Spectrometer to confirm the presence of a solid Co³⁺ product. In addition, the current efficiency was estimated as the ratio of the moles of solid product recovered to the moles of electrons (i.e. charge) passed during the bulk electrolysis.

4 Results and Discussion

4.1 On-Sun Solar Reduction. To illustrate the salient features of the on-sun solar reduction experiments, the direct normal irradiance and reactor cavity temperature are shown for the highest feed rate experiment in Fig. 3. The direct normal irradiance remained quite steady near 700 W m⁻² for the duration of particle feeding. The indicated cavity temperature, measured by a K-type thermocouple positioned between the rotating cavity and the reactor's insulation, reached a maximum temperature of 1032°C at 12:15 pm, at which time particle feeding was initiated. Over the duration of particle feeding, the reactor temperature decreases to $003^{\circ}C$

After the feed auger is disengaged, the temperature continues to decrease while the particle collection system is still active, reaching a minimum of 967°C before increasing once the blower is turned off. Finally, the reactor is taken off-sun by closing the solar furnace shutter mechanism and the temperature decreases. This temperature behavior, typical of the full set of reactor experiments, is explained by changes to the reactor energy balance during operation, due to the sensible and chemical energy delivered to the cobalt oxide particles along with the increased convective and advective cooling driven by the particle collection system.

In Fig. 4, we provide the XRD spectrum measured for a sample of particles recovered from the cyclone separator in the experiment with the highest feed rate. This spectrum is typical of all of the spectra obtained for all samples collected from the collection system. For comparison, the XRD spectra of the CoO and Co₃O₄ standards are also provided in the figure. The spectra for the recovered product matches the CoO standard, confirming that the recovered product is predominantly CoO, 93% according to Rietveld refinement.

Figure 5 summarizes the conversion of the cobalt oxide particles versus the feed rate. Markers show the conversions attained with the solar rotary drum reactor in the on-sun experiments. Error bars account for the 5% uncertainty at 95% confidence in individual conversion measurements by x-ray diffraction propagated to the mass-averaged conversion. The dashed curve shows the conversion predicted by the model described in the prior work by Kopping *et al.* [25]. The model predicts complete conversion up to feed rates of 86 g min⁻¹, after which the 4 kW solar input is insufficient to supply the chemical energy required for complete conversion while maintaining the target reactor temperature. The feed rates for the reactor experiments, 2.9 to 60.8 g min⁻¹, are within the range predicted to have complete conversion. Experimentally measured conversions do indeed remain high, with a minimum mass weighted average conversion of 84%.

Additional detail for the on-sun solar reduction experiments is provided in Table 1. For each experiment, the table indicates the mass of reduced cobalt oxide collected from the cyclone separator (\bigcirc) in Fig. 1) and the tray at the bottom of the chute (\bigcirc) in Fig. 1), the corresponding particle conversion, mass averaged conversion, solar power input, duration of particle feeding, feed rate, and the solar to chemical energy efficiency for the charging step. The experiments are sorted by the particle feed rate ($m_{\rm feed}$). Due to consistently high conversions, the efficiency increases almost proportionally to the feed rate.

²Selectivity is also referred to as the current efficiency.

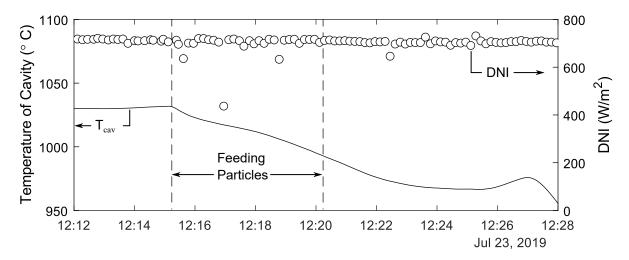


Fig. 3 Cavity temperature (T_{cav}) and direct normal irradiance (DNI) during the experiment with the highest mass feed rate of 61 g min⁻¹.

Table 1 Rotary Drum Reactor On-sun Experiments

Date	m _{jar} [g]	<i>X</i> _{jar} [%]	m _{tray}	X _{tray}	<i>X</i> [%]	$\dot{\mathcal{Q}}_{ ext{solar}}$ $[W]$	t _{feed} [min]	t _{collect} [min]	$\dot{m}_{\rm feed}$ [g min ⁻¹]	$\dot{m}_{\rm collect}$ [g min ⁻¹]	η _{feed}	η _{collect}
Jul 11	11.7	76%	26.2	99%	92%	4641	13.0	10.0	2.9	3.8	1%	1%
Jul 25	18.7	85%	28.0	83%	84%	3891	6.4	2.9	7.3	16.1	2%	5%
Jul 17	83.3	87%	30.2	88%	87%	4310	6.7	6.0	16.8	18.9	5%	5%
Aug 2	89.5	96%	11.1	75%	94%	3922	4.6	1.7	21.9	60.4	7%	20%
Jul 12	229.0	87%	30.9	82%	86%	4225	11.0	13.0	23.6	20.0	7%	6%
Jul 24	156.4	88%	26.6	84%	88%	4098	7.0	6.8	26.1	27.1	8%	8%
Aug 7	52.7	87%	22.9	88%	87%	3888	2.0	2.7	37.8	28.3	12%	9%
Jul 23	207.1	93%	96.7	82%	90%	3841	5.0	8.1	60.8	37.6	20%	12%

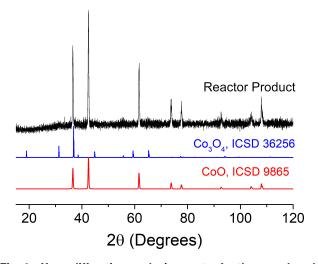


Fig. 4 X-ray diffraction analysis spectra for the sample collected from the cyclone separator jar in the experiment with the highest feed rate of 61 g min⁻¹.

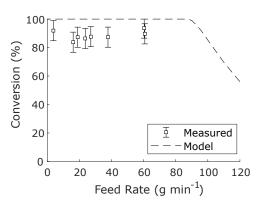


Fig. 5 Variation of mass average ${\rm Co_3O_4}$ conversion with feed rate in solar reactor experiments. The feed rate is taken to be the larger of $\dot{m}_{\rm feed}$ and $\dot{m}_{\rm collect}$. Whiskers indicate the uncertainty in conversion measured by X-ray diffraction.

We report two values for feed rate and efficiency because they depend on the feeding duration. The two values for the feeding duration correspond to the time for which the auger feeding system was active (t_{feed}) and the duration over which we observed particles entering the collection system with the camera mounted at the air intake ($t_{collect}$). The difference between t_{feed} and $t_{collect}$ is an artifact of short feeding lengths, chosen primarily to limit the total mass of cobalt used in the experimental program, but also to facilitate a relatively steady solar input for the duration of feeding, as shown in Fig. 3. The durations differ because of accumulation of particles in the cavity. After activating the auger, particles accumulate in the cavity for a period of time before we observe them entering the collection system. This time is more significant at lower feed rates, which is why $t_{collect} < t_{feed}$ at lower feed rates. After deactivating the auger, particles accumulated in the cavity continue to enter the collection system, though some particles remain in the cavity at the end of the experiment. This second effect is more significant at higher feed rates. In the two highest feed rate experiments, we observed a marked decrease in the rate of particles entering the collection system after deactivating the auger. A video recording showing the particles exiting the reactor during the highest feed rate experiment, conducted on July 23, is available through ValpoScholar [29]. Because most of the mass appears to have been recovered over the shorter duration, t_{feed} , \dot{m}_{feed} , and η_{feed} seem to provide the better description of the experimental findings at higher feed rates.

We include only the reduced cobalt collected in the particle collection system, i.e. $m_{\rm tray}$ and $m_{\rm jar}$, in the feed rate calculations. Particles collected from the reactor cavity are not included in the reported feed rates, mass average conversions, or efficiencies because they did not successfully exit the reactor system. At the end of most experiments, we did collect measurable masses of particles from the cavity. These particles had much lower conversion, near 10-15%, according to XRD analysis. The lower conversion of particles collected from the cavity is attributed to much slower cooling while exposed to air, relative to the particles which entered the collection system.

The mass weighted average conversions exceed those achieved in prior on-sun reduction of cobalt oxide particles by Neises *et al.* and Palumbo *et al.* [1, 26]. To our knowledge they represent the highest conversion for cobalt oxide reduced in a solar reactor. While high, the measured conversions indicate that the recovered particles still contain a lesser fraction of Co₃O₄. As a possible explanation, we surmise that the particles were fully reduced in the reactor cavity and subsequently were partially oxidized as they cooled in the presence of air in our particle extraction system. Even so, the measured conversions show great potential for a rotating drum reactor like the one tested to enact continuous reduction of metal oxide particles.

Of practical interest, the reactor facilitated many additional experiments spanning more than a year prior to those presented here. A series of 13 experiments are described by Palumbo *et al.* [26]. After those experiments, the feed system was redesigned to enable higher feed rates. Seven additional on-sun experiments were run in 2019 as we worked to refine the particle feed system in its final version. Including the experiments presented here, the reactor was subjected to at least 28 cycles of heating to approximately 1000°C and subsequent cooling to room temperature. From a thermo-mechanical design standpoint, the reactor was found to be quite robust, with occasional repainting of the aperture cone with zirconia paste as the only required maintenance.

4.2 Off-Sun Oxidation Releasing Process Heat. Nearly three and a half years after concentrated sunlight drove the reduction of the particles, a sample of the reduced cobalt oxide particles from the highest feed rate solar reactor experiment (July 23) was selected to demonstrate the release of the stored solar energy as process heat via the reaction in eq. (2). As described in section 3.3, the sample was heated in a quartz process tube under a constant flow of zero air. The experiment demonstrates the release

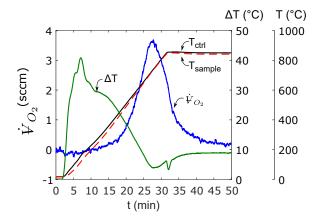


Fig. 6 Rate of oxygen uptake (\dot{V}_{O_2}) during heating of the cobalt oxide previously reduced on-sun on July 23 (see Table 1). Also shown are the indicated sample temperature (T_{sample}) , furnace control temperature (T_{ctrl}) , and the difference between the two temperatures (ΔT) .

of the stored solar energy by quantifying the rate of the oxidation of the cobalt particles through measurement of the oxygen uptake. The volumetric rate of oxygen uptake ($\dot{V}_{\rm O_2}$) is shown along with the temperatures indicated by the furnace control ($T_{\rm ctrl}$) and sample thermocouples ($T_{\rm sample}$) and the difference between the two temperatures (ΔT) in Fig. 6. The rate of oxygen uptake increases during heating until it reaches a maximum of 3.5 sccm at a sample temperature of 734°C. Subsequently, the rate of oxygen uptake declines as the sample temperature increases to a maximum of 851°C and plateaus at 841°C.

During heating, the sample temperature lags behind the control temperature. The difference between the two temperatures decreases as the setpoint temperature of 850°C is approached. In part, the shrinking difference between temperatures can be explained by improved radiative heat transfer as the furnace temperature increases. However, the difference between temperatures indicated by the control and sample thermocouples reaches a minimum of 4°C, just as the rate of oxygen uptake by the previously reduced cobalt oxide reaches its maximum, which occurs before the furnace control temperature reaches the 850°C setpoint. As the furnace continues heating, the temperature difference then increases before stabilizing at 9°C as the reaction reaches completion. Both the concurrence of the minimum ΔT with the maximum reaction rate and the subsequent increase in ΔT during further heating are explained by the release of the stored solar energy through the exothermic oxidation of CoO, eq. 2.

The cumulative oxygen consumed by the reaction is shown in Fig. 7. For comparison, the oxygen capacity of the sample based on x-ray diffraction measurements of conversion from the on-sun reactor experiment is also shown. Upper and lower bounds on the capacity account for uncertainty in the conversion measurement from the on-sun experiment and measurement of the sample mass for the off-sun experiment. Bounds on the measured oxygen consumption represent an engineering estimate of uncertainty at 95% confidence in the measurement of oxygen release, including contributions from the mass flow rate and oxygen concentration measurements. The measured oxygen consumption falls within the predicted bounds for the oxygen capacity. This result not only suggests that the reduced cobalt oxide was chemically stable for the more than three years of storage, but also that it retained complete capacity to release the stored solar energy.

4.3 Off-sun Oxidation Producing Hydrogen. A second sample of the solar-reduced cobalt oxide particles from the highest feed rate experiment was used to demonstrate solar production of H_2 via solar thermal decoupled electrolysis, eq. (3). The sample was

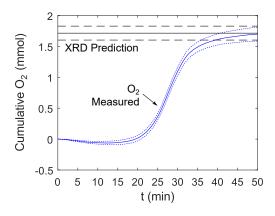


Fig. 7 Cumulative molar oxygen uptake by the reduced cobalt oxide based on the rate of oxygen uptake in Fig. 6 compared to available oxygen capacity predicted by x-ray diffraction of solar-reduced Co₃O₄.

dissolved in the 45 wt% KOH electrolyte on the anodic side of the electrochemical H-cell as described in section 3.4 and linear sweep voltammetry (LSV) and bulk electrolysis experiments were performed. The experiments demonstrate the production of $\rm H_2$ and confirm that the chemical potential of the reduced cobalt oxide lowers the electrical potential required to produce $\rm H_2$ below that required for direct splitting of $\rm H_2O$, as first shown by Nudehi *et al.* [17]. The experiment further demonstrates that the solid product of the process can be recovered to complete the redox cycle.

As shown in the linear sweep voltammogram of Fig. 8, an oxidation reaction proceeds on the anode at +0.45 V (vs. Hg/HgO) near the local maxima in current at +0.40 V. A 0.45 V potential vs. Hg/HgO corresponds to a cell potential of about 0.55 V vs. NHE, approximately half the 1.23 V thermodynamic equilibrium potential when $O_2(g)$ first begins to evolve at the anode. The LSV thus suggests that the oxidation reaction at the anode is the oxidation of the dissolved CoO from the sample, eq. 3.

Consequently, we performed a chronoamperometry experiment over 90 minutes at a constant potential of +0.45~V vs. Hg/HgO to look for the production of H_2 at the cathode and a solid Cobalt(II,III) product on the anode. During the experiment, we observed gas bubbles forming on the surface of the cathode along-side deposition of a black solid on the anode, as depicted in Fig. 9. There was no evidence of gas formation on the anode. The most probable gaseous product to form at the cathode in the presence of the KOH solution is H_2 via the hydrogen evolution half-reaction, eq. (6).

$$2 H_2 O + 2e^- \rightarrow H_2(g) + 2 OH^-$$
 (6)

where the electrons in eq. (6) are supplied to the cathode through the potentiostat via the CoO-oxidation half-reaction at the anode, eq. (7).

$$3 \text{ CoO} + 2 \text{ OH}^- \rightarrow \text{ Co}_3 \text{O}_4 + 2 \text{ e}^- + \text{H}_2 \text{O}$$
 (7)

The net effect of half-reactions (6) and (7) is the oxidation of CoO by H_2O to produce H_2 and Co_3O_4 . The presence of gas bubbles on the cathode, the absence of gas bubbles on the anode, and the observation of a solid deposition on the anode provide strong evidence for the production of H_2 via eq. (3).

To further confirm that the oxidation of the reduced cobalt oxide drove the production of H₂ in the electrolysis experiment, we collected and analyzed the solid black product that formed on the anode by Raman spectroscopy with 532 nm excitation. The black substance produced an identical Raman spectrum to a Cobalt(II,III) oxide standard (Fig. 10). The anode mass decreased by 1.14 mg

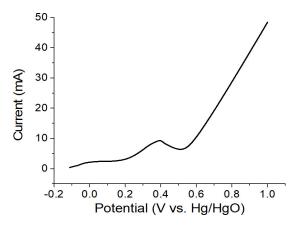


Fig. 8 Linear sweep voltammogram obtained in the electrochemical H-cell at a scan rate of 100 mV s⁻¹. The potential at the anode is relative to a Hg/HgO reference.

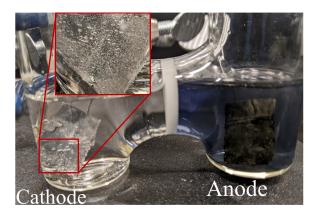


Fig. 9 Photograph of the H-cell during bulk electrolysis depicting the $\rm H_2$ gas bubbles on the cathode the surface (inset) and the solid black deposit on the anode.

after the black cobalt oxide deposit was cleaned from its surface, indicating a current efficiency of 88%, similar to what was reported previously [17]. When the Raman result and the measured current efficiency are combined with physical observation of the H-cell during the electrolysis and the LSV, the results overwhelmingly suggest that H_2 was produced in the electrolysis experiment by solar thermal decoupled electrolysis using a CoO reactant produced on-sun nearly three and a half years prior.

5 Conclusion

As predicted by Kopping *et al.* [25], maintaining a temperature above 960°C enabled consistent, high conversion of Co_3O_4 to CoO. We measured conversions of 84–94% for the set of eight on-sun experiments with the prototype solar rotary drum reactor for feed rates between 2.9 and 60.8 g min⁻¹.

After storage for more than three years, the particles were heated under exposure to air to demonstrate the capacity of the thermochemical energy storage approach to dispatch energy as needed. Within measurement uncertainty, the reduced cobalt oxide completely retained its capacity to release the stored thermochemical energy.

Additionally, the particles were dissolved in the basic electrolyte (KOH) of an aqueous electrochemical cell and electrochemically oxidized in bulk electrolysis to demonstrate dispatchable production of H_2 . Hydrogen production was verified visually with the application of a potential of about 0.55 V. This potential is 0.68 V less than the thermodynamic equilibrium potential required for the direct splitting of H_2O in a base (1.23 V), validating that the en-

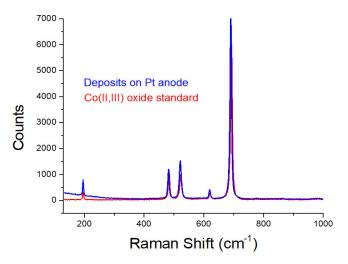


Fig. 10 Raman spectrograph of the black deposit collected from the anode.

ergy stored in the solar-produced-CoO was transferred to the H₂ fuel. Importantly, the solid metal oxide product of the process was recovered and shown to contain Co(II,III) oxide to close the redox cycle.

The demonstrated performance of cobalt oxide as a multiyear, fungible solar energy storage medium warrants further consideration. The ability to dispatch the storage for process heat or fuel production offers energy project developers access to two energy markets, flexibility that could enhance project revenues over alternative long duration storage options. Future efforts should evaluate the economics of cobalt oxide as an energy carrier, the capacity of the cobalt oxide particles to withstand repeated cycling, methods to ensure that particles are completely retained within the system, and approaches to increase the current density of the electrochemical oxidation of the particles for H₂ production.

Acknowledgment

575

577

578

579

580

581

583

584

585

586

587

588

589

590

593

594

595

596

597

598

590

602

603

604

605

606

We thank Rich Diver and Bob Palumbo for input on early reactor concepts and the 2015-2016, 2016-2017, and 2017-2018 Valparaiso University Senior Design teams for their work on multiple iterations to design and realize the solar rotary drum reactor. Undergraduate research student Alex Kagay was instrumental in configuring the benchtop reactor and its auxiliary equipment. Purchase of the Raman microscope used to obtain results included in this publication was supported by the National Science Foundation under the award CHE MRI 2215322.

Funding Data

- · U.S. National Science Foundation, CHE MRI Award No. 2215322
- U.S. National Science Foundation, RUI Award No. 1334896
 - U.S. Indiana Space Grant Consortium (INSGC), Subaward No. 12000338-337

Nomenclature

Latin symbols 607 $k = \text{Thermal conductivity } [\text{W m}^{-1} \text{ K}^{-1}]$ 608 609 m =Solid mass [g] 610 $\dot{m} = \text{Mass feed rate } [\text{g min}^{-1}]$ $Q_{\text{solar}} = \text{Solar Input Power [W]}$ 611 t = Particle Feeding Duration [min]612 613 $X = \text{Conversion of } \text{Co}_3\text{O}_4 \text{ to CoO } [-]$ 614

Greek symbols	615
$\Delta H_{\rm r}$ = Enthalpy of reaction [kJ kg ⁻¹]	616
η = Reactor efficiency [-]	617
Abbreviations	618

619

620

621

623

624

625

626

627

628

630

633

634

635 636

637

638

639

640

641

642

643 644

645

646

647

648

649

650

655

657

658

659

660

661

662

663

664

665

666

667

668 669

670

671

675

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

References

DNI = Direct Normal Irradiance

NHE = Normal Hydrogen Electrode

- Neises, M., Tescari, S., de Oliveira, L., Roeb, M., Sattler, C., and Wong, B., 2012, "Solar-heated rotary kiln for thermochemical energy storage," Solar Energy, 86(10), pp. 3040-3048.
- Agrafiotis, C., Pein, M., Giasafaki, D., Tescari, S., Roeb, M., and Sattler, C., 2019, "Redox oxides-based solar thermochemistry and its materialization to reactor/heat exchanger concepts for efficient solar energy harvesting, transformation and storage," Journal of Solar Energy Engineering, 141(2), p. 021010.
- Jackson, G. S., Imponenti, L., Albrecht, K. J., Miller, D. C., and Braun, R. J., 2019, "Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power," Journal of Solar Energy Engineering, 141(2), p. 021016.
- [4] Buck, R., Agrafiotis, C., Tescari, S., Neumann, N., and Schmücker, M., 2021, Techno-Economic Analysis of Candidate Oxide Materials for Thermochemical Storage in Concentrating Solar Power Systems," Frontiers in Energy Research, 9(July), pp. 1-13.
- Palumbo, R., Diver, R. B., Larson, C., Coker, E. N., Miller, J. E., Guertin, J., Schoer, J., Meyer, M., and Siegel, N. P., 2012, "Solar thermal decoupled water electrolysis process I: Proof of concept," Chemical Engineering Science, 84, pp. 372-380.
- Tescari, S., Agrafiotis, C., Breuer, S., de Oliveira, L., Puttkamer, M. N.-v., Roeb, M., and Sattler, C., 2014, "Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts," Energy Procedia, 49, pp. 1034-1043.
- Singh, A., Tescari, S., Lantin, G., Agrafiotis, C., Roeb, M., and Sattler, C., 2017, "Solar thermochemical heat storage via the Co3O4/CoO looping cycle: Storage reactor modelling and experimental validation," Solar Energy, 144, pp.
- Agrafiotis, C., Tescari, S., Roeb, M., Schmücker, M., and Sattler, C., 2015, Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: Cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers," Solar Energy,
- Tescari, S., Singh, A., Agrafiotis, C., de Oliveira, L., Breuer, S., Schlögl-Knothe, B., Roeb, M., and Sattler, C., 2017, "Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant," Applied Energy, 189, pp. 66-75.
- [10] Schrader, A. J., Muroyama, A. P., and Loutzenhiser, P. G., 2015, "Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions: Thermodynamic analysis," Solar Energy, 118, pp. 485-495.
- Schrader, A. J., De Dominicis, G., Schieber, G. L., and Loutzenhiser, P. G., 2017, "Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions III: Solar thermochemical reactor design and modeling," Solar Energy, 150, pp. 584-595
- [12] Karagiannakis, G., Pagkoura, C., Halevas, E., Baltzopoulou, P., and Konstandopoulos, A. G., 2016, "Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: Multicyclic assessment and semi-quantitative heat effects estimations," Solar Energy, 133, pp. 394-407.
- [13] Zhou, X., Mahmood, M., Chen, J., Yang, T., Xiao, G., and Ferrari, M. L., 2019, Validated model of thermochemical energy storage based on cobalt oxides," Applied Thermal Engineering, 159(June), p. 113965.
- [14] Turchi, C. S., Ma, Z., Neises, T. W., and Wagner, M. J., 2013, "Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems," Journal of Solar Energy Engineering, Transactions of the ASME, 135(4), pp. 1-7.
- [15] Crespi, F., Gavagnin, G., Sánchez, D., and Martínez, G. S., 2017, "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, 195, pp. 152-183.
- Agrafiotis, C., Roeb, M., and Sattler, C., 2014, "Cobalt Oxide-Based Structured Thermochemical Reactors/Heat Exchangers for Solar Thermal Energy Storage in Concentrated Solar Power Plants," *Proceedings of the ASME 8th International* Conference on Energy Sustainability, American Society of Mechanical Engineers, Boston, MA, June 30-July 2, p. V001T02A005, doi: 10.1115/ES2014-
- [17] Nudehi, S., Larson, C., Prusinski, W., Kotfer, D., Otto, J., Beyers, E., Schoer, J., and Palumbo, R., 2018, "Solar thermal decoupled water electrolysis process II: An extended investigation of the anodic electrochemical reaction," Chemical Engineering Science, **181**, pp. 159–172.
 [18] Silcox, R., Engerer, L. K., Nudehi, S., Smith, P., Schoer, J., Krenzke, P. T.,
- Palumbo, R., and Venstrom, L. J., 2020, "Solar thermal decoupled water electrolysis process III: The anodic electrochemical reaction in a rotating disc electrode cell," Chemical Engineering Science, 227, p. 115885

- 696 [19] Mills, B. H., Ho, C. K., Schroeder, N. R., Shaeffer, R., Laubscher, H. F., 697 and Albrecht, K. J., 2022, "Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications," 698 699 Energies, 15(5), p. 1657.
- 700 [20] Moumin, G., Tescari, S., Sundarraj, P., de Oliveira, L., Roeb, M., and Sattler, 701 C., 2019, "Solar treatment of cohesive particles in a directly irradiated rotary kiln," Solar Energy, 182(January), pp. 480-490. 703

704

705

710 711 712

713

714 715

716

717

- Tescari, S., Moumin, G., Bulfin, B., De Oliveira, L., Schaefer, S., Overbeck, N., Willsch, C., Spenke, C., Thelen, M., Roeb, M., and Sattler, C., 2018, "Experimental and numerical analysis of a solar rotary kiln for continuous treatment of particle material," AIP Conference Proceedings, 2033(November), pp. 1–8. [22] Müller, R., Haeberling, P., and Palumbo, R. D., 2006, "Further advances toward
- the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s)," Solar Energy, 80(5), pp. 500-511.
- [23] Ebert, M., Amsbeck, L., Buck, R., Rheinländer, J., Schlögl-Knothe, B., Schmitz, S., Sibum, M., Stadler, H., and Uhlig, R., 2018, "First On-Sun Tests of a Centrifugal Particle Receiver System," doi: 10.1115/ES2018-7166, https://doi. org/10.1115/ES2018-7166
- [24] Ebert, M., Amsbeck, L., Rheinländer, J., Schlögl-Knothe, B., Schmitz, S., Sibum, M., Uhlig, R., and Buck, R., 2019, "Operational experience of a centrifugal particle receiver prototype," AIP Conference Proceedings, 2126(1), p. 030018.
- 718 Kopping, S. J., Hoeniges, J., Greenhagen, J., Matejczyk, Z., and Venstrom, 719 L. J., 2019, "Model of the solar-driven reduction of cobalt oxide in a particle 720 suspension reactor," Solar Energy, 177(December 2018), pp. 713-723.
 - [26] Palumbo, R., Venstrom, L. J., and Nudehi, S., 2022, "High-Temperature Solar Thermal Electrochemistry with Metal Oxides," Handbook of Solar Thermal Technologies, World Scientific, pp. 173-228.
- [27] Duncan, G. S., Nudehi, S., Palumbo, R., and Venstrom, L. J., 2014, "A highflux solar furnace for undergraduate engineering education and high-temperature thermochemistry research," *Proceedings of the ASME 8th International Conference on Energy Sustainability*, Vol. 1, Boston, MA, June 30–July 2, pp. 1–7, doi: 10.1115/ES2014-6437.
- 721 722 723 724 725 726 727 728 729 730 731 732 [28] Lipinski, W., Davidson, J. H., Haussener, S., Klausner, J. F., Mehdizadeh, A. M., Petrasch, J., Steinfeld, A., and Venstrom, L., 2013, "Review of Heat Transfer Research for Solar Thermochemical Applications," Journal of Thermal Science and Engineering Applications, 5(2), p. 021005.
- 733 734 [29] Krenzke, P. T., 2023, "Demonstration of Multiyear Solar Thermochemical Energy Storage via the Cobalt Oxide Cycle," https://scholar.valpo.edu/engineering_ fac_pub/123/

List of Figures

1	The Rotary Drum Reactor.	2
2	The Benchtop Reactor	4
3	Cavity temperature (T_{cav}) and direct normal irradiance (DNI) during the experiment with the highest mass feed rate of 61 g min ⁻¹	4
4	X-ray diffraction analysis spectra for the sample collected from the cyclone separator jar in the experiment with the highest feed rate of 61 g min ⁻¹ .	5
5	Variation of mass average Co_3O_4 conversion with feed rate in solar reactor experiments. The feed rate is taken to be the larger of \dot{m}_{feed} and \dot{m}_{collect} . Whiskers indicate the uncertainty in conversion measured by X-ray diffraction	5
6	Rate of oxygen uptake (\dot{V}_{O_2}) during heating of the cobalt oxide previously reduced on-sun on July 23 (see Table 1). Also shown are the indicated sample temperature (T_{sample}) , furnace control temperature (T_{ctrl}) , and the difference between the two temperatures (ΔT) .	ć
7	Cumulative molar oxygen uptake by the reduced cobalt oxide based on the rate of oxygen uptake in Fig. 6 compared to available oxygen capacity predicted by x-ray diffraction of solar-reduced Co ₃ O ₄	7
8	Linear sweep voltammogram obtained in the electrochemical H-cell at a scan rate of 100 mV s ⁻¹ . The potential at the anode is relative to a Hg/HgO reference.	7
9	Photograph of the H-cell during bulk electrolysis depicting the H ₂ gas bubbles on the cathode the surface (inset) and the solid black deposit on the anode.	7
10	Raman spectrograph of the black deposit collected from the anode	
List of	Tables Tables	
1	Rotary Drum Reactor On-sun Experiments	5