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ABSTRACT A 30.28 Mb draft genome sequence was assembled and annotated for
the melanized ascomycetous fungus Exophiala xenobiotica NRRL_64630 (Pezizomycotina;
Chaetothyriales) isolated from La Brea Tar Pits, Los Angeles, California. Species identifica-
tion was made by phylogenetic assessment of the Internal Transcribed Spacer. This is the
first isolated fungal species from this historic space.
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P opular references to tar pits entertain vivid images of large mastodons and saber-
tooth cats ensnared in a sticky substance that oozes from the ground (1). Asphalt
and tar are similar hydrocarbon substrates, asphalt is released into seeps and collected
in large viscous pools while tar is man-made (2). Seeps are found in many parts of
the world, from Peru’s Talara Tar Pits to the La Brea Tar Pits (LBTP) (3). Culturally, the
indigenous Los Angeles Native Gabrielefio-Tongva used tar as an adhesive on their boats
and tools as far back as 10,000 years ago (3).

The role microbes and fungi can play in the remediation of tar-soaked soils remains
an important opportunity for new technology. Fossils were collected from the LBTP in
the early 1900s by UC Berkeley, LA High School, and the Southern California Academy of
Sciences eventually leading to LBTP in the 1970s (4).

First, 5 mm of soil was collected from the La Brea site “Project 23" neighboring
the Los Angeles County Museum of Art parking structure Box 5B (now found within
the museum grounds). Cultures of fungi were obtained by plating dilutions of soils on
nutrient-rich Malt Extract Yeast Extract (MEYE) media. Culturing followed steps enriching
for melanized fungi and the addition of antibiotics to exclude bacteria (5). Growth of
one black yeast strain was isolated and subcultured on MEYE at room temperature twice
for axenic confirmation and designated TK_68. Genomic DNA was extracted from yeast
colonies grown for 1 week on MEYE plates using a cetyltrimethylammonium bromide
(CTAB) protocol (6). Genomic DNA was measured by Nanodrop and Qubit and diluted
to ~28 ng/L. DNA sequencing libraries were prepared in the Institute for Integrative
Genome Biology Genomics Core at University of California, Riverside (Riverside, CA) with
Nextera DNA Flex Library kit and sequenced with 2 x 150 bp on Illumina NovoSeq 6000
in the QB3 Genomics Facility at the University of California, Berkeley.

The TK_68 strain was identified as (100% identity) Exophiala xenobiotica, accession
number KX426972.1, by PCR amplifying the Internal Transcribed Spacer (ITS) region (285
+ ITST + 5.85 + ITS2 + 18S) using ITS1F and ITS4 primers and amplification protocols (7),
sequenced with Sanger sequencing, and BLASTN search to the NCBI refseq ITS database.
To further confirm species identity, ITS regions were extracted with ITSx (v.1.1.3) (8) from
public Exophiala genomes in GenBank and outgroup Aspergillus fumigatus ATCC 1022.
A multiple sequence alignment of the ITS region was constructed with MUSCLE (v.5.7)
(9), trimmed with ClipKit (v.7.3.0) (10), and the phylogenetic relationships inferred with

February 2024 Volume 13 Issue 2

Editor Leighton Pritchard, University of Strathclyde,
Glasgow, Scotland, United Kingdom

Address correspondence to Jason E. Stajich,

jason.stajich@ucredu.

The authors declare no conflict of interest.

See the funding table on p. 3.

Received 28 September 2023
Accepted 10 December 2023

Published 5 January 2024

Copyright © 2024 Kurbessoian et al. This is an
open-access article distributed under the terms of
the Creative Commons Attribution 4.0 International

license.

10.1128/mra.00913-23 1

Downloaded from https://journals.asm.org/journal/mra on 28 June 2024 by 138.23.57.10.


https://www.ncbi.nlm.nih.gov/nuccore/KX426972.1
https://www.ncbi.nlm.nih.gov/nuccore/KX426972.1
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00913-23&domain=pdf&date_stamp=2024-01-05
https://doi.org/10.1128/mra.00913-23
https://creativecommons.org/licenses/by/4.0/

Announcement Microbiology Resource Announcements

TABLE 1 Strain and species designation, isolation source, sequencing read, assembly, and annotation statistics’

Species Location No.of Coverage No.of Genome Contig Contig G+C Genome Genome No.of Telomeres
read contigs size Lso Nso content completion duplication genes found
pairs (%) (BUSCO %) (BUSCO %) (forward,
reverse, T2T)
Exophiala La Brea Tar 9,065,7 60.43x 682 3028 Mb 15 676 kb 51.86 97.9% 0.0% 11,317 7F8R,0T2T
xenobiotica Pits, Los 78 (both)
NRRL 64630 Angeles,
California

“The species identification number for NRRL is listed, as is the location where the soil was collected from. The number of reads was used to help determine the coverage
value. Genome assembly calculations include a number of contigs, genome size, N50, L50, and G + C content, while genome annotation results include a number of genes
predicted and annotated. BUSCO completion statistics and comparisons were determined using the sordariomycetes_odb10 database with 3817 genes. Telomeres were
calculated using the find_telomere.py script (Hiltunen et al. 2021).

IQTree2 (v.2.2.2.6) (11). The strain was deposited in the USDA-ARS NRRL collection as
accession NRRL 64630 (Fig. 1).

The NRRL 64630 genome was assembled using the AAFTF pipeline (v.0.2.3) (12-16)
performing filtering and trimming steps for data quality, relying on SPAdes (3.15.4)
(17) for assembly, AAFTF tools for contaminant removal, and assembly polishing.
Telomeres were calculated using the find_telomere.py script (18). BUSCO (v.5.4.4)
ascomycota_odb10 database (19) was used to assess the completeness of the assem-
bly. Genome annotation was performed with Funannotate (v.7.8.10) (20-38). Default
parameters for the underlying tools were applied throughout. Genome sequencing,
assembly, and protein-coding gene annotation statistics are summarized in Table 1.
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FIG 1 Agar culture of Exophiala xenobiotica, axenically isolated from the soil collected in box 5B-P23 C2A, and a phylogenetic tree describing our species along
with respective 22 NCBI isolates. (A) Species identity was inferred from the phylogenetic tree constructed from ITS region sequences for our species from this

study (in blue), 21 reference sequences from Exophiala genera, and rooted with one sequence of outgroup taxa.
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