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Abstract— In this paper, we consider the problem of answering
count queries for genomic data subject to perfect privacy
constraints. Count queries are often used in applications that
collect aggregate (population-wide) information from biomedical
Databases (DBs) for analysis, such as Genome-wide association
studies. Our goal is to design mechanisms for answering count
queries of the following form: How many users in the database
have a specific set of genotypes at certain locations in their genome?
At the same time, we aim to achieve perfect privacy (zero
information leakage) of the sensitive genotypes at a pre-specified
set of secret locations. The sensitive genotypes could indicate rare
diseases and/or other health traits one may want to keep private.
We present both local and central count-query mechanisms for
the above problem that achieves perfect information-theoretic
privacy for sensitive genotypes while minimizing the expected
absolute error (or per-user error probability, depending on the
setting) of the query answer. We also derived a lower bound
of the per-user probability of error for an arbitrary query-
answering mechanism that satisfies perfect privacy. We show
that our mechanisms achieve error close to the lower bound, and
match the lower bound for some special cases. We numerically
show that the performance of each mechanism depends on the
data prior distribution, the intersection between the queried and
sensitive genotypes, and the strength of the correlation in the
genomic data sequence.

Index Terms— Genomic data protection, perfect information
privacy, counting query, information privacy.

I. INTRODUCTION

GENETIC research is experiencing an unprecedented
growth in terms of the amount of personal data col-

lected in large repositories [1]. The human genome is the
complete set of genetic information, which is composed of
four different bases (A, C, G, T). Genetic information is
encoded inside chromosomes, and each chromosome con-
tains genes responsible for various functions controlling the
human body all together [2]. They provide medical researchers
invaluable information that can play a role in different inter-
esting applications such as sequencing [3], genome sequence
assembly [4], [5] and Genome-Wide Association Studies
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(GWAS) [6]. The main objective of these applications is to
enable the investigation of variants in human genomes with
different biological or health-related traits through interactive
queries with biomedical databases (DBs) or directly from each
record. For example, medical researchers might want to query
how many users in a dataset have specific genotypes at certain
locations in their genome. This can help to reveal relationships
that exist in certain genotypes and biological traits or discover
particular diseases like cancer [7], diabetes, and even more
complex ones [8]. Such systems can also be used as a powerful
tool for finding new drug targets [9].

Despite the impact of these applications on health services,
privacy remains a fundamental concern that needs to be
addressed. Indeed, existing query-answering systems such as
STRIDE [10] and i2b2 [11] can leak sensitive genotypes
about individuals [12], [13], [14]. Therefore, a significant
research effort has been made to enable privacy-preserving
access to genomic data. Recent interesting works in the
literature addressed this issue in genomics under different
settings, including sequential genomic data release [15], query-
answering in biomedical DBs [16], [17], [18]. Depending
on whether the mechanism relies on a trusted third party,
these privacy protection models can be classified into two
categories: centralized models assume there is a trusted server
that processes the dataset and releases privatized answers to
specific types of queries. For example, Cho et al. [18] pro-
posed differentially private (DP) mechanisms for count queries
using geometric additive noise mechanisms. Local models,
on the other hand, enables each data holder (user) to perturb
his/her genomic data sequence locally before publishing it to
the server, which can be used to answer any query afterward,
such as [15].

In the past two decades, DP has been widely accepted
as the de facto standard in the privacy research community.
However, DP only leads to a few real-world adoptions. One
of the main reasons is that DP is a stringent (worst-case)
privacy notion, i.e., there is no assumption on the underlying
prior distribution of the data. While privacy guarantees hold
for the worst-case realizations of the data, this could lead
to lower data utility. Hence, it is not ideal for scenarios
when the prior distribution of genomic data is available, e.g.,
through public datasets and/or via existing statistical models
of genomic data sequence [19], [20]. In contrast, context-
aware privacy notions, such as mutual information privacy,
can lead to mechanism designs with a better privacy-utility
tradeoff by leveraging the prior information. Note that despite
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the high diversity, most of the DNA Sequence is common
across the whole human population. Only around 0.5% of
each person’s DNA is different from the reference genome,
owing to genetic variations [21]. This makes it suitable to
adopt context-aware privacy notions for genomic sequence.
Besides, context-aware privacy notions model each genomic
data sequence as a random variable, which considers the
correlation inside the data sequence.

In this paper, we consider K individuals participating in a
genome variants survey, and each person’s N -length genome
sequence is drawn from a known distribution. Specifically, our
goal is to design mechanisms for answering count queries
of the following form: How many users have a specific
set of genotypes (denoted by a set vL) at certain locations
(denoted by L) in their genome? At the same time, we aim
to achieve perfect secrecy (zero information leakage) (perfect
information-theoretic privacy) about sensitive genotypes at a
pre-specified set S of secret locations. Our main contributions
are summarized as follows:

Main Contributions:
1) We present two count-query mechanisms for genomic

data sequences in the central and local settings, respectively.
The mechanisms achieve perfect privacy for sensitive geno-
types at the locations belonging to a predefined set S while
optimizing a utility metric (i.e., minimizing the probability
of error for local setting and expected absolute distance for
central setting). The proposed mechanisms incur less compu-
tation complexity and achieve significantly higher utility than
a previous perfect secret mechanism [15] and achieve a better
utility-privacy tradeoff than DP-based mechanisms [18].

2) We theoretically analyze the performance of each
mechanism under different cases regarding the strength of
correlations within the genomic sequence and the length of
the overlapped genotypes between the queried locations and
sensitive locations. The proposed mechanisms only depend on
the statistics of the subsequences derived from the intersected
set of locations. Thus, the complexity of our mechanisms only
grows with |L∪S|, irrespective of N . We also derive a lower
bound on the error probability (Pe) for an arbitrary mechanism
subject to perfect privacy constraints. We show the optimality
of our proposed mechanisms for several special cases.

3) We present comprehensive numerical simulations to show
the utility-privacy tradeoff of the proposed mechanisms and
compare them with existing DP-based mechanisms. Results
show that our mechanisms achieve perfect privacy and incur
smaller errors than those based on DP under certain large
privacy budgets ϵ (larger ϵ indicates larger privacy leakage).
We also show that the performance of the mechanisms is
largely dependent on the data prior as well as the data
dependence: the performance of each mechanism can be
improved when the queried locations are less correlated with
the sensitive locations.

II. RELATED WORKS

A fundamental need in designing genomic privacy-
preserving mechanisms is to selectively limit the leakage of
information about biological or health-related traits of an
individual that can be inferred from the shared genetic data.

Under this context, in [22], Thenen et al. have shown that
beacons, previously deemed secure against re-identification
attacks, were vulnerable despite their stringent policy, due
to the correlation and inter-dependence inside each genomic
sequence. To this end, [17], [18] study differential privacy
mechanisms for sharing aggregate genomic data. However,
DP-based mechanisms provide worst-case privacy guarantees
that incur too much noise and lead to decreased utility in terms
of accuracy. Furthermore, traditional DP-based mechanisms do
not leverage correlations that exist in the genomic sequence,
which may degrade the privacy guarantees offered by DP.
In [23], Nour et al. first demonstrate this drawback of DP by
proposing an attack and then propose a mechanism for privacy-
preserving sharing of statistics from genomic datasets to attain
privacy guarantees while taking into consideration the data
dependence. From there, we assert that information theoretical
privacy measurements are more favorable for genomic data
processing for the following reasons. 1. Different individ-
uals’ genomic sequences possess extremely similar patterns
at certain locations, which provides a solid foundation for
estimating the underlying data distribution. 2. Dependence
and inter-correlations that exist in the genomic sequence
can be explicitly measured and leveraged in the mechanism
design. We next discuss some of the related works that have
considered information-theoretic privacy within this context.

A privacy-preserving genomic data sequence release prob-
lem was studied in [15], where the genotypes at some specific
sensitive locations and some non-sensitive locations but are
correlated to sensitive locations are hidden. This model also
provides a baseline approach for query answer release (perturb
then query). However, the query-answering mechanism incurs
much less noise than sequence release mechanisms (either
local or centralized ones). Other than that, the sequence release
model was built for the local settings only. In this work,
we study query-answering models in both local and central
settings.

There is also a line of work on the privacy-preserving data
release problem that is similar to our settings [24], [25], [26].
The variables form a Markov chain S → X → Y , where X
and Y represent the input and output data of the mechanism,
respectively, and S denotes a private latent variable that corre-
lates to X . Based on this model, [24] proposes principal inertia
components, which provide a fine-grained decomposition of
the dependence between two random variables. It also proves
that the smallest PIC of PS,X plays a central role in achieving
perfect privacy (i.e. I (S; Y ) = 0): If |X | ≤ |S|, then perfect
privacy is achievable with I (X; Y ) > 0 if and only if the
smallest PIC of pS,X is 0. However, the mechanisms provided
in [24] are challenging to be implemented in genomic data,
as it requires an exhausting search of functions in the defined
region.

In [25], the system allows post-processing after taking
observation on Y , then data utility is measured by the
mean square error (MSE) between X and the estimation
E[X |Y ]. Finally, the utility and privacy tradeoff can be for-
mulated by minimizing the MSE while subject to certain
privacy constraints. However, this work focuses on improving
the utility-privacy tradeoff and do not provide closed-form
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Fig. 1. The system model. The queried sub-sequence X (m)
L for the m-th user and the query vL altogether pass through a deterministic equality test function

with a true answer A(m), followed by a private release mechanism. The perturbed answer Y guarantees perfect privacy for sensitive genotypes.

privatization mechanisms. Also, this paper studies general
privacy guarantees, not perfect privacy.

In [26], privacy and utility are defined as the probabilities
of correctly guessing S and X given Y , respectively. This
paper also mentioned mechanism design. However, firstly, the
perfect privacy measured by correct guessing cannot imply
independence of the random variable (what we defined as
perfect privacy in this paper), as PC (S|Y ) = PC (S) does not
imply P(S|Y ) = P(S). Also, the modeling of the correlation
between the latent variable and the input data is too simplified:
the correlated latent variable considered in [26] is also binary,
and the correlation can be represented by two parameters.
Finally, the mechanism is derived as a function of the cor-
relation parameters. But for genomic data processing, the data
sequence is a vector with each value having a cardinality of 4.
Thus the mechanism in [26] does not apply to our problem.
On the other hand, the model we considered is in the form of
S → f (X) → Y , where S and X are vectors, f (X) and Y are
binary, which is similar to, but different from related works
in [24], [25], and [26].

III. MODEL SETUP & PROBLEM STATEMENT

Consider a set of K sequences {X(1), X(2), . . . , X(K )
},

where each sequence X(k)
= {X (k)

1 , X (k)
2 , . . . , X (k)

N }, for
k = 1, 2, . . . , K is of length N . The entries X (k)

n are
drawn from a finite alphabet X (e.g. for genomic data,
X = {A, T, G, C}). We assume that the sequences are
independent and each sequence is drawn from a known
distribution PX(x̄) = PX1,X2,...,X N (x1, x2, . . . , xN ) (PX(x̄) can
be different from user to user, we simplify by removing
users’ index). In users’ genomic sequence, some locations
are private and need to be protected while others are non-
sensitive. Denote S = {s1, s2, . . . , s|S|} as the set of indices
of the sensitive locations of the genomic data sequence
(each X (k)

n is sensitive ∀k ∈ {1, 2, . . . , K },∀n ∈ S), and let
X(k)

S = (X (k)
s1 , X (k)

s2 , . . . , X (k)
s|S|

) denote the sensitive genomic
subsequence of the k-th user.

A count query can be defined as follows: the number
of users in the dataset with a specific sequence at some
particular locations. Mathematically, we denote the query as

Q = {L, vL}, where L = {l1, l2, . . . , l|L|} denotes the indices
of the queried locations and X(k)

L = (X (k)
l1 , X (k)

l2 , . . . , X (k)
l|L|

)

denotes the corresponding queried sequence for the k-th user;
vL denotes the reference sequence and v j denotes the refer-
ence value at location j . Then the local query of the k-th user
is Q(k)

= {X(k)

L = vL}. Note that, the sensitive locations S
and the queried locations L may or may not have common
indices. Denote L̄ = L\(L ∩ S) as the non-sensitive query
locations, and S̄ = S\(L ∩ S).

Let A(k) be the true query answer calculated from the
k-th user. Then A(k)

= 1
{X(k)

L =vL}
=

∏|L|
j=1 1{X(k)

l j
=v j }

and

the final count can be expressed as A =
∑K

k=1 A(k), i.e., the
aggregated answer is decomposable. To avoid leaking sensitive
information about each X(k)

S , we design private mechanisms
and release a perturbed version while achieving high utility.
Depending on whether there exists a trusted server, there are
two different settings for the data protection mechanisms: for
the local setting, each user privatizes A(k) independently and
publishes a perturbed version Y (k), then Y =

∑K
k=1 Y (k) is the

aggregated result; For the central setting, the data server first
aggregates A from each A(k), then perturbs A and releases Y as
a privatized version. Each of the local and central mechanisms
has its pros and cons. Generally speaking, the central model
guarantees a comparable level of privacy protection as the
local model with a smaller amount of noise. The local model,
on the other hand, provides a customizable privacy budget for
each individual without relying on any third party. The system
models considered are depicted in Fig. 1.

Data Privacy: In this paper, we aim to satisfy perfect
privacy of sensitive genotypes, which is defined as:

PY (k)|X(k)
S

(y|xS) = PY (k)(y),∀k ∈ {1, 2, . . . , K }, (1)

for local model, and

PY |X(k)
S

(y|xS) = PY (y),∀k ∈ {1, 2, . . . , K } (2)

for central model. The privacy-preserving mechanism must
guarantee that the output of the privacy protection mechanism
(Y for central model, Y (k) for the local model) is independent
of the genomic data X(k)

S at sensitive locations S for every
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TABLE I
LIST OF SYMBOLS

user k. In the following, we refer to the conditions in (1) as
perfect privacy constraints.

Performance (Utility): The performance of the mechanism
is measured by the Expected Average Error (EAE) between A
and Y . Mathematically,

EAE = E[|A − Y |]. (3)

In this paper, we aim to maximize the utility (minimize the
EAE) subject to perfect privacy. We summarized symbols used
throughout this paper in Table I.

IV. MAIN RESULTS

In this paper, we aim to minimize the EAE subject to
perfect local privacy. In this Section, we investigate privacy-
preserving query answer mechanisms for local and central
settings, respectively.

A. Local Mechanism Design

Next, we present two mechanisms based on different data
processing settings which satisfy perfect local privacy for sen-
sitive genotypes. To measure the performance of the proposed
mechanisms for aggregated query, we define the utility for the
aggregated query as the Expected Absolute Error (EAE):

E[|Y − A|] = E

[∣∣∣∣∣
K∑

k=1

(
Y (k)

− A(k)
)∣∣∣∣∣

]
. (4)

Note that the EAE can be further upper-bounded as follows:

E[|Y − A|] ≤
K∑

k=1

E
[
|Y (k)

− A(k)
|

]
≜

K∑
k=1

P(k)
e ,

where P(k)
e denotes the per-user error probability. Given a

query, we will design binary perturbation mechanisms for each
sequence to minimize the local query error while satisfying
per-user perfect privacy constraints. Formally, the problem can
be described as

min P(k)
e , s.t. (1), ∀k = 1, 2, . . . , K . (5)

A local privacy-protection mechanism M(k) with parameter
µ(X(k),Q) can be described as follows: M(k) takes as input
the local genomic sequence X(k) of a user and the query Q =

{L, vL}. Then, it extracts the sensitive data sequence X(k)

S and

the queried data sequence X(k)

L respectively. From there, M(k)

releases Y (k)
= 0 or Y (k)

= 1 according to the data prior
distribution as well as the correlation between X(k)

S and X(k)

L .
The corresponding release probabilities are defined as:

Y (k)
=

{
1, w.p. µ(X(k),Q),

0, w.p. 1 − µ(X(k),Q).

We present two mechanisms, M(k)
1 , and M(k)

2 , with parame-
ters µ1(X(k),Q) and µ2(X(k),Q) given as follows:

µ1(X(k),Q) ≜ PY (k)|X(k)

L̄ ,X(k)
S

(1|xL̄, xS) =
minw PX(k)

L̄ |X(k)
S

(xL̄|w)

PX(k)

L̄ |X(k)
S

(xL̄|xS)
, if xL̄ = vL̄, E ≤ 1/2,

0, otherwise,
(6)

µ2(X(k),Q) ≜ PY (k)|X(k)

L̄ ,X (k)
S

(1|xL̄, xS) =
1, if xL̄ = vL̄, E ≤ 1/2,

1 −

minw PX(k)

L̄ |X(k)
S

(xL̄|w)

PX(k)

L̄ |X(k)
S

(xL̄|xS)
, otherwise,

(7)

where E is defined as E ≜ Pr(X(k)

L∩S ̸= vL∩S). Both of the
proposed mechanisms use the following probability ratio:

R(X(k)

L̄ , X(k)

S ) =

minw PX(k)

L̄ |X(k)
S

(xL̄|w)

PX(k)

L̄ |X(k)
S

(xL̄|xS)
, (8)

which can be (informally) used to measure the statistical
dependence between X(k)

L̄ (genotypes in L which are not in the

sensitive locations) and X(k)

S (genotypes in sensitive locations).
In the following, we use R for simplicity. Specifically, a value
of R = 1 clearly implies independence of X(k)

L̄ and X(k)

S ,

whereas R < 1 implies that X(k)

L̄ and X(k)

S are dependent,
and the dependence grows as R becomes small.

Given a query Q = {L, vL}, mechanism M(k)
1 first looks at

the sequence xL̄ that corresponds to the non-sensitive geno-
types in the set L̄. If xL̄ = vL̄ and E < 1/2, the mechanism
releases 1 with probability R, otherwise, it always releases 0.

Mechanism M(k)
2 works similarly as follows. It first looks at

the sequence xL̄, if xL̄ = vL̄ and E < 1/2, then M(k)
2 always

releases 1. Otherwise, it releases 1 with probability 1−R. Our
first main result is stated in the following Theorem.

Theorem 1: Mechanisms M(k)
1 and M(k)

2 satisfy perfect
privacy.

Proof: We expand PY (k)|X(k)
S

(1|xS) in terms of xL̄ using
total probability Theorem. This yields the following set of
steps:

PY (k)|X(k)
S

(1|xS) =
∑
xL̄

PY (k)|X(k)

L̄ ,X (k)
S

(1|xL̄, xS)PX(k)

L̄ |X (k)
S

(xL̄|xS)

= PY (k)|X(k)

L̄ ,X(k)
S

(1|vL̄, xS)PX(k)

L̄ |X(k)
S

(vL̄|xS)

+

∑
xL̸̄=vL̄

Authorized licensed use limited to: The University of Arizona. Downloaded on March 14,2024 at 20:14:36 UTC from IEEE Xplore.  Restrictions apply. 



3866 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 2. Description for the illustrative example for the two mechanisms M1 and M2.

PY (k)|X(k)

L̄ ,X(k)
S

(1|xL̄, xS)PX(k)

L̄ |X(k)
S

(xL̄|xS)

= µ
(k)
1 (vL̄, Q, S)PX(k)

L̄ |X (k)
S

(vL̄|xS)

+

∑
xL̄ ̸=vL̄

µ
(k)
1 (xL̄, Q, S)PX(k)

L̄ |X (k)
S

(xL̄|xS)

(a)
= min

w
PX(k)

L̄ |X (k)
S

(vL̄|xS = w),

where step (a) follows from the proposed mechanism in (6).
Observe that the conditional probability does not depend on
the realizations xS . Then, it is straightforward to show that

PY (k)|X(k)
S

(1|xS) = P(k)
Y (1).

The calculation for M(k)
2 follows on similar lines, and

hence both mechanisms satisfy perfect privacy for sensitive
genomes. □

We next present our second result which characterizes the
error probability of the proposed mechanisms.

Theorem 2: Define P(k)
e,1 and P(k)

e,2 as the per-user error
probability for M(k)

1 and M(k)
2 , respectively, then:

- Case 1: E ≤ 1/2:

P(k)
e,1 = PX(k)

L
(vL) + (2E − 1) min

w
PX(k)

L̄ |X(k)
S

(vL̄|w),

P(k)
e,2 = 1 − PX(k)

L
(v

(k)

L ) −
∑

xL̄ ̸=vL̄

min
w

PX(k)

L̄ |X(k)
S

(xL̄|w). (9)

- Case 2: E > 1/2:

P(k)
e,1 = PX(k)

L
(vL),

P(k)
e,2 = 1 − PX(k)

L
(vL) −

∑
xL̄ ̸=vL̄

min
w

PX(k)

L̄ |X(k)
S

(xL̄|w)

− (2E − 1) min
w

PX(k)

L̄ |X(k)
S

(vL̄|w).

The proof is presented in the Appendix.
1) Illustrative Example: We next explain our mechanisms

through an illustrative example. Consider a user’s genome
sequence X = {X1, X2, X3, X4}, and a target query Q =

{L = {1, 2}, vL = {A, T }}, i.e., the query is of the form
“Is (X1, X2) = (A, T )?”. In this example, we consider two
scenarios for the set S of sensitive locations. Specifically,
we can either have S ∩ L = ∅ or S ∩ L ̸= ∅.

Case 1: S ∩ L = ∅ When S = {3, 4}, if R(XL, XS) = 0,
mechanism M1 always releases 0 and M2 always releases 1.
When R(XL, XS) = 1, both mechanisms release the true

answer, i.e., Y = A. For the case when 0 < R(XL, XS) < 1,
each mechanism perturbs the true answer as follows:
M1 first examines whether {X1, X2} = {A, T }, if no, then

it releases the correct answer Y = 0; if yes, then it releases
Y = 1 with probability R(XL, XS), and Y = 0 with the
remaining probability 1− R(XL, XS). On the other hand, for
mechanism M2, if {X1, X2} = {A, T }, then it releases Y = 1;
if not, then it releases Y = 0 with probability R(XL, XS)

(and Y = 1 with the remaining probability 1- R(XL, XS)).
The intuition behind the mechanisms is to limit the leakage
which arises due to the dependence between the genotypes in
non-sensitive query locations L̄ and the sensitive locations S .

Case 2: S ∩ L ̸= ∅ We next consider the case when
S = {2, 3}, i.e., L ∩ S = {2}. Similar to Case 1, when
R(XL, XS) = 0, mechanism M1 always releases 0 and
M2 always releases 1 (which clearly satisfies perfect privacy).
When R(XL, XS) > 0, however, since the intersection L∩S =

{2} is non-empty, both mechanisms first check if E = P
(X2 ̸= v2) = P(X2 ̸= T ) < 1/2, and if yes, then proceed
in a similar manner as before. Specifically, each mechanism
first examines whether the non-sensitive query sequence XL̄
matches vL̄ and E < 1/2, if yes, then M1 releases Y = 1
with probability R(XL, XS), and Y = 0 with the remaining
probability 1−R(XL, XS); if no, it releases the correct answer
Y = 0. Both cases are illustrated in Fig. 2.

Remark 1: As an alternative baseline scheme, one can
perturb the whole genome sequence first by (for instance,
by applying the scheme in [15]) and then answer the count.
However, perturbing the whole sequence is unnecessary, and
the complexity of such a scheme will grow exponentially with
the genome sequence length N. In contrast, the complexity of
our schemes grows exponentially with |L ∪ S| which can be
substantially smaller than N.

Corollary 1: We can readily specialize the general result
of Theorem 2 for the case when genomic data sequences are
i.i.d, and each genotype is uniformly distributed over a finite

alphabet X . Define λ =

(
1

|X |

)|L|
, then for M(k)

1 and M(k)
2 ,

if E ≤ 0.5, min{P(k)
e,1 , P(k)

e,2 } = 0; if E > 0.5, min{P(k)
e,1 , P(k)

e,2 } =

λ, where E = 1 − PX(k)
L∩S

(vL∩S) = 1 −

(
1

|X |

)|L∩S|
.

2) Lower Bound on Pe: We next derive an information-
theoretic lower bound on Pe for any local mechanism that
satisfies perfect privacy. The goal is to examine how far our
mechanisms are from optimality.
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Theorem 3: For any privacy-preserving local data release
mechanisms that provide perfect privacy for genomic data at
sensitive locations S , the Pe is lower bounded as:

P(k)
e ≥ h−1

{
h(A(k)) − min{h(A(k)

L̄ |A(k)

L∩S), h(A(k)
|X(k)

S )}
}

,

(10)

where h(·) denotes the binary entropy function, A(k)

L̄ ≜

1
{X(k)

L̄ =vL̄}
and A(k)

L∩S ≜ 1
{X(k)

L∩S=vL∩S }
.

This bound follows by using Fano’s inequality and the
privacy constraint in (1). Detailed proof is provided in the

Appendix. Denote L B(P(k)
e ) as the lower bound of P(k)

e
calculated from Theorem 3, we next consider some special
cases and compare the lower bound with the error probability
of the proposed mechanisms.

Remark 2: Under the following scenarios, L B(P(k)
e ) from

Theorem 3 matches min{P(k)
e,1 , P(k)

e,2 } from Theorem 2:
(1) When L ∩ S = ∅: we consider two scenarios regarding

the data correlation between X(k)

L and X(k)

S .
a) If I (A(k)

;X(k)

S ) = h(A(k)), L B(P(k)
e ) =

min{P(k)
e,1 , P(k)

e,2 } = min{P(k)
A (0), P(k)

A (1)}, which means
when X(k)

S and X(k)

L are fully dependent, any mechanism
cannot outperform directly sampling result from the prior
distribution.

b) If I (A(k)
;X(k)

S ) = 0, L B(P(k)
e ) = min{P(k)

e,1 , P(k)
e,2 } = 0,

which implies when X(k)

L does not depend on X(k)

S , our
mechanisms achieve P(k)

e = 0, and matches the lower bound.
(2) When L ∈ S: L B(P(k)

e ) = min{P(k)
e,1 , P(k)

e,2 } = 0, which
is a special case of I (A(k)

;X(k)

S ) = h(A(k)).
In Section IV, we compare the lower bound with the error

of the proposed mechanisms via simulations.
3) Utility of Private Aggregated Query: Next, we show

that even though the proposed mechanisms are designed to
minimize Pe, under the i.i.d setting (users are independent),
using the summation of Pe as a measure of EAE does not lose
any optimality.

Proposition 1: For the proposed mechanisms, if the
sequences across users are i.i.d, then the EAE is given as
follows:

E[|Y − A|] =
K∑

k=1

min
[

P(k)
e,1 , P(k)

e,2

]
.

The proof is provided in the Appendix.

B. Centralized Mechanism

In the following, we present the privacy-preserving mech-
anism in the centralized setting. In the centralized setting,
the mechanism takes the whole dataset as input and then
aggregates the true answer to some query Q = {L, vL}. The
aggregated result is denoted by A. Finally, the mechanism
perturbs A and releases a privatized version Y as the output.
We denote XS = {X(k)

S }
(K )
k=1 as the sensitive data matrix, which

includes each user’s genomic sequence at sensitive locations.
Problem formulation: The utility measurement in the cen-

tralized model is identical to that of (3). For the privacy

constraints of the central model, the mechanism should provide
the answer Y , which is independent of XS . It can be easily
shown that, Y is independent of each X(k)

S for k ∈ {1, .., K }.
As such, the problem in the central setting can be represented
as:

min E[|A − Y |] s.t. PY |XS (y|xS) = PY (y). (11)

The privacy-preserving mechanism in the central setting,
µ3 can be specified as follows:

µ3(D,Q) ≜ PY |A,XS (y|a, xS) =
PA(y) + (1 − PA(y))

minw PA|XS (a|w)

PA|XS (a|xS)
, ify=a,

PA(y)

[
1−

minw PA|XS (a|w)

PA|XS (a|xS)

]
, if y ̸= a.

(12)

Theorem 4: The mechanism provided in (12) achieves per-
fect privacy.

Detailed proof is provided in Appendix. More related dis-
cussion to perfect privacy can be found in [27]. It is worth
noting that in the central model, the term

R =
minw PA|XS (a|w)

PA|XS (a|xS)
(13)

can be used implicitly to measure the dependence in the
dataset. i.e., when the dependence among data is strong, there
could be some w, such that minw PA|XS (a|w) = 0, and thus
R = 0. On the other hand, when data are independent of
each other minw PA|XS (a|w) = PA|XS (a|xS) = PA(a), and
hence R = 1. Therefore, R ∈ [0, 1] implicitly measures the
dependence among the dataset. Consider the following three
different cases regarding the mechanism in (12):

• When R = 1, data is independent of each other, the
mechanism releases y = a with a probability of 1. i.e.,
it will always release the true aggregate.

• When R = 0, data is highly dependent on each other, the
mechanism releases y = a with a probability of PA(a),
and the probability of releasing any other y ̸= a is also
PA(a), which means, the mechanism release an answer
by sampling from the distribution of A.

• When R ∈ (0, 1), the mechanism releases y = a with
probability that is larger than the prior of PA(y). Note
that the larger the probability is, the higher utility the
mechanism achieves, and this accuracy depends on the
data dependence.

Theorem 5: The mechanism in (12) incurs the following
expected error.

N∑
a=0

∑
y ̸=a

|y − a|PA(y)
[

PA(a) − min
w

PA|XS (a|w)
]
. (14)

Detailed proof is provided in the Appendix.
Illustrative Example Consider a dataset holding 3 users’

genomic data with each data uniformly distributed. Users’ data
are independent of each other. L = {2}, S = {1} and v = T .
Next, we show how the µcentral works.
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Fig. 3. Comparison between Pe and lower bound under different lengths of intersected data (correlation is measured by φ).

PXL(vL) = PX2(T ) = 1/4. Then PA(a) satisfies binomial
distribution where

PA(a) =

(
3
a

)
(1/4)a(3/4)(n−a). (15)

The correlation term can be expressed as:

PA|XS (a|xS)

= PA|{X(k)
1 }

3
k=1

(a|{x(k)
1 }

3
k=1)

=

∑
{x (k)

2 }
3
k=1

PA|{Xk
2}

3
k=1

(a|{x (k)
2 }

3
k=1)

· P
{Xk

2}
3
k=1|{X (k)

1 }
3
k=1

({xk
2 }

3
k=1|{x

k
1 }

3
k=1)

=

∑
{x (k)

2 }
3
k=1

PA|{Xk
2}

3
k=1

(a|{x (k)
2 }

3
k=1)

3∏
k=1

PXk
2 |X

k
1
(xk

2 |x
k
1 ), (16)

where

PA|{X (k)
2 }

3
k=1

(a|{x (k)
2 }

3
k=1) =

1, if
3∑

k=1

1
{x (k)

2 =T }
= a,

0, otherwise,

(17)

Then (16) can be writen as:∑
{x (k)

2 }
3
k=1∈B

3∏
k=1

PX (k)
2 |X (k)

1
(x (k)

2 |x (k)
1 ), (18)

where B = {{x (k)
2 }

3
k=1 :

∑3
k=1 1{x (k)

2 =T }
= a}. Under the i.i.d

model, the EAE of µcentral is shown in the following corollary.
Corollary 2: Under the setting where each user’s genomic

data sequence is i.i.d, and the distribution of each genomic

data is uniform, Let λ =

(
1

Cx

)|L|
, then, the EAE for the central

mechanism can be expressed as: When E ≤ 0.5, EAE = 0,
when E > 0.5, EAE = 2{

∑N
a=0 a PA(a)FA(a) − Nλ2

}.

V. NUMERICAL EVALUATION

We next numerically evaluate the proposed mechanisms for
two cases: for the first case, we consider a first-order Markov
property in each of the genomic sequences; for the second

case, we generate synthetic data with a hidden Markov model
(described later in sub-section V-E).

We next summarize the Markov setting: It is assumed that
each user’s genomic data has a first-order Markov property
[15], i.e., PX j+1|X j ,X

j−1
1

(x j+1|x j , x j−1
1 ) = PX j+1|X j (x j+1|x j ).

Denote T as the transition matrix from time j to j − 1, for
all j ∈ [1, |X |], and can be specified as:

Pr(X j+1 = x |X j = x) = φ

Pr(X j+1 = x ′|X j = x) = (1 − φ)/3 (19)

where x, x ′ ∈ {A, T, G, C} and x ̸= x ′. For the following
evaluations, we randomly generate the user’s data according
to the prior and the transition matrix, and we run Monte-
Carlo simulations to get an average error. We consider K =

1000 users in the system. Each user possesses a genomic
sequence with a length of 10.

A. Comparison of L B(Pe) With Pe From the
Local Mechanism

We next compare the Pe resulting from the local mechanism
with the lower bound in Theorem 3. We consider three differ-
ent cases: (i) when S ∩L = ∅, (ii) when S ∩L = 4 (partially
overlapped) and (iii) when S ∩ L = S (fully overlapped).
Under each case, we consider three types of correlation:
low correlation φ = 0.27 (slightly skewed than uniform),
moderate correlation φ = 0.5, and high correlation φ = 0.95
(slightly weaker than fully dependent). The comparisons are
shown in Fig. 3, where we plotted the lower bound of Pe
from Theorem 3, Pe calculated from Theorem 2 as well as
the empirical Pe averaged from N samples, and we vary
N from 10 to 1000 to illustrate the convergence. Observe
that the gap between Pe from Theorem 2 and the lower
bound of Pe is different under different scenarios. Generally,
extremely high or low correlation leads to smaller gaps. It is
worth noting that the lower bound derived in this paper is
based on Fano’s inequality. There could be some Pe that are
not achievable, thus the gap between the Pe from Theorem
2 and the optimal one (assume there is a mechanism that
incurs a minimum Pe and satisfies perfect privacy) can be
even smaller.
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Fig. 4. Numerical results of the Markov model for different cases regarding the intersected length of L ∩ S and the distribution of X1 for the local case.

B. Comparison Between M1 and M2

Next, we examine the impact from (a) different prior
distributions; (b) whether S ∩L is an empty set or not. We fix
S = {3, 4} and evaluate with parameters according to the
following cases: for (a), we assume X1 is uniformly distributed
or PX1 = 0.8, and then generate the whole sequence based on
the value of X1 and T . (b), we consider either L = {4, 5} or
L = {5, 6}. We compare the absolute error resulted from each
mechanism under each case.

The results are shown in Fig. 4(a). Observe from Fig. 4(a),
all mechanisms achieve zero-EAE when φ = 0.25. When φ ̸=

0.25, M1 outperforms M2, the reason is that, to guarantee
perfect privacy, M1 tends to release most of the local answers
as 0 while M2 releases most answers as 1. Since PX (k)

L
(vL)

happens with probability less than 1/2, releasing more 0s
is more accurate than releasing more 1s. Also, observe that
the EAE of M1 first increases then decreases to 0 with φ.
Intuitively, the value of R(X,Q) decreases with φ, and larger
R(X,Q) implies larger probability to directly release the
answer. That is why EAE is smaller when φ is small. For
large φ, the dependence of data increases, and each user’s
genomic sequence can hardly match vL. As a result, the real
local answer for each user is 0. Thus, M1 which releases more
0s achieves 0-EAE when φ = 1. For case 2, from Fig. 4(b),
the EAE for M1 is a constant, this is because when data
is uniformly distributed, E =

1
4 , which is smaller than 0.5.

As a result, M1 releases 0 all the time, hence incurring a
constant error for different φ. It is worth noting that each case
in Fig. 4(a) provides lower Pe than those in Fig. 4(b). The
reason is that the prior of case 2 is more skewed and requires
less perturbation.

Then, we examine how data prior affects the performance
of M1 and M2. We let PX1(A) = 0.8, and let vL = {A, A},
which means, each local answer A(k) is more likely to be
1 than 0, and as φ increases the probability of PA(k)(1)

increases. The comparison of the two mechanisms’ perfor-
mance is shown in Fig. 4(c) and Fig. 4(d). We can observe that
under case 1 and case 2, both mechanisms’ EAEs increase as φ

increases since larger φ implies smaller R(X,Q). On the other
hand, M2 performs better than M1, because each true local
answer is more likely to be 1, and M2 tends to release 1 while
M1 tends to release 0 under high data correlations. It is worth
noting that when φ = 0.25, the data is i.i.d. For case 1, each
mechanism releases the true answer and achieves 0-EAE; for
case 2, M1 and M2 release 1 when XL̄ = vL̄, since E ≤ 0.5.

Fig. 5. EAE comparison between the central and local mechanisms (a) with
different correlation parameters (b) with different length of intersected data.

As a result, an error is incurred when XL∩S ̸= vL∩S (each
local A(k)

= 1 when XL̄ = vL̄ and XL∩S = vL∩S ).

C. Comparison Between Centralized and Local Mechanism

We next compare the EAEs incurred by the local
and centralized mechanisms, consider K independent users
who hold genomic data, denote X(k) as the i-th user’s
genomic data sequence with a length of N , i.e., X(k)

=

{X (k)
1 , X (k)

2 , . . . , X (k)
N }. It is assumed that the prior of each

X (k)
1 is uniformly distributed, and the correlation of between

the data from one to another follows Markov property, which
can be summarized as follows: PX (k)

k+1|X
(k)
k

(δ|γ ) = b, and
PX (k)

k+1|X
(k)
k

(γ |γ ) = a, where k denotes the index of different
genomic data, a ≥ b and δ, γ are possible realizations from
the support of the genomic data: {A, T, G, C}. Therefore:
a + 3b = 1. Under the above setting, we first assume S = 1,
2 and L = 3, 4, v = {A, T }. That is, A(k)

= 1 iff X (k)
3,4 =

{A, T }. We next show how different mechanisms perform
under this setting.

We vary the value of b from 0 (strong dependence) to
0.25 (independent), and observe the EAEs resulted from
different mechanisms. Observe that when b = 0.25, which
means data within the genomic sequence are independent,
both mechanisms achieve zero expected absolute error; when
b = 0, referring to the strongest dependence scenario, the
central mechanism always results in smaller EAE than the
local mechanism.

We then fix the correlation to be b = 0.5, and then
vary the number of intersected data length from 0 to 8, i.e.,
L = {3, 4, 5, 6, 7, 8, 9, 10}, and increase the length of S ,
from {1, 2} to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We then compare
the resulted expected absolute error, and the result is shown
in Fig. 5. Observe that, with the increase of the number of
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Fig. 6. Comparison between the privacy guarantee by M1 or M2 and DP.

intersected data lengths, both mechanisms result in a larger
expected error. However, the error of the local model increases
much faster than the central model.

D. Comparison With Differential Privacy-Based Mechanisms

In this part, we compare the performance of the proposed
mechanism with (Local) Differential Privacy [28]. Since our
mechanisms guarantee perfect privacy, equivalently, under the
privacy notion of DP, ϵ = 0. Then, in the following, we show
that under different Pe or EAE, the minimum value of ϵ

(a smaller ϵ indicates a stronger privacy guarantee) provided
by different mechanisms. Under the local setting, we use
a binary randomized response perturbation mechanism that
satisfies LDP. In [28], an optimal mechanism is derived under
LDP constraints: Pr(Y = A) = eϵ

1+eϵ , and Pr(Y ̸= A) = 1
eϵ+1 ,

wherein the binary case, the latter stands for the Pe. On the
other hand, in [29], the minimum MSE resulted by the LDP-
based mechanism for aggregated count query is given by:
N eϵ(eϵ

+1)

(eϵ−1)2 . We next present the comparison under two cases:
the comparison of the Pe and the comparison of the MSE.
The results are shown in Fig. 6. Observe that under a larger
Pe or MSE, Differential Privacy can provide a better privacy
guarantee with a small ϵ. However, our proposed mechanisms
always provide perfect privacy.

E. Evaluation With Hidden Markov Model

Since the real-world genomic dataset contains private infor-
mation and is infeasible to access. We next evaluate with the
Hidden Markov Model (HMM), which is widely adopted in
genetics for a wide range of tasks that require a probabilistic
model of the genome [15], [19], [30]. In the HMM model,
the experimental data (set) is generated from a reference
dataset with certain parameters (π, θ). In this experiment,
we consider the reference dataset contains K = 100 users
genomic sequence, each with a length of N = 20. We treat
each genotype at a certain location as a state. When generating
the experiment data sequence, we randomly pick one data
sequence from the reference dataset to begin with. For each of
the following genotypes, we make it identical to the state of the
same sequence with a probability of π , and switch to another
state from another sequence with a probability of (1 − π)/

(N − 1). It is worth noting that the switching probabil-
ity of π can be used to measure the dependence in the
genomic sequence. A larger value of π indicates that genomic
sequences in the experimental dataset would preserve sim-
ilar patterns to the reference dataset. Thus the dependence

Fig. 7. Generating experiment dataset from reference dataset with Hidden
Markov Model (hmm).

is strong. On the other hand, for a small π , each geno-
type in the experiment dataset contains large randomness,
and hence the dependence is weak. Besides the switching
probability, we add randomness to the experimental dataset
with an error probability θ . That said, each time HMM
model copies a genotype from the reference dataset, there is
a probability of θ to substitute by randomly sampling one
from {A, T, G, C}. Finally, we compare it with the mechanism
proposed in [15], which is the most relative mechanism in the
literature. Note that the mechanism in [15] hides genotypes
at certain locations, which makes the query aggregation not
directly applicable. To this end, we consider two types of
post-processing strategies: one is to sample genotypes at
hidden locations from a uniform distribution, and the other
is to sample from the prior distribution calculated from the
frequency. Figure 7 depicts the process that an HMM model
generates an experimental dataset from the reference dataset.

To generate the experimental dataset, we consider two sets
of reference dataset, the first reference dataset is sampled
from a uniform distribution. The second reference dataset is
a sample from Sample GenBank Record [31]. We generate
K = 1000 users’ genomic sequence as the experimental
data with π and θ . In the following experiments, we vary
the value of π from 0 to 0.5, and fix the value of θ to be
0.01 and 0.05, respectively. Then, we calculate the frequency
of the appearance of different combinations of genotypes
as the prior distribution and the conditional probabilities.
Specifically, to calculate the distribution of A in the central
setting, we find the ratio of Ā/K , where Ā denotes the true
aggregate value, this value converges to PA(k)(1) for each
individual (for large K ). Under the independent user assump-
tion (each user in the experimental dataset is generated by
HMM independently), A is binomially distributed. Hence, its
prior distribution can be calculated accordingly by each PA(k) .
From there, we implement our local and central mechanisms
accordingly for T = 1000 times and calculate the average
values.

We first compare the local models with different length
of |L ∩ S|, the results are shown in Fig.8(a) and Fig.8(b)
respectively (Fig.9(a) and Fig.9(b) for real-world sample).
Observer that, as π increases, the Pe of each case increases
accordingly. That is because the dependence increases with
π , and Pe increases with the strength of the dependence.
Another observation is that Pe also increases with the length of
intersected locations. The reason is the dependence between
the queried genotypes and the sensitive genotypes increases
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Fig. 8. Numerical results of the Hidden Markov Model generated from a synthetic reference dataset, (a), (b) for individual average absolute error (AAE)
under different cases of the overlap L ∩ S (denoted as O), We sample from the prior for the genotypes at the hidden locations for Ye’s mechanism in [15];
(c), (d) for aggregate error, which compares empirical error in aggregation when deploying local and central mechanisms.

Fig. 9. Numerical results of the Hidden Markov Model generated from real-world genomic data, (a), (b) for individual average absolute error (AAE) under
different cases of L ∩ S(denoted as O), We sample from the uniform distribution for the genotypes at the hidden locations for Ye’s mechanism in [15];
(c), (d) for aggregate error, which compares empirical error in aggregation when deploying local and central mechanisms.

with the length of intersected locations. It is worth noting that
for larger θ , the randomness in the dataset increases, which
results in smaller dependence among the genomic sequence,
and hence incurs a smaller Pe, which explains why sub-
case (b) always incurs smaller errors than subcase (a).

We then compare the local model and the central model
according to different θ and π . In addition, we compared our
models with those based on DP with Laplace mechanisms.
For each model, we modify the value of the privacy budget
ϵ, and compute the empirical absolute error by implementing
ϵ-DP. Then we find those mechanisms that incur similar
aggregation errors to our mechanisms. The corresponding
values of ϵ and the comparison results are shown in Fig. 8(c)
and Fig. 8(d), respectively (Fig.8(c) and Fig.9(d) for real-
world sample). Observe that the central model always provides
smaller empirical errors compared to the local models. On the
other hand, to achieve comparable performance to our mech-
anism, the DP-based mechanism causes too much privacy
leakage (ϵ is greater than 4). It is worth noting that, the
ϵ values yielding comparable accuracy to our local/central
mechanisms were found to be 15 and 9 for synthetic and real-
world data, respectively. That is to say, DP mechanisms need
different amounts of privacy budget to achieve comparable
utility (in terms of error probability) to our mechanisms for
synthetic and real-world data respectively. The primary reason
for this difference is rooted in the inherent characteristics of
real-world data sequences, where each local A(k) is more likely
to be 0. In view of privacy preservation, our mechanisms
may introduce some noise by perturbing certain 0s to 1s.
Consequently, this perturbation leads to an increase in the
accumulated error. Another observation is when choosing DP

with a reasonable budget for privacy, such as 2 or 3, the
accuracy gaps with our mechanisms are significant.

VI. CONCLUSION

The problem of privacy-preserving counting query-
answering mechanisms for genotype aggregation is studied
in this paper. We propose information theoretical privacy-
preserving mechanisms based on both the local and the central
settings. The proposed mechanisms guarantee perfect privacy
for genome data at sensitive locations. We then derive a
lower bound of Pe for an arbitrary mechanism under per-
fect privacy and show the optimality of our mechanisms
under some special cases. Finally, we simulate with both
synthetic data and real-world data sample combination with
Hidden Markov Model to show the performance of our
proposed mechanisms under different scenarios. The results
also contain a comparison with Differential Privacy-based
mechanisms, which shows that to provide comparable query
accuracy, DP-based mechanisms incur much larger privacy
leakages.

APPENDIX A
PROOF OF THEOREM 2

In this Section, we provide some more intuition behind
the derivation of the mechanisms and then derive the error
probability for the mechanisms. Since the proof for Theorem 2
is for local mechanism only, we remove the superscript (k) for
simplicity.
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A. Deriving the Mechanisms and Error Probability

We first expand the term PY |XS (y|xS) as follows

PY |XS (y|xS) =
∑
xL̄

PY |XL̄,XS (y|xL̄, xS)PXL̄|XS (xL̄|xS).

(20)

In order to satisfy the per-user perfect privacy condition,
we require that PY |XL̄,XS (y|xL̄, xS)Pr(xL̄|xS) = f (y, xL̄),
∀xL̄, y, i.e., each term in (20) does not depend on xS . To this
end, we have

PY |XL̄,XS (y|xL̄, xS) =
f (y, xL̄)

PXL̄|XS (xL̄|xS)
, y ∈ {0, 1}. (21)

From the above equation, we make PY |XL̄,XS (y|xL̄, xS) a
valid probability mass function, by picking f (y, xL̄) as fol-
lows

0 ≤ f (y, xL̄) ≤ PXL̄|XS (xL̄|xS),∀xL̄, xS ,

⇒ f (y, xL̄) ≤ min
w

PXL̄|XS (xL̄|xS = w). (22)

B. Error Probability for Mechanism M1

Recall that our goal is to minimize the probability of error
per user. We first expand the first term as follows:

PY,XL(0, vL) =
∑
xS̄

PY |XL,XS̄
(0|vL, xS̄)PXL,XS̄ (vL, xS̄)

=

∑
xS̄

PY |XL,XS̄ (0|vL, xS̄)PXL,XS̄ (vL, xS̄)

=

∑
xS̄

(1 − PY |XL,XS̄
(1|xL, xS̄))PXL,XS̄

(vL, xS̄)

= PXL(vL) −
∑
xS̄

PY |XL,XS̄
(1|vL, xS̄)PXL,XS̄

(vL, xS̄)

(a)
= PXL(vL) −

∑
xS̄

PY |XL̄,XS (1|vL̄, xS)PXL̄,XS (vL̄, xS)

(b)
= PXL(vL) −

∑
xS̄

f (1, vL̄)PXS (xS).

= PXL(vL) − f (1, vL̄)PXL∩S (vL∩S) (23)

where step (a) follows from the fact that L∩ S̄ = L̄∩S , while
step (b) follows from (21).

Similarly, we have the following set of steps for the second
term as follows:∑

xL ̸=vL

PY,XL(1, xL)

=

∑
xL ̸=vL

∑
xS̄

PY |XL,XS̄ (1|xL, xS̄)PXL,XS̄ (xL, xS̄)

=

∑
xL ̸=vL

∑
xS̄

PY |XL̄,XS (1|xL̄, xS)PXL̄,XS (xL̄, xS)

(b)
=

∑
xL ̸=vL

f (1, xL̄)
∑
xS̄

PXS (xS),

=

∑
xL ̸=vL:xL̄=vL̄

f (1, vL̄)
∑
xS̄

PXS (xS)

+

∑
xL ̸=v:xL̄ ̸=vL̄

f (1, xL̄)
∑
xS̄

PXS (xS)

(c)
= f (1, vL̄) Pr(XL∩S ̸= vL∩S) +

∑
xL̄ ̸=vL̄

f (1, xL̄), (24)

where step (a) follows from (21), while in step (b), the function
f (0, vL̄) does not depend on xS . Step (c) follows from the
following:∑

xL ̸=vL:xL̄ ̸=vL̄

f (1, xL̄)
∑
xS̄

PXS (xS)

=

∑
xL ̸=vL:xL̄ ̸=vL̄

f (1, xL̄)
∑
xS̄

PXS̄ ,XL∩S (xS̄ , xL∩S)

=

∑
xL ̸=vL:xL̄ ̸=vL̄

f (1, xL̄)PXL∩S (xL∩S)

=

∑
xL̄ ̸=vL̄

f (1, xL̄)
∑

xL∩S

PXL∩S (xL∩S) =
∑

xL̄ ̸=vL̄

f (1, xL̄).

(25)

C. Error Probability for Mechanism M2

We write the error probabilities in terms of f (0, xL̄) and
following similar steps as in M1. For the first term, we have
the following set of steps:

PY,XL(0, vL) =
∑
xS̄

PY |XL,XS̄ (0|vL, xS̄)PXL,XS̄ (vL, xS̄)

=

∑
xS̄

PY |XL̄,XS (0|vL̄, xS)PXL̄,XS (xL̄, xS)

=

∑
xS̄

f (0, vL̄)PXS (xS)

= f (0, vL̄)PXL∩S (vL∩S).

For the second term, we have the following set of steps:∑
xL ̸=vL

PY,XL(1, xL)

=

∑
xL ̸=vL

∑
xS̄

PY |XL,XS̄
(1|xL, xS̄)PXL,XS̄ (xL, xS̄)

=

∑
xL ̸=vL

∑
xS̄

(1 − PY |XL,XS̄
(0|xL, xS̄))PXL,XS̄

(xL, xS̄)

= 1 − PXL(vL) −
∑

xL ̸=vL

∑
xS̄

f (0, xL̄)PXS (xS)

= 1 − PXL(vL)

− f (0, vL̄) Pr(XL∩S ̸= vL∩S) −
∑

xL̄ ̸=vL̄

f (0, xL̄).

We optimize the per-user error probability for the two
release mechanisms for fixed q , s and vL as follows.

For M1: from (23) and (24), the per-user error probability is

Pe,1 = PXL(vL) +
∑

xL̄ ̸=vL̄

f (1, xL̄)

+ f (1, vL̄)(2 Pr(XL∩S ̸= vL∩S) − 1). (26)

We minimize the probability of error as follows. Here, we have
two cases depending on the value of Pr(XL∩S ̸= vL∩S).
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If Pr(XL∩S ̸= vL∩S) ≥ 1/2, we pick f (1, xL̄) = 0,∀xL̄.
When Pr(XL∩S ̸= vL∩S) < 1/2, we pick f (1, vL̄) =

minw PXL̄|XS (xL̄|xS = w) and f (1, xL̄) = 0,∀xL̄ ̸= vL̄.
For M2 The per-user error probability for M2 is

Pe,2 = 1 − PXL(vL) −
∑

xL̄ ̸=vL̄

f (0, xL̄)

− f (0, vL̄)(2 Pr(XL∩S ̸= vL∩S) − 1), (27)

where the error probability is minimized when f (0, xL̄) =

minw PXL̄|XS (xL̄|w),∀xL̄ ̸= vL̄. For f (0, vL̄), we have
two special cases: when Pr(XL∩S ̸= vL∩S) > 1/2,
we pick f (0, vL̄) = minw PXL̄|XS (vL̄|w), otherwise we set
f (0, vL̄) = 0.

This concludes the proof for Theorem 2.

APPENDIX B
PROOF OF THEOREM 3

Proof: According to Fano’s inequality [32], the lower
bound of the error probability can be expressed as:

h(A|Y ) ≤ h(Pe) + P(e) log(|A| − 1). (28)

As |A| = 2, Eq. (28) can be expressed as:

h(Pe) ≥ h(A|Y ) = h(A) − I (A; Y ). (29)

In Eq.(29), h(A) is a constant given the distribution of A
(which is a deterministic function of XL). Next, we focus on
I (A; Y ). To derive a lower bound of Pe, we are looking at the
upper bound of I (A; Y ). Note that random variable A can be
represented as:

A = 1{XL=vL} = 1{XL̄=vL̄}
× 1{XL∩S=vL∩S }. (30)

Denote AL̄ = 1{XL̄=vL̄}
and AL∩S = 1{XL∩S=vL∩S }. There-

fore, using this notation, we can write A = AL̄× AL∩S . Then
the upper bound of I (A; Y ) can be derived as:

I (A; Y ) = I (A; Y |XS) (31)
≤I (A;X|XS)

= h(A|XS) − h(A|X, XS)

= h(A|XS), (32)

where (22) follows from the privacy constraint in (1), (23)
follows by data processing. From another perspective:

I (A; Y ) = I (AL̄AL∩S ; Y )

≤I (AL̄, AL∩S ; Y )

= I (AL∩S ; Y ) + I (AL̄; Y |AL∩S)

= I (AL̄; Y |AL∩S) (33)
≤ I (AL̄; X |AL∩S)

= h(AL̄|AL∩S) − h(AL̄|X, AL∩S)

= h(AL̄|AL∩S), (34)

where (24) follows from the privacy constraint in (1),
(25) follows from data processing. From (31) and (33),
we obtain an upper bound on I (Y ; A) as follows: I (A; Y ) ≤

min(h(AL̄|AL∩S), h(A|XS)) Then, substituting the above

bound in (29), we arrive at the lower bound on error prob-
ability stated in Theorem 3.

h(Pe) ≥ h(A) − min{h(AL̄|AL∩S), h(A|XS)}. (35)

□

APPENDIX C
PROOF OF CLAIMS MADE IN REMARK 2

1) when L ∩ S = ∅, from Theorem 3, we have:

Pe ≥ h−1(I (A;XS)
)
. (36)

On the other hand, according to Theorem 2, when L∩S = ∅,
E = 0, and

Pe,1 = PXL(vL) − min
w

PXL|XS (vL|w),

Pe,2 = 1 − PXL(vL) −
∑

xL ̸=vL

min
w

PXL|XS (xL|w). (37)

We next consider two sub-cases regarding the relationship
between A and XS :

a). When I (A;XS) = h(A), from (36):

Pe ≥ h−1(h(A) − H(A|XS)) = h−1(h(A))

= min{PA(0), PA(1)}. (38)

Since h(A|XS) = 0, minw PXL|XS (xL|w) = 0 for all xL.
From (37), we have Pe,1 = PA(1), Pe,2 = PA(0), which
implies that the minimal Pe resulted by M1 and M2 is
min{PA(0), PA(1)}.

b) When I (A;XS) = 0, from (36), the lower bound implies
Pe ≥ 0. From (37), we have Pe,1 = Pe,2 = 0, which implies
that the minimal Pe resulted by M1 and M2 is 0.

The above discussion shows that under the two extreme
cases, the proposed mechanism achieves Pe matches the lower
bound.

2) When L ∈ S , H(A|XS) = H(AL̄|AL∩S) = 0. The result
follows sub-case a), which matches the lower bound from
Theorem 3. The intuition is when all queried locations are
sensitive, both mechanisms sample random answers according
to the data prior to keep the queried sequence perfectly private.

APPENDIX D
PROOF OF PROPOSITION 1

We next show the lower bound of the E AE under the
proposed mechanisms, the goal is to show that when users are
i.i.d, the bounds are tight (i.e. the inequality can be replaced
by equality).

In the following, we let Y denote the aggregated results
from each local answer Y (k): Y =

∑K
k=1 Y (k), and A denote

the real answer from each user: A =
∑K

k=1 A(k). By Jensen’s
Inequality:

E |Y − A| ≥ |E(Y − A)|

=

∣∣∣∣∣E
K∑

k=1

(Y (k)
− A(k))

∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

E(Y (k)
− A(k))

∣∣∣∣∣
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=

∣∣∣∣∣
K∑

k=1

[
PY (k),A(k)(1, 0) − PY (k),A(k)(0, 1)

]∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

P
Y (k)|A(k)

(1|0)PAk (0) −

K∑
k=1

PY (k)|A(k)(0|1)PA(k)(1)

∣∣∣∣∣
=

∣∣ ∑
k,xS̄

P(Y (k)
= 1|XL ̸= vL, XS̄ = xS̄)

P(XS = xS |XL ̸= vL)P(XL ̸= vL)

−

∑
k,xS̄

P(Y (k)
= 0|XL = VL, XS̄ = xS̄)

P(XS = xS |XL = vL)P(XL = vL)
∣∣, (39)

where P(Y (k)
= 0|XL = vL, XS̄ = xS̄) and P(Y (k)

=

1|XL ̸= vL, XS̄ = xS̄) are parameters of the mechanisms.
If users are i.i.d, substituting µ1 we have:

|E(Y − A)| =

K
∣∣∣[PXL(vL) − min

w
PXL̄|XS (vL̄|w)PXL∩S (vL∩S)

]∣∣∣ .
(40)

Similarly, substituting µ2, we have:

|E(Y − A)|

K

∣∣∣∣∣∣
1 − PXL(vL) −

∑
uL̄ ̸=vL̄

min
w

PXL̄|XS (uL̄|w)

∣∣∣∣∣∣ .
(41)

As such, when users are i.i.d (same distribution leads to the
same mechanism, either M1 or M2), the lower bound and the
upper bound of the proposed mechanisms match each other,
which means under the i.i.d assumption, the bounds we derived
are tight.

APPENDIX E
PROOF OF THEOREM 4

Proof:

PY |XS (y|xS)

=

∑
a

PY |A,XS (y|a, xS)PA|XS (a|xS)

=

∑
a ̸=y

PY |A,XS (y|a, xS)PA|XS (a|xS)

+ PY |A,XS (y|y, xS)PA|XS (y|xS),

=

∑
a ̸=y

PA(y)

[
1 −

minw PA|XS (a|w)

PA|XS (a|xS)

]
PA|XS (a|xS)

+

[
PA(y) + (1 − PA(y))

minw PA|XS (a|w)

PA|XS (a|xS)

]
PA|XS (y|xS)

= PA(y)
∑
a ̸=y

[
PA|XS (a|xS) − min

w
PA|XS (a|w)

]
+PA(y)PA|XS (y|xS) + (1 − PA(y))min

w
PA|XS (a|w) (42)

which can be further expressed as:

1 + PA(y) − PA(y)
∑

a

min
w

PA|XS (a|w).

As a result, PY |XS (y|xS) is independent of XS . □

APPENDIX F
PROOF OF THEOREM 5

Proof:

E[|Y − A|] =
∑

y

∑
a ̸=y

∑
xS

|y − a|PY,A,XS (y, a, xS)

=

∑
y

∑
a ̸=y

∑
xS

|y − a|PY |A,XS (y|a, xS)PA|XS (a|xS)PXS (xS)

=

∑
y

∑
a ̸=y

∑
xS

|y − a|PXS (xS)

· PA(y)

[
1 −

minw PA|XS (a|w)

PA|XS (a|xS)

]
PA|XS (a|xS)

=

∑
y

∑
a ̸=y

∑
xS

|y − a|

· PA(y)
[

PA,XS (a, xS) − min
w

PA|XS (a|w)PXS (xS)
]

=

N∑
a=0

∑
y ̸=a

|y − a|PA(y)
[

PA(a) − min
w

PA|XS (a|w)
]
.

□
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