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A B S T R A C T   

The optimal choice of d-block metals in single atom catalysts (SACs) is crucial for designing efficient electro-
catalysts for activating the Oxygen reduction reaction (ORR)/ Oxygen evolution reaction (OER) in lithium- 
oxygen batteries (LOBs). Herein, we used the Quantum Mechanics methods to understand the origin of reac-
tivity for a series of 16 d-block metals supported on nitrogen-doped graphene as SACs for ORR and OER in LOBs. 
Based on the Gibbs free energy calculations, we found that among the 16 SACs investigated, Zn-SAC exhibits the 
highest electrochemical activity with the lowest overpotential of 0.17 V. We then used machine learning (ML) to 
develop an intrinsic descriptor, Φ, that correlates the catalytic activity with electronic and chemical properties of 
the catalytic centers at the M-N4 active site on graphene surface. We established a linear relationship between Φ 
and the catalytic activity that provides guidance for designing efficient SACs for electrocatalysis in LOBs. To 
validate these predictions, we report electrochemical measurements showing that Zn-SAC exhibits an ultra-stable 
cyclability with reduced overpotentials over Mo-SAC and nitrogen-doped graphene (NG), confirming our theo-
retical prediction. This fundamental work provides a deep understanding on the rational design of efficient SACs 
for OER/ ORR in LOBs.   

1. Introduction 

Aprotic lithium-oxygen batteries (LOBs) have been considered as a 
next-generation battery technologies, due to its ultrahigh theoretical 
energy density (~3600 Wh kg −1), 5–10 times higher than the state-of- 
the-art lithium-ion batteries (LIBs), to support the development of 
electric vehicles (EVs). [1] Nonaqueous LOBs typically consist of lithium 
metal anode, separator, Li ionic conducting electrolyte, and a perforated 
carbon cathode, allowing access of O2. [2,3] During discharging, O2 is 
first adsorbed at the cathode surface and then reduced to superoxide 
(O2

- ), combining with Li+ to form lithium superoxide (LiO2). This in-
termediate is thermally unstable and is further reduced easily to lithium 
peroxide (Li2O2) via two possible routes:  

(1) Disproportionation: 2LiO2 → Li2O2 + O2  
(2) Electrochemical reduction: LiO2 + Li+ → Li2O2. [4] 

However, this battery system suffers from poor cyclability, low 
round-trip efficiency and inferior rate capability, which mainly originate 
from the chemical inertness of oxygen gas and the poor electrical con-
ductivity of lithium peroxide (Li2O2). This leads to sluggish kinetics for 
the ORR and the OER. [5–7] In response to these challenges, developing 
a highly efficient catalyst at the cathode is vital to boost the reaction rate 
and reduce the reaction overpotentials. Extensive research effort has 
been devoted to designing efficient catalysts, such as, carbonaceous 
materials [8–12], noble metals [13–16] and metal alloys [17,18], 
transition metal oxides and sulfides [19–22]. However, these materials 
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still face shortcomings, including high cost and active site passivation by 
the insulating Li2O2. 

Heterogeneous single-atom catalysts (SACs) on solid supports are 
emerging as a new frontier in electrocatalysis. By downsizing the cata-
lyst metal particles or clusters, single-atom catalysts merit the advan-
tages of typical homogeneous and heterogenous catalysts, with 
improved catalytic activity and full metal utilization. This simulta-
neously reduces the consumption of precious metal resources and the 
costs, while retaining the advantages of high stability and reusability of 
heterogeneous catalysts. [23–25] In addition, the homogeneity of the 
active sites makes the single-atom catalyst highly selective towards 
specific products. [26] At the atomic level, the tunable coordination 
environment around the single atom provides catalyst uniqueness in 
activity, selectivity, durability, and electronic structure. The electron 
confinement from the quantum size effect gives the catalyst a distinctive 
energy gap between the highest occupied molecular orbital (HOMO) and 
the lowest unoccupied molecular orbital (LUMO) and a discrete energy 
level distribution, facilitating charge transfer. Nevertheless, due to the 
increased surface free energy, the metals at SAC are prone to agglom-
eration, therefore, bulk metals and metal oxides are typical supports to 
stabilize the catalyst structure. Unfortunately, most of these substrates 
are insulators or semiconductors, which may be very unstable under 
such harsh electrochemical operation conditions, strong acid or base. 
Carbon supports, especially graphene, becomes a promising alternative 
since they provide high surface area, superior electrical conductivity, 
and good stability. [27] In addition, the bond strength between the 
single metal atom and the substrate can be enhanced by adding electron 
rich components (i.e. nitrogen doping) and creating defects to avoid the 
metal atom aggregation. [28] Most recently, it has been reported that 
single atom catalysts of Ru [29] and Co [30,31] on nitrogen doped 
carbon substrate play a critical role in reducing the reaction over-
potential for the ORR/ OER processes, leading to high specific capacity 
and excellent cycling stability in LOBs. However, the origin of this ac-
tivity remains unclear for d-block metals on graphene support. More-
over, the relationships of metal properties and catalyst structures to 
catalytic activities have not yet been established for designing efficient 
SACs for ORR/ OER in LOBs. 

Herein, we utilized quantum mechanical calculations (density 
functional theory, DFT) to predict the catalytic activities of 16 different 
d-block metal single atoms embedded to the nitrogen doped sites of a 
graphene support. We found that Zn-SAC exhibits the highest ORR/OER 
activities. These studies found that the Zn-N4 catalytic center binds with 
LiO2 only weakly, reducing the reaction overpotential to enhance the 
reaction rate and stability of the catalyst. We find that the activity of 
SACs correlates highly with the Gibbs free energy of the adsorbed LiO2. 
In order to provide guidance for designing effective SACs for ORR/OER 
we used the supervised machine learning (ML) method to develop a 
descriptor, Φ. That is based on the metal properties as electronegativity 
(EN), enthalpy of vaporization (EV), atomic radius (ratomic) and number 
of electrons in d-orbital (Ne,d−orbital). 

Guided by these predictions, we synthesized two types of SACs,  

• Zinc (Zn-SAC) and  
• Molybdenum (Mo-SAC), 

both embedded in the N-doped graphene surface. We then characterized 
the atomic coordination and structure experimentally using X-ray ab-
sorption fine structure (XAFS) and the direct imaging from scanned 
transmission electron microscope (STEM). We identified the presence of 
M-N4 moieties and confirmed the high loading and uniform distribution 
of metal atoms on the graphene surface. We compared the electro-
chemical performance of Zn-SAC with that of Mo-SAC and NG and found 
that Zn-SAC enabled a more stable cycling performance with lower 
overpotential, in good agreement with our theoretically derived linear 
activity-GLiO2 trend. This work provides systematic guidance for 
designing highly efficient SAC for LOBs while providing fundamental 

insights in how to choose the optimum metal for the ORR/ OER 
application. 

2. Computational results and discussion 

To understand in-depth the redox kinetics and thermodynamics of 
SACs needed for improving the performance of ORR/ OER in LOBs, we 
carried out DFT calculations to predict the overpotentials from the free 
energy diagram, based on the Nørskov method. In this study, we 
considered three elementary reaction steps [31–33] as. 

(a) 4 (Li+ + e-) + 2 O2 + * → LiO2* + 3 (Li+ + e-) + O2, 
(b) LiO2* + 3 (Li+ + e-) + O2 → Li2O2* + 2 (Li+ + e-) + O2, 
(c) Li2O2* + 2 (Li+ + e-) + O2 → Li4O4*. 
The overpotential (η) is used to describe quantitatively the catalytic 

activity of the SACs. It is calculated between the limiting potentials and 
the equilibrium potential (Ueq). The limiting potentials include the 
discharge potential, UDC, the highest potential to make all intermediate 
steps in ORR process downhill and the charge potential, UC, the lowest 
voltage to shift all intermediate steps in OER process to also be downhill. 
The discharge overpotential (ηORR) and charge potential (ηOER) are 
expressed as Eqs. (1) and (2), respectively: 

ηORR = Ueq −UDC (1)  

ηOER = UC −Ueq (2) 

The equilibrium potential (Ueq) is defined as the voltage that can 
drive the ORR/ OER to occur spontaneously with zero reaction free 
energy, calculated from the Nernst equation: 

Ueq = −ΔGf
/

n (3)  

where ΔGf is the total Gibbs free energy change of the reaction (calcu-
lated by deducting the free energy of Li and O2 from the total free energy 
of Li4O4, as described in Eq. (2) in supplementary information), n is the 
number of electrons involved in the redox reactions, (which is 4 in our 
study), and e is the elementary charge. 

In the SAC structure (Fig. 1a), a metal atom is bonded with 4 nitrogen 
atoms supported on the planar carbon substrate. It has been reported 
experimentally and theoretically that the metal and whether it is bonded 
to nitrogen or carbon atoms can affect the catalysts activity for elec-
trochemical reactions. The nitrogen and carbon atoms in the substrate of 
SACs are considered as non-metal sites. Therefore, we constructed a 
molecular model of SACs with all possible non-metal active sites, 
namely, graphitic C, graphitic N, pyridinic 3 N, pyridinic 4 N and pyr-
rolic N, to understand the substrate activity towards ORR/ OER. Fig. 1b 
shows the free energy diagram for the pyridinic 4 N substrate as 
example. The inset figure at the bottom shows the energetically opti-
mized adsorption structure of intermediates along the reaction pathway. 
At zero potential (U=0), the energy difference between each step ac-
counts for the adsorption energies. Because N is more electronegative 
than C, electrons are more likely to accumulate around the N atom than 
the carbon rings in the structure. Therefore, at the active sites of pyrrolic 
N, pyridinic 3 N and pyridinic 4 N, the δ+ lithium atoms of LiO2 and 
Li2O2 tend to be coordinated with N atoms, with a strong interaction. In 
comparison to graphitic C and graphitic N, the LiO2 and Li2O2 adsorp-
tion are weak, which has a strong influence on the decomposition 
behavior of Li2O2 and Li4O4. This leads to smaller overpotentials, as 
presented in Fig. 1c, in agreement with previous literature. [34,35] 
Based on the free energy diagrams in Fig. 1b and S1a-d, in Supporting 
Information, the overall overpotentials increase in the sequence of 
Graphitic N (0.93 V) < Graphitic C (1.02 V) < Pyridinic 3 N (1.82 V) <
Pyrrolic N (2.66 V) < Pyridinic 4 N (2.71 V). 

Functionalizing graphene with a single metal atom SAC provides a 
single active site for the catalytic reaction as illustrated in Fig. 1d. The 
molecular model with a d-block metal atom embedded in graphene but 
surrounded by four nitrogen atoms, can form strong covalent bonds to 
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create hybrid electronic properties, which potentially could induce 
ORR/ OER catalytic activity. Gibbs free energy studies were performed 
with various metals SAC with some exhibiting activity towards ORR/ 
OER for LOBs. Among them,  

• the lowest overpotential is achieved on Zn-SAC (0.31 V),  
• followed by Co-SAC (0.57 V),  
• while Sc-SAC (5.86 V) delivered the highest overall overpotentials. 

We applied the DFT+U method to the Gibbs free energy calculation, 
the results in Table S2 and Fig. S2, Supporting Information found 
insignificant differences between the DFT and DFT+U. Fig. 1e and S3a 
in supporting information show that for ORR, the rate determining step 
(RDS) for Zn-SAC and Co-SAC is formation of LiO2, while the RDS for Sc- 
SAC (Fig. S3b, Supporting Information) is formation of Li2O2. In the OER 
process, the RDS for Zn-SAC and Co-SAC is decomposition of Li4O4, 
while the RDS for Sc-SAC is oxidation of LiO2. We found that the cata-
lytic activity of SACs correlates linearly with the Gibbs free energy of 
LiO2 (ΔGLiO2), as shown in Fig. 1f. Zn-SAC has a very weak interaction 
with LiO2 leading to a low Gibbs free energy (ΔGLiO2= −1.07 eV), while 
Sc-SAC, Ti-SAC, Nb-SAC and V-SAC exhibited highly negative Gibbs free 
energy (−5.39, −5.07, −5.69 and −3.90 eV, respectively), indicating 
strong interaction with LiO2. This high LiO2 adsorption energy makes 
the LiO2 reduction to form Li2O2 unfavorable, leading to higher 
discharge overpotential. In contrast, a smaller adsorption energy makes 
it easier for LiO2 to form Li2O2 by chemical disproportionation, in which 
large Li2O2 toroid are more likely generated rather than large thin-films, 
contributing to high discharge capacity as dissolution of LiO2 in the 
electrolyte releases more active catalyst surface for cathode reactions. 
Compared with the non-metal sites in SACs, most of the single metal 
atoms, apart from, Sc, Ti, V, Nb and Mo in the M-N4 moieties enhance 
the activity towards ORR/ OER process, highlighting the role of single 
metal in reducing the reaction overpotentials for LOBs. 

Machine Learning (ML) was applied as an instrument to establish a 

good structure-activity relationship for predicting overpotential and to 
examine feature importance analysis to help toward the accelerated 
design of SACs. [36–38] In order to do this, we used Support Vector 
Regression (SVR) as a supervised ML algorithm with the radius basis 
function (rbf) kernel and hyperparameters of C= 10 and gamma= 1. The 
input data (17 data points) was split into the training data (80%, 13 data 
points) and test data (20%, 4 data points). The input features include the 
atomic radius, atomic weight, atomic number, period number, group 
number, electronegativity (EN), ionization energy, electron affinity, 
enthalpy of vaporization (EV), covalent radius, number of valence 
electron, isolated electron in d orbital and d-band center of the metal 
centered in SAC structure. 

Fig. 2a displays the parity plot of ML- versus DFT-predicted over-
potentials for SACs indicating acceptable MSE values of 0.26 eV2 and 
0.29 eV2 with R2 values of 0.952 and 0.998 for the training and test data, 
respectively, without the signs of unfitting. Moreover, the feature 
importance analysis on the overpotentials was performed based on the 
permutation method and displayed in Fig. 2b. This indicates that the 
descriptors of electronegativity, total electrons in d orbitals, unpaired 
electrons in d orbital, ionization energy, covalent radius, and group 
number of metal atoms show a reasonable feature importance. Partic-
ularly, Fig. 2b indicates that the new Φ descriptor is appropriate based 
on its higher feature importance. We find that the total number of 
d electrons (θd) and electronegativity (EN) of metal atom are the other 
most significant and interpretable parameters, conforming to the pre-
vious works. [36] Indeed, increasing the d electrons and electronega-
tivity of metal atoms, directly affects the binding strength of reaction 
intermediates, which in turn affects the reaction overpotential. 

Based on these results, we developed a new descriptor, Ф to predict 
the SAC activity for ORR/ OER of LOBs that is comprised of the input 
features of EN, EV, ratomic and Ne,d−orbital of the central metals in SACs: 

Ф = (EN × EV)
/
(ratomic × Ne,d−orbital).

To explore this activity relation, we plotted the activity descriptor 

Fig. 1. Proposed molecular models of single atom catalyst and the Gibbs free energy calculations for ORR/ OER. (a) Illustration of all possible reaction sites in the 
nitrogen doped graphene, not bonded to metal. (b) Gibbs free energy diagram for both ORR/ OER paths with the reaction site of pyridinic 4 N. (c) Comparison of the 
discharge, charge and overall overpotentials towards all the non-metallic reaction sites. (d) Metal active site coordinated with four nitrogen atoms in graphene 
substrate. (e) Gibbs free energy diagram of zinc single atom catalyst (Zn-SAC) for ORR/OER. (f) Correlations between the calculated overall overpotentials and the 
Gibbs free energy of LiO2 (ΔGLiO2

∗ ). 
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against the corresponding value of Gibbs free energies of LiO2 for all 
SACs (Fig. 2c), finding a good linear correlation with ηoverall. The overall 
overpotential decreases with the decreasing Ф. This implies that the 
decreased tendency of the metal atom to attract the electrons, the less 
energy required for vaporization, a larger atomic radius, and a larger 
number of electrons in d-orbitals tend to reduce the overpotential for 
ORR/ OER in LOBs. This Ф works well to predict the catalytic perfor-
mance for SACs, providing guidance for designing efficient catalyst for 
LOBs. 

3. Experimental validation and discussion 

Based on the theoretical analysis described above, we synthesized 
two kinds of SACs (Zn and Mo) using graphene oxide (GO) as the sub-
strate, acrylamide as the nitrogen precursor and metallic salts (details in 
the Experimental Section), according to the methods developed in our 
group. [39,40] Sc-SAC performed the worst in our calculation results, 
because of the strong interaction with LiO2, as shown in Fig. 1f. The 
crystalline structure of Zn-SAC and Mo-SAC were characterized by X-ray 
crystallography (XRD) in Fig. 2d. For the three samples of Zn-SAC, 
Mo-SAC and NG, a broad peak was observed at ~ 23◦, attributed to 
the (002) lattice planes of graphite while no distinct peaks are found 
from the presence of metal crystals in the composite sample, indicating 
single atom dispersion. In addition, the full X-ray photoelectron spec-
troscopy (XPS) spectra of Zn-SAC and Mo-SAC (Fig. S4, Supporting In-
formation) confirms the elemental composition of Zn, Mo, N, C and O in 
the as-prepared SACs samples. The high-resolution N 1 s spectrum in 
Fig. 2e identifies three types of nitrogen active sites in Zn-SAC at binding 
energies of 398.1, 400.8 and 401.5 eV, corresponding to pyridinic N, 
pyrrolic N, and graphitic N, respectively. [41,42] Moreover, the 
deconvoluted Zn-N (399.6 eV) reveals the existence of Zn-N sites in 
Zn-SAC. To further verify the presence of Zn-Nx, the Zn 2p spectrum was 
obtained (Fig. 2f). A peak at 1021.7 eV was identified, corresponding to 
the Zn2+ 2p3/2 electronic states, but not associated with Zn-O (1022 eV), 
showing that only Zn-Nx exists in the composite, with no ZnO. [43] 

Similarly, for Mo-SAC, the pyridinic N, pyrrolic N and graphitic N were 
fitted at 398.2, 400.6 and 401.8 eV, respectively((Fig. S5a, Supporting 
Information), while the peak at 396.6 eV was observed, corresponding 
to the N-Mo bonds (Fig. S5b, Supporting Information). [44]. 

The atomic structure of the SAC was characterized by annular dark- 
field scanning transmission electron microscopy (ADF-STEM). Fig. 3a 
and Fig. S6a in Supporting Information shows the low-magnification 
STEM images of the Zn-SAC and Mo-SAC, respectively, indicating the 
2D structure of ultrathin graphene substrate. The high-resolution STEM 
image in Fig. 3b, clearly demonstrates a clean carbon film without no 
nanoparticles and impurities observed on the surface, which confirms 
that no metal atoms aggregated during the material synthesis. In addi-
tion, the amorphous structure of Zn-SAC shown in Fig. 3c comes from 
the carbon materials, indicating no formation of nanoparticles in the 
composite. Fig. 3d, e displays the uniform distribution of the atomically 
isolated Zn atoms (brighter dots circled in red) on the whole graphene 
nanosheet. Similarly, atomically dispersed Mo atoms are detected uni-
formly throughout the graphene substrate in Fig. S6b, Supporting In-
formation. Furthermore, the energy dispersive analysis (EDS) mapping 
images in Fig. 3f and Fig. S7, Supporting Information confirms the ex-
istence of C, N, Zn and Mo and the homogeneous dispersion of the atoms 
within the entire carbon scaffold. 

To explore the chemical state and atomic coordination environment 
of SAC structures, XAFS measurements were carried out, as shown in  
Fig. 4. The Zn K-edge XANES in Fig. 4a shows that the x-ray absorption 
edge position of Zn-SAC is significantly different from bulk Zn, indi-
cating that the valence state of Zn in Zn-SAC is different from Zn (0) in 
the bulk Zn phrase. Similarly, the XANES spectrum of Mo-SAC in Fig. 4b 
does not overlap with the Mo foil, implying a difference in metal 
oxidation state from the Mo-Mo closest packed metal structure. In 
addition, the coordination between metal and nitrogen were further 
studied using the EXAFS Fourier transform (FT) for Zn-SAC and Mo-SAC, 
displayed in Fig. 4c and d. The FT-EXAFS spectrum for Zn-SAC (Fig. 4c) 
shows a major peak at 1.49 Å, attributed to the Zn-N peak, while a 
distinct peak at 2.29 Å belonging to Zn-Zn bonds were present, verifying 

Fig. 2. Relation between the SAC descriptor (Ф) and activity in ORR/ OER based on the DFT-trained machine learning for chemical composition of single atom 
catalysts. (a) Comparison of the of DFT-calculated and machine learning predicted ηoverall. (b) The importance of various features in SACs for ORR/ OER. (c) Overall 
overpotential based on the Φ descriptor for SACs, showing an inversely linear relationship. (d) XRD patterns of Mo-SAC, Zn-SAC, and NG. (e, f) High-resolution XPS 
spectra of N 1 s and Zn 2p. 
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the coordination of Zn with N.[45,46]Similar results were obtained in 
the FT-EXAFS spectrum for Mo-SAC in Fig. 4d, with a dominant peak 
observed at 1.04 Å (Mo-N/C), quite different from the peak at 2.55 Å 
(Mo-Mo) observed in Mo foil curve, indicating Mo-N coordination in the 
Mo-SAC. [47,48]. 

The electrochemical properties of Zn-SAC for ORR/ OER were 
examined and compared with NG and Mo-SAC in LOBs. As compared 
with the CV tests in pure argon (Fig. S8a-c, Supporting Information), the 
CV curves with oxygen supply (Fig. S8d-f, Supporting Information) 
display a pair distinct oxidation and reduction peaks at around 3.2–3.4 
and 2.2–2.5 V, respectively. Furthermore, the cathodic peak location of 
Zn-SAC is slightly more positive than that of Mo-SAC and pure graphene, 
indicating that the Zn-SAC had superior catalytic activity on ORR pro-
cess. In addition, larger integration regions were found in Mo and Zn- 
SACs electrode, indicating the role of single atom catalyst. Fig. 5a 
shows the cell configuration in which our composite was cast onto 
carbon paper as cathode and assembled with separator and lithium 
anode. The overpotentials of NG, Mo-SAC and Zn-SAC were examined 
and tested with the designated capacity of 0.1 mAh cm−2 at the current 
density of 0.05 mA cm−2. Among the three samples, NG has the highest 
ORR overpotential of 0.22 V at the first discharge cycle. (Fig. 5b) The 
ηORR increased along the cycling and reached 0.58 V after 50 cycles, 
accounting for 174% increase from the 1st cycle. In the charging process 
(OER), NG delivered a high OER overpotential of 1.32 V, due to the 
insulating nature of lithium peroxides, making the decomposition of 
Li2O2 difficult for subsequent oxidation, thus increasing the OER over-
potential. Mo-SAC delivered a slightly reduced ηORR of 0.19 V at first 
discharge cycle, but its catalytic activity decreased dramatically during 
cycling with ηORR increased to 0.64 V after 50 cycles. (Fig. 5c), 
accounted for 232.4% change from the 1st cycle. In the OER process, 
Mo-SAC has 1.34 V reaction overpotential, which increased to 1.78 V 
after 50 cycles. In sharp contrast, Zn-SAC rendered a rather stable 
cyclability (Fig. 5d) that achieved the ηORR of 0.20 V at the beginning 

and retained the value 0.22 V after 30 cycles, achieving 0.07% over-
potential retention rate. In addition, Zn-SAC delivered a ηORR of 0.4 V 
after 50 cycles, a comparatively small increase in the overpotential, 
compared to NG and Mo-SAC. Similarly, after 50 cycles, Zn-SAC 
exhibited the smallest OER overpotential of 1.66 V, revealing the su-
perior catalytic activity of Zn-SAC in ORR/OER process. Figs. 5e and 5f 
compare the discharge/ charge curves of NG, Mo-SAC and Zn-SAC at 1st 
and 50th cycle to verify the stability of the three samples. On the first 
cycle, a flat discharge plateau at 0.2 V was observed for both samples, 
while similar OER performances were found. After 50 cycles, Zn-SAC 
showed the best performance, retaining 0.4 and 1.66 V discharge and 
charge overpotential, respectively, while NG and Mo-SAC performance 
both deteriorated greatly during cycling. Interestingly, we found the 
similar trend that the Ф decrease with decreasing experimentally 
measured OER overpotential and the overpotential retention rate. Thus, 
our experimental electrochemical performances verify our calculation 
results, demonstrating the advantages of Zn-SAC in ameliorating over-
potential and enhancing cycling durability in LOBs. 

4. Summary and conclusion 

In this work, we used the density functional theory (DFT) flavor of 
quantum mechanics to derive the SAC activity relationship with Gibbs 
free energy of LiO2 to explore the origin of ORR/ OER activity in LOBs 
for a series of d-block metal. The calculated Gibbs free energy diagram 
helps understand the thermodynamics of the ORR/ OER process in LOBs. 
We found a linear correlation of reaction overpotentials with ΔGLiO2 so 
that weak interaction between the SAC and LiO2 reduces the over-
potentials. Based on the DFT results, we developed a descriptor, Ф based 
on the intrinsic properties of the SAC metal in M-N4 moieties on carbon 
scaffold with the help of trained machine learning (ML). Interestingly, 
we found that the catalytic activity (ηoverall) is linearly correlated with 
the descriptor, providing guidance for designing efficient SACs for ORR/ 

Fig. 3. Atomic and morphology characterization of Zn-SAC. (a) Low- and (b, c) high-resolution STEM image of Zn-SAC. (d, e) Zoom-in STEM image of Zn-SAC at high 
magnification (Zn single atoms are marked by red circles). (f) EDS mapping showing the homogenous distribution and presence of the elements of C, N and Zn in the 
Zn-SAC composite. 
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OER catalysis. This indicated high activity of Zn-SAC among all studied 
SACs. To verify our computational results, we synthesized two SACs (Zn 
and Mo) and characterized them experimentally. We confirmed the high 
loading and homogenous distribution of the single metal atom on N- 
doped graphene surface were confirmed by the ADF-STEM and XAFS 
characterizations. In addition, our electrochemical experiments show 
that Zn-SAC has significantly higher cycling stability over the Mo-SAC 
and NG with reduced discharge/ charge overpotentials. Our work pro-
vides guidelines for designing highly efficient SACs for catalyzing the 
ORR/ OER process in LOBs to support the development of high energy 
storage and conversion applications. 

There are limitations and challenges in the synthesis and charac-
terization of SACs. For example, traditional characterization methods 
like TEM and XRD are difficult to examine the structure of SACs to 
identify the metal atoms and the metal bonding. In terms of scalability of 
the synthesis process of SACs, challenges remain for scaling up the 
laboratory scale of the production process to the industrial level. Spe-
cifically, factors, like reaction kinetics, mass transport in the reactor and 
the cost considerations need to be addressed when developing 
industrial-scale synthesis process to ensure a cost effectiveness and high 
throughput without compromising the quality of the SACs. One possible 
solution to reduce the production cost is to identify abundant and low- 
cost precursors for the SACs synthesis. 
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