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Abstract

We study tidal dissipation in hot Jupiter host stars due to the nonlinear damping of tidally driven g-modes,
extending the calculations of Essick & Weinberg to a wide variety of stellar host types. This process causes the
planet’s orbit to decay and has potentially important consequences for the evolution and fate of hot Jupiters.
Previous studies either only accounted for linear dissipation processes or assumed that the resonantly excited
primary mode becomes strongly nonlinear and breaks as it approaches the stellar center. However, the great
majority of hot Jupiter systems are in the weakly nonlinear regime in which the primary mode does not break but
instead excites a sea of secondary modes via three-mode interactions. We simulate these nonlinear interactions and
calculate the net mode dissipation for stars that range in mass from 0.5Me�Må� 2.0Me and in age from the early
main sequence to the subgiant phase. We find that the nonlinearly excited secondary modes can enhance the tidal
dissipation by orders of magnitude compared to linear dissipation processes. For the stars with Må 1.0Me of
nearly any age, we find that the orbital decay time is 100Myr for orbital periods Porb 1 day. For Må 1.2Me,
the orbital decay time only becomes short on the subgiant branch, where it can be 10Myr for Porb 2 days and
result in significant transit time shifts. We discuss these results in the context of known hot Jupiter systems and
examine the prospects for detecting their orbital decay with transit timing measurements.

Unified Astronomy Thesaurus concepts: Hot Jupiters (753); Tides (1702); Exoplanet migration (2205); Internal
waves (819); Hydrodynamics (1963)

1. Introduction

The orbits of hot Jupiters decay over time due to the tide-
induced transfer of energy and angular momentum from the
orbit to the host star. The orbital decay rate depends on the
efficiency of tidal dissipation within the star and is sensitive to
its structure and evolutionary state. The rate can therefore be a
strong function of not just orbital period but also stellar mass
and age (for a review of tidal dissipation processes in stars and
giant planets, see Ogilvie 2014).

The most direct observational evidence of hot Jupiter orbital
decay comes from the measured transit time shifts of WASP-
12b (Maciejewski et al. 2016; Patra et al. 2017; Yee et al. 2020)
and Kepler-1658b (Vissapragada et al. 2022). A number of
studies also find evidence from the statistical analysis of hot
Jupiter populations (Jackson et al. 2009; Teitler & Königl 2014;
Penev et al. 2018; Hamer & Schlaufman 2019). For example,
Jackson et al. (2009) find that older planets tend to be farther
from their hosts than younger planets, which they argue is
evidence for the ongoing destruction of planets by tides. Using
the measured Galactic velocity dispersion, Hamer & Schlaufman
(2019) show that hot Jupiter host stars are preferentially younger
than a matched sample of field stars, which can be explained if
the planets are destroyed while the hosts are on the main
sequence. McQuillan et al. (2013) find a dearth of close-in
planets orbiting rapidly rotating stars, which Teitler & Königl
(2014) attribute to tidal ingestion of giant planets. The recently

reported infrared transient ZTF SLRN-2020 appears to capture
the moments of a planet’s ingestion by a main sequence or early
subgiant branch star with mass around 0.8–1.5Me, and could be
the culmination of tide-induced orbital decay (De et al. 2023).
The dominant source of dissipation in most hot Jupiter host

stars is the damping of the resonantly excited internal gravity
waves that comprise the dynamical tide (Barker & Ogilvie
2010; Ivanov et al. 2013; Essick & Weinberg 2016; Barker
2020). In stars with thick outer convective envelopes, an
internal gravity wave is excited near the radiative–convective
boundary and propagates inwards toward the core. As the wave
approaches the stellar center, its amplitudes grows due to
geometric focusing, and it can become nonlinear. If the
amplitude of the wave is not too large, it reflects at an inner
turning point and forms a standing wave, i.e., a g-mode.
Most studies either ignore nonlinearities and treat the wave

as linear throughout the star or they take the other extreme
and assume it becomes strongly nonlinear and undergoes
wave breaking in the core. However, as we show (see also
Barker 2020), most hot Jupiter systems are in an intermediate
regime where the wave is weakly nonlinear. In this regime,
the wave excites a sea of secondary waves through nonlinear
wave–wave interactions. Since the secondary waves have
much shorter wavelengths than the primary wave, they have
much larger damping rates. Treating the primary wave as
linear therefore not only is invalid but also can greatly
underestimate the efficiency of tidal dissipation. On the other
hand, treating it as strongly nonlinear overestimates the
efficiency because it assumes the wave transfers all of its
energy and angular momentum on its first journey into the
stellar center (such a primary is a traveling wave rather than a
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standing wave).6 In the weakly nonlinear regime, by contrast,
the primary wave deposits only a fraction of its energy and
angular momentum each journey. The value of the deposited
fraction depends on the detailed interaction between the
primary and secondary waves and determines the rate of tidal
dissipation.

The first calculation of hot Jupiter orbital decay in the
weakly nonlinear regime was by Essick & Weinberg (2016;
hereafter EW16). They assumed a solar-type host star and
considered a range of planet masses Mp and orbital periods
Porb. For a solar-type host, the tide is in the weakly nonlinear
regime for M M P3.6 day ;p J orb

0.1( )- above this planet mass,
the waves are strongly nonlinear (Barker & Ogilvie 2011). By
solving the dynamics of large networks of nonlinearly
interacting waves, EW16 calculated the weakly nonlinear tidal
dissipation and found it is orders of magnitude larger than
linear tidal dissipation, resulting in a stellar tidal quality factor
Q M M P3 10 dayp

5
J

0.5
orb

2.4( ) ( )¢ ´ . The dissipation can thus
be highly efficient, causing hot Jupiters with solar-type hosts
and Porb 2 days to decay on timescales that are small
compared to the main-sequence lifetime of their host star.
They found that the decrease in Porb associated with these short
decay times could produce detectable transit timing variations.

EW16 only considered hot Jupiters orbiting a solar mass and
age host star. However, as we show in Figure 1, there are many
hot Jupiters orbiting nonsolar mass stars of various ages. The
results of EW16 do not inform these other systems since the
efficiency of tidal dissipation is often sensitive to stellar
structure and therefore stellar mass Må and age. For example,
on the main sequence, the mass of the convective envelope
rapidly decreases with increasing Må, and a convective core
appears above Må≈ 1.2Me. While the former effect may lead

to only modest changes in dissipation rate for Må 1.2Me, the
appearance of a convective core may drastically decrease the
degree of wave nonlinearity, causing a sudden decrease in tidal
dissipation relative to slightly lower mass stars. As we show,
the efficiency of tidal dissipation can also be sensitive to stellar
age, especially as stars begin to evolve up the subgiant branch.
The paper is organized as follows. In Section 2, we describe the

formalism we use to study weakly nonlinear tidal dissipation,
including the equation of motion for our mode decomposition. In
Section 3, we present our stellar models and their linear and
nonlinear mode properties. In Section 4, we describe our method
for building and integrating networks of nonlinearly interacting
modes. In Section 5, we present the main results of our
calculations, including how the orbital decay rate and transit time
shift depend on Må, stellar age, Mp, and Porb. In Section 6, we
discuss the implications of our orbital decay calculations for known
hot Jupiter systems. We summarize and conclude in Section 7.

2. Formalism for Weakly Nonlinear Tides

In hot Jupiter systems, the tide raised by the planet excites
high-order g-modes in the host star through linear and, we
assume, weakly nonlinear forces. Since the planet’s orbital period
will in general be much shorter than the rotational period of the
star, the g-modes are not strongly modified by Coriolis forces, and
we therefore neglect the star’s rotation.7 We also assume that the
planet’s orbit is circular, as is the case for most of the observed
hot Jupiters.8 The planet’s rotation should then be synchronous
with the orbit (Barker & Lithwick 2014; Storch & Lai 2014),
and thus, there is no tidal dissipation within the planet. We
study this problem using the formalism developed in Weinberg
et al. (2012; hereafter WAQB; see also Van Hoolst 1994;
Schenk et al. 2001). Here, we summarize the method and refer
the reader to WAQB for a more detailed discussion.

2.1. Mode Amplitude Equation

The position x¢ of a fluid element in the perturbed star at time
t is related to its position x in the unperturbed star by
x x x t,( )x¢ = + , where ξ(x, t) is the Lagrangian displacement
vector. The equation of motion for ξ to lowest nonlinear order is

f f a, , 11 2 tide
̈ [ ] [ ] ( )x x x xr r= + +

where ρ is the background density, f1 and f2 are the linear and
leading-order nonlinear restoring forces,

a U U 2tide ( · ) ( )x  = - -

is the tidal acceleration, and U is the tidal potential. We include
only the dominant l= 2 tidal harmonic, and since we assume
that the orbit is circular,

xU t r W Y e, , 3
m

m m
im t2 2

2

2

2 2( ) ( ) ( )åw q f= -
=-

- W 

in a spherical coordinate system (r, θ, f) centered on the star. Here,
M M R ap

3( )( )=   is the tidal strength, GM R 3 1 2( )w =   is

Figure 1. Distribution of hot Jupiters in the plane of stellar mass Må and orbital
period Porb for planets with mass M i Msin 0.5p J> , where i is the orbital
inclination. The color scale shows the best-fit stellar ages in Gyr. Data are from
the NASA Exoplanet Archive, and only stars with reported ages are shown.

6 If the linear damping rate of the primary wave is sufficiently high, it
likewise can dissipate nearly all of its energy and angular momentum on its first
passage through the star and thus be a traveling wave even when not strongly
nonlinear. However, as we show in Section 3.4, the linear damping rate of the
primary wave is too small for this to to be true of most hot Jupiter systems; it
only applies if the star is sufficiently evolved (a subgiant) or at relatively large
orbital periods.

7 Hot stars on the main sequence with Må  1.2Me and effective
temperatures Teff � 6250 K (i.e., above the Kraft break; Kraft 1967) can rotate
with spin periods of a few days, comparable to Porb of hot Jupiters. However,
we do not include such stars in our study since their tidal dissipation rate is
negligible owing to the presence of a convective core, as explained in
Section 3.1. The stars with Må � 1.2Me we consider are all on the subgiant
branch and are observed to have spin periods 10 days (Avallone et al. 2022).
8 https://exoplanetarchive.ipac.caltech.edu/
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the dynamical frequency of a star with mass Må and radius Rå;
a and G M M ap

3( )W = + are the orbital semimajor axis and
frequency, and W20=− (π/5)1/2, W2±2= (3π/10)1/2, W2±1= 0.
We use the linear eigenmodes to expand the 6D phase-space
vector as (Schenk et al. 2001)


x

x

x

x

t

t
q t

i

,

,
, 4

a
a

a

a a

( )
( )

( )
( )

( )
( )⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

å
x
x

x
xw

=
-

where each eigenmode is specified by its amplitude qa, frequency
ωa, and eigenfunction ξa. The sum over a runs over all mode
quantum numbers (radial order na, angular degree la, and
azimuthal order ma) and frequency signs to allow both a mode
and its complex conjugate. We normalize the eigenmodes as

*E
GM

R
d x2 , 5a a a

2
2 3 · ( )ò x xw rº =





so that the linear energy of a mode is *E t q t q t Ea a a( ) ( ) ( )= .
Substituting Equation (4) into Equation (1), adding a linear
damping term, and using the orthogonality of the eigenmodes
lead to a coupled, nonlinear amplitude equation for each mode

 * * * *q i q i U U q q q ,

6

a a a a a a
b

ab b
bc

abc b c( )

( )

⎡
⎣⎢

⎤
⎦⎥

å åw g w k+ + = + +

where

*U t
E

d x U
1

, 7aa a
3( ) · ( )ò xr = -



U t
E

d x U
1

, 7bab a b
3( ) · ( · ) ( )ò x xr  = -



f
E

d x
1

, . 7cabc a b c
3

2· [ ] ( )ò x x xk =


The coefficient γa is the linear damping rate of the mode
(which comes from the nonadiabatic contributions to f1), Ua

and Uab are the linear and nonlinear tidal coefficients, and κabc
is the three-mode coupling coefficient.

The nonlinear tide cancels significantly with three-mode
coupling to the equilibrium tide such that Uab+ 2∑cκabcUc; 0
(WAQB). By treating the cancellation as perfect, we can write
Equation (6) as


* * * * * *

q i q i U

i q q q U q U . 8

a a a a a a

a
bc

abc b c b c c b

( )
( )⎡⎣ ⎤⎦å

w g w

w k

+ + =

+ - -

We solve this coupled set of equations to find the amplitude
evolution qa(t) of each mode in our network, and from this, we
determine the total tidal dissipation rate9 (EW16)

E t E t2 . 9
a

a a( ) ( ) ( )å g= -

In Section 3, we present the values of γa, Ua, and κabc for our
stellar models.
Our study does not account for the possibility of tidal

resonance locking of the linearly driven modes. Ma & Fuller
(2021) found that resonance locks are unlikely to form in hot
Jupiter systems with Sun-like host stars due to nonlinear mode
damping. In contrast, they found that they could form if the host
star has a convective core (i.e., if it is a main-sequence star with
Må 1.2Me), in which case the orbit decays on a timescale
comparable to the star’s main-sequence lifetime. They argued
that this is because nonlinear effects are negligible in stars with
convective cores. However, their model relied on an ad hoc
prescription for the nonlinear damping rate. A proper analysis of
resonance locking in the presence of nonlinear mode coupling is
beyond the scope of the current paper. We briefly discuss this
issue in the context of our results in Section 7.

2.2. Parametric Instability

As discussed in WAQB and EW16, in the absence of
nonlinear mode coupling, the linear tide drives a mode to an
energy

E
U

E , 10a a

a a
lin

2 2

2 2
( )w

g
=

D +


where Δa= ωa−maΩ is the linear detuning. This parent mode
is unstable to the parametric instability if there exists a pair of
daughter modes b and c such that Elin Ethr, where the
threshold energy is

E E
1

4
1 , 11

abc

b c

b c

abc

b c
thr 2

2

( )⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠
⎡

⎣
⎢

⎛
⎝

⎞
⎠
⎤

⎦
⎥k

g g
w w g g

= +
D
+



and Δabc= ωb+ ωc+maΩ is the nonlinear detuning. If the
parent energy Ea? Ethr, the daughters grow exponentially at a
rate

E

E
2 12bc abc

a∣ ∣ ( )kG » W


while their energy Eb, Ec= Ea. Eventually, the system reaches
a nonlinear equilibrium as described in Appendix B of EW16.
In the host star of a hot Jupiter, the linearly resonant parents

have Elin? Ethr, and they can therefore excite many daughter
pairs (WAQB). For example, in a solar model, even a 0.1MJ

companion in a 3 days orbit has ∼103 daughter pairs for which
Elin> Ethr (see Figure 1 in EW16). Many of these daughters are
nonlinearly driven to such large amplitudes that they in turn
excite many granddaughters to large amplitudes, and the
granddaughters excite great-granddaughters, and so on. The
total number of unstable modes is therefore very large, and the
system’s nonlinear equilibrium is much more complicated than
the simple, analytic three-mode equilibrium given in
Appendix B of EW16. In Section 4, we describe our procedure
for building and integrating these large networks of nonlinearly
excited modes.

2.3. Orbital Decay Rate

Dissipation of the tidally excited modes removes energy
from the orbit and as a result the planet inspirals. As in EW16,
we assume that linear damping of the waves excited within the
star is the only dissipation in the system. Although the

9 The total energy in the modes includes a higher-order term
(1/3)∑kabc(qaqbqc + c. c. ), as does their total dissipation rate
∑kabcγa(qaqbqc + c. c. ), where the sums are over all indices, and c.c. stands
for complex conjugate. However, since κabc is much smaller than the inverse of
the typical mode amplitudes, these terms are small compared to the lowest-
order terms and are neglected.
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rotational energies of the star and the synchronized planet
increase as the orbit decays, these changes are small compared
to the corresponding change in orbital energy. Similarly, the
energy in the excited stellar modes themselves and in their
interaction energy may change with orbital period, but these
too are small effects.

Since  E Eorb∣ ∣ W, where Eorb=−GMåMp/2a is the
orbital energy, we model the back-reaction on the orbit as a
steady decrease in Eorb of quasi-Keplerian circular orbits. At
each orbital period Porb= 2π/Ω, the timescale of orbital energy
decay is then given by

t
E

E t
. 13orb( )

( )
( )t =

We can compute a corresponding time-averaged decay time

 
a

a

E

E
, 14orb

∣ ∣
( )tá ñ = =

á ñ

where Eá ñ is the time-averaged energy dissipation rate. In our
calculations, we average over timescales of ∼106Porb, which is
much longer than the time it takes for the system to reach a
nonlinear equilibrium but much less than the orbital decay
timescales. It is common to parameterize 〈τ〉 in terms of the
star’s tidal quality factor (Goldreich & Soter 1966; see also
Jackson et al. 2008)



 

Q
M

M

R

a

M

M

M

M

R

R

P

9

2

7.5 10
Gyr

day
, 15

p

p

5

6

J

8 3 5
orb

13 3

( )

⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

t

t

¢ = W á ñ

´
á ñ

´
- -






 

where the expression assumes a circular orbit.

2.4. Transit Time Shift

The decrease in Porb due to tide-induced orbital decay will
cause a planet’s observed transits to arrive early. Over a
duration Tdur, the transit time will shift by an amount (Birkby
et al. 2014)

T
T T3

4
2.4 s

10 yr Gyr
. 16shift

dur
2

dur
2 1

( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠t

t
=

á ñ
á ñ -

Based on the typical uncertainties in transit timing measure-
ments of hot Jupiter systems (see, e.g., Patra et al. 2020;
Maciejewski et al. 2022), detecting a tide-induced shift requires
Tshift 10–100 s.

3. Stellar Models and Their Mode Properties

Section 3.1 presents the set of stellar models we use in our
calculations. Section 3.2 discusses the dependence of mode
displacement ξr on radius and stellar structure and the
conditions under which wave breaking occurs. Sections 3.3
to 3.6 describe our calculations of the various coefficients in the
amplitude equation and present their values as a function of the
stellar and mode properties.

3.1. Stellar Models

As we showed in Figure 1, most of the hot Jupiter host stars
are in the mass range 0.5Må/Me 2.0 and span a range of
ages (the age is often quite uncertain). Motivated by these
observations, we use the MESA stellar evolution code (Paxton
et al. 2011, 2013, 2015, 2018, 2019; Jermyn et al. 2023) to
construct stellar models with Må and age as listed in Table 1.
The key parameters of the MESA inlist files we use to build the
models are provided in Appendix A.
Our models range in age from the early main sequence

through the subgiant branch, and all have a radiative interior
and a convective envelope. For Må� 1.2Me, we focus on stars
on the subgiant branch; as we will show, nonlinear mode
coupling of g-modes is negligible in the interior of pre-main-
sequence stars or main-sequence stars with Må 1.2Me. This
is because they have convective cores, and their g-modes
therefore do not steepen sufficiently, as explained below,
before reflecting at the radiative–convective boundary. We will
illustrate the negligible dissipation in stars with convective
cores by including a main-sequence model forMå= 1.2Me and
age near 1.0 Gyr (see Table 1).

3.2. Wave Steepening and Breaking

High-order g-modes are restored by buoyancy and propagate
between inner and outer turning points determined by the
locations at which ωa; N(r), where N is the Brunt–Väisälä
buoyancy frequency (Aerts et al. 2010). Their inner turning
points, rinner, are very close to the stellar center, and their outer
turning points are near the radiative–convective interface rc.
The mode displacements ξr steepen toward the stellar center

due to geometric focusing and conservation of wave flux

Table 1
Properties of the Stellar Models and Their Modes

Må Rå Age ΔP log10 0g Ilog10 0 log10 0k Pcrit
a

(Me) (Re) (Gyr) (103 s) (days)

0.5 0.45 1.07 9.3 −13.2 −1.7 2.2 37.5
0.5 0.45 4.97 6.6 −13.1 −1.8 3.3 33.6
0.5 0.46 8.97 5.7 −13.0 −1.9 3.6 31.3

0.8 0.73 1.07 4.6 −11.8 −2.2 3.0 21.2
0.8 0.75 4.87 3.3 −11.7 −2.2 3.7 18.2
0.8 0.77 8.97 2.5 −11.4 −2.3 4.0 15.1

1.0 0.91 1.03 3.8 −11.2 −2.4 3.2 16.4
1.0 1.00 4.60 2.1 −10.7 −2.6 4.1 12.0
1.0 1.20 8.72 1.1 −9.2 −2.8 4.5 5.3
1.0 1.55 11.0 0.48 −8.2 −3.0 5.1 3.3

1.2 1.21 1.05 3.4 −10.4 −3.1 1.4b 12.9
1.2 1.50 4.00 1.2 −8.7 −3.3 4.4 4.8
1.2 4.00 6.00 0.13 −4.4 −3.6 5.2 0.7

1.5 2.21 2.03 0.89 −7.7 −4.9 4.7 3.5
1.5 3.34 2.50 0.15 −5.3 −3.3 4.8 0.9

2.0 2.33 0.70 1.1 −7.1 −5.2 4.6 2.6
2.0 5.21 0.92 0.14 −4.2 −3.6 5.4 0.7

Notes.
a The values listed here assume la = 2 (see Equation (22)).
b Unlike the other models listed in this table, this one has a convective core,
and κ0 is nearly independent of Pa rather than increasing with Pa

2 (see
Equation (25)).
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(Goodman & Dickson 1998; Barker & Ogilvie 2010). Their
maximum displacement peaks at rinner and scales as

rr,max inner
2x µ - . As a result, nearly all the nonlinear mode

coupling takes place near the inner turning points of the modes
(see Appendix A in WAQB). If the initial amplitude of the
linearly resonant g-mode is sufficiently large, it can become
strongly nonlinear (krξr 1, where kr is the radial wavenum-
ber) before reaching rinner. This will cause it to overturn the
stratification and break rather than reflect. It should then be
treated as a traveling wave rather than a global standing wave.
For a given stellar model, the critical initial amplitude ξr for
wave breaking depends linearly on planet mass and only
weakly on orbital period (Porb

1 6). Barker (2020) calculates the
critical planet mass Mp,crit above which the g-mode will break
for a range of stellar models. By comparing with his Figure 9,
we see that all of our main-sequence models have
Mp,crit> 3.0MJ, and thus, their g-modes are comfortably in
the weakly nonlinear regime (the closest is the solar model,
which has Mp,crit≈ 3.3MJ; the rest have much larger Mp,crit).

The value of Mp,crit decreases dramatically as a star evolves
off the main sequence (Barker 2020). This is because as the star
evolves its core contracts and the core’s nearly constant
gradient of N; Cr subsequently increases. Since rinner of the
resonantly excited g-mode is located where 2Ω;N, i.e.,
rinner; 2Ω/C, as the core contracts and C increases, the mode
propagates to smaller rinner. As a result, kr r,maxx increases, all
else being equal.

This effect can be important for our subgiant models with
Må� 1.2Me. We consider two subgiant models for each mass
in this range, a less evolved and a slightly more evolved
subgiant star. In the latter, the linearly resonant g-modes are
close to the wave breaking limit for typical hot Jupiter masses
(Sun et al. 2018; Barker 2020). These stars thus represent the
transition between the weakly and strongly nonlinear regimes.
We do not consider even more evolved subgiant stars or stars
on the red giant branch since the efficiency of their tidal
dissipation is instead found by analyzing the dynamical tide in
the traveling wave regime (see, e.g., Barker & Ogilvie 2010;
Barker 2011, 2020; Weinberg et al. 2017; Sun et al. 2018).

3.3. Eigenfrequencies ωa

Since the g-modes we consider are all high-order (na 30),
their properties are well-approximated by asymptotic WKB
expressions (Aerts et al. 2010). For example, their eigenfre-
quencies are approximately given by


n P

2
, 17a

a

a
( )w

pL
D

where l l 1a a a( )L = + , and

P
Nd r

2

ln
. 18r

2

0

c
( )

ò
p

D =

We illustrate the accuracy of this scaling in the top panel of
Figure 2 for three of the models: (Må/Me, Age/Gyr)= (0.5,
4.97), (1.0, 4.60), and (1.5, 2.03). In Table 1, we give the value
of ΔP for all our models.

As we now show, the various coefficients in Equation (8) are
also all well-fit by power-law expressions. We use these
expressions to build our mode networks since they enable a
much faster search for mode triplets with low parametric
threshold energies Eth (see Section 4).

3.4. Linear Damping Rate γa

The dominant linear damping mechanism of the high-order
g-modes in all our models is radiative damping, similar to the
solar models shown previously (Goodman & Dickson 1998;
Terquem et al. 1998). We use GYREʼs solution of the
nonadiabatic oscillation equations to determine the radiative
damping rate a

rad( )g . We also calculate the damping due to
turbulent viscosity in convection zones, which we find by
computing

E
dr r F r , 19a

aturb
2

2
turb ( ) ( )( ) òg

w
r n=



where F(r) is given by the expression derived in Higgins &
Kopal (1968) and depends on ξa(x). The turbulent effective
viscosity νturb is a function of the ratio of the convective
turnover frequency (provided by MESA) to the mode frequency
and decreases as this ratio decreases. We calculate νturb using
the power-law expression given in Duguid et al. (2020) from a
fit to their numerical simulations. We find that, for the
dynamically relevant modes, turbulent damping is always
much smaller than radiative damping and a a

rad( )g g .
As in the case of a solar model (WAQB), the linear damping

rate in all our models is well-fit by the expression

. 20a a
a

0
2

2

( )⎜ ⎟⎛
⎝

⎞
⎠

g g
w
w

w= L
-




This dependence stems from the fact that the radiative
diffusion is proportional to the second derivative of the
temperature fluctuation, and thus the damping rate of short-
wavelength perturbations scales as the square of the radial
wavenumber ka a a

2 2( )wµ L .
We illustrate the accuracy of this scaling in Figure 2 for three

of the models (second panel from the top), and in Table 1, we
give the value of γ0 for all our models. We find that γ0
increases dramatically with increasing Må and stellar age.

3.4.1. Critical Damping

Damping attenuates a mode’s amplitude by exp( )a- during
a round trip between the turning points, where

 t
P

4
, 21a
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and t v dr2
r

group 0 group
1c ∣ ∣ò= - is the round-trip group travel time

of a mode with group velocity vgroup= ∂ωa/∂ka. The second
equality in Equation (21) follows from the WKB dispersion
relation for g-modes (Equation (17)) and the scaling relation for
γa (Equation (20)). If α 1, a significant fraction of the mode’s
energy is lost during a round trip, and the mode is effectively a
traveling wave (see, e.g., Goodman & Dickson 1998; Burkart
et al. 2013; Sun et al. 2018). In that case, our treatment of
nonlinear mode coupling, which assumes the modes are global
standing waves, is no longer valid. By Equation (21), we see that
α> 1 if the mode period Pa= 2π/ωa exceeds a critical value

P
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In Table 1, we give the values of Pcrit for each of our models.
For all the Må� 1.0Me models and for the early subgiant
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models with Må� 1.2Me, the la= 2 values are in the range
Pcrit; [3, 40] days. Thus, for these models, the linearly
resonant parents (Pa; Porb/2) are comfortably in the standing
wave regime. For the older subgiant models with Må� 1.2Me,
this is only true for hot Jupiter systems with Porb 1.5 days; at
longer periods, the parent modes are in the traveling wave
regime. However, we will see that, even if we continue to treat
them as standing waves, the mode network calculations for
these models yield a tidal dissipation rate that is close to that
found with a traveling wave treatment (see discussion at end of
Section 5.2).
The daughter and granddaughter modes in our networks

have periods that are up to a few times larger than the parent
modes. Moreover, they can have la> 2. These modes are
therefore more likely to be in the traveling wave regime,
especially for the older and larger Må models. For such modes,
a proper treatment of their nonlinear interactions may require a
hybrid formulation in which the parent mode is a standing
wave, and the secondary modes are traveling waves. Such a
formalism has not been developed, as far as we know, and is
left to future work.

3.5. Linear Tidal Coefficient Ua

By plugging Equation (3) into Equation 7(a), we can express
the linear tidal coefficient Ua in terms of the dimensionless
linear overlap integral

I
M R

d x r Y
1

. 23a a m2
3 2

2( ) ( )ò xr = ⋅*

 

We evaluate Ia using the method given by Equation (B23) in
Burkart et al. (2013), which offers good numerical stability
even for high-order modes. As in the solar model (see Figure
11 of WAQB), we find that the la= 2 overlap integrals of our
models are generally well-fit by

I I . 24a
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/w
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

We illustrate the accuracy of this scaling in Figure 2 for three of
the models (third panel from the top), and in Table 1, we give
the value of I0 for all our models. We find that I0 decreases with
increasing Må and stellar age (except for the most evolved and
massive models, where it increases with age up the subgiant
branch). For our high Må subgiant models, Ia can be larger than
the scaling at short periods (see, e.g., the 1.5 Me model in
Figure 2). This is because, in those models, the mode
wavelength becomes larger than the size of the convective
envelope at short mode periods, and the a

11 6w scaling only
applies in the opposite limit. For those cases, we use the
numerically computed Ia rather than the scaling relation.
In our mode networks, we assume that only linearly resonant

modes (parents) have nonzero linear tidal forcing Ua. This is
justified because Ua is much smaller for the daughter modes,
granddaughter modes, etc., and their driving is far off
resonance. It therefore has a negligible secular effect compared
to the resonant three-mode interactions. Ignoring such forcing
allows us to adopt the convenient change of coordinates

Figure 2. From top to bottom panel: mode radial order na, damping rate γa,
overlap integral Ia, and coupling coefficient κabc/Tabc as a function of mode
period Pa for l = 2 modes (see text for details). Each panel shows three stellar
models: M M , Age Gyr 0.5, 4.97( ) ( )= in red, (1.0, 4.60) in green, and (1.5,
2.03) in cyan. The solid black lines show the fitted expressions given by
Equations (17), (20), (24), and (25).
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described in EW16 (see Section 4.4 below) and significantly
speeds up the integration of the amplitude equations.

3.6. Three-mode Coupling Coefficient

We calculate the three-mode coupling coefficient κabc, which
is symmetric under the interchange of mode indices, using
Equations (A55) through (A62) in WAQB. Angular momentum
conservation leads to the following angular selection rules for the
three modes: (i) la+ lb+ lc must be even, (ii) ma+mb+mc= 0,
and (iii) the triangle inequality,  l l l l la b c a b∣ ∣- + . We
focus on the parametric instability involving three-mode
interactions between a high-order parent g-mode and a pair of
high-order daughter g-modes whose summed frequency nearly
equals the parent’s frequency (and similarly, a daughter can
couple to pairs of granddaughters, etc.). For such a triplet, the
coupling is strongest in the stellar core, where the displacements
of the modes peak (Section 3.2). As in the solar model (Appendix
A in WAQB), we find that the coupling coefficients of our
models are well-fit by

T
P

day
, 25abc abc

a
0

2

( )⎜ ⎟
⎛
⎝

⎞
⎠

k k=

where Pa is the period of the parent mode, and Tabc≈ 0.1–1 is
an angular integral that depends on each mode’s l andm and is
easily evaluated in terms of Wigner 3-j symbols. The coupling
occurs mostly near the parent’s inner turning point ra,inner and
scales as Pa

2 because the parent’s displacement there varies as
r Pr a a a, ,inner

2 2x ~ ~- . The one exception to this scaling is our
Må= 1.2Me, 1.0 Gyr old main-sequence model (see Table 1).
Since this model has a convective core, the g-mode reflects
near the radiative–convective boundary before it can steepen,
and we find that κ; 30 nearly independent of Pa.

We illustrate the accuracy of Equation (25) in Figure 2
for three of the models (bottom panel). In the figure, the triplets
consist of la= lb= lc= 2 modes and nearly resonant daughters
with detuning |ωa+ ωb+ ωc|< |10−3ωa| and |nb− nc|<
|0.8na|. The magnitude of κabc varies by factors of order unity
depending on the particular daughter pair and is negligible if
|nb− nc| |na| (see Figure 12 in WAQB). In Table 1, we give
the value of κ0 for all our models. We find that it increases
somewhat with increasing Må and stellar age.

3.7. Comment on Townsend & Sun (2023)

Recently, Sun et al. (2023) noted a discrepancy between two
alternative approaches to modeling linear tides in binary
systems. In one, the linear tide is calculated by directly solving
the governing differential equations and boundary conditions,
which they call the “direct solution” approach. In the other, it is
calculated by decomposing the tide using a normal-mode
expansion (similar to Equation (4)), which they call the “modal
decomposition” approach. They find that the two approaches
predict different behavior of the secular tidal torque in their
model of the heartbeat system KOI-54. Townsend & Sun
(2023) examined this discrepancy and conclude that it is
primarily due to an incorrect damping coefficient in the profile
functions describing the frequency dependence of the modal
decomposition expansion coefficients. By introducing a damp-
ing coefficient that is independent of mode radial order na and
thus mode frequency ωa (unlike Equation (20)), they find much
better agreement between the two approaches.

Although we use a modal decomposition approach to solve
the nonlinear equation of motion (Equation (1)), a key
difference is that the modes in our calculation all oscillate
near their natural frequency ωa. This is because the modes in
our network are all resonant with the linear (parents) or
nonlinear (daughters, granddaughters, etc.) forcing. Our
assumption that their damping rate equals the free oscillator
values therefore seems reasonable. By contrast, Sun et al.
(2023), Townsend & Sun (2023) are solving the linearized
equation of motion. As a result, their modes are all oscillating
at the linear forcing frequency, which is often far from their
natural frequencies. Whether this difference between our
analysis and theirs proves critical requires an investigation
that is beyond the scope of this paper and left to future work.

4. Building and Integrating the Mode Networks

As in the solar model calculations of EW16, we find that the
parent can drive many parametrically unstable daughters to
large amplitudes. These daughters can then drive parametri-
cally unstable granddaughters to large amplitudes, and so on.
The total number of potentially unstable modes and the number
of couplings is larger than the number we can realistically
simulate, especially in a survey that explores the parameter
space of Må, stellar age, Porb, and Mp. Fortunately, as EW16
found in the case of a solar mass and age host and as we
illustrate in Section 5 for a variety of stellar types, the total tidal
dissipation rate can be reliably computed with a mode network
that contains only a subset of the potentially unstable modes.
This requires adopting EW16ʼs approach to constructing mode
networks, which we now summarize.

4.1. Selecting Daughter Modes

The approach in EW16 relies on the fact that, despite the
many daughter pairs with Ethr< Elin (see Equations (11) and
(10)), those with the lowest Ethr overwhelmingly dominate the
dynamics in large multimode systems. By adding pairs with
progressively higher Ethr to their networks, EW16 found that
the system converges to a dissipation rate E that does not
change significantly as even more modes are added. This
requires including a sufficient number of generations (at least
parents, daughters, and granddaughters) in order to obtain
convergent results. Following EW16, we thus build our mode
networks by systematically searching the mode parameter
space and constructing, for each generation, a complete list of
pairs ranked by Ethr.
In order to carry out our search, we use the scaling relations

for ωa, γa, and κabc (Equations (17), (20), and (25)) to solve for
Ethr. For a given parent mode a, we first find the local minima
of Ethr in the daughter parameter space {(nb, lb, mb), (nc, lc,
mc)}. Typically, Ethr is minimized near where the sum in
quadrature of Δabc and γb+ γc is minimized (modulo the
angular selection rules and a relatively weak dependence on
the angular integral Tabc). There is a tradeoff between finding
daughters with smaller Δabc, which favors higher n and thus
higher l for a given ω, and daughters with smaller γ, which
favors smaller l since γ∼ l2. The regions of small Ethr therefore
tend to occur where these two countering effects are balanced.
After finding the local minima, we expand our search around
the minima and find pairs with progressively higher Ethr.
Because γ∼ l2, at high enough l, the damping dominates
detuning, and Ethr increases with increasing l. We truncate our
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search upon reaching an lmax such that Ethr> Elin (i.e., a stable
triplet).

4.2. Selecting Granddaughter Modes

The search for the lowest Ethr daughter–granddaughter
triplets is carried out in a similar way. Note that their Ethr is
generally smaller than that of the most unstable parent–
daughter triplets. This is because the mode frequencies
decrease with each generation, and thus, abc a

2k wµ - is larger
(Equation (25)) while abc a a

2w wD µ is smaller (Wu &
Goldreich 2001). For a fuller discussion of this point, see
Appendix F of EW16. Physically, the minimum Ethr tends to
decrease with each generation for two reasons. First, lower
frequency modes penetrate deeper into the core. Their peak
displacement r,maxx are therefore greater (for a given mode
amplitude), and thus, their κabc is larger. Second, such modes
are more densely spaced in frequency and therefore can have
smaller detunings. As a result, each generation is more
susceptible than its antecedents to three-mode instabilities.

4.3. Reference Networks

We find that, for parent–daughter (daughter–granddaughter)
coupling, the dissipation E is overwhelmingly dominated by
the ≈10(≈50) lowest Ethr pairs per parent (daughter), similar to
what EW16 found. Thus, as in EW16, our reference networks
consist of one parent mode, its 10 lowest Ethr daughter pairs,
and the 50 lowest Ethr granddaughter pairs per daughter. For
most networks, this corresponds to ;20 daughters and ;2000
granddaughters. The exception is the more evolved subgiant
models withMå� 1.2Me and systems with larger Porb. In those
cases, the total number of granddaughters in the network can be
several times smaller since many of them couple to more than
one daughter (the number of pairs is still 50). This is because in
those models the modes have much higher damping rates (see
γ0 values in Table 1), which strongly favors low-l modes and
narrows the pool of distinct granddaughters pairs with low Ethr.

When integrating our networks, we choose the orbital period
such that the parent is located midway between linear
resonances, i.e., at a resonance trough. Thus, we might set
the orbital period to, say, Porb= 1.01 days, rather than
Porb= 1.00 day. We also carry out a restricted set of runs in
which the parent is located at a resonance peak. We will see
that, for some cases, 〈τ〉 is nearly the same regardless of
whether the parent is at a resonance trough or peak; for
example, this is true of a solar model, as also found by EW16
(see their Figure 2). In other cases, 〈τ〉 is significantly smaller
for a parent at a resonance peak. Such systems will move
quickly through resonances, and as a result, the long-term
decay rate will be close to the off-resonance 〈τ〉 value.

In Figure 3, we show the network structure for three of our
stellar models at Porb= 2.0 days; our other networks have
qualitatively similar structure to these. We see that the
daughters and granddaughters with the smallest Eth are
typically l 10 modes. However, for the models with larger
ΔP (i.e., those with smaller Må and age), their l values can
sometimes be even larger.

4.4. Integration Method

We integrate each mode’s coupled amplitude equation
(Equation (8)) using a method similar to EW16ʼs (see their
Section 3.3 for a discussion). In particular, we change

coordinates to x q ea a
i ta= w and assume that only the linearly

resonant parent modes have a nonzero linear tidal forcing Ua.
This is a good approximation since the daughters and
granddaughters are far from being linearly resonant, and they
also have much smaller Ua a

11 6wµ (Equation (24)). This
allows us to greatly speed up the integrations by canceling out
the relatively high frequency ωa term in the amplitude equation
and replacing it with a much lower frequency term proportional
to Δabc.
We use the CVODES Adams solver from the SUNDIALS

package (Hindmarsh et al. 2005) and parallelize the computa-
tions across multiple CPUs using MPI. Each simulation
typically takes 1 to 2 days to run on a node of a Local Cluster.
A given simulation run consists of a particular stellar model,

orbital period, and planetary mass. For each of our sixteen
stellar models (see Table 1), we consider Porb= {0.5, 1, 2, 3,
4} days, andMp= {0.5, 1, 2, 3}MJ for a total of ;300 runs.

5. Results

In this section, we present the results of integrating the
amplitude equation for large sets of nonlinearly coupled modes
(Equation (8)) using the models and mode parameters
presented in Section 3 and the mode networks built according
to the procedure described in Section 4. In Section 5.1, we
show examples of the time-dependent mode dynamics for two
representative networks. In Sections 5.2 and 5.3 we show the
full set of results, expressed in terms of the average orbital
decay time 〈τ〉, the tidal quality factor Q ¢, and the transit time
shift Tshift (Equations (14), (15), and (16), respectively) for the
runs from the lower mass stellar models (0.5�Må/Me� 1.0)
and the higher mass stellar models (1.2�Må/Me� 2.0),
respectively. Table 4 in Appendix B also lists the values of 〈τ〉,
Q ¢, and Tshift from each of the runs.

Figure 3. Angular degree l and radial order n for each mode in our
Porb = 2.0 days networks for models M M , Age Gyr 0.5, 4.97( ) ( )= in red,
(1.0, 4.60) in green, and (1.5, 2.03) in cyan (the same models and colors as
Figure 2). The networks consist of one parent mode (solid circles), ten pairs of
daughter modes (crosses), and fifty pairs of granddaughter modes per daughter
(small triangles).
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5.1. Example Mode Dynamics

In Figure 4, we show the time-dependent energy Ea(t) and
energy dissipation rate E ta ( ) of oscillation modes excited in a
star due to its tidal interaction with a Jupiter-mass planet on a 1
day orbit. The left panels show results for a lower mass main-
sequence star, and the right panels show results for a higher
mass early subgiant star. In both cases, we see in the top panels
that the energy of the linearly resonant parent mode (black line)
is similar to the energies of individual daughter modes (red
points) and granddaughter modes (blue points). This is
consistent with the notion that, upon reaching nonlinear
equilibrium, a large system of coupled modes will be in
approximate energy equipartition.

The solid red and blue lines show the summed energy
E t

a
a ( )å of all the daughters and granddaughters, respectively.

We see that the summed energy of all the modes (purple line) is
dominated by the contribution of the granddaughters and, to a
slightly lesser extent, the daughters and that their contribution
is ∼10–100 times larger than the parent’s (i.e., while the energy
of individual modes tend to be similar across generations, there
are many daughters and granddaughters, and their summed
contribution dominates over the parent’s). Thus, at equilibrium,
the energy being pumped into the parent by linear tidal driving
is efficiently transferred to the secondary modes.
The bottom panels of Figure 4 show that, unlike the energy

Ea(t), the energy dissipation rate E ta ( ) of individual daughter

Figure 4. Mode energy (top panels) and energy dissipation rate (bottom panels) as a function of time for the planetary parameters (Mp, Porb) = (1.0MJ, 1.0 day). The
left panels are for the stellar model (Må, Age) = (0.8Me, 4.87 Gyr), and the right panels are for (1.2Me, 4.00 Gyr). The black lines show the parent mode. The red
points show the twenty daughter modes, and the red lines show their cumulative contribution ( E Eanda aå å , where the sums run over only the daughter modes). The
blue points show the ≈2000 granddaughter modes, and the blue lines show their cumulative contribution; for clarity, we only plot individual points for one out of
every 20 granddaughter modes (many of them also lie below the range of the plotted vertical scale). The purple lines show the total energy and energy dissipation rate
found by summing over all the modes in the network. The green line in the bottom right panel shows the total energy dissipation rate for a network that includes 100
great-granddaughter pairs per granddaughter.
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and granddaughter modes is often much larger than that of the
parent. This is because their wavelengths are often much
shorter. They thus have higher linear damping rates γa and at
the same energy are much more dissipative. The solid lines
show that the total energy dissipation rate is dominated by the
contribution of the daughters and granddaughters and is
∼103–104 times larger than the parent’s contribution. We also
see that the system reaches a nonlinear equilibrium within
∼105Porb, and unlike the energy in individual modes, the total
dissipation has a fairly small relative standard deviation (1.2
and 0.2 in the left and right panels, respectively).

As described in Section 4, our reference network consists of
one parent mode, its 10 lowest Ethr daughter pairs, and the 50
lowest Ethr granddaughter pairs per daughter; this typically
corresponds to ≈2000 total modes. EW16 carried out an
extensive convergence study and found that such a network
yields total Eá ñ comparable to (to within a factor of ≈2) much
larger networks that contain more modes and generations. As
illustration, we carried out a few convergence experiments with
larger networks and likewise find that they yield Eá ñ values
comparable to that of our reference network. We show this with
the green line in the bottom right panel of Figure 4, which
shows the total E for the same planetary and stellar parameters
as the purple line but for a network that consists of one parent
mode, its 10 lowest Ethr daughter pairs, the 50 lowest Ethr

granddaughter pairs per daughter, and the 100 lowest Ethr great-
granddaughter pairs per granddaughter. The network contains
about 2.3× 104 modes and is thus ;10 times larger than the
reference network (and comparable in size to the largest
networks EW16 ran; see their Figure 3). Since such a large
network runs much slower, we stopped the integration after
about 2× 105Porb (the wall time was about 10 days). As the
green line shows, this is long enough to see that Eá ñ is within a
factor of ;2 of the reference network. Similar experiments with
a few other networks yield similar results. These are consistent
with the well-characterized convergence found in EW16 and
suggest that the reference network is sufficiently large to yield
convergent results.

5.2. Lower Mass Stars: 0.5�Må/Me� 1.0

In Figure 5, we show the orbital decay time 〈τ〉 (solid circles)
as a function of Porb andMp for the runs with theMå= {0.5, 0.8,
1.0}Me stellar models. When computing the time-average, we
neglect the early portion of a run (typically the first 106 orbits) to
allow transients from the initial conditions to die away and to
ensure the system has reached an equilibrium. The diagonal
dotted lines show what 〈τ〉 would be ifQ ¢ were constant for the
case Mp= 1.0MJ (see Equation (15)). We see that our results
typically span Q 10 105 7–¢ = with a tendency for Q ¢ to
increase with increasing Porb and decreasingMp. In Figure 6, we
show the values ofQ Tand shift¢ for these same models assuming
Porb= 1.0 day, andMp= 1.0MJ, orMp= 3.0MJ. In Table 4 of
Appendix B, we list the results of all our runs in terms of

Q,tá ñ ¢, and Tshift.
As expected, the value of 〈τ〉 is most sensitive to Porb; in

many cases, it has a nearly power-law dependence with
Porb
6.5tá ñ µ , approximately (see, e.g., the dashed line in bottom

right panel of Figure 5). It is also sensitive to the stellar model,
with 〈τ〉 decreasing asMå and stellar age increase. For all of the
Må= 0.8Me and 1.0Me models—from the early main
sequence to the late main sequence or early subgiant phase—
we find 〈τ〉 108 yr forMp� 1.0MJ and Porb� 1.0 day. The

corresponding quality factors and transit time shifts are
Q T10 10 and 10 100 s5 6

shift– –¢ » » . For the Må= 0.5Me
model, 〈τ〉 is negligible on the early main sequence (this is
largely because κ0 is signficantly smaller for this model; see
Table 1); however, for the older Må= 0.5Me models at
Porb 1.0 day andMp 1.0MJ, we find that 〈τ〉 is less than the
age of the system, Q 107¢ , and Tshift 10 s. The value of 〈τ〉
tends to be fairly insensitive to planet mass as long as
Mp 1.0MJ; at smaller planet mass, the nonlinearities start to
become less significant, and 〈τ〉 can become very large,
especially for the younger, lower Må models.
Our standard calculation assumes the parent is between

linear resonance peaks (see Section 4). To examine how
sensitive 〈τ〉 is to the parent’s degree of resonance, for each
stellar model, we also did a run with a parent located exactly on
a resonance peak. The open blue circles in Figure 5 show the
result for the particular case Mp= 1.0MJ, and Porb= 1.0 day.
For the three Må= 0.5Me models, and for the young (1.0 Gyr)
Må= 0.8Me and 1.0Me models, 〈τ〉 is significantly smaller for
a parent on a resonance peak. The system will therefore evolve
relatively quickly through the resonance peak and ultimately
spend most of its time between peaks. For the other
Må= 0.8Me and 1.0Me models, 〈τ〉 is nearly the same on a
resonance peak as it is between peaks (consistent with
what EW16 found for the solar model). Whether on a
resonance peak or between, we conclude that the solid circles
should be a reasonably accurate estimate of 〈τ〉 over long
timescales. A phenomenological model for estimating non-
linear tidal dissipation that can account for differences between
on- and off-resonance driving was presented by Yu et al.
(2020) in the context of white dwarf binaries. In future work,
we plan to investigate whether this model can be applied to hot
Jupiter systems.
The blue triangles in Figure 5 show 〈τ〉 for a parent treated

as a traveling wave rather than a standing wave assuming
Mp= 1.0MJ. The results are found by interpolating across the
QIGW ¢ values given in Figure 8 of Barker (2020), which
assumes the parent mode is in the wave breaking regime,
applying the Porb

8 3 scaling (assuming the tidal forcing
frequency is twice the orbital frequency), and using
Equation (15) to convert the results to a decay time 〈τ〉.
The parent would be a traveling wave if its amplitude is large
enough to undergo wave breaking or if its linear damping is
high enough. Although most hot Jupiters are not in this
regime (see Sections 3.2 and 3.4), it is nonetheless interesting
to compare the 〈τ〉 predictions for the two regimes. We see
that, for an off-resonance parent, the traveling wave 〈τ〉 is
generally smaller than the standing wave 〈τ〉, although for the
higher Må models at short Porb they can be similar. By
contrast, for an on-resonance parent (see the open blue circles
in Figure 5), the traveling wave 〈τ〉 can sometimes be larger
than the standing wave 〈τ〉.10 In such cases, this suggests that
the parent will be a traveling wave while the system is passing
through a resonance and that the correct 〈τ〉 during those times
is given by the traveling wave value.

10 The traveling wave regime sets a lower limit on 〈τ〉 because all the wave
flux is lost in a single group travel time. However, our standing wave
calculation does not know about this regime. It therefore does not prevent the
amplitude of the primary wave from exceeding the wave breaking amplitude,
which can lead to energy dissipation rates γaEa that exceed the traveling wave
luminosity. That said, many of our models only approach this limit but do not
exceed it, which EW16 noticed as well in their solar model calculations (see the
discussion in their Appendix F).
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5.3. Higher Mass Stars: 1.2�Må/Me� 2.0

In Figure 7, we show 〈τ〉 for the higher mass stellar models:
Må= {1.2, 1.5, 2.0}Me. The correspondingQ Tand shift¢ values
are shown in Figure 6 and Table 4. These models are all in the
subgiant phase since, as explained in Section 3.1, the main-
sequence stars with Må 1.2Me have convective cores, and
nonlinear coupling of g-modes is negligible in their interior.

For each Må, we find that 〈τ〉 decreases significantly as the
star evolves from the early to later subgiant phase. We find that,
at Porb 1.0 day, the dissipation can be especially efficient in
the later subgiant models, with  Q10 yr, 10 and5 6tá ñ ¢

T T10 10 yr sshift
4

dur
2( ) . As Figure 6 and Table 4 show, the

Tshift of these models are orders of magnitude larger than that of
the Må� 1.0Me main-sequence models. Since Tshift≈ 100 s
should be detectable, such systems should produce a detectable
transit time shift after only Tdur≈ 1 yr.
The orbital decay is much faster for more evolved subgiants

because they have significantly larger γ0 and I0, and to a lesser
extent, larger κ0 (see Table 1). The damping rate is larger
because, as the stars evolve up the subgiant branch, the core
contracts and C=N/r increases. Since kr∝C/ω, at a given
Porb, the resonant modes will have shorter wavelengths and
thus larger damping rates. Even at Porb; 4 days, the longest
orbital period we consider, 〈τ〉≈ 108 yr for the older subgiant

Figure 5. Orbital decay time 〈τ〉 as a function of orbital period Porb for the Må = {0.5, 0.8, 1.0}Me models at different ages, as indicated by the label in each panel.
The green, blue, red, and black circles show 〈τ〉 for the case of an off-resonance parent (i.e., between resonance peaks), and Mp = {0.5, 1.0, 2.0, 3.0}MJ, respectively.
The blue crosses show 〈τ〉 for the case of a parent on a resonance peak, and Mp = 1.0 MJ, Porb ; 1.0 day; in four of the panels, the blue circle blends in with the blue
cross since the off-resonance and on-resonance 〈τ〉 are similar. The blue triangles show 〈τ〉 for a parent treated as a traveling wave rather than a standing wave for the
case Mp = 1.0 MJ. The three diagonal dotted lines in each panel show 〈τ〉 ∝ P13/3 for constant values of Q 10 , 10 , 105 6 7¢ = as given by Equation (15), with
Mp = 1.0 MJ. In the bottom right panel, the dashed line shows the steeper scaling 〈τ〉 ∝ P6.5, which better matches some of our results. In that same panel, the xʼs
show 〈τ〉 for the 11.0 Gyr model using the same color scheme as the solid circles. In the upper left panel, we move the off-resonance 〈τ〉 down by 5 dex in order for it
to appear on the plotted scale.
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models. This is comparable to the subgiant evolutionary
timescale, and thus, at these larger Porb, the changing stellar
structure can dictate the planet’s decay trajectory (see also Sun
et al. 2018). Interestingly, in those models, 〈τ〉 is nearly
independent of Mp. Note too that 〈τ〉 is also close to the
traveling wave value (blue triangles); indeed, for these older
stellar models, the critical planet mass for wave breaking is
around 1.0 MJ (Sun et al. 2018; Barker 2020), and thus, the
parent is close to, if not in, the traveling wave regime.

To contrast the dissipation on the subgiant branch with that
on the main sequence, we also calculate the dissipation for the
Må= 1.2Me model at an age of 1.0 Gyr. As noted in
Section 3.6, for this model, κ; 30 nearly independent of Pa.
Its nonlinear coupling is therefore much weaker than in stars
with radiative cores. Nonetheless, κ; 30 is large enough that
Elin> Ethr for some daughter modes, and we find that the parent
can drive a network of nonlinearly excited modes. In Table 4,
we list Q,tá ñ ¢, and Tshift obtained from such a network
integration. Despite the nonlinear instabilities, we find that the
tidal dissipation is negligible in nearly all cases. Only for
extreme orbits (Porb; 0.5 day andMp 1.0MJ) does it start to
become interestingly short (〈τ〉 108 yr).

6. Implications for Known Hot Jupiters

We now consider the implications of our orbital decay
calculations for known hot Jupiter systems. In Section 6.1, we
discuss the two systems, WASP-12 and Kepler-1658, with
observational evidence of tide-induced orbital decay and place

them in the context of our results. In Section 6.2, we discuss the
systems that our calculations suggest are especially likely to be
undergoing rapid orbital decay, and we recommend to include in
campaigns that search for tide-induced transit timing variations.

6.1. Systems with Evidence of Orbital Decay

There are two hot Jupiter systems whose transit timing
observations indicate that the planet is undergoing orbital
decay: WASP-12 (Maciejewski et al. 2016; Patra et al. 2017;
Yee et al. 2020) and Kepler-1658 (Vissapragada et al. 2022).
WASP-12 (Kepler-1658) has an orbital period Porb= 1.09 days
(3.85 days), and a planet mass Mp= 1.4MJ(5.9MJ). Its orbital
period is observed to decrease at a rate P 29orb = - 
2 ms yr 131 ms yr1

22
20 1(--

-
+ - ), which corresponds to a decay

time P P2 3 2.2 Myr 1.7 Myrorb orb∣ ∣ (t = » ), and Q ¢ =
1.8 10 2.5 105 4(´ ´ ). These systems were detected in 2009

Figure 6. Tidal quality factorQ ¢ (top panel) and transit time shift Tshift (bottom
panel; assuming Tdur = 10 yr) as a function of stellar mass Må for Porb =
1.0 day, with Mp = 1.0MJ (blue points), and Mp = 3.0MJ (red points). The ages
of the stellar models increase (decrease) from top to bottom in the Q ¢ panel
(Tshift panel). In three models, Q Tand shift¢ are below the scale of the plot. The
full set of Q Tand shift¢ results are given in Table 4.

Figure 7. Similar to Figure 5 but for the Må = {1.2, 1.5, 2.0}Me models at
different ages, as indicated by the label in each panel. The green, blue, red, and
black circles show 〈τ〉 for the case of an off-resonance parent (i.e., between
resonance peaks), and Mp = {0.5, 1.0, 2.0, 3.0}MJ, respectively. The blue
triangles in the 1.2 Me and 1.5Me panels show 〈τ〉 for a parent treated as a
traveling wave rather than a standing wave for the case Mp = 1.0 MJ. The three
diagonal dotted lines in each panel show 〈τ〉 for constant values of
Q 10 , 10 , 105 6 7¢ = as given by Equation (15), with Mp = 1.0 MJ. In the
bottom right panel, the dashed line shows the steeper scaling 〈τ〉 ∝ P6.5, which
better matches some of our results.
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(Hebb et al. 2009) and in 2011 (Brown et al. 2011), and thus,
by Equation (16), Tshift≈ 103 s given that it was Tdur≈ 10 yr
before evidence of their orbital decay was first reported.

The orbital decay of WASP-12b can be understood if the
host star is a subgiant with Må; 1.2Me; the linearly excited
primary mode (the parent) is then in the wave breaking regime,
and the expected Porb agrees well with the observed value
(Weinberg et al. 2017). However, Bailey & Goodman (2019)
find that subgiant models are in greater tension with current
observational constraints than main-sequence models with
Må; 1.3–1.4Me. Since such a main-sequence star has a
convective core, the excited primary mode should be a standing
wave, i.e., a g-mode, and stable to the parametric instability. It
is then not clear how to explain the observed decay since the
linear and nonlinear dissipation of the g-mode is too small.

Kepler-1658 has a mass Må; 1.5Me and is more defini-
tively a subgiant star. Vissapragada et al. (2022) explain that
the measured decay is in good agreement with theoretical
predictions for inertial wave dissipation (Barker 2020). Such
dissipation is possible because the tidal frequency 2(Ω−Ωspin)
is less than twice the star’s spin frequency Ωspin (this is because
of the relatively large Porb= 3.85 days, and the star’s relatively
short spin period Pspin= 2π/Ωspin= 5.66 days; WASP-12b
orbits too quickly, and the host star spins too slowly for the

tide to excite inertial waves). Although the linearly excited
gravity wave breaks as it approaches the stellar center, we find
that the wave luminosity is too small to explain the observed
orbital decay (here, we are ignoring rotation; the wave
luminosity scales approximately as Porb

23 3- , and thus, it is
much smaller in Kepler-1658 than in a subgiant model of
WASP-12).

6.2. Systems Likely to Be Undergoing Rapid Orbital Decay

In Tables 2 and 3, we list hot Jupiter systems that our
calculations suggest are favorable targets for the search for orbital
decay, separated into systems with Må� 1.1Me andMå> 1.1Me,
respectively. Given the uncertainties in the measured parameters,
especially the stellar age, we do not attempt to make system
specific predictions. The uncertainties not withstanding, the strong
dependence of 〈τ〉 onPorb means that these tables essentially list
the systems with especially small Porb. We do, however, exclude
short Porb systems whose host stars are likely to have convective
cores (main-sequence stars with Må 1.2Me) since we find
that such stars are unlikely to be undergoing significant orbital
decay. Examples of such systems include WASP-18 (Porb =

M M0.94 day, 1.3 , Age 1.6 Gyr0.9
1.4= = -

+
 ; Cortés-Zuleta et al.

2020), HATS-52 ( P M M1.37 days, 1.1 , Ageorb = = =

1.2 Gyr1.1
1.5

-
+ ; Henning et al. 2018), and CoRoT-1 (Porb=

1.51 days, Må= 1.2Me, Age= 1.6± 0.5 Gyr; Bonomo et al.
2017). That said, the systems listed in Table 3 have sufficiently
large age uncertainties that many are likely still on the main
sequence, in which case their 〈τ〉 would be large.

Table 2
Favorable Targets for the Search for Tidal Orbital Decay for Host Stars with

Må � 1.1Me

Porb Må Mp Age

Hostname (days) (Me) (MJ) (Gyr) References

NGTS-10 0.77 0.70 2.16 10.4(2.5) (1)
WASP-19 0.79 0.96 1.16 5.5 4.5

8.5
-
+ (2)

WASP-43 0.81 0.72 2.05 7.0(7.0) (2)
HATS-18 0.84 1.04 1.98 4.2(2.2) (3)
NGTS-6 0.88 0.77 1.34 9.77 0.54

0.25
-
+ (4)

TOI-1937 A 0.95 1.07 2.01 3.6 2.3
3.1

-
+ (5)

HIP 65 A 0.98 0.78 3.21 4.1 2.8
4.3

-
+ (6)

WTS-2 1.02 0.82 1.27 7.00 6.40
6.50

-
+ (2)

HAT-P-23 1.21 0.58 1.34 4.0(1.0) (7)
TrES-3 1.31 0.93 1.80 0.90 0.80

2.80
-
+ (2)

HAT-P-36 1.33 1.02 1.85 6.6 1.8
2.9

-
+ (2)

Qatar-2 1.34 0.74 2.60 1.4(0.3) (8)
WASP-4 1.34 0.86 1.19 7.0(2.9) (9)
HATS-24 1.35 1.07 2.26 3.7 1.8

2.0
-
+ (10)

HATS-2 1.35 0.88 1.53 9.7(2.9) (2)
WASP-77 A 1.36 0.90 1.67 6.2 3.5

4.0
-
+ (11)

WASP-173 A 1.39 1.05 3.69 6.78(2.93) (12)
WASP-135 1.40 0.98 1.90 0.60 0.35

1.40
-
+ (13)

Qatar-1 1.42 0.85 1.32 11.6 4.70
0.60

-
+ (2)

WASP-46 1.43 0.83 1.90 9.6 4.2
3.7

-
+ (2)

OGLE-TR-113 1.43 0.78 1.36 13.2 2.4
0.8

-
+ (2)

TrES-5 1.48 0.89 1.79 7.4(1.9) (2)
Kepler-17 1.49 1.07 2.34 1.5 1.9

10.2
-
+ (14)

Note. The age column includes the uncertainty, which is symmetric about the
best fit if enclosed in parentheses. The fractional uncertainties are generally
0.001% for Porb and 10% for Må and Mp.
References. (1) McCormac et al. (2020); (2) Bonomo et al. (2017); (3) Penev
et al. (2016); (4) Vines et al. (2019); (5) Yee et al. (2023); (6) Nielsen et al.
(2020); (7) Stassun et al. (2017); (8) Dai et al. (2017); (9) Bouma et al. (2019);
(10) Oliveira et al. (2019); (11) Cortés-Zuleta et al. (2020); (12) Hellier et al.
(2019); (13) Spake et al. (2016); (14) Southworth (2012).

Table 3
Favorable Targets for the Search for Tidal Orbital Decay for Host Stars with

Må > 1.1Me

Porb Må Mp Age

Hostname (days) (Me) (MJ) (Gyr) References

TOI-2109 0.67 1.45 5.02 1.77(0.88) (1)
WASP-103 0.93 1.22 1.455 4(1) (2)
KELT-16 0.97 1.21 2.75 3.1(0.3) (3)
OGLE-TR-56 1.21 1.23 3.3 3.0 1.4

2.9
-
+ (2)

HAT-P-23 1.21 1.13 1.97 4.0(1.0) (2)
WASP-121 1.27 1.35 1.183 1.5(1.0) (4)
CoRoT-14 1.51 1.13 7.42 4.2(3.8) (2)
Kepler-76 1.54 1.20 2.0 3.6 1.3

3.7
-
+ (5)

WASP-114 1.55 1.29 1.769 4.3 1.3
1.4

-
+ (6)

Qatar-10 1.65 1.16 0.736 3.2(1.9) (7)
KELT-14 1.71 1.24 1.284 5.11(0.80) (8)
Kepler-412 1.72 1.17 0.939 5.1(1.7) (9)
WASP-76 1.81 1.46 0.92 5.3 2.9

6.1
-
+ (10)

HATS-35 1.82 1.32 1.222 2.13(0.51) (11)
TOI-2803 A 1.96 1.12 0.975 3.7 1.3

1.5
-
+ (12)

Note. We exclude WASP-12 and Kepler-1658 from this list since their orbital
decay has been detected (see Section 6.1). The age column includes the
uncertainty, which is symmetric about the best fit if enclosed in parentheses.
The fractional uncertainties are generally 0.001% for Porb and 10% for Må

and Mp. Note that HAT-P-23 is listed in both Table 2 and here because Stassun
et al. (2017), Bonomo et al. (2017) find conflicting Må values.
References. (1) Wong et al. (2021); (2) Bonomo et al. (2017); (3) Oberst et al.
(2017); (4) Delrez et al. (2016); (5) Esteves et al. (2015); (6) Barros et al.
(2016); (7) Alsubai et al. (2019); (8) Turner et al. (2016); (9) Deleuil et al.
(2014); (10) West et al. (2016); (11) de Val-Borro et al. (2016); (12) Yee et al.
(2023).
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For the systems listed in Table 2 with Porb 1.0 day, our
results suggest  Q100 Myr and 106tá ñ ¢ . If a system listed
in Table 3 has a host star on the subgiant branch, then it too
should have  Q100 Myr and 106tá ñ ¢ . By Equation (16),
we expect systems with such small 〈τ〉 to have
Tshift 10 s after Tdur= 10 yr. Thus, the transit timing shifts
of some of these systems, many of which are part of existing
transit timing measurement campaigns (e.g., Patra et al. 2020;
Ivshina & Winn 2022; Maciejewski et al. 2022; Mannaday
et al. 2022; Rosário et al. 2022; Harre et al. 2023), may soon be
detectable.

7. Summary and Conclusions

We studied the dissipation of the dynamical tide due to the
excitation and damping of weakly nonlinear g-modes in hot
Jupiter host stars. This is the dominant source of tidal
dissipation in the great majority of hot Jupiter systems. By
integrating the amplitude equations for large networks of
nonlinearly interacting g-modes consisting of a linearly driven
parent exciting a sea of secondary modes (daughters and
granddaughters), we calculated the tidal dissipation rate as a
function of stellar mass Må, age, orbital period Porb, and
planetary mass Mp. We found that the nonlinearly excited
secondary modes often dominate the dissipation by orders of
magnitude compared to the parent’s linear dissipation.

We expressed our results in terms of the orbital decay time
〈τ〉, stellar tidal quality factorQ ¢, and transit time shift Tshift. In
order to span the range of observed hot Jupiter systems, our
analysis considered 16 stellar models with masses between
Må= 0.5–2.0Me and ages between the early main sequence
and the subgiant branch. For each stellar model, we considered
orbital periods between Porb= 0.5–4 days, and planetary
masses between Mp= 0.5–3.0MJ. Our main results are shown
in Figures 5–7 and in Table 4.

For hosts with Må 1.0Me, we found that the tidal
dissipation rate increases with Må and age, and can be
significant throughout the main sequence. The dissipation is
sensitive to Porb and in many cases follows a power-law

P with 6 7orb –t aá ñ µ a . For Porb 1.0 day andMp 0.5MJ

we in general found that  Q100 Myr, 106tá ñ ¢ , and
T T10 10 yr sshift dur

2( ) , where Tdur is the duration of a
system’s observation time.

For hosts with Må 1.2Me, we found that the tidal dissipation
rate is negligible on the main sequence but becomes highly
significant as these stars ascend the subgiant branch (owing
primarily to the respective presence and absence of a convective
core). Even at Porb≈ 3 days, the dissipation rate on the subgiant
branch is rapid enough to produce a detectable transit time shift
(Tshift 10 s) within 10 yr. For Porb≈ 1.0 day, a detectable transit
time shift takes only ≈1 yr, which is ∼100 times faster than for
main-sequence stars with Må 1.0Me (see Figure 6).

We compared our results to known hot Jupiters and
identified a number of systems that could be undergoing rapid
orbital decay (see Tables 2 and 3). However, since our results
are sensitive to the age of the star (especially for Må 1.2Me),
which is usually the least well-measured parameter of the hosts,
there can be considerable uncertainty in the expected
〈τ〉 and Tshift of individual systems.

Our analysis assumed that the excited modes are all global
standing waves. We found that this is a good approximation for
the linearly excited parent, except perhaps in our most evolved
subgiant models. In those models, the parent’s radiative

damping can exceed its group travel time through the star if
the orbital period is larger than a critical value (see
Section 3.4.1), or the parent’s displacement amplitude ξr can
approach the wave breaking limit (krξr 1) near the stellar
center if the planet’s mass is above a critical value (see
Section 3.2). If either is true, the parent should instead be
treated as a traveling wave since it dissipates all of its energy
and angular momentum before it can reflect near the stellar
center and form a standing wave. Several studies have
considered the tidal dissipation rate in hot Jupiter systems
under the assumption that the parent is a traveling wave and
thus maximally dissipative (Barker & Ogilvie 2010; Barker
2011; Chernov et al. 2017; Weinberg et al. 2017; Sun et al.
2018; Lazovik 2021).
Treating all the daughters and granddaughters as standing

waves may not always be a good approximation, however,
even for some of our main-sequence models. This is because
their wavelengths can be much shorter than the parent that
excites them. They therefore have higher radiative damping
rates and at a given mode energy are closer to the wave
breaking limit than the parent. This suggests that the interaction
between the parent and the secondary modes may in some
cases involve a standing wave (the parent) nonlinearly exciting
traveling waves (the daughters, granddaughters, etc.). The
computational methods for studying weakly nonlinear interac-
tions between standing waves and traveling waves have not
been developed, as far as we know, and are left to future work.
Another caveat of our calculation is that we do not account

for possible changes to the stellar structure due to the transfer
of energy and angular momentum from the modes to the
background star. This type of interaction was investigated
recently by Guo et al. (2023), who performed 2D hydro-
dynamical simulations of tidally excited nonlinear gravity
waves in the cores of solar-type stars. They found that linear
damping of the waves gradually spins up the core and that
subsequent incoming (parent) waves are absorbed in an
expanding critical layer. Importantly, this process was found
to occur even when the parents are below the wave breaking
threshold, suggesting that such parents are effectively in the
traveling wave regime and thus maximally dissipative. Due to
computational limitations, they say that the secondary waves
generated by the parametric instability, which are the focus of
our analysis, would be very difficult to observe in their
simulations. Properly resolving such secondary waves might be
important, however. For example, they could propagate
outwards from where they are excited and transfer their energy
and angular momentum at larger radii rather than locally. Their
dissipation might also modify the stratification of the central
region, moving the parent’s inner turning point outwards and
causing it to reflect at larger radii. Such effects can potentially
impact the formation of a critical layer and the subsequent
absorption of the incoming parent wave.
Lastly, our analysis did not account for the possibility of tidal

resonance locking of the parent modes. Resonance locks can
occur if the parent mode frequency increases due to stellar
evolution in lockstep with the increase of orbital frequency due
to tidal decay (Witte & Savonije 1999, 2001; Fuller & Lai 2012;
Burkart et al. 2013, 2014; Yu et al. 2020; Ma & Fuller 2021).
Nonlinear damping of the parent tends to broaden the width of
resonances and thereby hamper, if not prevent, the formation of
resonance locks. Indeed, for hot Jupiter systems with Sun-like
host stars, Ma & Fuller (2021) found that nonlinear damping
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prevents locks from forming. For host stars with convective
cores, however, they found that resonance locks can form and
induce tidal decay on the timescale of the star’s main-sequence
lifetime. Although stars with convective cores have small
nonlinear coupling coefficients (κ∼ 10), given the large parent
mode amplitudes during resonance locks (see Figure 6 in Ma &
Fuller 2021), we estimate that the parent can be parametrically
unstable and excite daughter modes. Whether nonlinear mode
coupling will impact or destroy the resonance lock in stars with
convective cores is left to future work.
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Appendix A
Parameters of the MESA Inlists

The stellar models are built using version 15140 of MESA
(Paxton et al. 2011, 2013, 2015, 2018, 2019; Jermyn et al. 2023).

The key parameters of the inlist files we use are provided below.
We change initial_mass to build different mass models, and
we change max_center_cell_dq, R_function_weight,
and R_function_param if finer grid resolution is needed in
the stellar center (e.g., to calculate κabc).

&star_job
create_pre_main_sequence_model=.true.
/ ! end of star_job namelist
&controls
initial_mass=0.5
initial_z=0.02d0
use_Ledoux_criterion=.true.
MLT_option=‘Henyey’
max_center_cell_dq=1d-10
R_function_weight=100
R_function_param=1d-8
use_dedt_form_of_energy_eqn=.true.
use_gold_tolerances=.true.
mesh_delta_coeff=0.2
when_to_stop_rtol=1d-6
when_to_stop_atol=1d-6
/ ! end of controls namelist

Appendix B
Table of Orbital Decay Results from the Mode Network

Integrations

In Table 4, we list the values of Q,tá ñ ¢, and Tshift
from each of our mode network integrations (see also
Figures 5–7).

Table 4
Orbital Decay Time 〈τ〉, Stellar Tidal Quality Factor Q ¢, and Transit Time Shift Tshift from the Mode Network Integrations

Porb Må, Age Må, Age Må, Age Må, Age
(day) (Me, Gyr) (Me, Gyr) (Me, Gyr) (Me, Gyr)

L Mlog yr : 0.5, 1.0, 2.0, 3.010 J( )tá ñ L L L
L Q Mlog : 0.5, 1.0, 2.0, 3.010 J¢ L L L
L T Mlog s : 0.5, 1.0, 2.0, 3.010 shift J( ) L L L

L 0.5Me, 1.07 Gyr 0.5 Me, 4.97 Gyr 0.5 Me, 8.97 Gyr L

0.5 16.1, 15.8, 15.5, 15.4 8.5, 7.5, 6.9, 6.4 8.6, 8.3, 8.1, 7.1 L
L 14.1, 14.1, 14.1, 14.2 6.6, 5.9, 5.6, 5.3 6.5, 6.6, 6.6, 5.8 L
L −6.8, − 6.5, − 6.2, − 6.0 0.8, 1.9, 2.5, 2.9 0.8, 1.1, 1.3, 2.2 L
1.0 16.9, 16.6, 16.3, 15.7 13.0, 9.9, 9.1, 8.7 10.6, 10.0, 9.4, 9.0 L
L 13.5, 13.5, 13.5, 13.0 9.7, 6.9, 6.4, 6.2 7.3, 7.0, 6.7, 6.4 L
L −7.5, − 7.2, − 7.0, − 6.3 −3.6, − 0.5, 0.3, 0.7 −1.2, − 0.6, − 0.0, 0.4 L
2.0 18.2, 17.8, 17.3, 17.1 16.7, 12.9, 11.6, 11.2 14.7, 12.7, 11.7, 11.3 L
L 13.5, 13.5, 13.3, 13.2 12.0, 8.6, 7.5, 7.4 10.0, 8.4, 7.7, 7.4 L
L −8.8, − 8.5, − 8.0, − 7.8 −7.3, − 3.5, − 2.2, − 1.9 −5.3, − 3.4, − 2.3, − 1.9 L
3.0 18.4, 18.1, 17.8, 17.6 17.3, 15.4, 14.1, 13.1 16.2, 15.1, 13.1, 12.1 L
L 12.9, 12.9, 12.9, 12.9 11.9, 10.3, 9.3, 8.5 10.8, 10.0, 8.3, 7.4 L
L −9.0, − 8.7, − 8.4, − 8.2 −7.9, − 6.0, − 4.7, − 3.7 −6.8, − 5.7, − 3.7, − 2.7 L
4.0 18.8, 18.5, 18.2, 18.0 17.9, 17.1, 16.6, 15.4 18.3, 16.4, 14.8, 13.5 L
L 12.8, 12.8, 12.8, 12.8 12.0, 11.4, 11.3, 10.3 12.4, 10.7, 9.5, 8.4 L
L −9.4, − 9.1, − 8.8, − 8.6 −8.5, − 7.7, − 7.3, − 6.1 −9.0, − 7.0, − 5.5, − 4.2 L

0.8 Me, 1.07 Gyr 0.8 Me, 4.87 Gyr 0.8 Me, 8.97 Gyr L

0.5 8.4, 6.6, 6.0, 5.7 6.6, 6.2, 6.0, 5.9 6.3, 6.2, 6.1, 6.0 L
L 6.8, 5.3, 5.0, 4.9 5.0, 4.9, 5.0, 5.1 4.9, 5.0, 5.2, 5.3 L
L 1.0, 2.8, 3.4, 3.7 2.8, 3.2, 3.4, 3.5 3.0, 3.2, 3.3, 3.4 L
1.0 11.7, 8.7, 8.3, 8.2 8.9, 8.5, 8.0, 7.8 8.5, 8.2, 8.0, 7.9 L
L 8.9, 6.2, 6.1, 6.1 6.1, 6.0, 5.8, 5.8 5.8, 5.7, 5.9, 6.0 L
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Table 4
(Continued)

Porb Må, Age Må, Age Må, Age Må, Age
(day) (Me, Gyr) (Me, Gyr) (Me, Gyr) (Me, Gyr)

L −2.3, 0.7, 1.1, 1.2 0.5, 0.9, 1.4, 1.6 0.9, 1.2, 1.4, 1.4 L
2.0 16.1, 15.3, 10.8, 10.1 11.2, 10.7, 10.2, 9.9 11.0, 10.5, 10.0, 9.9 L
L 11.9, 11.5, 7.2, 6.8 7.1, 6.9, 6.7, 6.5 6.9, 6.8, 6.6, 6.6 L
L −6.7, − 6.0, − 1.4, − 0.8 −1.9, − 1.3, − 0.8, − 0.5 −1.6, − 1.2, − 0.6, − 0.5 L
3.0 16.6, 16.3, 14.2, 13.6 13.3, 12.4, 11.5, 11.2 12.1, 11.7, 11.2, 11.1 L
L 11.7, 11.7, 9.8, 9.5 8.4, 7.9, 7.2, 7.1 7.3, 7.2, 7.0, 7.1 L
L −7.2, − 6.9, − 4.8, − 4.2 −3.9, − 3.1, − 2.1, − 1.9 −2.8, − 2.3, − 1.9, − 1.7 L
4.0 17.0, 16.3, 15.4, 14.9 15.0, 14.2, 12.2, 12.3 13.5, 12.9, 12.4, 12.1 L
L 11.5, 11.1, 10.5, 10.2 9.5, 9.0, 7.4, 7.6 8.1, 7.8, 7.7, 7.5 L
L −7.6, − 6.9, − 6.0, − 5.5 −5.6, − 4.8, − 2.9, − 2.9 −4.1, − 3.5, − 3.0, − 2.7 L

1.0 Me, 1.03 Gyr 1.0 Me, 4.60 Gyr 1.0 Me, 8.72 Gyr 1.0 Me, 11.0 Gyr

0.5 7.2, 6.4, 5.8, 5.6 6.3, 6.1, 6.0, 5.9 6.0, 5.9, 5.7, 5.7 5.7, 5.5, 5.4, 5.4
L 5.8, 5.3, 5.0, 5.0 5.2, 5.3, 5.5, 5.6 5.3, 5.5, 5.6, 5.7 5.5, 5.7, 5.8, 6.0
L 2.2, 3.0, 3.6, 3.8 3.1, 3.2, 3.4, 3.5 3.4, 3.5, 3.6, 3.7 3.7, 3.8, 4.0, 4.0
1.0 9.4, 8.4, 8.2, 7.9 8.1, 8.0, 7.8, 7.6 7.8, 7.7, 7.6, 7.5 7.1, 7.0, 6.8, 6.7
L 6.8, 6.1, 6.1, 6.0 5.7, 5.8, 5.7, 6.0 5.8, 5.9, 6.1, 6.2 5.7, 5.8, 5.9, 6.0
L −0.0, 0.9, 1.2, 1.5 1.3, 1.4, 1.5, 1.8 1.6, 1.7, 1.8, 1.9 2.2, 2.4, 2.6, 2.7
2.0 14.2, 12.6, 9.9, 9.9 10.5, 9.9, 9.7, 9.5 9.8, 9.6, 9.5, 9.4 9.5, 9.4, 9.3, 9.2
L 10.3, 9.0, 6.6, 6.7 6.7, 6.5, 6.5, 6.6 6.4, 6.6, 6.8, 6.8 6.8, 6.9, 7.1, 7.2
L −4.8, − 3.2, − 0.6, − 0.5 −1.1, − 0.6, − 0.3, − 0.2 −0.4, − 0.2, − 0.1, − 0.0 −0.2, − 0.0, 0.1, 0.2
3.0 15.0, 14.5, 13.1, 12.2 11.8, 11.3, 11.2, 11.0 1.0, 11.0, 10.8, 10.7 11.4, 10.6, 10.4, 10.4
L 10.3, 10.1, 9.1, 8.3 7.3, 7.1, 7.3, 7.3 6.9, 7.2, 7.3, 7.4 7.8, 7.4, 7.5, 7.6
L −5.6, − 5.1, − 3.8, − 2.8 −2.4, − 1.9, − 1.8, − 1.7 −1.6, − 1.6, − 1.4, − 1.4 −2.0, − 1.3, − 1.1, − 1.0
4.0 16.4, 16.1, 14.3, 14.0 12.7, 12.4, 11.8, 11.8 1.7, 11.6, 11.4, 11.3 11.6, 11.7, 11.6, 11.5
L 11.2, 11.2, 9.7, 9.5 7.7, 7.7, 7.3, 7.5 7.0, 7.2, 7.4, 7.5 7.5, 7.9, 8.1, 8.2
L −7.0, − 6.7, − 4.9, − 4.6 −3.4, − 3.0, − 2.4, − 2.4 −2.3, − 2.2, − 2.0, − 1.9 −2.2, − 2.3, − 2.2, − 2.2

1.2 Me, 1.05 Gyr L 1.2Me, 4.00 Gyr 1.2 Me, 6.00 Gyr

0.5 13.6, 8.3, 6.6, 6.1 L 6.1, 6.0, 5.8, 5.8 3.4, 3.3, 3.2, 3.2
L 12.7, 7.7, 6.3, 6.0 L 5.7, 5.8, 6.0, 6.1 5.1, 5.3, 5.5, 5.6
L −4.2, 1.1, 2.8, 3.2 L 3.3, 3.4, 3.5, 3.6 6.0, 6.1, 6.1, 6.2
1.0 14.5, 14.2, 13.9, 13.7 L 8.0, 7.8, 7.7, 7.6 5.5, 5.4, 5.2, 5.2
L 12.3, 12.3, 12.3, 12.2 L 6.2, 6.4, 6.5, 6.6 5.9, 6.0, 6.2, 6.3
L −5.1, −4.8, −4.5, −4.3 L 1.4, 1.6, 1.7, 1.8 3.9, 4.0, 4.1, 4.2
2.0 15.4, 15.1, 14.8, 14.6 L 10.0, 10.0, 9.8, 9.7 7.6, 7.6, 7.6, 7.6
L 11.9, 11.9, 11.9, 11.8 L 7.0, 7.2, 7.4, 7.4 6.6, 6.9, 7.2, 7.4
L −6.1, −5.8, −5.5, −5.2 L −0.7, − 0.6, − 0.4, − 0.3 1.8, 1.8, 1.8, 1.8
3.0 L L 11.1, 11.1, 11.1, 11.1 8.1, 8.1, 8.1, 8.1
L L L 7.3, 7.6, 7.9, 8.0 6.4, 6.7, 7.0, 7.2
L L L −1.7, − 1.7, − 1.7, − 1.7 1.3, 1.3, 1.3, 1.3
4.0 L L 11.9, 11.5, 11.4, 11.4 8.8, 8.4, 8.4, 8.4
L L L 7.6, 7.5, 7.6, 7.8 6.6, 6.5, 6.8, 7.0
L L L −2.5, − 2.1, − 2.0, − 2.0 0.6, 0.9, 1.0, 0.9

L L 1.5 Me, 2.03 Gyr 1.5 Me, 2.5 Gyr

0.5 L L 7.5, 7.3, 7.2, 7.2 3.4, 3.3, 3.2, 3.1
L L L 7.6, 7.8, 8.0, 8.1 4.5, 4.6, 4.8, 4.9
L L L 1.9, 2.0, 2.1, 2.2 5.9, 6.1, 6.2, 6.3
1.0 L L 9.5, 9.2, 9.0, 8.9 5.7, 5.6, 5.5, 5.4
L L L 8.4, 8.4, 8.4, 8.5 5.5, 5.6, 5.8, 5.9
L L L −0.2, 0.1, 0.4, 0.5 3.6, 3.8, 3.9, 4.0
2.0 L L 11.8, 11.2, 11.2, 11.2 7.8, 7.8, 7.7, 7.7
L L L 9.3, 9.1, 9.3, 9.5 6.2, 6.5, 6.8, 6.9
L L L −2.4, − 1.9, − 1.8, − 1.8 1.6, 1.6, 1.6, 1.7
3.0 L L 13.0, 12.7, 12.1, 12.0 8.2, 8.3, 8.3, 8.3
L L L 9.7, 9.8, 9.5, 9.6 5.9, 6.3, 6.6, 6.8
L L L −3.6, − 3.4, − 2.7, − 2.6 1.1, 1.1, 1.0, 1.0
4.0 L L 14.5, 13.3, 13.0, 12.8 9.2, 8.8, 8.6, 8.6
L L L 10.7, 9.8, 9.8, 9.8 6.3, 6.2, 6.3, 6.5
L L L −5.1, − 3.9, − 3.6, − 3.4 0.2, 0.6, 0.8, 0.8

L L 2.0 Me, 0.70 Gyr 2.0 Me, 0.92 Gyr
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Table 4
(Continued)

Porb Må, Age Må, Age Må, Age Må, Age
(day) (Me, Gyr) (Me, Gyr) (Me, Gyr) (Me, Gyr)

0.5 L L 9.2, 8.5, 7.9, 7.7 3.4, 3.2, 3.1, 3.0
L L L 9.1, 8.7, 8.5, 8.4 5.0, 5.2, 5.4, 5.5
L L L 0.2, 0.9, 1.4, 1.7 6.0, 6.1, 6.3, 6.4
1.0 L L 12.2, 11.8, 10.5, 9.8 5.4, 5.2, 5.1, 5.0
L L L 10.8, 10.7, 9.7, 9.2 5.7, 5.9, 6.1, 6.2
L L L −2.8, −2.5, −1.2, −0.4 4.0, 4.1, 4.3, 4.4
2.0 L L 14.2, 13.2, 12.8, 12.3 7.4, 7.5, 7.0, 6.9
L L L 11.5, 10.9, 10.7, 10.4 6.4, 6.9, 6.6, 6.7
L L L −4.9, −3.9, −3.5, −2.9 2.0, 1.8, 2.4, 2.5
3.0 L L 14.8, 14.5, 14.2, 14.0 8.1, 8.1, 8.1, 8.1
L L L 11.4, 11.4, 11.4, 11.4 6.4, 6.7, 7.0, 7.1
L L L −5.4, −5.1, −4.8, −4.7 1.3, 1.3, 1.3, 1.3
4.0 L L 15.2, 14.9, 14.6, 14.5 8.5, 8.4, 8.4, 8.4
L L L 11.2, 11.2, 11.2, 11.2 6.2, 6.4, 6.7, 7.0
L L L −5.9, −5.6, −5.3, −5.1 0.9, 1.0, 1.0, 0.9

Note. Each column is for a particular stellar model (Må and Age), and each triplet of rows is, from top to bottom, for an orbital period Porb = 0.5, 1.0, 2.0, 3.0,
4.0 days. For a given Porb, the first row gives log yr10( )tá ñ , the second row gives Qlog10 ¢, and the third row gives T Tlog s assuming 10 yr10 shift dur( ) = . The four
comma-separated entries in each row are, from left to right, for planet mass Mp = 0.5, 1.0, 2.0, 3.0MJ. The top of the table illustrates the format.
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