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ABSTRACT

In this study, we investigate the performance of several regression
models by utilizing a database of dielectric constants. First, the
database is processed using the Matminer Python library to create
features, and then divided into training, validation, and testing
subsets. We evaluate several models: Linear Regression, Random
Forest, Gradient Boosting, XGBoost, Support Vector Regression,
and Feedforward Neural Network, with the objective of predicting
the bandgap values. The results indicate superior performance of
tree-based ensemble models over Linear Regression and Support
Vector Regression. Additionally, a Feedforward Neural Network
with two hidden layers demonstrates comparable proficiency in
capturing the relationship between the features generated by
Matminer and the bandgap target values.
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1 INTRODUCTION

The field of Materials Informatics represent a data-centric
methodology aimed at accelerating innovations in materials design
and discovery [9]. Currently, an array of open-source software is
available for materials scientists and engineers, facilitating the
integration of informatics into their research. Notably, Matminer—
an open-source Python library designed for materials informatics—
has gained popularity due to its extensive suite of tools for data
extraction and analysis, robust feature extraction capabilities, and
open APIs that provide unrestricted access to online databases of
materials data [10].

The Matminer dielectric constant dataset [8] is a
comprehensive repository of data encompassing the dielectric
properties of over 1,000 inorganic compounds as well as
additional attributes such as formation energy, band gap, and
melting point. The dielectric constant, also known as the
relative permittivity, quantifies the capacity of a material to store
electrical energy when subjected to an electric field, making it a
crucial parameter for materials in the realms of electronics and
energy storage. This dataset is a valuable resource for materials
science and engineering researchers focused on developing novel
materials for applications such as capacitors, solar cells, and
sensors. The dataset was generated using Density Functional
Perturbation Theory utilizing the Perdew-Burke-Ermzerhof
(PBE) functional.
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Density Functional Theory (DFT) is a powerful quantum
mechanical theory that accurately describes many material
properties at their ground state. Density Functional Perturbation
Theory (DFPT) [1] builds upon DFT to incorporate the effects of
an external perturbation, such as changes in the electronic structure
induced by an external electric field. This extension enables the
calculation of a wide range of material properties, such as dielectric
constants, phonon frequencies, and piezoelectric coefficients. PBE
functional developed by Perdew, Burke, and Ernzerhof, based on
the generalized gradient approximation (GGA) [7] is widely used
to create reliable materials datasets.

Band gap is a fundamental concept in materials science and
solid-state physics that plays a crucial role in determining the
electrical and optical properties of a material. It is defined as the
energy gap between the top of the valence band and the bottom of
the conduction band within a material. Materials with wider band
gaps are typically insulators, whereas those with a narrow or
nonexistent band gap act as semiconductors or conductors,
respectively. Understanding the band gap of a material is essential
for designing and optimizing a wide range of electronic and
photonic devices, as it determines how the material responds to
electrical and optical stimuli.

2 METHODS

Linear Regression (LR) is a widely used statistical method for
modeling the relationship between a dependent variable and one or
more independent variables, specifically capturing their linear
correlation. Although LR exhibits a comparatively high model bias,
it remains extensively utilized in practical applications ranging
from stock price forecasts to the analysis of experimental data,
largely due to its strong generalizability and interpretability.
Furthermore, LR serves as the cornerstone for numerous
sophisticated regression methods, rendering it an indispensable
instrument for data analysts and researchers across diverse
disciplines.

Random Forest (RF) [2] is a machine learning
algorithm widely utilized for both regression and
classification tasks. It operates by constructing a set of
many decision trees, each generated from a subset of features,
thereby ensuring a diverse population of models.

Figure 1. Random Forest model
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Figure 2. Gradient Boosting model

An RF model aggregates the predictions made by each individual
tree, using either the mean or mode as its final prediction. RF has
been very popular due to its capability of handling high-
dimensional datasets with numerous and diverse features. Another
significant advantage of RF is its robustness against overfitting,
which is a common issue when a single decision tree is trained on
a complex dataset.

Gradient Boosting (GB) [5] is a machine learning technique
employed for both regression and classification tasks. Similar to
RF, the goal of GB is to generate numerous decision trees to cover
a large model population. However, GB distinguishes itself by
constructing trees sequentially: each new tree is built to correct the
errors made by the previous ones. This is achieved by fitting the
new tree to the negative gradient of the loss function, which
represents the direction in which the model should be adjusted to
improve accuracy. This iterative process continues until the model
reaches a predefined level of precision. GB's capacity to manage
complex datasets and yield highly precise predictions has made it a
favored algorithm in diverse domains such as natural language
processing, computer vision, and recommendation systems.
XGBoost [3], short for eXtreme Gradieng Boosting, enhances
traditional gradient boosting methods through a suite of algorithmic
improvements. These enhancements accelerate model training and
increase predictive accuracy. XGBoost incorporates several
regularization algorithms, such as Shrinkage and Column
Subsampling, which help prevent overfitting during tree generation
and improve its overall generalization capabilities. Additionally,
XGBoost is designed to exploit modern CPU and GPU
architectures for computational efficiency. The combination of
these enhancements makes XGBoost a highly desired tool for
various applications, such as customer behavior prediction in
marketing and medical data analysis in healthcare.

Figure 3. XGBoost model

Support Vector Machine (SVM) [4] is a machine learning algorithm
designed to optimize the margin between the decision boundary and
the nearest data points, known as support vectors, to improve its
predictive generalizability on new data. Support Vector Regression
(SVR) is a popular regression model based on SVM algorithm that
has been implemented in numerous machine learning libraries. SVR
utilizes kernel functions, such as the radial basis function (RBF) or
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a polynomial function, to model non-linear relationships between
input features and target variables effectively. These kernel
functions facilitate the mapping of input data to a higher-
dimensional space, where linear separation is possible. The
robustness of SVR makes it suitable for diverse applications across
fields such as finance, engineering, and biology.

Figure 4. Support Vector Regression model

Figure 5. Feedforward Neural Network model

A Feedforward Neural Network (FFNN) [6] is a machine learning
architecture that comprises multiple layers of nodes or neurons.
These layers include an input layer that takes in data, followed by
several hidden layers that process the data sequentially, and an
output layer that delivers the final prediction. Each neuron in one
layer is connected to neurons in the subsequent layer through
weights. These weights are iteratively adjusted during the training
phase to minimize the discrepancy between the prediction of the
network and the actual data. FFNN are renowned their ability to
learn complex patterns within datasets and make accurate
predictions, making them a popular choice for many machine
learning tasks such as image and speech recognition, natural
language processing, and financial forecasting.

At first, the dielectric constant dataset from Matminer is used,
and the bandgap feature is designated as the target variable.
Supplementary input features comprise the chemical formula, the
refractive index (denoted as n), the space group (an integer
specifying the crystallographic structure of the material), the
structure (presented as a pandas Series defining the structure of the
material), the number of sites (nsites, representing the number of
atoms in the unit cell of the calculation), the volume of the cell,
among others.

To enrich the dataset with additional features, specific
featurizers from the Matminer library are employed. These
featurizers are algorithms designed to extract meaningful
information from the raw data, transforming it into quantifiable
attributes that can be utilized by machine learning models to
improve their predictive performance. The following featurizers are
used:

1. matminer.featurizers.composition. ElementProperty: This
feature extractor calculates elemental properties such as
atomic number, atomic mass, atomic radius,
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electronegativity, and so on, for a given chemical
composition.

2. matminer.featurizers.structure.DensityFeatures: This feature
extractor calculates various features related to the density of
a crystal structure, such as the total volume of the unit cell,
the packing fraction, and the Voronoi volume of each atom.

3. matminer.featurizers.structure. CoulombMatrix: This feature
extractor calculates a matrix of pairwise interactions
between atoms in a crystal structure, based on their charges
and distances from each other.

4. matminer.featurizers.composition. OxidationStates.: This
feature extractor calculates the most likely oxidation states
of each element in a given chemical composition, based on
the electronegativity and coordination number of each
element.

5. matminer.featurizers.structure. ElectronicRadial Distribution:
Function: This feature extractor calculates the distribution of
electron density around each atom in a crystal structure, as a
function of radial distance from the atom.

The dataset comprises 166 potential features and is partitioned into
training, validation, and testing sets with proportions of 70%, 15%,
and 15%, respectively.

The Scikit-learn library is employed for the construction of the
linear regression models. The R? score and the Root Mean Square
Error (RMSE) are utilized as metrics for model evaluation. For the
RF model, the ensemble comprises 1,000 trees, as indicated by the
number of estimators. The GB model incorporates 100 estimators,
adopts a learning rate of 0.2, and a maximum depth of 5, with each
new tree intended to enhance the performance of the model
incrementally. The XGBoost model is set with 50 estimators. For
the SVR model, the RBF kernel is chosen with a gamma of 8x1077
and a margin of error or epsilon of 0.1. The RBF kernel is favored
for its efficiency in mapping input features into a higher-
dimensional space. The FFNN is designed with two hidden layers,
containing 128 and 64 units, respectively, a dropout rate of 0.1, and
a mini-batch size of 16. The FFNN is trained using the Adam
optimizer over 200 epochs.

3 RESULTS AND DISCUSSION

The outcomes of the six models are delineated in Table 1.

Table 1. Comparative performance of six regression models.

Model Training Validation Test

R? RMSE R? RMSE R? RMSE

LR 0.732 0.831 0.582 1.081 N/A N/A
RF 0975 0239 0.752 0.833 0.780 0.708
GB 0999  0.045 0.804 0.740 0.818 0.644
XGBoost  0.999  0.029 0.783 0.778 0.818 0.643
SVR 0943 0384 0.535 1.140 0.405 1.164
FFNN 0978 0.091 0.819 0.504 0.820 0.395

From the results shown in Table 1 one can note that the LR model
is inadequate for capturing the non-linearity inherent in the actual
data, as evidenced by its inferior results on the validation set.
While the SVR yielded satisfactory outcomes during the training
phase, its performance on the validation and testing sets is
suboptimal. In contrast, the tree-based ensemble models, i.e.,
RF, GB, and XGBoost, exhibited superior performance,
underlying their capability and efficiency. The FFNN
shows demonstrate a comparable performance to the ensemble
models displaying robust results on the testing subset.
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4 CONCLUSIONS

This investigation assessed six regression models applied to a
dielectric constant materials dataset, with an emphasis on
predicting bandgaps. The results indicate that LR and SVR models
yield the least satisfactory results for this application. In contrast,
the GB and XGBoost methods as well as the FFNN architecture
delivered the most accurate predictions. This demonstrates their
superior capacity to learn complex input-output relationships,
making them well-suited for tasks requiring high accuracy and the
analysis of extensive datasets.

All ML models were implemented on Jupyter Notebook,
which substantially increased the student’s engagement and
comprehension of the algorithms in this project. With the
interactive platform and GUI interface, the student could easily
evaluate the significance of input parameters in the machine
learning algorithm. This project also honed students’ analytical
skills and hands-on experiences, providing a profound awareness
of their potential for materials informatics and real-world
engineering applications.
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