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ABSTRACT
In this study, we investigate the performance of several regression 
models by utilizing a database of dielectric constants. First, the 
database is processed using the Matminer Python library to create 
features, and then divided into training, validation, and testing 
subsets. We evaluate several models: Linear Regression, Random 
Forest, Gradient Boosting, XGBoost, Support Vector Regression, 
and Feedforward Neural Network, with the objective of predicting 
the bandgap values. The results indicate superior performance of 
tree-based ensemble models over Linear Regression and Support 
Vector Regression. Additionally, a Feedforward Neural Network 
with two hidden layers demonstrates comparable proficiency in 
capturing the relationship between the features generated by 
Matminer and the bandgap target values. 
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1 INTRODUCTION 
The field of Materials Informatics represent a data-centric 
methodology aimed at accelerating innovations in materials design 
and discovery [9]. Currently, an array of open-source software is 
available for materials scientists and engineers, facilitating the 
integration of informatics into their research. Notably, Matminer–
an open-source Python library designed for materials informatics–
has gained popularity due to its extensive suite of tools for data 
extraction and analysis, robust feature extraction capabilities, and 
open APIs that provide unrestricted access to online databases of 
materials data [10]. 
 The Matminer dielectric constant dataset [8] is a 
comprehensive repository of data encompassing the dielectric 
properties of over 1,000 inorganic compounds as well as 
additional attributes such as formation energy, band gap, and 
melting point. The dielectric constant, also known as the 
relative permittivity, quantifies the capacity of a material to store 
electrical energy when subjected to an electric field, making it a 
crucial parameter for materials in the realms of electronics and 
energy storage. This dataset is a valuable resource for materials 
science and engineering researchers focused on developing novel 
materials for applications such as capacitors, solar cells, and 
sensors. The dataset was generated using Density Functional 
Perturbation Theory utilizing the Perdew-Burke-Ernzerhof 
(PBE) functional. 

Density Functional Theory (DFT) is a powerful quantum 
mechanical theory that accurately describes many material 
properties at their ground state. Density Functional Perturbation 
Theory (DFPT) [1] builds upon DFT to incorporate the effects of 
an external perturbation, such as changes in the electronic structure 
induced by an external electric field. This extension enables the 
calculation of a wide range of material properties, such as dielectric 
constants, phonon frequencies, and piezoelectric coefficients. PBE 
functional developed by Perdew, Burke, and Ernzerhof, based on 
the generalized gradient approximation (GGA) [7] is widely used 
to create reliable materials datasets.  
 Band gap is a fundamental concept in materials science and 
solid-state physics that plays a crucial role in determining the 
electrical and optical properties of a material. It is defined as the 
energy gap between the top of the valence band and the bottom of 
the conduction band within a material. Materials with wider band 
gaps are typically insulators, whereas those with a narrow or 
nonexistent band gap act as semiconductors or conductors, 
respectively. Understanding the band gap of a material is essential 
for designing and optimizing a wide range of electronic and 
photonic devices, as it determines how the material responds to 
electrical and optical stimuli.  

2 METHODS 
Linear Regression (LR) is a widely used statistical method for 
modeling the relationship between a dependent variable and one or 
more independent variables, specifically capturing their linear 
correlation. Although LR exhibits a comparatively high model bias, 
it remains extensively utilized in practical applications ranging 
from stock price forecasts to the analysis of experimental data, 
largely due to its strong generalizability and interpretability. 
Furthermore, LR serves as the cornerstone for numerous 
sophisticated regression methods, rendering it an indispensable 
instrument for data analysts and researchers across diverse 
disciplines.  
 Random Forest (RF) [2] is a machine learning 
algorithm widely utilized for both regression and 
classification tasks. It operates by constructing a set of 
many decision trees, each generated from a subset of features, 
thereby ensuring a diverse population of models.  

Figure 1. Random Forest model 
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Figure 2. Gradient Boosting model 

An RF model aggregates the predictions made by each individual 
tree, using either the mean or mode as its final prediction. RF has 
been very popular due to its capability of handling high-
dimensional datasets with numerous and diverse features. Another 
significant advantage of RF is its robustness against overfitting, 
which is a common issue when a single decision tree is trained on 
a complex dataset.  
Gradient Boosting (GB) [5] is a machine learning technique 
employed for both regression and classification tasks. Similar to 
RF, the goal of GB is to generate numerous decision trees to cover 
a large model population. However, GB distinguishes itself by 
constructing trees sequentially: each new tree is built to correct the 
errors made by the previous ones. This is achieved by fitting the 
new tree to the negative gradient of the loss function, which 
represents the direction in which the model should be adjusted to 
improve accuracy. This iterative process continues until the model 
reaches a predefined level of precision. GB's capacity to manage 
complex datasets and yield highly precise predictions has made it a 
favored algorithm in diverse domains such as natural language 
processing, computer vision, and recommendation systems. 
XGBoost [3], short for eXtreme Gradieng Boosting, enhances 
traditional gradient boosting methods through a suite of algorithmic 
improvements. These enhancements accelerate model training and 
increase predictive accuracy. XGBoost incorporates several 
regularization algorithms, such as Shrinkage and Column 
Subsampling, which help prevent overfitting during tree generation 
and improve its overall generalization capabilities. Additionally, 
XGBoost is designed to exploit modern CPU and GPU 
architectures for computational efficiency. The combination of 
these enhancements makes XGBoost a highly desired tool for 
various applications, such as customer behavior prediction in 
marketing and medical data analysis in healthcare. 

Figure 3. XGBoost model 

Support Vector Machine (SVM) [4] is a machine learning algorithm 
designed to optimize the margin between the decision boundary and 
the nearest data points, known as support vectors, to improve its 
predictive generalizability on new data. Support Vector Regression 
(SVR) is a popular regression model based on SVM algorithm that 
has been implemented in numerous machine learning libraries. SVR 
utilizes kernel functions, such as the radial basis function (RBF) or 

a polynomial function, to model non-linear relationships between 
input features and target variables effectively. These kernel 
functions facilitate the mapping of input data to a higher-
dimensional space, where linear separation is possible. The 
robustness of SVR makes it suitable for diverse applications across 
fields such as finance, engineering, and biology. 

Figure 4. Support Vector Regression model 

Figure 5. Feedforward Neural Network model 

A Feedforward Neural Network (FFNN) [6] is a machine learning 
architecture that comprises multiple layers of nodes or neurons. 
These layers include an input layer that takes in data, followed by 
several hidden layers that process the data sequentially, and an 
output layer that delivers the final prediction. Each neuron in one 
layer is connected to neurons in the subsequent layer through 
weights. These weights are iteratively adjusted during the training 
phase to minimize the discrepancy between the prediction of the 
network and the actual data. FFNN are renowned their ability to 
learn complex patterns within datasets and make accurate 
predictions, making them a popular choice for many machine 
learning tasks such as image and speech recognition, natural 
language processing, and financial forecasting.  
 At first, the dielectric constant dataset from Matminer is used, 
and the bandgap feature is designated as the target variable. 
Supplementary input features comprise the chemical formula, the 
refractive index (denoted as n), the space group (an integer 
specifying the crystallographic structure of the material), the 
structure (presented as a pandas Series defining the structure of the 
material), the number of sites (nsites, representing the number of 
atoms in the unit cell of the calculation), the volume of the cell, 
among others.  
 To enrich the dataset with additional features, specific 
featurizers from the Matminer library are employed. These 
featurizers are algorithms designed to extract meaningful 
information from the raw data, transforming it into quantifiable 
attributes that can be utilized by machine learning models to 
improve their predictive performance. The following featurizers are 
used: 

1. matminer.featurizers.composition.ElementProperty: This
feature extractor calculates elemental properties such as
atomic number, atomic mass, atomic radius, 

Journal of Computational Science Education Volume 15 Issue 1

March 2024 11



electronegativity, and so on, for a given chemical 
composition. 

2. matminer.featurizers.structure.DensityFeatures: This feature
extractor calculates various features related to the density of
a crystal structure, such as the total volume of the unit cell, 
the packing fraction, and the Voronoi volume of each atom. 

3. matminer.featurizers.structure.CoulombMatrix: This feature
extractor calculates a matrix of pairwise interactions
between atoms in a crystal structure, based on their charges 
and distances from each other. 

4. matminer.featurizers.composition.OxidationStates: This
feature extractor calculates the most likely oxidation states
of each element in a given chemical composition, based on 
the electronegativity and coordination number of each 
element. 

5. matminer.featurizers.structure.ElectronicRadialDistribution:
Function: This feature extractor calculates the distribution of
electron density around each atom in a crystal structure, as a 
function of radial distance from the atom. 

The dataset comprises 166 potential features and is partitioned into 
training, validation, and testing sets with proportions of 70%, 15%, 
and 15%, respectively.  
 The Scikit-learn library is employed for the construction of the 
linear regression models. The R2 score and the Root Mean Square 
Error (RMSE) are utilized as metrics for model evaluation. For the 
RF model, the ensemble comprises 1,000 trees, as indicated by the 
number of estimators. The GB model incorporates 100 estimators, 
adopts a learning rate of 0.2, and a maximum depth of 5, with each 
new tree intended to enhance the performance of the model 
incrementally. The XGBoost model is set with 50 estimators. For 
the SVR model, the RBF kernel is chosen with a gamma of 8´10-7 
and a margin of error or epsilon of 0.1. The RBF kernel is favored 
for its efficiency in mapping input features into a higher-
dimensional space. The FFNN is designed with two hidden layers, 
containing 128 and 64 units, respectively, a dropout rate of 0.1, and 
a mini-batch size of 16. The FFNN is trained using the Adam 
optimizer over 200 epochs. 

3 RESULTS AND DISCUSSION 
The outcomes of the six models are delineated in Table 1. 

Table 1. Comparative performance of six regression models. 

Model Training Validation Test 

R2 RMSE R2 RMSE R2 RMSE 
LR 0.732 0.831 0.582 1.081 N/A N/A 
RF 0.975 0.239 0.752 0.833 0.780 0.708 
GB 0.999 0.045 0.804 0.740 0.818 0.644 

XGBoost 0.999 0.029 0.783 0.778 0.818 0.643 
SVR 0.943 0.384 0.535 1.140 0.405 1.164 
FFNN 0.978 0.091 0.819 0.504 0.820 0.395 

From the results shown in Table 1 one can note that the LR model 
is inadequate for capturing the non-linearity inherent in the actual 
data, as evidenced by its inferior results on the validation set. 
While the SVR yielded satisfactory outcomes during the training 
phase, its performance on the validation and testing sets is 
suboptimal. In contrast, the tree-based ensemble models, i.e., 
RF, GB, and XGBoost, exhibited superior performance, 
underlying their capability and efficiency. The FFNN 
shows demonstrate a comparable performance to the ensemble 
models displaying robust results on the testing subset. 

4 CONCLUSIONS 
This investigation assessed six regression models applied to a 
dielectric constant materials dataset, with an emphasis on 
predicting bandgaps. The results indicate that LR and SVR models 
yield the least satisfactory results for this application. In contrast, 
the GB and XGBoost methods as well as the FFNN architecture 
delivered the most accurate predictions. This demonstrates their 
superior capacity to learn complex input-output relationships, 
making them well-suited for tasks requiring high accuracy and the 
analysis of extensive datasets.  
 All ML models were implemented on Jupyter Notebook, 
which substantially increased the student’s engagement and 
comprehension of the algorithms in this project. With the 
interactive platform and GUI interface, the student could easily 
evaluate the significance of input parameters in the machine 
learning algorithm. This project also honed students’ analytical 
skills and hands-on experiences, providing a profound awareness 
of their potential for materials informatics and real-world 
engineering applications. 
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