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1 Introduction

The IceCube Neutrino Observatory detects neutrinos interacting with nucleons and electrons in the
South Pole ice via Cherenkov radiation produced by charged secondaries. The ice is instrumented
with 5,160 digital optical modules (DOMs), each with a single downward-facing photomultiplier tube
(PMT), arrayed across a cubic-kilometer volume below the surface. The DOMs are attached to 86
strings — cables installed in the ice that provide mechanical and electrical support. The DOMs are
vertically spaced 17 m apart on standard IceCube strings and 7 m apart on DeepCore strings, a denser
infill region of the detector. Standard IceCube strings are spaced approximately 125 m apart [1].

IceCube covers a rich and diverse physics program at a wide energy range, and can detect neutrinos
with energies spanning from about 5 GeV to above 10 PeV, as well as bursts of MeV neutrinos from
sufficiently nearby sources. Highlights include the discovery and subsequent confirmation of a diffuse
flux of astrophysical neutrinos [2, 3], the first identification of an astrophysical neutrino source, TXS
0506+056 [4], arising from IceCube’s real-time program [5], and the detection of the first astrophysical
neutrino interaction at the Glashow resonance [6]. More recently, the nearby Seyfert galaxy NGC
1068 [7] and the Milky Way itself [8] have been identified as steady sources of astrophysical neutrinos.
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These and future results rely on, and will continue to benefit from, refined calibration of the detector
and improved event reconstruction.

In IceCube there are, broadly speaking, three general event categories: tracks, cascades, and
double cascades. In this paper, these terms refer to the hypothesized model underlying event
reconstructions, which is related to but conceptually distinct from the actual physical process of
particle showers or muon propagation through matter [9]. High-energy muons produced in muon
neutrino charged-current (CC) interactions can travel large distances through the detector and appear
track-like. Electromagnetic (EM) particle showers induced by electron neutrino CC interactions or
hadronic showers from neutral-current (NC) interactions of all flavors appear as cascades, a roughly
spherical deposition of light in the detector. Tau neutrino CC interactions can appear as a double
cascade for certain tau lepton decay channels and energies. For the purposes of event reconstruction,
high-energy muons can be approximated as a series of cascades due to muon stochastic losses [10],
and other events can be approximated using a single- or two-cascade model [11].

The glacial ice serves as a natural Cherenkov medium for detection of the byproducts of neutrino
interactions. From the surface to the bedrock, ice isochrons have formed over geological time scales,
each with different scattering and absorption lengths that affect the propagation of Cherenkov photons.
Calibration LEDs on board each DOM have been used to provide a detailed measurement of these
optical properties as a function of depth [12]. The propagation length for a typical Cherenkov photon at
400 nm is shown in red in figure 1, and illustrates the depth-dependent optical properties of the natural
ice sheet. The propagation length is defined in ref. [13], and is proportional to the geometric mean of
the absorption length and effective scattering length. For this illustration, perfectly flat ice isochrons
are assumed and no additional ice anisotropies are present besides the depth-dependent scattering and
absorption. In reality, we now know that the ice is more complex and exhibits additional anisotropies.
These include an axial dependence now attributed to birefrigence of the polycrystals in the ice, which
leads to a higher photon yield along the axis of glacial ice flow [14]. Elevation changes of ice isochrons,
or ice layer undulations, have also been mapped out in detail throughout the detector volume [15].
Inclusion of these effects into a model usable for event reconstruction is our primary focus.

Accurate event reconstruction requires accurate modeling of photoelectron arrival time distribu-
tions for a given physics hypothesis. In this paper we focus on energies most relevant for high-energy
astrophysical neutrinos, above roughly 10 TeV. As an example, figure 1 provides a visualization of
the expected Cherenkov photoelectron yield arising from an EM shower. The shower is placed at
various depths in the detector, 𝑍s, with 𝑍s = 0 corresponding to a depth of 1,948 m below the surface,
arriving from a direction Θs = 90◦ relative to vertical. Photoelectron yields are shown for receivers,
which are idealized representations of IceCube’s downward facing PMTs, placed at distances 100 m
in front of (black, solid) and behind (black, dashed) the shower. Note the impact of the propagation
length (red) on the photoelecton yields. Differences between yields at the two receivers illustrate
how shower directionality can be reconstructed, while the strong correlation to photon propagation
length highlights the importance of accurate ice modeling.

The rest of this paper is organized as follows. In section 2, we provide an overview of some of the
challenging aspects of shower reconstruction in IceCube. Section 3 describes improvements when
fitting tabulated photoelectron distributions from Monte Carlo (MC) simulations with tensor-product
B-splines, which reduce observed artifacts in the reconstructed zenith distribution while improving
the median angular resolution for a benchmark simulation set by about 1◦ at 1 PeV from an original
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Figure 1. Time-integrated photoelectron (P.E.) yields for a particle shower traveling horizontally (Θs = 90◦) at
depth 𝑍s, given in both detector coordinates (lower axis) and surface depth (upper axis), are shown in black. The
solid (dashed) black line indicates the number of expected photoelectrons for receivers placed 100 m in front of
(behind) the shower. The red line shows the depth dependence of a 400 nm photon’s propagation length (right
axis), which is proportional to the geometric mean of the absorption length and effective scattering length as
defined in ref. [13]. Since the ice is a natural medium formed over epochs, large variations in optical properties
that appear over large commensurate time periods are observed [16]. A region of heightened dust concentration
is highlighted in gray. The instrumented depths that IceCube spans are highlighted in blue, and include the dust
layer. Clear differences for the two receivers illustrate how shower directionality can be reconstructed, while the
strong correlation between yield and propagation length highlights the importance of accurate ice modeling.

resolution of 12◦. Section 4 details an effective treatment to include ice birefringence without increasing
the dimensionality of the model used in reconstruction, further lowering the median angular resolution
by 5.3◦ at 1 PeV. Section 5 describes a correction to account for ice layer undulations that yields
another 1.7◦ improvement at 1 PeV. Section 6 touches on an approximation of shower longitudinal
extensions with a two-cascade model, which yields an additional 0.5◦ improvement at 1 PeV, resulting
in a final median angular resolution of 3.5◦, and includes a brief discussion of systematic uncertainties.
In section 7, we provide a summary of the results and conclude the discussion.

2 Challenges in shower reconstruction

Figure 2 shows an event view of a high-energy shower in IceCube. For events contained within a
fiducial volume such as this, the energy reconstruction is relatively well constrained by calorimetry [10].
Further, at the energies relevant in IceCube, particles produced by neutrino interactions in the ice
are, to good approximation, colinear with the neutrino direction, and thus their reconstruction points
to the neutrino arrival direction. However, due to the large length scales between IceCube sensors,
the directional reconstruction of showers can be a challenge and depends critically on the ice model.
Anisotropies in the ice can induce differences in detected Cherenkov photoelectron yields that mimic
those caused by a shift in direction.

– 3 –
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Figure 2. Event view of an approximately 2 PeV particle shower detected by IceCube on 2012-12-04. Each
string is shown as a thin line extending from top to bottom; small dots correspond to unhit DOMs. Modules that
detected a photoelectron are indicated by the colored spheres. The size of each sphere corresponds to the total
charge detected, and its color indicates the timing of hits, with earlier to later going from red to green. The
IceCube-centered coordinate axes are indicated by the three colored arrows, with the blue arrow indicating
the positive 𝑧 direction. The length of each arrow is set to 100 m and gives a sense of scale. Note that noise
cleaning has been applied for visualization purposes [1].

The most realistic model of photon propagation in the ice requires a full MC simulation. The
parallel nature of photon propagation makes such a task well suited for graphics processing units
(GPUs) [17, 18]. Such an approach has allowed for a refined description of the optical properties of the
ice by simulating LED calibration devices and fitting to the observed in situ calibration data [12, 14].
Physics simulations of particle showers also rely on MC-based photon propagation.

Processing speeds on GPUs may be sufficient for simulation, but event reconstruction often
requires testing orders of magnitude more points in the physics parameter space for each event.
As of this writing, utilizing GPUs for event reconstructions where each Cherenkov photon is fully
resimulated for every tested hypothesis is only feasible for 𝑂 (100) events [19, 20]. At the expense of
some accuracy, fast approximations of Cherenkov photon yields have been developed to address this.
Initial approximations relied on look-up tables [21], which were improved to allow for gradient-based
minimization using a tensor product of B-splines [10, 22]. More recently, neural network (NN) [23–25]
models have been employed as well. All such models are approximations, being derived from full
MC simulations of particle showers or minimum ionizing muons.

There are then two main challenges that arise in event reconstruction. The first is to accurately
model the physics and instrumentation to the best extent possible within the full MC simulation chain.
To a large extent this includes the modeling of the optical properties of the ice, where significant
progress has been made over the past few years that led to an improved description of the observed
ice anisotropy based on birefrigence [14] and a more realistic mapping of layer undulations [15].
Including these effects has resulted in much better agreement with in situ calibration data.

– 4 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
6
0
2
6

The second challenge is to quickly and accurately model the photoelectron yields derived
from full MC simulation. Anisotropies in the ice due to birefringence and layer undulations bring
further complexity by breaking symmetry and thus introducing additional dimensionality. A full
parametrization of the photoelectron yield for a cascade would span nine dimensions: (𝑋s, 𝑌s, 𝑍s) to
define its position, (Θs,Φs) to define its arrival direction, (𝑟, 𝜃, 𝜙) to define the DOM position relative
to the cascade, and 𝑡, the photon arrival time at the DOM. This increased complexity makes a tensor
product of B-splines intractable to evaluate over all relevant regions of the parameter space; memory
requirements over the full nine dimensions would exceed 500 TB. In addition, the simulation needed
to construct approximators becomes prohibitively expensive to produce even on the Open Science
Grid [26], likely exceeding 1010 CPU hours. While NNs are not bound by these dimensionality
constraints, they can be subject to unknown inaccuracies in interpolation and extrapolation while also
requiring a large training dataset. Depending on the approach, for example if a fixed set of geometry,
ice properties and detector settings are assumed in the simulation, the model might need to be retrained
for each successive update [23–25]. Furthermore, training an NN may provide less insight into where
limitations in simulation and reconstruction lie. If MC simulation is taken as an absolute ground
truth, then we are subject to any existing mismodeling there. A more iterative approach, with cross
checking between simulation and expected results from event reconstruction, can help resolve issues
that exist either in the MC or in the construction of any approximate model.

2.1 Impact of ice anisotropies on shower reconstruction

To confront the asymmetries introduced by a refined understanding of the ice, a set of corrections
to approximate birefringence and layer undulations can be employed. As will be shown, these
corrections do not increase the dimensionality of the model; six dimensions is enough, with (Θs, 𝑍s)
to fix the zenith angle and depth of the shower and (𝑟, 𝜃, 𝜙, 𝑡) to define the arrival position and
time at a receiving DOM [21]. The impact of these corrections can be evaluated on a benchmark,
high-energy starting events (HESE) MC set, consisting of simulated showers from electron-neutrino
and electron-antineutrino interactions contained within a fiducial region of the detector [3]. Electron
(anti)neutrinos are sampled from an 𝐸−1.5 spectrum at the Earth’s surface, propagated through the
Earth to reach IceCube, whereupon they may interact and produce signatures that pass the HESE
selection criteria. After cuts, the events range in energies from 10 TeV to 10 PeV, a regime where
the astrophysical neutrino flux is expected to transition above the atmospheric neutrino background.
The simulation relies on GPUs for photon propagation [18] and incorporates our most up-to-date
knowledge of the ice, namely birefringence [14] and recent updates to ice layer undulations [15]. The
left panel of figure 3 shows the distribution of the angle between the true direction and reconstructed
direction, 𝛿Ψ. Including the birefringence correction (green, dashed) improves upon the event
reconstruction that employs no corrections (red, dotted). Including both birefrigence and layer
undulation corrections (orange) exhibits even better performance. The implementation of these
corrections is the subject of section 4 and section 5.

Another metric for comparison is the negatived log-likelihood per degree of freedom (reduced
negative log-likelihood), 𝜄, obtained by comparing expected photoelectron yields and time profiles
from the best-fit cascade to the simulated data. Here we use an effective Poisson-based likelihood [27],
modified to use a fixed relative uncertainty across all bins to capture residual error in the model.
The right panel of figure 3 illustrates the 𝜄 improvement when all corrections are applied. Shown

– 5 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
6
0
2
6

0 5 10 15 20 25
δΨ [deg.]

0.00

0.03

0.05

0.08

0.10

0.12

0.15
d

en
si

ty
No corrections

Birefringence

Birefringence and undulation

−0.4 −0.2 0.0 0.2 0.4
∆ι

10−2

10−1

100

101

d
en

si
ty

ι(0) − ι(2)
ι(1) − ι(2)

Figure 3. These distributions highlight the improvements in 𝛿Ψ and 𝜄 when corrections that approximate the
discussed ice anisotropies are included in reconstruction. The left panel compares 𝛿Ψ distributions with no
corrections (red, dotted), with birefringence (green, dashed) and with both layer undulation and birefrigence
(orange, solid). Each correction successively reduces the space angle between the true and reconstructed
direction. The right panel shows two distributions across Δ𝜄 relative to a model that includes all corrections.
Lower 𝜄 values correspond to improved agreement with simulated events in the benchmark MC. The reduced
negative log-likelihood for a model that includes corrections due to both layer undulations and birefringence is
given by 𝜄(2) , including only the birefringence correction 𝜄(1) , and including no corrections 𝜄(0) . The improved
description with 𝜄(2) is evidenced by the skew towards positive values, which is more apparent for 𝜄(0) − 𝜄(2)

(red, solid) but still visible for 𝜄(1) − 𝜄(2) (green, dashed). The vertical dashed line at Δ𝜄 = 0 serves as a visual
guide to highlight the positive skew.

are two Δ𝜄 distributions, 𝜄(1) − 𝜄(2) and 𝜄(0) − 𝜄(2) , where 𝜄(0) , 𝜄(1) and 𝜄(2) refer to reduced negative
log-likelihoods for event reconstructions that assume no corrections, birefrigence correction only,
and all ice-associated corrections, respectively. As lower values correspond to an improved event
description compared to the simulated data, the positive skew observed for both distributions indicates
the improvement of 𝜄(2) over 𝜄(1) and 𝜄(0) .

3 Improvements in model construction

As mentioned in section 2, the photoelectron-yield model that is the focus of this paper derives
from GPU-based MC photon propagation [18]. The convention used to describe source and receiver
coordinates, introduced in ref. [21], is shown in figure 4. For directional sources of Cherenkov photons,
a simplified MC where birefringence (see section 4) and ice layer undulations (see section 5) are
not included is used to tabulate yields, so that azimuthal symmetry is preserved about the ẑ axis
and translational symmetry is preserved over (𝑋s, 𝑌s). Further, in ice with depth-dependent optical
properties (see figure 1) the axial symmetry of Cherenkov photon emission about the shower axis,
p̂, which holds to good approximation for the colinear particles produced in high-energy particle
showers, is reduced to a bilateral symmetry where 𝜙 is degenerate with −𝜙. Thus, the source can be
completely described by (Θs, 𝑍s), and the receiver 𝜙 ranges from 0◦ to 180◦.
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ẑ

p̂

Zs

Θs

Φs

r

θ

Θr
ϕ

Figure 4. The convention used to describe source and receiver coordinates [21]. Source and receiver positions
are indicated as filled and empty circles, respectively. The unit vector p̂ denotes the shower momentum direction,
while (Θs,Φs) describes the arrival direction, −p̂, in the standard spherical coordinate system with polar axis
aligned with ẑ. The receiver coordinates, (𝑟, 𝜃, 𝜙), are given in a spherical coordinate system centered on the
source position and defined such that the polar axis aligns with p̂ and 𝜙 = 0 corresponds to where the projection
of r onto the plane perpendicular to p̂ (shaded) is maximally vertical. In a media with symmetry about the ẑ
axis, Φs is degenerate. If, additionally, photon emission is axially symmetric about p̂, 𝜙 is degenerate with −𝜙.

A 1 GeV EM shower, the photon source, is repeatedly simulated along a grid of points, (Θs,𝑖 , 𝑍s, 𝑗),
indexed by 𝑖 and 𝑗 . For each source, the photoelectron yield for receiver 𝑘 at a location r𝑘 = (𝑟𝑘 , 𝜃𝑘 , 𝜙𝑘)
relative to the source is tabulated as a function of

𝑡res(𝑟) ≡ 𝑡 − 𝑛𝑟/𝑐, (3.1)

where 𝑛 is the group index of refraction in ice and 𝑡 is the absolute photon arrival time [21]. The
receiver position is defined using a spherical coordinate system aligned with the shower principal axis,
as shown in figure 4. Once tabulated, the total number of photoelectrons, or amplitude, as well as
the cumulative density function (CDF) in 𝑡res is fitted across (r𝑘 , [𝑡res]) for each simulated cascade in
(Θs,𝑖 , 𝑍s, 𝑗) using a tensor product of B-splines. Then each fitted surface over the receiver coordinates
is stacked across (Θs,𝑖 , 𝑍s, 𝑗) [22], resulting in a function of the form

𝐴(r,Θs, 𝑍s)𝐹 (r, 𝑡res,Θs, 𝑍s), (3.2)

where 𝐴 is the amplitude and 𝐹 is the CDF. As the number of Cherenkov photons scales linearly
with shower energy [10], eq. (3.2) gives, within a constant factor, the number of photoelectrons
detected by a DOM for an EM shower.

3.1 Interpolation

The first step towards improved modeling for shower reconstruction required resolving a long-standing
issue that was observed in the reconstructed Θ̂s distribution. Figure 5 illustrates the problem for our
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benchmark MC. The right panel shows MC statistics after applying HESE cuts [3] as a function of
the true EM-equivalent deposited energy, 𝐸dep. Sometimes referred to as visible energy [10], 𝐸dep

is calculated for each simulated event by summing over the energies of all EM and hadronic shower
components, with a correction that scales down the true energy of hadronic showers to match the energy
of an EM shower that, on average, produces an equivalent number of Cherenkov photons. Gray dashed
and dotted lines show the breakdown for upgoing and downgoing events, respectively. The left panel
compares the true cosΘs distribution (black) against the reconstructed distribution using a now-outdated
model (gray) [10], which was derived from the best knowledge of the ice in 2013 [12]. Following the
terminology in ref. [12], we refer to this as the “Mie model”. At the time, ice layers in the Mie model
were assumed to be flat for purposes of event reconstruction, and no anisotropies beyond the depth
dependence shown in figure 1 were included. In the left panel, dashed vertical lines indicate B-spline
knot positions in cosΘs used in the Mie model, and a clear ringing pattern arising from an artificial
pull away from knot locations emerges. The solution came in the form of improved interpolation with
additional support points, the topic of this section and illustrated by the cos Θ̂s distribution in red.
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MC truth
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All events

cos Θs < 0

cos Θs ≥ 0

Figure 5. The left panel shows the number of events per bin, 𝑁 , distributed over cosΘs for the benchmark MC
sample consisting of electron neutrino and antineutrino interactions contained within a fiducial volume [3]. The
effects of birefrigence [14] and ice layer undulations [15] are included in the simulation, but are not included
in either of the event reconstructions shown. A ringing effect is visible when the Mie model is used (gray),
which disappears when the updates discussed in section 3 are included (red). Vertical dashed lines indicate the
placement of knot positions for the Mie B-splines along the cosΘs dimension. The MC truth (black) is shown
for comparison. To give a sense of the statistics and energies of this MC set, the right panel shows the overall
𝐸dep distribution in black. Gray dashed and dotted lines show the breakdown for upgoing and downgoing events,
respectively. See text for more details.

Multidimensional B-spline surfaces constructed with a tensor product can have interpolation
artifacts along diagonals across coordinate axes. This is due to defining basis functions on Cartesian
grids [28]. In the absence of dense support points, smooth features along diagonals are not preserved
and interpolation exhibits an oscillatory behavior. In particular, this effect led to the ringing effect
shown by the gray distribution in the left panel of figure 5. Including the updates described in this
section results in the reconstructed cos Θ̂s distribution shown in red, without ringing and in better
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agreement with the true cosΘs distribution (black). The birefrigence and layer undulation corrections,
which will be discussed in section 4 and section 5 respectively, were not included in the updated model
(red) shown here. Including these effects would further improve agreement to the true distribution
in the most upgoing region (cosΘs ≈ −1).

0 1 2 3
P.E./TeV ×10−3

Figure 6. Visualization of the time-integrated photoelectron (P.E.) yield as a function of 𝜃 and Θs, sliced across
the other dimensions at the values indicated in the title. The left (right) panel shows the Mie (updated) model
expectations. Dashed white lines bound regions in the phase space where receiver locations fall within ±10 m
of 𝑍s in depth, corresponding to a region of clear ice where the source is placed. The ringing in the left panel
is due to the tensor product B-spline construction, which has difficulties interpolating along diagonals when
support points are sparse. This is mitigated by increasing the number of support points in Θs, the result of which
is shown in the right panel.

Figure 6, left panel, illustrates the interpolation artifacts observed in the amplitude, 𝐴(r,Θs, 𝑍s),
for the Mie model at the coordinates given in the title. In this case, 𝑍s = 30 m corresponds to a source
placed in a region of clear ice (see figure 1). As shown in figure 4, the receiver coordinate system
is spherical and aligned with respect to Θs. For example, at Θs = 90◦ a receiver at 𝜃 = 0◦ would
be placed directly in front of the shower and hence in the same ice layer. As Θs sweeps through
its parameter space, a compensation in 𝜃 of equal magnitude ensures that the receiver is placed at
the same depth as the source. The result is that for clear ice, the amplitude will be greater along
that diagonal than away from it, where a photon would have traversed through regions of higher
absorption and scattering. However, due to the low number of support points in Θs (every 10◦) over
which the model is stacked, interpolation artifacts appear.

A simple, but effective, solution was to double the number of support points in Θs, tabulating at
5◦ intervals instead of 10◦. The number of knot locations in Θs roughly doubles as well, the cause
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of which is described in ref. [22]. With this change, the amplitude model yields smoother behavior
along diagonals, as shown in the right panel of figure 6. Updated values of the depth-dependent
ice optical properties are included in the simulation used to fit the model [15]. However, similar to
the construction of the Mie model, the effects of birefringence and ice layer undulations are turned
off for reasons of simplification discussed in section 2 and at the beginning of this section. In both
panels, the dashed white lines bound regions in the phase space where receiver locations fall within
±10 m of 𝑍s in depth. Note that while the visualization here is for the amplitude model, the denser
support points are applied to the CDF model in 𝑡res as well.

0 1 2 3
P.E./TeV ×10−3

Figure 7. Same as figure 6 except at a different slice, 𝜙 = 90◦. The dashed white lines bound regions in the
phase space where receiver locations fall within ±10 m of 𝑍s in depth, corresponding to a layer of clear ice
where the source is placed. Here, large amplitude regions no longer lie along diagonals in (𝜃,Θs) space but
instead align with the coordinate axes. As a result, interpolation artifacts do not appear in either the Mie model
(left panel) or the updated model with denser support points (right panel).

Figure 6 only presents a single two-dimensional slice; other parameters are fixed at the coordinates
indicated in the title. The full effect across all dimensions is more complex, and an example of what
happens when 𝜙 = 90◦ is shown in figure 7. This also explains why, although a simple coordinate
transformation could resolve the issues in the slice shown in figure 6, a generalized coordinate
transformation over the additional 𝜙 dimension does not exist in simple form and hence we resorted
to increasing the number of support points in Θs.

3.2 Extrapolation

Extrapolation failures can also occur when a parameter’s domain extends beyond its last support point.
These failures led to sharp discontinuities in the photoelectron yields across boundaries, and they
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occurred in the spherical coordinates system defined by 𝜃 and 𝜙, near the poles where cos 𝜃 = ±1 and
near the boundary of 𝜙 ∈ {0◦, 180◦}. The former required the construction of additional data points at
cos 𝜃 = ±1 based on linear interpolation, and the latter was resolved by reflection across the boundary
in 𝜙. By including these additional support points, extrapolation artifacts were largely reduced.

0 50 100 150
Θs [deg.]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
.E

./
T

eV

r = 100 m, φ ∈ {0◦, 180◦}, Zs = 0 m

Θr = 60◦ (Mie model)

Θr = 80◦ (Mie model)

Θr = 60◦ (This work)

Θr = 80◦ (This work)

Figure 8. The time-integrated photoelectron (P.E.) yield as a function of Θs for two receivers placed at a fixed
distance 𝑟 = 100 m from the source. The receivers are placed at two different directions, Θr, of Θr = 60◦ (solid)
and Θr = 80◦ (dashed), where Θr is the angle between source-receiver vector and ẑ as shown in figure 4. A
discontinuity is visible in the Mie model (gray), which is smoothed out with the updates discussed in this work
(red). The interpolation artifacts are also visible as small fluctuations in the dashed lines, and are reduced by the
updates discussed in section 3.1.

The discontinuity at cos 𝜃 = ±1 is again related to the tensor product construction of the model,
which does not map naturally onto a spherical coordinate system. Simulation data is linearly binned in
cos 𝜃, with the abscissa of each data point taken at the bin centers. Thus, at exactly cos 𝜃 = ±1 no
data point can be tabulated. To reach cos 𝜃 = ±1, the Mie model extrapolated beyond the closest bin
center. Furthermore, at cos 𝜃 = ±1 the model would extrapolate to different values as a function of
𝜙, leading to the discontinuity visible in the gray lines in figure 8, which shows the time integrated
amplitude as a function of Θs for two receivers placed at Θr = 60◦ and 80◦. Here, we have chosen
r to lie in the same plane as p̂ and ẑ for simplification, but these examples are representative of
behavior across other dimensional slices. As shown in figure 4, when all three vectors lie in the
same plane, 𝜃 = |180◦ − Θs − Θr | and

𝜙 =

{
0◦, Θr < 180◦ − Θs

180◦, Θr > 180◦ − Θs.
(3.3)

In a spherical coordinate system, the azimuthal angle 𝜙 becomes degenerate at the poles, and there
the model prediction should not change as a function of 𝜙. Unfortunately, this cannot be guaranteed
in the tensor product B-spline construction. The extrapolation in the Mie model, combined with the
flip in 𝜙 when 𝜃 = 0◦, cause the discontinuities in the gray lines in figure 8.
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The discontinuities can be largely reduced by the addition of a set of support points at cos 𝜃 = ±1
such that the to-be-fitted data is the same across all 𝜙 at the poles. These data values were computed
by first performing a linear interpolation of the tabulated data to 𝜙 = 90◦, then a linear extrapolation
to cos 𝜃 = ±1 along the 𝜙 = 90◦ curve. By including these values in the B-spline fit, the polar
discontinuity was reduced, as shown in the red lines in figure 8.

A final fix was applied in the 𝜙 dimension when extrapolating towards its bounds. Equally spaced
bins ranging from 0◦ to 180◦ are constructed along 𝜙, and receiver coordinates 𝜙𝑘 lie at the bin
centers. The Mie model extrapolated beyond the first and last bin center to reach 𝜙 = 0◦ and 180◦. A
simple solution to improve modeling near these boundaries was to reflect the nearest four data points
across the boundary, thereby extending the support points in 𝜙 to beyond its domain, and perform
the B-spline fit with those additional data points. This meant that the previous extrapolation to the
bounds was replaced by interpolation between well-defined, tabulated values.
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Figure 9. The left panel shows quartiles of the distribution between reconstructed and true directions, 𝛿Ψ, as
a function of deposited EM-equivalent energy for the benchmark MC sample described in the text. Results
obtained using the Mie model are shown in gray. Results obtained with a newer ice model that includes the fixes
described in section 3 are shown in red. Neither include corrections to approximate the additional ice effects to
be discussed in section 4 and section 5. The solid red and dashed gray lines indicate their respective median
angular resolutions. Lower (upper) cut offs for each color band show the respective 25 (75) percentile levels of
the 𝛿Ψ distribution. The right panels show distributions of 𝛿Ψ in two different energy slices, between 10 TeV to
100 TeV (top) and 1 PeV to 10 PeV (bottom), with line colors and styles matching those of the left panel.

Figure 9 illustrates the impact on the angular resolution going from the Mie model that is
subject to interpolation and extrapolation artifacts (gray) to a newer ice model that includes the
fixes described in this section. The left panel shows quartiles (25-50-75 percentile levels) of 𝛿Ψ
distributions for the benchmark MC as a function of 𝐸dep, obtained using the binning shown in the
right panel of figure 5. The right panel shows distributions of 𝛿Ψ in two different energy slices as
described in the legend. We see that, in addition to the much improved zenith distributions shown in
figure 5, the angular resolution is consistently worse with the Mie model, which exhibits additional
degradation going towards higher energies.
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4 Approximation of ice anisotropies due to birefringence

Accurate characterization of physics quantities across a sparse array of PMTs requires accurate
calibration of ice and instrument. This has been accomplished with calibration LEDs attached to
a dedicated flasher board on each IceCube DOM [12] and by using large samples of downgoing
minimum ionizing muons to set the global energy scale [10]. The propagation of light in the glacial
ice sheet is complex at Cherenkov wavelengths, with dependencies on depth that reflect Earth’s climate
across geological time scales as shown in figure 1. Absorption and scattering coefficients that describe
the mean free path of a photon are fitted using calibration LED data over a range that encompasses
all instrumented depths [12, 14]. In general, the Cherenkov photon absorption (scattering) length in
clear regions of the South Pole ice is longer (shorter) than in natural bodies of liquid water where
neutrino detectors have been constructed or proposed [29].

IceCube also discovered a directional dependence in the light propagation, or ice anisotropy, with
maximal effect along the ice flow axis [30]. The flow axis is the direction that the bulk ice moves, which
is at a rate of about 10 m/yr [31]. A microscopic explanation of the ice anisotropy due to birefringence
of polycrystals was given in ref. [14, 32] and leads to improved agreement with calibration data over
the previous phenomenological model [30]. However, as mentioned in section 2, this breaks the
azimuthal symmetry and naively would require another dimension, Φs, to be included in the model.

An alternative approach is to separate ice anisotropies from shower physics and take advantage of
the symmetries inherent in both. The photoelectron yields from a particle shower can be evaluated in a
bulk ice with no birefringence and flat, horizontal ice layers thus preserving azimuthal symmetry [21].
The impact of ice birefringence can be estimated by simulating an isotropic, point-like light source
and tabulating and fitting the corresponding photoelectron yields using two different ice models,
one with birefringence and one without, including the improvements described in section 3.2. An
isotropic source simplifies the problem by removing the dependence on Θs. Comparisons of the
two in amplitude, as done in refs. [33, 34], and in shape, as discussed in section 4.2, allow for
simple coordinate transformations that encode the impact of birefringence on Cherenkov photons.
We emphasize that the key idea is the switch from a directional source to an isotropic source and
that the birefringence corrections are computed using an isotropic source, which are later applied
to directional sources. This is an approximation, but one which substantially improves the model
and the angular resolution of showers, as will be shown.

4.1 Amplitude

The time-integrated photoelectron yield, or amplitude, at a receiver DOM differs depending on whether
the ice is modeled with or without birefringence. Since the amplitude decreases monotonically with
𝑟, a translation to a larger (smaller) effective distance, 𝑟𝐴, can correct for too high (low) amplitude
observed in the simplified ice model. Birefringence applies globally across the detector, independent
of (𝑋s, 𝑌s) [14]. Due to layer-by-layer differences in the ice, the 𝑍s-dependence is kept. The goal, then,
is to construct a function 𝑟𝐴(r, 𝑍s) that can be applied to correct amplitudes in the simplified model.

Two simulation sets are produced. Each consists of identical, isotropic, point-like light sources
placed at a series of depths, 𝑍∗

s, 𝑗 , where 𝑗 is an index and the asterisk distinguishes this as referring to
an isotropic source. One set assumes the simplified ice model, which does not include birefringence or
layer undulations. The other includes birefringence but no layer undulations (see section 5). The time-
integrated amplitudes are tabulated at receivers placed in spherical coordinates r𝑘 = (𝑟𝑘 , 𝜃𝑘 , 𝜙𝑘) from
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Figure 10. A visualization of the effect of birefringence on 𝑟𝐴 for an isotropic light source centered at the origin
of the detector. Solid lines are circles with radii of 60 m (blue) and 120 m (orange), centered at the origin. In
the left panel, the dashed lines show the corresponding 𝑟𝐴 across the 𝑥𝑦-plane. Notice that 𝑟𝐴 shrinks closer to
the origin along the ice flow axis (black arrow), and shifts away from the origin perpendicular to the flow axis.
The star (dot) indicates the location of the receiver in the left (right) panel of figure 11. In the right panel, a
similar effect is observed along two planes perpendicular to the 𝑥𝑦-plane, intersecting at the origin. The dashed
(dotted) lines show 𝑟𝐴 in the 𝑢𝑧-plane where û = cos 𝜙x̂ + sin 𝜙ŷ for 𝜙 = 130◦ (40◦) denotes the unit vector
parallel (perpendicular) to the ice flow axis shown in the left panel.

the isotropic source, with the polar angle 𝜃 now defined relative to ẑ. A tensor-product B-spline is then
fit to the tabulated data in order to construct a smooth approximator for the isotropic source amplitudes,
𝑁bfr(r, 𝑍∗

s, 𝑗) and 𝑁simple(r, 𝑍∗
s, 𝑗), with and without birefringence respectively. At each simulated 𝑍∗

s, 𝑗 ,
these amplitudes are compared across the two ice models to solve for 𝑟𝐴(r𝑘 , 𝑍∗

s ) such that

𝑁simple

(
𝑟𝐴

(
r𝑘 , 𝑍∗

s, 𝑗
)
, 𝜃𝑘 , 𝜙𝑘 , 𝑍

∗
s, 𝑗

)
= 𝑁bfr

(
r𝑘 , 𝑍∗

s, 𝑗

)
. (4.1)

Once evaluated across the grid of receiver positions, the discrete set of 𝑟𝐴(r𝑘 , 𝑍∗
s, 𝑗) are fitted again

with tensor-product B-splines for each 𝑍∗
s, 𝑗 and then stacked across 𝑍∗

s, 𝑗 to give 𝑟𝐴(r, 𝑍∗
s ).

The obtained 𝑟𝐴 is presented for a slice across cos 𝜃 = 0 and 𝑍∗
s = 0 m (center of IceCube)

in the left panel of figure 10. Two circles are drawn as solid lines at 𝑟 = 60 m (blue) and 120 m
(orange). The corresponding 𝑟𝐴 at those distances are shown as dashed lines in blue and orange,
respectively. The direction of ice flow is indicated by the arrow. The right panel includes a similar
visualization, only now in two planes that lie perpendicular to the horizontal plane shown in the
left panel. The dashed (dotted) line shows 𝑟𝐴 in the vertical plane that lies along (perpendicular
to) the flow axis, at 𝜙 = 130◦ (40◦) [14]. Thus, the right panel displays two 𝑢𝑧-planes, where 𝑢

is the distance along the direction given by û = cos 𝜙x̂ + sin 𝜙ŷ. The effect of birefringence is to
shrink the distance along the ice flow axis, leading to a larger amplitude, while slightly increasing the
distance perpendicular to the flow axis, leading to a smaller amplitude. These effects are consistent
with observations from calibration data [14].
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4.2 Time probability density function

The 𝑟𝐴 discussed in section 4.1 corrects for amplitude differences due to birefringence but does not
account for differences in the time profile. These photon arrival time distributions, i.e. the probability
density function (PDF) in 𝑡res, add timing information to the model (see eq. (3.2)).
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Figure 11. Impact of birefringence on the arrival time PDF from an isotropic point-like light source, at a source
depth of 𝑍s = 0 and the receiver coordinates indicated in the titles. For reference, the location of the receiver in
the left (right) panel is indicated by the star (dot) in the left panel of figure 10. The black, solid (red, dashed)
line shows the time PDF with (without) birefringence simulated. The green, solid line shows the result of a
two-parameter translation in 𝑟 and 𝑡, which when applied to the time PDF without birefringence gives the best
agreement with the black line.

The impact of birefringence on the PDF is shown in figure 11 for two azimuthal directions as given
in the titles. Their relative positions to the source are indicated by the star and dot in the left panel
of figure 10. The impact of birefringence on the time PDF is illustrated going from the red, dashed
to the black, solid lines, with a larger difference visible in the left panel, when the source-receiver
direction lies along the flow axis. Notably, along the ice flow axis, the time PDF is squeezed narrower
while preserving the mode of the distribution. It is not possible to capture such an effect with a
sole translation in 𝑟. In order to obtain a narrower distribution, a smaller source-receiver distance
is needed, which in turn causes a shift in the mode.

A natural generalization to model shape differences is to introduce a translation in 𝑡 in addition
to 𝑟. That is, instead of a single-parameter correction 𝑟𝐴(r, 𝑍∗

s ) we seek a two-parameter correction
𝑟𝐹 (r, 𝑍∗

s ) and 𝑡𝐹 (r, 𝑍∗
s ), which can be applied simultaneously to better approximate the 𝑡res PDF.

Using the same two simulation sets described in section 2.1, and extending the construction to include
timing information, we generate CDFs 𝐺bfr(r, 𝑡res, 𝑍

∗
s, 𝑗) and 𝐺simple(r, 𝑡res, 𝑍

∗
s, 𝑗). The corrections are

obtained by Nelder-Mead [35] minimization over the Kolmogorov-Smirnov (KS) statistic for receivers
on r𝑘 . Specifically, for each simulated 𝑍∗

s, 𝑗 , we find 𝑟𝐹 (r𝑘 , 𝑍∗
s, 𝑗) and 𝑡𝐹 (r𝑘 , 𝑍∗

s, 𝑗) that minimizes

sup
𝑡res∈[0,1.5𝑇 ]

���𝐺simple

(
𝑟𝐹

(
r𝑘 , 𝑍∗

s, 𝑗
)
, 𝜃𝑘 , 𝜙𝑘 , 𝑡res − 𝑡𝐹

(
r𝑘 , 𝑍∗

s, 𝑗
)
, 𝑍∗

s, 𝑗

)
− 𝐺bfr

(
r𝑘 , 𝑡res, 𝑍

∗
s, 𝑗

)���, (4.2)
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where 𝑇 = arg max𝑡res 𝑔bfr(r𝑘 , 𝑡res, 𝑍
∗
s, 𝑗) is the mode of the 𝑡res PDF, which is denoted here as

𝑔 ≡ 𝜕𝐺/𝜕𝑡res. Restricting the range over which the KS statistic is computed to [0, 1.5𝑇] allows the
fit to optimally describe the PDF over the region where most of the density is concentrated. The
result is illustrated by the green lines in figure 11, which show 𝑔simple(𝑟𝐹 , 𝑡res − 𝑡𝐹 , 𝑍

∗
s, 𝑗 = 0) at the

best-fit values for 𝑟𝐹 and 𝑡𝐹 obtained by minimizing eq. (4.2), for the receiver coordinates indicated
in the panel titles. While slight differences still exist compared to the 𝑡res PDFs with birefringence
(black lines), the agreement is significantly improved over the raw 𝑡res PDF without birefringence
(red, dashed lines). For each 𝑍∗

s, 𝑗 , the obtained discrete sets of 𝑟𝐹 (r𝑘 , 𝑍∗
s, 𝑗) and 𝑡𝐹 (r𝑘 , 𝑍∗

s, 𝑗) are
separately fitted across receivers 𝑘 with tensor-product B-splines. Finally, these surfaces are stacked
across 𝑍∗

s, 𝑗 to give 𝑟𝐹 (r, 𝑍∗
s ) and 𝑡𝐹 (r, 𝑍∗

s ).
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Figure 12. Same as figure 9 but now comparing the angular resolution using eq. (4.3) (green, solid) to eq. (3.2)
(red, dashed), where both include the fixes described in section 3. In the left panel, a substantial improvement is
observed when birefringence corrections are included. Note the red intervals are identical to those in figure 9.
The right panels show distributions of 𝛿Ψ in two different energy slices, between 10 TeV to 100 TeV (top) and
1 PeV to 10 PeV (bottom), with line colors and styles matching those of the left panel.

The functions 𝑟𝐴(r, 𝑍∗
s ), 𝑟𝐹 (r, 𝑍∗

s ) and 𝑡𝐹 (r, 𝑍∗
s ) can be jointly used to approximate the effects of

ice birefringence on shower photoelectron yields and time profiles. In order to substitute 𝑍∗
s → 𝑍s, we

need to assume that the corrections obtained with an isotropic source generalize to a directional source.
To justify this assumption, note that these transformations are translations, rather than rotations. A
modification of the radial and time coordinates passed to the amplitude and CDF given in eq. (3.2)
does not destroy information about the directionality of Cherenkov photon emission from particle
showers. Thus, eq. (3.2) becomes

𝐴

(
𝑟𝐴

(
r𝑧 , 𝑍s

)
, 𝜃, 𝜙,Θs, 𝑍s

)
𝐹

(
𝑟𝐹

(
r𝑧 , 𝑍s

)
, 𝜃, 𝜙, 𝑡res − 𝑡𝐹

(
r𝑧 , 𝑍s

)
,Θs, 𝑍s

)
. (4.3)

Here we have used the notation r𝑧 to refer to the source-receiver vector in the standard spherical
coordinate system with polar axis ẑ, in contrast to (𝜃, 𝜙), which are defined in the spherical coordinate
system with polar axis p̂ as shown in figure 4. Finally, since 𝑟𝐴, 𝑟𝐹 and 𝑡𝐹 are differentiable functions,
the Jacobian can be computed for gradient-based minimization.
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To validate that the corrections described in this section lead to an improved description of particle
showers in IceCube, we compared the directional reconstruction performance of the benchmark MC
set introduced in section 2.1. Figure 12 shows the angular resolution, 𝛿Ψ, with (green, solid) and
without (red, dashed) birefringence correction. The left panel shows the median angular resolution
(solid and dashed lines) as a function of 𝐸dep. The bands correspond to the 25 % and 75 % intervals in
the 𝛿Ψ distribution. The right panels show the full 𝛿Ψ distribution in two energy regimes, between
10 TeV to 100 TeV (top) and 1 PeV to 10 PeV (bottom), with line colors and styles matching those of
the left panel. From these comparisons, it is evident that a substantial improvement in the directional
reconstruction is achieved when using eq. (4.3) over eq. (3.2), one which far exceeds the improvement
from additional photon statistics going from lower to higher energies.

5 Approximation of ice layer undulations

Polar ice stratigraphy exhibits a strong dependence on depth, broadly reflecting changes in Earth’s
climate over time. Layers of relatively homogeneous ice isochrons — ice layers that formed at around
the same time period — are each modeled with unique scattering and absorption coefficients. The
elevation change for each layer was initially calibrated using data from a laser dust logger deployed
in seven IceCube boreholes [16]. More recently, a reevaluation of ice optical properties with in situ
calibration data revealed that ice layers exhibit undulations, believed to be formed by geological
structures in the bedrock, across the detector array rather than solely along a single axis [15]. As
layer-by-layer ice property differences can result in significant differences in the detected photoelectron
yields (see figure 1), an accurate description is important for simulation and reconstruction.

5.1 Parameterization of the ice depth dependence

Since ice isochrons are not perfectly flat, optical properties of the ice are defined as a function of depth
(or 𝑧 in detector coordinates) at a fixed reference point, P, near the origin in the 𝑥𝑦-plane and shown
as the red dot in the left panel of figure 13 [12, 15]. In other words, the ice model is parameterized
as a function of what we will refer to as the P-depth. A mapping of ice layer undulations is needed
to convert a physical position, (𝑥, 𝑦, 𝑧), back to the appropriate P-depth, 𝑧P (𝑥, 𝑦, 𝑧), to retrieve the
corresponding ice optical properties at that position. Such a mapping can then be used to apply the
correct scattering and absorption lengths for any position throughout the detector.

The left panel of figure 13 shows the ice layer elevation change across the 𝑥𝑦-plane for the isochron
at a P-depth of 2,248 m (𝑧P = −300 m in detector coordinates). Specifically, the color map shows
𝑧I − 𝑧P (𝑥, 𝑦, 𝑧I), where 𝑧I is defined such that 𝑧P (𝑥, 𝑦, 𝑧I) = −300 m. Black squares indicate the
location of the 86 strings and the color map shows the ice layer elevation change at different (𝑥, 𝑦)
locations. The black arrow indicates the direction of ice flow, and the dashed line indicates the 𝑢-axis
shown in the right panel. The right panel of figure 13 shows the depths of ice isochrons in the plane
normal to the flow direction and intersecting P at 𝑢 = 0 m, where û = cos 𝜙x̂ + sin 𝜙ŷ and 𝜙 = 40◦.
Note that the relative change in each layer increases towards at the deeper regions of the detector.

Within the hexagonal footprint of the instrumented region 𝑧P is linearly interpolated across a grid
of equilateral triangles roughly coinciding with the string locations, while outside the instrumented
region 𝑧P is extrapolated by expanding the detector’s hexagonal outline radially and matching to
the corresponding value on the hexagon boundary [15]. Such an extrapolation ensures well-defined
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Figure 13. The left panel shows the elevation change for an ice isochron at a P-depth of 2,248 m, where P is
the reference point indicated by the red dot. Black squares corresponds to the (𝑥, 𝑦) positions of IceCube strings,
and the color map shows the elevation change relative to 𝑧P . The region outside the instrumented footprint is
extrapolated [15]. The dashed line indicates the 𝑢-axis shown in the right panel, which lies perpendicular to the
ice flow direction. The right panel shows depths of ice isochrons along û = cos 𝜙x̂ + sin 𝜙ŷ, where 𝜙 = 40◦, and
the dashed line corresponds to the layer shown in the left panel. The visualized plane is perpendicular to the
ice flow axis and intersects P at 𝑢 = 0 m. Note that the relative change in each layer is stronger at the deeper
regions of the instrumented volume.

behavior everywhere. A mismatch between the extrapolated model and reality could affect the
reconstruction of events outside the detector. For events contained within a fiducial volume, as is
the case in the benchmark MC used throughout this work, the impact of extrapolation is expected
to be negligible.

5.2 Correcting for undulating ice layers

In MC simulations, as a photon propagates through the ice, its physical position in the detector at
every step is passed to 𝑧P to look up which ice layer it belongs to at P. Fast event reconstruction
routines do not track photons individually, but can approximate the effect by using the source position
instead to obtain 𝑧P (𝑋s, 𝑌s, 𝑍s) = 𝑧P (Xs). Substituting into eq. (4.3) we obtain

𝐴

(
𝑟𝐴

(
r𝑧 , 𝑧P (Xs)

)
, 𝜃, 𝜙,Θs, 𝑧P (Xs)

)
𝐹

(
𝑟𝐹

(
r𝑧 , 𝑧P (Xs)

)
, 𝜃, 𝜙, 𝑡res − 𝑡𝐹

(
r𝑧 , 𝑧P (Xs)

)
,Θs, 𝑧P (Xs)

)
,

(5.1)
which gives the functional form of the photoelectron yield correcting for both birefringence and ice
layer undulations. As 𝑧P is a function constructed by linear interpolation between fixed points in
position space, it is not smooth everywhere [15]. In practice, this does not pose an issue for computing
gradients, since discontinuities in its derivatives are small and only rarely occur. Thus, we can compute
the Jacobian terms 𝜕𝑧P/𝜕𝑋𝑖, where 𝑋𝑖 ∈ {𝑋s, 𝑌s, 𝑍s}, for use in gradient-based minimizers.

Factorizing out ice layer undulations from the B-spline model itself makes it extremely simple to
switch to newer 𝑧P (𝑥, 𝑦, 𝑧) models as well. If, instead, one were to generate photon-yield expectations
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Figure 14. Scatter plots of reconstructed Θ̂s and 𝑍̂s for a subset of the benchmark MC, defined to be those with
true |Θs − 90◦ | < 1◦ as indicated by the vertical shaded region. The gap around 𝑍̂s = −150 is due to a region
of heightened scattering and absorption stretching horizontally across the detector that is excluded from the
selection [3]. The left panel uses eq. (4.3), while the right panel uses eq. (5.1). The variance in Θ̂s is larger in the
left panel and shows a clear correlation with 𝑧P (𝑋s, 𝑌s, 𝑍s) − 𝑍s, which is calculated based on each event’s true
position and indicated by the color. Pulls on Θ̂s are reduced when using eq. (5.1), as shown in the right panel.
The depth dependence in the left panel is attributable to stronger layer undulations towards deeper regions of the
detector, as shown in the right panel of figure 13.

without this factorization, then for each update to 𝑧P (𝑥, 𝑦, 𝑧) a massive resimulation campaign would be
needed to generate the raw data to construct an updated model. The dimensionality would also need to
be increased to include (𝑋s, 𝑌s). The cost of the factorization is that using only the source position of the
cascade is an approximation, as the path between source and receiver DOM can traverse several layers
of ice with varying amounts of undulations. This can be seen in the right panel of figure 13. Fortunately,
the ice layer undulations are gradual and this approximation improves for shorter source-receiver
distances, which is also where most of the statistics used in event reconstruction are expected.

To validate eq. (5.1), we again use the same benchmark MC as described in section 2.1. The
impact of ice layers is easily seen in reconstructed zenith, Θ̂s, as a function of 𝑍̂s. Figure 14 shows the
improvement in Θ̂s across 𝑍̂s going from eq. (4.3) (left panel) to eq. (5.1) (right panel) for a subset of
events with true |Θs − 90◦ | < 1◦. Each point corresponds to an event’s reconstructed quantities, and its
color indicates 𝑧P (𝑋s, 𝑌s, 𝑍s) − 𝑍s. In the left panel, a larger variance in Θ̂s shows a visible correlation
with 𝑧P (𝑋s, 𝑌s, 𝑍s)−𝑍s. When this is accounted for by the correction in eq. (5.1), a much improved clus-
tering of Θ̂s near true Θs is obtained, as shown in the right panel. The outlier visible in the right panel at
𝑍̂s ≈ −100 m can be attributed to a local minimum, which can exist in the likelihood surfaces used during
event reconstruction. Methods to reduce the possibility of getting stuck in local minima include running
additional iterations of the minimizer or improving the seed that is used to initialize the minimizer.
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Figure 15. Same as figure 12 but now comparing the angular resolution using eq. (5.1) (orange, solid) to
eq. (4.3) (green, dashed). In the left panel, an improvement is observed in the 𝛿Ψ distribution quartiles when ice
layer undulations are additionally included. Note the green intervals are identical to those in figure 12. The
right panels show distributions of 𝛿Ψ in two different energy slices, between 10 TeV to 100 TeV (top) and 1 PeV
to 10 PeV (bottom), with line colors and styles matching those of the left panel.

Similar to figure 12, the improvement in angular resolution for the full benchmark MC is shown
in figure 15 as a function of 𝐸dep (left panel) and in two different energy regimes (right panels).
Distributions of 𝛿Ψ with (orange, solid) and without (green, dashed) ice layer undulation correction
are compared. The left panel shows the median angular resolution (solid and dashed lines) as a
function of 𝐸dep. The bands correspond to the 25 % and 75 % intervals in the 𝛿Ψ distribution. The
right panels show the 𝛿Ψ distribution in two energy regimes, between 10 TeV to 100 TeV (top) and
1 PeV to 10 PeV (bottom), with line colors and styles matching those of the left panel. From these
comparisons, it is evident that including corrections to account for ice layer undulations, as in eq. (5.1),
leads to a further improvement in the directional reconstruction over eq. (4.3).

6 Further considerations

6.1 Shower longitudinal extension

Until now, the discussion has focused on applying a single, point-like cascade in the reconstruction of
particle showers. By including approximations of the ice birefringence and ice layer undulations, we
see a substantial improvement in the angular resolution and likelihood description, as shown in figure 3.
In reality, particle showers have energy-dependent longitudinal and transverse extensions. At high
energies, the extension is predominantly longitudinal, along the primary momentum direction [36].
While this length is typically much smaller than the IceCube string spacing, it does provide some
additional information for event reconstruction.

One rationale for the point-like cascade approach is simplicity; it allows for the photoelectron
yields to scale linearly with energy [10]. Encoding an energy-dependent shower extension into the
model would introduce more complexity. Furthermore, due to shower stochastics that can cause

– 20 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
6
0
2
6

0 10 20
Reconstructed distance [m]

0.00

0.05

0.10

0.15

0.20

0.25
d

en
si

ty
1 PeV < Edep < 10 PeV

100 TeV < Edep < 1 PeV

10 TeV < Edep < 100 TeV

−0.10 −0.05 0.00 0.05 0.10
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Figure 16. Using the benchmark MC, the left panel shows the distribution of the reconstructed distance between
two cascades for three different energy regimes. There is a trend towards slightly longer distances as the true
EM-equivalent deposited energy, 𝐸dep, increases, which follows expectations from shower physics [36]. The
right panel shows distributions of the pulls on reconstructed energy, denoted as 𝐸̂dep, for the same energy slices
as in the left panel, illustrating that its resolution is on the order of a few percent.

per-event fluctuations in the shower profile, such an encoding may not be broadly applicable to data
without additional modifications to account for the stochasticity.

Here we employ a simple two-cascade model to approximate the longitudinal extension of particle
showers. Originally this was developed for tau neutrino reconstruction, wherein a 𝜈𝜏 CC interaction
can produce two distinct particle showers, the first at the interaction vertex and the second upon the
subsequent tau decay, separated by the travel distance of the tau lepton [11]. This is modeled as
two cascades with the same direction separated by a variable distance. The energies of the cascades
and their separation distance are fitted as free parameters. Naturally, this approach should be able
to model generic longitudinal extensions in particle showers, and indeed we see some improvement
in the angular resolution when applied to the 𝜈𝑒 benchmark MC.

The two-cascade model relies on eq. (5.1) for the description of both cascades. We first perform
a single-cascade reconstruction with all ice-associated corrections, then use that as a seed for the
two-cascade routine. As a final step, the likelihood of both single- and two-cascade reconstructions
are compared and best fit is chosen. In the vast majority of cases, the two-cascade routine is preferred.
The benchmark MC introduced in section 2.1, which, like all standard IceCube MC, includes a
simulation of the average longitudinal profile of particle showers [36] but not their shower-to-shower
fluctuations aside from those due to the Landau-Pomeranchuk-Migdal effect [9, 37] for EM showers
with energies above 1 PeV, is used for validation. Figure 16 shows cross checks of the reconstructed
separation distance distributions (left panel) and pulls on 𝐸dep, the EM-equivalent deposited energy
(right panel). In both panels, three different 𝐸dep slices are shown. The reconstructed distance
distribution is pulled to larger values with increasing 𝐸dep, though all peak below 10 m, consistent
with expectations from 𝜈𝑒 simulations.

Figure 17 shows the improvement in the angular resolution of the benchmark MC. Distributions
of 𝛿Ψ with the two-cascade, single-cascade and original Mie model are shown in solid blue, dashed

– 21 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
6
0
2
6

105 106

True EM-equivalent Edep [GeV]

0

5

10

15

20

25
A

n
gu

la
r

re
so

lu
ti

on
qu

ar
ti

le
s

[d
eg

.] Birefringence and undulation
(2 cascades)

Birefringence and undulation

Mie model

0.00

0.10

0.20
10 TeV < Edep < 100 TeV

0 5 10 15 20 25
δΨ [deg.]

0.00

0.10

0.20
1 PeV < Edep < 10 PeV

d
en

si
ty

Figure 17. Same as figure 15 but now comparing the angular resolution using eq. (5.1) with a two-cascade
model (blue, solid) to a single cascade model (orange, dashed). For reference, results obtained with the Mie
model without corrections are shown in dotted gray. The left panel shows that the most accurate 𝛿Ψ quartiles
are obtained with a two-cascade model. Note the orange intervals are identical to those in figure 15, and the gray
to those in figure 9. The right panel shows distributions of 𝛿Ψ in two different energy slices, between 10 TeV to
100 TeV (top) and 1 PeV to 10 PeV (bottom), with line colors and styles matching those of the left panel.

orange and dotted gray, respectively. The left panel shows the median angular resolution (solid, dashed
and dotted lines) as a function of 𝐸dep. Again, bands correspond to the 25 % and 75 % intervals in the
𝛿Ψ distribution. The right panels show the full 𝛿Ψ distribution in two energy regimes, between 10 TeV
to 100 TeV (top) and 1 PeV to 10 PeV (bottom), with line colors and styles matching those of the left
panel. We see that including a two-cascade reconstruction leads to some further improvement in the
directional reconstruction, since it better describes the longitudinal extension of particle showers. It
is worth emphasizing that the corrections described in sections 3–5 are prerequisite; a two-cascade
reconstruction exhibits improvements only when an accurate single cascade model is used.

6.2 Ice systematic uncertainties

One ice systematic that can affect shower directional reconstruction is the bubble column, or hole
ice, that formed as part of the drill-hole refreezing process [38]. Based on camera footage and in
situ calibration data, the hole ice is known as a centrally located region of heightened scattering
and absorption. As its optical properties are less understood than the bulk ice, it has traditionally
been modeled as a global modification in the DOM acceptance as a function of the incident photon
direction [38]. When the forward scattering region is strongly modified, a degradation of the
angular resolution is observed on the order of 0.5◦ to 1◦. As the angular sensitivity curves modify
photon acceptance along the (downward-facing) PMT axis, mismodeling of the hole ice can also
pull the reconstructed Θ̂s by up to 2◦ to 3◦ for events arriving horizontally, with smaller pulls for
non-horizontal events.

The optimal results obtained in this work, shown in figure 17, rely on B-spline surfaces fitted
to an ice model similar to the one used in the benchmark simulation; the hole ice model is identical,
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and only minor differences — in bulk ice optical properties and layer undulations — exist between
the model used to construct eq. (5.1) and that used in the MC. Exclusive of hole ice, a variance of
the other ice optical properties at the percent level, which is on the order of the current uncertainty
envelope, was found to have a negligible impact on angular resolution.

Further, there are effects for which robust quantification of uncertainty currently does not exist,
such as birefringence and the extrapolated layer undulation. Given the accuracy with which calibration
data is now described [14], any residual systematic mismodeling of the anisotropy along the ice
flow axis is likely to be much smaller than what is shown in figure 12. Mismodeling of ice layer
undulations outside the instrumented footprint could also have an impact on the reconstruction of
events that occurred outside the detector. These events tend to be more difficult to reconstruct, with
worsening resolution as the interaction vertex moves further away from the instrumented region
due to increasingly limited arrival photon statistics, and inline with what might be expected of the
accuracy of the extrapolation itself. Thus, the extrapolation systematic should be a subdominant
effect. Finally, there are potentially undiscovered systematics, the impact of which cannot be evaluated
based on simulation alone and may require data-driven approaches to quantify. Such effects lie
beyond the scope of this work, though the general techniques described here should be applicable
as future improvements are discovered.

7 Summary

Much progress has been made over the past few years towards an improved understanding of the
South Pole ice, including a microscopic description of the observed anisotropy along the ice flow axis
attributed to polycrystalline birefrigence [14], and a detailed mapping of ice isochron undulations
across the detector [15]. These refinements to the ice model can be incorporated into the reconstruction
of in-ice particle showers, either with neural networks [23–25] or via a series of physically motivated
corrections, as discussed in section 4 and section 5. Using eq. (5.1), the shower longitudinal extension
can be approximated with a two-cascade model, as highlighted in section 6.1. Table 1 gives an
overview of the median angular resolutions obtained for our benchmark MC, which is simulated with
recent updates to ice modeling that include birefringence [14] and ice layer undulations [15], at four
different energies as cumulative model improvements are included in reconstruction. At energies
above 1 PeV, a 3.5◦ median angular resolution is achieved when all corrections are included, which
is over a factor of three improvement compared to using only eq. (3.2).

Table 1. The median angular resolution at the energies listed for the given models. A detailed description of
improvements in model construction can be found in section 3, the birefringence correction in section 4, the ice
layer undulations in section 5, and the approximation of shower extension in section 6.1. Compared to models
that do not include any corrections, the angular resolution is improved by more than a factor of three at 1 PeV.

Corrections applied 50 TeV 100 TeV 1 PeV 5 PeV
None (Mie model) 11.0◦ 11.9◦ 12.0◦ 12.6◦

None 10.7◦ 11.3◦ 11.0◦ 11.0◦

Birefringence 6.1◦ 5.8◦ 5.7◦ 5.7◦

Birefringence + undulations 4.6◦ 4.4◦ 4.0◦ 3.9◦

Birefringence + undulations + shower extension 4.4◦ 4.2◦ 3.5◦ 3.5◦
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Ice model systematics, in particular bubble columns that formed as part of the drill-hole refreezing
process [38], can lead to some degradation in resolution as discussed in section 6.2. For the variations
tested, a worsening in the median angular resolution of up to 1◦ is seen when differences in the
forward-scattering region are large. A bias in the reconstructed zenith distribution is also observed.
Note, however, that with smoother B-spline surfaces, the more artificial zenith biases have been
mitigated using the methods discussed in section 3. Additionally, the IceCube Upgrade, which will be
a dense infill extension at the center of IceCube, is currently planned for installation in the next couple
years [39]. In addition to new optical modules, next-generation calibration devices will be deployed
that should provide additional information about the optical properties of the bubble columns [40].
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Figure 18. Distributions of Δ𝜄 for a sample of HESE data events that were reconstructed as showers in ref. [20].
The left panel shows a comparison similar to the one in figure 3, where the reduced negative log-likelihood for a
model that includes corrections due to both layer undulations and birefringence is given by 𝜄(2) . Turning off the
layer undulation correction yields 𝜄(1) , and turning off all corrections 𝜄(0) . Since smaller 𝜄 values corresponds to
improved agreement against data, the improved description with 𝜄(2) is evidenced by the skew towards positive
values. The right panel shows a similar comparison but changing the reference to 𝜄(3) , which is obtained with
the additional two-cascade approximation as described in section 6.1. In both panels, the vertical dashed line at
Δ𝜄 = 0 is a visual guide to highlight the positive skew.

As a final comparison, a check on data was performed using 109 HESE events that were
reconstructed as showers in ref. [20]. Figure 18 shows improvements in the reduced negative log-
likelihood, 𝜄, similar to that shown for the benchmark MC in figure 3. The left panel shows Δ𝜄

distributions relative to 𝜄(2) , where 𝜄(2) is obtained using the best-fit from eq. (5.1), 𝜄(1) using eq. (4.3),
and 𝜄(0) using eq. (3.2), all with the fixes described in section 3. As smaller 𝜄 values correspond to
a better description of data, the positive skews in the Δ𝜄 distributions illustrate the improvement in
describing data when using eq. (5.1). The skew is larger for 𝜄(0) − 𝜄(2) than for 𝜄(1) − 𝜄(2) because
eq. (4.3) includes the birefringence correction. The right panel shows similar comparisons except
now relative to 𝜄(3) , which is the best-fit obtained using eq. (5.1) and the two-cascade approximation.
We see that Δ𝜄 shifts to more positive values, indicating that the two-cascade model yields a further
improvement in the description of data.
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While it may seem that increases in ice model complexity pose a challenge for the accurate
reconstruction of particle showers in IceCube, in reality the problem can be naturally broken down
into a few pieces, thus restoring some symmetry and reducing dimensionality. Birefringence is a
global property that can be approximated with a few coordinate transformations, while ice layer
undulations can be approximated by shifting the shower’s physical depth to its corresponding P-depth.
The shower profile itself can then be approximated using a two-cascade model. Implementing these
features leads to improvement in the angular resolution by more than a factor of three. Hopefully,
this work will aid future analyses and inform technical progress towards reaching the statistical limit
for particle shower reconstruction in the South Pole ice.
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