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Abstract. As wildfires intensify and fire seasons lengthen across the western US, the development of mod-
els that can predict smoke plume concentrations and track wildfire-induced air pollution exposures has become
critical. Wildfire smoke plume height is a key indicator of the vertical placement of plume mass emitted from
wildfire-related aerosol sources in climate and air quality models. With advancements in Earth observation (EO)
satellites, spaceborne products for aerosol layer height or plume injection height have recently emerged with in-
creased global-scale spatiotemporal resolution. However, to evaluate column radiative effects and refine satellite
algorithms, vertical profiles of regionally representative aerosol properties from wildfires need to be measured
directly. In this study, we conducted the first comprehensive evaluation of four passive satellite remote-sensing
techniques specifically designed for retrieving plume height. We compared these satellite products with the air-
borne Wyoming Cloud Lidar (WCL) measurements during the 2018 Biomass Burning Flux Measurements of
Trace Gases and Aerosols (BB-FLUX) field campaign in the western US. Two definitions, namely, “plume top”
and “extinction-weighted mean plume height”, were used to derive the representative heights of wildfire smoke
plumes, based on the WCL-derived vertical aerosol extinction coefficient profiles. Using these two definitions,
we performed a comparative analysis of multisource satellite-derived plume height products for wildfire smoke.
We provide a discussion related to which satellite product is most appropriate for determining plume height char-
acteristics near a fire event or estimating downwind plume rise equivalent height, under multiple aerosol load-
ings. Our findings highlight the importance of understanding the sensitivity of different passive remote-sensing
techniques on space-based wildfire smoke plume height observations, in order to resolve ambiguity surround-
ing the concept of “effective smoke plume height”. As additional aerosol-observing satellites are planned in the
coming years, our results will inform future remote-sensing missions and EO satellite algorithm development.
This bridges the gap between satellite observations and plume rise modeling to further investigate the vertical
distribution of wildfire smoke aerosols.
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1 Introduction

Characterizing the vertical extent of wildfire smoke aerosols
near active fire hotspots, also known as the plume injection
height (PIH) or smoke aerosol layer height (ALH), is a crit-
ical task in simulating the long-range transport of wildfire
smoke. From a physical perspective, the initial PIH at a fire
can be described as the height where the relatively stable ver-
tical atmospheric layer is located, causing the smoke plume
to accumulate, and where the updrafts generated by the buoy-
ancy above the fire terminate (Kahn et al., 2007; Labonne
et al.,, 2007; Paugam et al., 2015). The PIH is commonly
viewed as the vertical height to which a buoyant plume core
can lift the polluted air mass before the smoke plume be-
gins to bend over horizontally (Raffuse et al., 2012). Of-
ten plume heights near or downwind of active fire areas are
treated as equivalent to PIH values. Wildfire smoke plumes
move horizontally in single layers through the atmosphere,
but some may become stratified into multiple discrete layers
(Mardi et al., 2018; Deng et al., 2022b). However, it is im-
possible to distinguish aerosol layering at multiple heights
without vertically resolved smoke aerosol profiles. Conse-
quently, a single height value is often applied and obtained
from physics-based numerical models or passive remote-
sensing retrievals. Regardless of whether the vertical struc-
ture of wildfire smoke aerosols is homogenous or heteroge-
nous, a columnar plume height retrieved from satellites is
considered a representative ALH. This study focuses on the
smoke-specific plumes from wildfires in the western United
States (WUS); therefore, we will use the smoke plume height
(SPH) to denote this.

The wildfire SPH observed from space has advanced in
spatiotemporal resolution since the 2000s (Kahn et al., 2007,
Ichoku et al., 2012; Lyapustin et al., 2019; Kahn, 2020). Pas-
sive satellite sensors are used to map the global wildfire SPH
distribution, spanning a range of recently developed tech-
niques and retrieval algorithms. It is important to note that
each method to obtain satellite SPH retrievals utilizes a dis-
tinct remote-sensing technique, resulting in inconsistent def-
initions of the SPH. To shed light on their differences, a brief
overview of these methods is provided to demonstrate why
they yield differing plume height interpretations.

The photogrammetric stereo capability of the Multi-Angle
Imaging SpectroRadiometer (MISR) aboard the National
Aeronautics and Space Administration (NASA) Earth Ob-
serving System’s Terra spacecraft (Diner et al., 1998), com-
bined with the MISR Interactive Explorer (MINX) tool (Nel-
son et al., 2008, 2013), provides “wind-corrected” SPH val-
ues of elevated smoke aerosols. This approach takes into
account feature displacements caused by the plume move-
ment and the stereo parallax shift among different camera
views. Another approach to retrieve the SPH takes advantage
of the altitude dependence of the absorption spectroscopic
characteristics of molecular oxygen (O) in the A band at
759-771 nm or the B band at 686-695nm or the 0,—0»
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spectral band at 477 nm. This approach has been success-
fully applied to a number of passive satellite-supported in-
struments, including (but not limited to) POLDER/PARA-
SOL (the POLarization and Directionality of the Earth’s Re-
flectance mounted on the Polarization and Anisotropy of
Reflectances for Atmospheric Sciences coupled with Ob-
servations from a Lidar platform; Dubuisson et al., 2009),
MERIS/ENVISAT (the MEdium Resolution Imaging Spec-
trometer installed on the Environmental Satellite; Duforét et
al., 2007; Dubuisson et al., 2009), SCTAMACHY/ENVISAT
(the SCanning Imaging Absorption SpectroMeter for Atmo-
spheric CHartographY aboard the Environmental Satellite;
Corradini and Cervino, 2006; Sanghavi et al., 2012), GOME-
2/MetOp (the Global Ozone Monitoring Experiment-2 fly-
ing on the Meteorological Operational series of satellites;
Sanders et al., 2015; Nanda et al., 2018a; Michailidis et
al., 2021), OMI/Aura (the Ozone Monitoring Instrument
aboard the Aura spacecraft; Chimot et al., 2017, 2018),
EPIC/DSCOVER (the Earth Polychromatic Imaging Cam-
era loaded on the Deep Space Climate Observatory; Xu et
al., 2019; Lu et al., 2021), and TROPOMI/S5P (the TRO-
POspheric Monitoring Instrument carried on the Copernicus
Sentinel-5 Precursor mission; Griffin et al., 2020; Nanda et
al., 2020; Chen et al., 2021). Other approaches utilize the ul-
traviolet (UV; 340-380 nm) or thermal infrared (TIR; 11 um)
bands, which are sensitive to the vertical distribution of ab-
sorbing aerosols (e.g., smoke and mineral dust) or absorption
by gases released from fires (together with smoke aerosols),
respectively. Using bands included in wide-swath passive
sensors means that these approaches can provide the SPH
globally. Based on the sensitivity of backward UV radiance
to the height of absorbing aerosols (e.g., dust and smoke) in
a Rayleigh scattering atmosphere (Hsu et al., 1996; Torres et
al., 1998; Hsu et al., 1999), previous studies have proposed
an algorithm called Aerosol Single-scattering albedo and
Height Estimation (ASHE) that jointly retrieves ALH and
single-scattering albedo (SSA) using the UV aerosol index
(UVAI), aerosol optical depth (AOD), and spaceborne lidar
backscatter profile from multi-sensor measurements (Jeong
and Hsu, 2008; Lee et al., 2015, 2016). In a subsequent study,
Lee et al. (2020) revised the ASHE algorithm to function
without the lidar backscatter profile. Lyapustin et al. (2019)
and Cheeseman et al. (2020) introduced the brightness tem-
perature contrast approach that uses the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) TIR band (11 um)
for smoke plume identification and characterization. Using
this technique, daily SPH values are retrieved on a global
sinusoidal grid as part of the Multi-Angle Implementation
of Atmospheric Correction (MAIAC) atmospheric product
MCD19A2.

Passive satellites provide widespread coverage on a reg-
ular basis while incurring minimal recurring cost and pos-
ing no risk to observers. However, dense smoke plumes,
cloud cover, or scan gaps between adjoining orbits of
Sun-synchronous polar satellites can result in unsuccess-
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ful retrievals (Lyapustin et al., 2008). As a complement
to these passive retrievals, active spaceborne lidars like
CALIOP/CALIPSO (the Cloud-Aerosol Lidar with Orthog-
onal Polarization aboard the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observation satellite; Winker et
al., 2009) and CATS/ISS (the Cloud-Aerosol Transport Sys-
tem installed on the International Space Station; McGill et
al., 2015) offer high-resolution vertical profiles of aerosol
optical signals. While these spaceborne lidars enhance the
detection of thin smoke layers, they are bound by a nar-
row, pencil-like swath, providing limited spatial coverage
(see Fig. 9 in Loria-Salazar et al., 2021). Another limitation
of remote-sensing instruments on polar-orbiting satellites is
that they do not resolve the diurnal variation in wildfire ac-
tivity.

Endeavors to investigate fire behavior and the associated
air quality (AQ) impacts have predominantly relied on the
use of field data and satellite-based retrievals. Passive and ac-
tive remote-sensing techniques are complementary because
of their different observational methods. The deliberate col-
location of passive and active techniques provides synergis-
tic insights into missing pieces of fire information that may
not be attainable by either method in isolation (D. Liu et
al., 2019; Sicard et al., 2019). Unfortunately, in the Inter-
mountain West region of the US, there remains a lack of
detailed vertical profiles of aerosol optical properties, de-
spite recent field experiments such as the Fire Influence on
Regional to Global Environments and Air Quality (FIREX-
AQ) experiment; the Western wildfire Experiment for Cloud
chemistry, Aerosol absorption and Nitrogen (WE-CAN); the
Biomass Burning Flux Measurements of Trace Gases and
Aerosols (BB-FLUX) experiment; and the Fire and Smoke
Model Evaluation Experiment (FASMEE). Furthermore, to
date, there is no universally accepted methodology for di-
rectly deriving the SPH from aerosol extinction or backscat-
ter vertical profiles due to the ambiguous use and definition
of the term “effective SPH” (Xu et al., 2017). This poses a
challenge, particularly when one wants to compare columnar
SPH values from passive remote sensors with the retrieved
three-dimensional (3D) distribution of the smoke aerosol ver-
tical structure from active remote sensors.

The primary objective of this study is to address the central
research question: which SPH definition corresponds to the
most physically relevant plume height for a specific satellite
SPH retrieval algorithm? We introduce two SPH definitions
using vertical profiles of smoke aerosol from airborne lidar
data. We then quantify the sensitivity of four passive remote-
sensing techniques to columnar SPH observations with re-
spect to these two definitions, accounting for the effects of
local meteorology, distance from the active fire source, and
smoke aerosol loading. Meanwhile, we explore an optimal
collocation strategy to compare satellite retrievals with lidar
measurements, considering instrument discrepancies in ob-
serving the SPH experimentally. To the best of our knowl-
edge, we present the first comprehensive assessment of mul-
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tiple satellite-derived SPH products compared with aircraft
lidar data. It is important to note here that there were no coin-
cident satellite-based lidar overpasses for our field campaign
data; therefore, they are not included in our results. This
omission underscores the difficulties in directly comparing
spaceborne lidar products with data from aircraft campaigns.
The results of our study clarify the meaning of effective SPH
in the remote-sensing and modeling communities, filling a
critical gap in uniform plume height comparisons. Our find-
ings also meet the urgent need for a suite of remotely sensed
datasets to evaluate the performance of present and future
dynamic smoke plume models and smoke modeling frame-
works or to provide inputs to these models that improve the
SPH characterization required to model the downwind pollu-
tant transport.

2 Measures of the wildfire SPH

2.1 The satellite-based wildfire SPH

The following four space-based wildfire SPH retrievals will
be discussed in our study: (1) the MODIS aerosol prod-
uct using the MAIAC algorithm (MODIS/MAIAC); (2) the
MISR-based global SPH database that can be accessed via
the MISR Enhanced Research and Lookup Interface (MIS-
R/MERLIN); (3) the Visible Infrared Imaging Radiometer
Suite (VIIRS) aerosol product using the ASHE algorithm
(VIIRS/ASHE); and (4) the TROPOMI-based ALH product
(TROPOMI/ALH). Here, the SPH products from the differ-
ent instruments retrieved with different methods are named
using the passive sensor name and the corresponding re-
trieval algorithm or dataset name. Table 1 provides further in-
formation about these passively remotely sensed SPH prod-
ucts.

2.1.1 MODIS/MAIAC

MODIS sensors are located on the Terra (morning sensor,
10:30LST, local solar time, crossing the Equator) and Aqua
(afternoon sensor, 13:30 LST crossing the Equator) satellite
platforms and operate in the TIR spectrum to detect active
fires (Salomonson et al., 2002). This twin-MODIS design
covers most regions near the Equator with at least four obser-
vations per day. The number of observations increases as one
approaches the poles due to overlapping orbits. The MAIAC
algorithm uses MODIS data to obtain the near-fire-source
aerosol injection height, known as the MCD19A2 dataset,
with high resolution (1 km).

By assuming a fixed lapse rate, the MAIAC PIH algo-
rithm utilizes the negative thermal contrast at 11 pm between
smoke and sufficient neighboring smoke-free pixels and con-
verts the colder brightness temperature into SPH estimates
(Lyapustin et al., 2019; Cheeseman et al., 2020). The valid
range for the MAIAC-based SPH is up to 10 km. However,
the SPH calculation struggles with large smoke areas and
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Table 1. Summary of multisource satellite-derived plume height products.

Dataset, version Availability Resolution Instrument, satellite Retrieval method References
MAIAC-derived injection Horizontal: 1 km x 1km
height products, 1 February 2000 to present Temporal: 16d repeating cycle; MODIS, Terra or Aqua  Brightness temperature contrast ~ Lyapustin et al. (2019)
Collection 6.1 1-2 d global coverage
MERLIN interface for 2008-2011 as well as Horizontal: 1.1km x 1.1km

. . MISR, T Multi-angle i i Kahn et al. (2007
MISR plume height the summers (June, July, Temporal: 16 d repeating cycle; SR, Terra uli-angle imaging ahn et al. (2007)
project, version 2 August) of 2017 and 2018 9d global coverage

Horizontal: 6 km x 6 km

ASHE-derived ALH August 2013-2018 Temporal: 16 d repeating cycle;

products, research daily global coverage

VIIRS, SNPP*

Ultraviolet radiometry

Lee et al. (2020)

Horizontal: 3.5km x 7km

(across x along track)
TROPOMI Level 2 . from 30 April 2018 to 6 August 2019;
ALH, version 1 30 April 2018 to LJuly 2021 5 gy 1 5. 5km since 6 August 2019

Temporal: 16 d repeating cycle;
near-daily global coverage

TROPOM]I, S5P

Oxygen absorption

Sanders et al. (2012)

* Data from VIIRS sensors on other satellite platforms were unavailable for this study.
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small fires emitting low levels of absorbing gases, meaning it
requires a high enough plume opacity (AOD at 470 nm > 0.8)
to obtain a useful signal. When compared with other SPH
datasets, such as MISR and CALIOP, MAIAC tends to sig-
nificantly underestimate the height of smoke plumes, par-
ticularly for transporting dilute smoke downwind of the fire
(Lyapustin et al., 2019). In spite of these limitations, the MA-
IAC algorithm provides valuable information within approxi-
mately 75-150 km of the identified thermal hotspots, i.e., fire
(Loria-Salazar et al., 2021).

2.1.2 MISR/MERLIN

With its nine fixed push-broom cameras, MISR aboard
NASA’s Terra satellite captures images from nine different
angles and four spectral bands, allowing for studies of wild-
fire and aerosol distributions using the stereoscopic tech-
nique, unaffected by bright surfaces (Moroney et al., 2002;
Muller et al., 2002). The wealth of data collected by the
MISR instrument over 2 decades offers valuable insights
into the global climatology of fire in the environment, across
geographic regions, biomes, and seasons (Val Martin et
al., 2018; Gonzalez-Alonso et al., 2019). The publicly avail-
able database built using manually post-processed MISR
products has been used to evaluate plume rise models (e.g.,
Ke et al., 2021) and other satellite-derived datasets (e.g.,
Lyapustin et al., 2019; Griffin et al., 2020). Recently, an
interactive visualization tool called MERLIN was devel-
oped to facilitate the exploration and accessibility of over
70000 records of global wildfire plume height retrievals
(Boone et al., 2018; Nastan et al., 2022).

MISR’s global SPH mapping, with a 250-500m verti-
cal resolution, complements aerosol height curtains obtained
from spaceborne lidar systems (Kahn et al., 2007, 2008; Val
Martin et al., 2018). However, Tosca et al. (2011) found that
the stereo-derived SPH from MISR was significantly lower
than the top altitude observed by CALIOP for the 2006 In-
donesian fires. Nevertheless, important lessons can be drawn
from the underestimated SPH values in the MISR product.
First, the overpass time of MISR in the morning precedes
the daytime peak in fire activity, typically in late afternoons
when temperatures are highest and relative humidity is low-
est. Second, very few coincident overpasses exist over fires
during a short time of interest due to the narrow MISR swath,
which allows global coverage only approximately once per
week. Additionally, the revisit period of MISR for a specific
geographical spot varies from 2 to 9 d, depending on the lati-
tude (Kahn et al., 2007). Finally, the MISR automated stereo-
scopic image’s dependence on optically distinct plume-like
features for accurate height estimation can introduce bias,
mainly when dealing with thin smoke or smoke downwind
of the active fire source with less defined boundaries (Nelson
et al., 2013). However, blue-band data at a 1.1 km horizon-
tal cell size are considered a better choice for capturing the
higher injection heights associated with fine smoke aerosols
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than the corresponding red-band retrievals at the spatial res-
olution of 275 m (Nelson et al., 2013). In this study, we ex-
tracted blue-band, wind-corrected heights with “good” qual-
ity flags downloaded from MERLIN. This preference is due
to the blue band’s (446.4 =41.9nm) sensitivity to thinner
aerosol layers, enabling the detection of aerosol features at
higher altitudes.

2.1.3 VIIRS/ASHE

The launch of operational VIIRS sensors has been planned
for the Joint Polar Satellite System (JPSS) series since 2011,
in anticipation of the post-MODIS era (Cao et al., 2013a, b;
Goldberg et al., 2013; Wolfe et al., 2013; Wang and Cao,
2019). VIIRS currently flies on three polar-orbiting satel-
lites: the Suomi National Polar-orbiting Partnership (SNPP)
and the National Oceanic and Atmospheric Administration-
20 (NOAA-20) and NOAA-21 satellites. This study uses data
from SNPP VIIRS. The VIIRS instrument has a wide swath
of 3040km and can observe the entire Earth twice a day:
once during the day and once during the night. There are
some overlaps between consecutive swaths, which means
that midlatitudes will experience up to four looks per day
(Wolfe et al., 2013). Even though the SNPP VIIRS data have
enhanced radiometric measurement quality, a broad spec-
tral range, and a fine spatial resolution (Csiszar et al., 2014;
Schroeder et al., 2014), the limited temporal information may
curtail its efficacy for delineating fire perimeters and assess-
ing fire spread, especially during short fire durations (Cardil
etal., 2019).

The research version of the ASHE algorithm (transition
to operational processing is underway at the time of writ-
ing) provides the plume height of UV-absorbing aerosols
like smoke and dust over broad areas, including both near-
source and transported plumes (Loria-Salazar et al., 2021).
Initially, it leveraged the AOD and Angstrém extinction ex-
ponent (AEE) from the MODIS or VIIRS aerosol prod-
uct in its retrieval process as well as the ALH along the
CALIOP track as a constraint (Jeong and Hsu, 2008; Lee
et al.,, 2015). By assuming a spatially invariant SSA re-
trieved along the CALIOP track over a MODIS/VIIRS gran-
ule, the height retrieval can be extended beyond the nar-
row CALIOP track, thereby improving spatiotemporal cov-
erage. This study makes use of a release candidate of ASHE
that does not use the CALIOP constraints and leverages the
synergy between the VIIRS and Ozone Mapping and Pro-
filer Suite Nadir Mapper (OMPS-NM) for UV measurements
(Lee et al., 2020). To further improve its performance, a sys-
tematic optimization of the smoke optical models used in the
algorithm was carried out by iteratively comparing the re-
trieved ALH and SSA with those from CALIOP and ground-
based measurements offline until satisfactory similarity was
found between the results (e.g., Jeong et al., 2022). Its ap-
plication is limited to UV-absorbing aerosols with moderate
to thick optical depths (AOD at 550 nm > 0.5-1.0), render-
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ing it ineffective for aerosols with lower optical depths. Pre-
liminary evaluation indicates that the ASHE-retrieved SPH
has an uncertainty of 1-1.2km (or 30 %—40% for an SPH
of 3km) for heavy aerosol loading cases (AOD > 1) (Lee et
al., 2016, 2020). The uncertainty is dependent on errors in
the retrieved AOD, assumed aerosol optical model, and sur-
face reflectance, and it generally decreases with increasing
AOD. It should be noted that OMPS-NM aboard SNPP has
a relatively coarse spatial resolution of ~ 50 x 50 km? near
nadir (~200 x 100km? near the edge of the across-track
scan), indicating that it has limitations for small-scale (sub-
pixel) smoke plumes. Although there are multiple VIIRS in-
struments, the ASHE product is currently only available for
SNPP VIIRS. It is anticipated that this retrieval algorithm
will be implemented for other VIIRS instruments in the fu-
ture.

2.1.4 TROPOMI/ALH

The TROPOMI instrument is the single payload aboard
the European Space Agency (ESA) S5P satellite mission,
planned for 2017-2024. TROPOMI is a spectrometer that
monitors key atmospheric constituents and aerosol and cloud
properties by observing reflected sunlight across the spec-
tral bands in the UV, the visible (270-500 nm), the near-
TIR (675-775 nm), and the shortwave TIR (2305-2385 nm)
ranges. Compared with its predecessors (OMI and SCIA-
MACHY), TROPOMI provides high-spatial-resolution in-
formation and is capable of daily global coverage and near-
real-time data, enabling regular monitoring and rapid as-
sessment of changes in the Earth’s atmosphere (Veefkind et
al., 2012).

By analyzing the spectral signature of light that is ab-
sorbed by O; in the A band in the near-TIR wavelength range
between 759 and 770nm, the TROPOMI ALH algorithm
estimates the height of aerosol plumes in the atmosphere
(Sanders et al., 2012; Nanda et al., 2019). It has been shown
to be effective in retrieving high plumes up to 8 kma.g.l.
(above ground level) in height, with reduced uncertainties
for thicker and lower plumes between 1 and 4.5kma.g.l.
(Griffin et al., 2020) as well as for dark surfaces (Nanda et
al., 2018b). However, it was found to be biased low com-
pared with other SPH datasets such as MISR and CALIOP,
most likely due to its tendency to return an intermediate
plume height when multiple aerosol layers are present (Grif-
fin et al., 2020; Nanda et al., 2020). In addition, Nanda et
al. (2020) showed that cloud contamination has an impact on
the TROPOMI/ALH product, as it is unable to distinguish
between cloud and aerosol signals from the measured radi-
ances. In this study, we only used data with a quality assur-
ance value larger than 0.5 to filter and remove the predomi-
nately cloudy scenes or retrievals with geolocation errors.
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2.2 Airborne lidar measurements

The 2018 BB-FLUX field campaign deployed the upward-
pointing Wyoming Cloud Lidar (WCL) on the University
of Wyoming King Air (UWKA) research aircraft that sam-
pled smoke plumes from more than 20 wildfires during 35
flights over the WUS. The airborne WCL measurements of
the attenuated backscattering coefficient and lidar depolar-
ization ratio were calibrated on a per-flight basis. The verti-
cal aerosol extinction profiles (in units of per kilometer) were
retrieved with Fernald’s method, assuming a constant lidar
ratio of 60, and evaluated with in situ measurements (see
Deng et al., 2022a, for details). Table 2 lists nine wildfire
cases, including locations, start and containment dates, and
acres burned (Geospatial Multi-Agency Coordination Group,
2019). It also summarizes 11 flight missions from August
2018, selected for the number of collocated pairs between
valid lidar transects and satellite overpasses, with the flight
trajectories illustrated in Fig. 1. The chosen flights are lim-
ited to smoke plumes that could be attributed to a specific
wildfire. Other flights during the campaign were excluded
from this study because they target prescribed fires, small
wildfires, clouds, and aged smoke plumes. Small fires were
not included, in part, because of the expected large uncer-
tainties in satellite retrievals of the relatively low SPH val-
ues (ranging from hundreds of meters for prescribed fires to
thousands of meters for small fires). Large errors for smoke
aerosol layers within the boundary layer arise from a mis-
match between the coarse spatial resolution of satellite pixels
and the fine-scale smoke plume variability inherent in wild-
fire activity (Geddes and Boesch, 2015).

We re-gridded valid WCL two-dimensional (2D) transects
at a vertical resolution of 3 m and an along-track horizontal
resolution of about 1.1 km to calculate the SPH and colum-
nar AOD throughout the atmosphere. Compared with satel-
lite observations, the re-gridded WCL measurements have
a much smaller field of view in the cross-track direction;
therefore, the WCL can show much finer spatial variations
in smoke. Moreover, it should be noted that the WCL can be
fully attenuated in dense smoke and unable to detect the ac-
tual SPH, and the aircraft might fly above the plume bottom,
so the upward-looking WCL only samples the partial AOD
of the aerosol vertical profile, which fundamentally differs
from the AOD derived from satellite retrievals.

3 Methods

3.1 Definitions of the wildfire SPH estimates

The extinction coefficient is a key parameter for the fun-
damental radiative transfer calculations of wildfire smoke
aerosols from the surface to the top of the atmosphere (TOA)
(e.g., Ansmann et al., 2018; Solomon et al., 2022) and can
be related to the particle mass (or volume) concentration
(e.g., Mamouri and Ansmann, 2016; Toth et al., 2019; Ans-
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Figure 1. The 11 color-coded UWKA flight trajectories during the 2018 August BB-FLUX project, each of which is associated with 1 of 9

wildfire cases denoted by fire icons.

mann et al., 2021). In previous studies, the aerosol extinc-
tion coefficient has been one of the most frequently ob-
served and reported aerosol optical properties for character-
izing the vertical structure of the atmosphere and develop-
ing a height retrieval algorithm (Gordon, 1997; Dubovik et
al., 2011; Sanghavi et al., 2012; Hollstein and Fischer, 2014;
Ding et al., 2016; Wu et al., 2016; Xu et al., 2017). Lidar-
based active remote-sensing technology provides an attenu-
ated backscatter signal intensity that is processed by desig-
nating an extinction-to-backscatter ratio to produce vertical
profiles of the aerosol extinction coefficient (Liu et al., 2015;
Rosati et al., 2016; Baars et al., 2021).

Two definitions have been proposed and widely used to de-
rive a representative height of wildfire smoke plumes based
on the vertical distribution of aerosol extinction coefficient at
a given spectral wavelength from active lidar measurements.
The concept of effective SPH can be defined either through
smoke aerosol layer boundaries or by considering the com-
plete vertical profile (Fig. 2). One method identifies the top-
most height of the plumes according to the geometric bound-
ary of the aerosol layers (SPHyop). Another approach adopts
the average height of the aerosol layers, weighted by the ex-
tinction (or backscatter) coefficient that reflects the radiative
properties of wildfire smoke particles (SPHey;). In this sec-
tion, we provide a detailed explanation of these two defini-
tions and apply them to the WCL-measured vertical profiles
of the aerosol extinction coefficient. The height hereinafter is
computed in kilometers above ground level.

Atmos. Chem. Phys., 24, 3673-3698, 2024
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Figure 2. Schematic of two standard SPH definitions, SPHop and
SPHext, proposed in our study.

3.1.1  Plume top (SPHiop)

This definition is built on the wavelet covariance transform
(WCT) approach given by Gamage and Hagelberg (1993),
which is an automatic algorithmic process to extract geomet-
rical features of interest. As it can detect the aerosol layer
locations of subtle but coherent transitions according to their
strength and sign, the WCT analysis has been applied to de-
tect realistic high-resolution atmospheric structures at a vari-
ety of vertical spatial scales, such as a well-mixed convective
boundary layer top (e.g., Brooks, 2003; Baars et al., 2008)
and the edges of lofted aerosol layers (e.g., Davis et al., 2000;
Siomos et al., 2017). Here, we focus on the derivation for the
height of the wildfire smoke plume top, referred to as SPHgp.
The WCT method is expressed as

Wp(a,b) =a71/ Fh (?) dz, (1)
Zb
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with a step function, the so-called Haar wavelet h, 5(2),
which can be defined as

(%)

In Eq. (1), f(z) is the lidar signal of interest as a function of
height above ground level z (which is the aerosol extinction
profile 8(z) at 355 nm) and z; and z}, are the respective upper
and lower limits of the profile. For any arbitrary element of
the Haar basis 5, 5(z) (as shown in Eq. 2), a is the dilation
parameter in relation to the spatial spectrum of the function
and b is the translation parameter indicating the location at
which the function is centered.

The local match or similarity between the Haar wavelet
hq.p(z) and the lidar extinction signal $(z) is measured in
the covariance transform Wy (a, b), which can be interpreted
as a pattern search for a sudden jump. Accordingly, the po-
sition of the local maxima (i.e., positive peaks) in the re-
turn WCT signal approximately marks the layer top; like-
wise, the position of the local minima (i.e., negative peaks)
of the covariance transform W ¢ (a, b) roughly coincides with
the layer bottom. Identification of strong variations in the ver-
tical gradient of the aerosol extinction profile §(z) is useful
for locating the boundaries between aerosol layers. Follow-
ing Michailidis et al. (2021, 2023), we define SPHyop as the
last positive peak in the corresponding WCT profile from the
surface to the upper atmosphere if some physical constraints
are satisfied. The optimum value for a affects the number of
sufficiently thick aerosol layers that can be retrieved success-
fully. Therefore, we limited the minimum acceptable wavelet
dilation a to be equal to 54 times the vertical resolution of
the aerosol extinction profile 8(z) at 355 nm, i.e., a =162 m
in this study. To filter noise in the return WCT signal, a min-
imum threshold value is set to 0.05. The values of SPHyp
are extracted using this approach for both single-layer and
multi-layer aerosol structure smoke plumes, as illustrated in
Figs. S1 and S2 in the Supplement, respectively.

+1: b—$<z<b
—1: b<z<b+}§ @)

0: elsewhere.

3.1.2 Extinction-weighted mean plume height (SPHext)

Given an aerosol extinction coefficient profile S(z) with n
lidar vertical levels, this definition weighs each height above
ground level interval z; (in our case, z; =3 m) for the ith
level with the height-dependent extinction coefficient B(z;),
as described in Koffi et al. (2012), and then calculates the
weighted mean height (i.e., SPHey() as follows:

Z?:pB(Zi)'Zi
Z?:].B(Zi) .

This method (Eq. 3) has been widely applied in previous lit-
erature and is considered ideal for comparisons with the ALH
retrieval from passive satellite sensors (Chimot et al., 2018;
Kylling et al., 2018; M. Liu et al., 2019; Nanda et al., 2020),

SPHex = 3)
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as it offers a simple and useful means to represent the aerosol
vertical distribution as a single height value. For example,
in some cases where a single and homogenous (i.e., same
particle size and optical properties) aerosol layer is found in
the atmosphere, SPH¢y; indicates the aerosol layer’s center
of mass. However, when it comes to a vertical structure with
multi-layer aerosols, SPHex may be at a vertical level with
minimal smoke aerosol loading because smoke plumes are
present at multiple heights.

3.2 Lidar—satellite collocation method

When comparing satellite products with observations, a
method to collocate the two datasets is required. Even at
close range and within short periods, the vertical extent of
wildfire smoke plumes can vary substantially. This varia-
tion is influenced by factors such as specific vegetation types
and fuel structures, terrain characteristics, or ambient me-
teorological conditions, during atmospheric transport pro-
cesses which are more favorable to aerosol aging mech-
anisms and plume rise behaviors than others (Paugam et
al., 2016; Junghenn Noyes et al., 2022). Passive satellite re-
mote sensing of the wildfire SPH indirectly measures colum-
nar quantities at a relatively coarse spatial resolution, rep-
resenting the spatial average of a highly variable pixel area
of fire activity and smoke plume behavior. In contrast, ac-
tive airborne lidar collects instantaneous vertical segments
of smoke aerosols only along its flight path, which in turn
lacks large-scale spatial representation. Along with the spa-
tial misalignment of collocated pairs, the disparity in sam-
pling time between airplanes and satellites for the same clus-
ter of wildfire plumes, on the order of minutes to days,
presents another inherent challenge and, thus, yields few per-
fectly matched pairs. Hence, to make comparisons between
space- and aircraft-based observing platforms, determining
the time interval and distance for collocated pairs of satellite
retrievals and lidar measurements requires careful consider-
ation (Junghenn Noyes et al., 2020).

We developed and tested two methods to collocate our air-
craft observations with four satellite products (Fig. 3). We
expect the collocation method to impact the results because
of the spatial heterogeneity of smoke plumes and the range
of horizontal resolutions for the four satellite products, from
1 to 6 km. Another factor is that multiple satellite pixels can
coexist in proximity to a single lidar point when satellite or-
bits and flight legs intersect. When considering these factors,
using a single satellite pixel versus an average of pixels in a
specific area to collocate satellite products with aircraft ob-
servations provides different results for the comparison. Test-
ing the two methods ensures that our comparisons are fair
and consistent across the different satellite products. One, the
“spatial averaging method”, uses an average of the surround-
ing satellite pixels around a lidar point, whereas the other, the
“matched-pair method”, employs a nearest-neighbor search
to create a matched lidar—satellite pair.

Atmos. Chem. Phys., 24, 3673-3698, 2024
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Collocation Method 1:
Spatial Average
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Figure 3. Conceptual diagram of two collocation methods used in our study to pair aircraft observations and passive satellite retrievals. Our
collocation criteria are a search radius of 6 km and a sampling time window of 12 min.

The spatial averaging method calculates an average value
of the satellite retrievals within an area of a fixed search
radius around the lidar measurement. For MODIS/MAIAC
and MISR/MERLIN, because they have a finer spatial res-
olution (Table 1), this predisposes them to multiple collo-
cations inside a circular area of a given search radius cen-
tered on the lidar point. The values are smoothed because an
average value of all satellite retrievals in this circular area
for a given sampling time is used for comparison, which is
a common practice in the remote-sensing field (e.g., Virta-
nen et al., 2018). Considering that there are fewer collocated
satellite retrievals for the coarse-resolution products, such as
VIIRS/ASHE and TROPOMI/ALH, within the search area,
we apply our second collocation method, i.e., the matched-
pair method. This method is more sensitive to the location
of a single satellite pixel coinciding with each point-like air-
borne lidar measurement. The closest satellite pixel to the
nearby lidar point within the given sampling distance and
time window is chosen for each match. While using two
methods provides the most reliable approach for comparison
across multiple satellite products, there are still uncertainties
associated with satellite-observation comparisons. The main
uncertainty sources of collocation mismatch are (1) misalign-
ment between the satellite pixel size and the lidar observation
point; (2) wind-driven advection (e.g., a high fire-induced
horizontal wind can reach the maximum value of 10ms™!
(Y. Liu et al., 2019), which can displace fire-related smoke
aerosols 3.6km in 6 min); and (3) intrinsic positioning and
navigation errors. For both methods, we assume that hori-
zontal changes in wildfire smoke plume spread are negligible
during short time intervals. It is important to note that each
satellite product maintains its native resolution rather than
being resampled to a uniform grid for all products. A dif-
ferent collocation method for each satellite product might be

Atmos. Chem. Phys., 24, 3673-3698, 2024

used to showcase its spatial characteristics (e.g., to highlight
the improvement in finer-spatial-resolution products).

Both collocation methods require spatiotemporal av-
eraging windows to be selected. A single granule of
the VIIRS/ASHE product has the largest pixel size
(6km x 6 km) with the longest orbit segment scanning pe-
riod (~6min) of all the satellite-derived SPH products in
Table 1. To ensure that adequate collocation pairs are avail-
able within one 30min time period due to rapid wildfire
smoke plume activity, we utilized a sampling time window
of 12 min that corresponds to twice the maximum time span
of an orbital swath (one scene). To investigate the effects
of search radius size for the two collocation methods, we
used 20 sampling distances ranging from 1 to 20km. As-
suming a worst-case windy environment of 30 ms~!, wild-
fire smoke aerosol layers could migrate ~20km during the
maximum allowed time interval of 12 min. Local SPH spatial
variability over scales of up to ~20km can introduce uncer-
tainty in SPH comparisons. In Fig. S3, the standard devia-
tion (SD) of the multi-sensor satellite SPH retrievals around
a lidar point (denoted by ospy) is calculated to assess the
representativeness of the search radius. With increasing dis-
tances, all SD curves for the satellite-retrieved SPH display
asymptotic behavior. These values can be interpreted as an
upper limit of the SPH errors owing to our method of col-
location. It is important to optimize the inclusion criteria for
the lidar—satellite comparison. For example, a low number
of nearby satellite pixel counts shows higher spatial sam-
pling uncertainty, while a low number of one-to-one collo-
cated pairs indicates weaker statistics in calculating the SD.
Using the mean SD (osph) from all collocations, the aver-
age number of nearby satellite pixels within a search radius
per collocation, and the total number of one-to-one collo-
cated pairs, the best search radius is thus set to 6km. The

https://doi.org/10.5194/acp-24-3673-2024
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collocated satellite SPH value is assumed to be representa-
tive across the 6 km radius circle centered around the WCL
data point, with an average SD-calculated uncertainty (ospy)
of ~ 220 m for MODIS-Terra/MAIAC, ~ 173 m for MODIS-
Aqua/MAIAC, ~258m for MISR/MERLIN, ~300m for
VIIRS/ASHE, and ~ 152 m for TROPOMI/ALH.

3.3 Reconstructed lidar vertical cross-sections

When the UWKA flew close to perpendicular to the mean
wind direction, the consecutive UWKA transects sampled
the smoke plumes at different heights over the same latitude
or longitude range of the flight trajectory. The UWKA oper-
ates at a cruise speed of approximately 90 ms~!, enabling
it to capture data from different altitudes and angles. The
WCL system uses laser beams to measure the optical prop-
erties of the plume and is limited in its ability to penetrate
and sample optically thick smoke. Therefore, at each flight
leg, the WCL can only provide a partial vertical segment of
the smoke plume cross-section, particularly from the lowest
flight altitude (i.e., upward-scanning lidar).

We reconstructed the vertical structure of wildfire smoke
plumes using consecutive WCL transects from different
flight legs. This post-processing approach, using pseudo-
vertical profiles of the aerosol extinction coefficient, provides
useful lidar-determined SPH reference data for comparison
with satellite SPH products. The reconstruction process in-
volves several key steps following Deng et al. (2022b):

I. The first step is the application of an extinction coeffi-
cient threshold. Cloud-screened WCL transects are col-
lected from 11 flight tracks with valid collocated pairs.
To separate densely localized fresh smoke from the aged
background smoke, an extinction coefficient threshold
of 0.1km~! is applied. This step helps remove back-
ground noise and signal attenuation in the WCL data
and ensures a clear distinction between different smoke
components.

II. The second step is manual identification of flight legs
sampling the same fire smoke plumes. We examine flight
track maps and locate areas where multiple flight legs
intersected with a smoke plume from the same fire
source.

III. The third and final step is the interpolation of discon-
tinuous flight segments to a complete vertical cross-
section. To display the vertical cross-section of the
smoke plume more smoothly and aid further analysis
and interpretation, scattered lidar points with 2D ver-
tical structure information from multiple flight legs are
interpolated to form a continuous line. The interpolation
process relies on the fact that the change in latitude or
longitude of the flight tracks is monotonic.

https://doi.org/10.5194/acp-24-3673-2024
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4 Results and discussion

4.1 Evaluation of the satellite-retrieved SPH using the
airborne lidar SPH

The comparison of the satellite-based SPH with two distinc-
tive SPH definitions using WCL data poses the following
question: what other factors influence the SPH comparison?
To address this question, we considered two factors: distance
from the fire and aerosol loading. Specifically, we defined
four categories, “near-fire-event region (distance from the
fire source <20km)” or “downwind region (distance from
the fire source > 20km)”, and “AOD < 1” or “AOD > 1”. We
then investigated the relationship between these factors and
the SPH comparison for each satellite dataset (Fig. 4).

For MODIS-Terra/MAIAC, SPHey is a better compari-
son than SPHy.p, for the majority of retrievals, not only for
the near-fire-event region but also for the downwind region,
and the use of SPHex is not sensitive to significant vari-
ability in the aerosol loading. Furthermore, the MAIAC PIH
algorithm underestimates the SPH with increasing AOD in
the downwind region. Instead, for MODIS-Aqua/MAIAC,
the retrievals have a high degree of bias compared with
the lidar-derived SPH, with only a few points falling within
the region between the 1:1 and 1:2 lines. The MODIS-
Aqua/MAIAC retrievals exhibit more consistency with the
definition of SPHey; near the fire source under high-AOD
conditions (when AOD > 1). The MISR/MERLIN product
has a good agreement between the retrievals and SPHy, for
the areas in the fire vicinity and downwind, with outliers aris-
ing for thin plumes (for lower AOD < 0.8), potentially due to
the unclear boundaries of the smoke plume. This is because
the MISR-based automated stereoscopic image requires dis-
tinct plume-like features to provide the complete vertical pro-
file of the smoke plume. The VIIRS/ASHE product compares
better with SPHy,, than SPHey. Another interesting find-
ing is that, irrespective of AOD values, the ASHE algorithm
tends to overestimate the SPH for the near-fire-event region,
whereas it underestimates the SPH for the downwind region.
Similarly, the TROPOMI/ALH product has lower SPH val-
ues for the downwind region but higher SPH values close to
the fire, regardless of AOD conditions. The SPH,, proves
useful for evaluating the TROPOMI/ALH data within the
near-fire-event region, whereas the use of SPHey; is more ap-
propriate for the downwind region if outliers are removed.

This qualitative analysis sheds light on the factors influ-
encing the comparison between the satellite-retrieved SPH
and lidar-determined SPH definitions. These findings can aid
in the interpretation of SPH products from multiple satellite
datasets. Additionally, the physical interpretation of the po-
tential biases in the satellite SPH algorithms can help design
future field campaigns that provide datasets for evaluation
and algorithm development. While the qualitative analysis is
useful to understand the physical processes impacting the re-
sults, we also provided a quantitative evaluation of the satel-
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lite SPH products using the metrics described in Appendix A
(results shown on the plots in Fig. 4).

The evaluation metrics are calculated using Egs. (Al)
to (AS5), where MB (km)=0, MAE (km)=0, RMSE
(km)=0, and r (unitless)=1 indicate perfect agreement
(see the caption of Fig. 4 for metric definitions). The SPH
values used for metrics are the averages of all success-
ful collocations found in reconstructed lidar vertical cross-
sections. Additional statistics for the lidar—satellite compar-
isons are summarized in Appendix B. It should be noted
that the collocation method used for comparison is not the
same across all of the satellite products, where MODIS-
Terra/MAIAC, MODIS-Aqua/MAIAC, and MISR/MERLIN
use the spatial averaging method, whereas VIIRS/ASHE and
TROPOMI/ALH use the matched-pair method. Results for
both collocation methods for all satellite products are pro-
vided in Tables S1 and S2 in the Supplement. The statisti-
cal comparisons of four SPH products derived from passive
satellite remote sensing against WCL-determined SPH allow
us to examine the strengths and limitations of these distinct
observational methods. Next, we present an in-depth assess-
ment of the performance of each product based on the quan-
titative evaluation.

The MAIAC PIH algorithm has low confidence (i.e., large
negative R? from —8.009 to —3.995 and high RMSE from
0.822 to 2.393) in SPH retrievals compared with the WCL
SPH measurements using two definitions, especially in the
afternoon. One reason for this might be that the MAIAC al-
gorithm cannot achieve a strong negative thermal contrast,
i.e., the smoke pixel (white) is not sufficiently “colder” than
the background (dark) in the afternoon when the fire activ-
ity is most prominent. Moreover, assuming an average lapse
rate over mountainous terrains instead of more accurate at-
mospheric temperature profiles from reanalysis data can in-
troduce more uncertainties in SPH estimates. A more signif-
icant difference between the MODIS/MAIAC SPH product
and the definition of SPHyy, is found compared with the def-
inition of SPHey;, indicating the limitation of a high enough
total AOD to ensure sufficient gaseous absorption constrains
its ability to detect SPHyop. Therefore, using the definition
of SPHex; to evaluate the MODIS/MAIAC product is recom-
mended.

The MISR/MERLIN plume height fluctuates from 0.625
to 3.029 km, and the corresponding SPHy,p determined from
lidar profiles varies from 1.254 to 2.982 km. The mean, SD,
and quartiles of the collocated MISR/MERLIN SPH data
have relatively small biases compared with SPH,,. The
MISR/MERLIN product outperforms the other three datasets
with respect to capturing SPHy,p, as seen by the lowest MB,
MAE, and RMSE values. It also has a moderate positive re-
lationship (+ = 0.551) with the changes in SPHy,. This is
anticipated, as contrasting features are visible inside plumes
and between smoke aerosols and the terrain surface through
multiple, angular views, allowing the MISR stereo technique
to capture the evolution of wildfire smoke plumes.
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Lee et al. (2015) highlighted that the VIIRS/ASHE prod-
uct performs well over mountainous areas due to the sur-
face elevation consideration during the retrieval process. Al-
though the mean values and general distribution of both
satellite retrievals and lidar observations are fairly close, the
VIIRS/ASHE data have a wider spread of values (larger SD),
a slight tendency to underestimate SPHyop by nearly 116 m,
and lower plume height extremes (maximum and minimum
plume heights). A fraction within 1.5km of 14 % for the
VIIRS/ASHE SPH leads to some outliers, which are reflected
in higher MAE and RMSE values. These large outlier errors
could be attributed to the passive sensors having difficulties
measuring the presence of multi-layer aerosols (see Figs. 7b
and S4d), and a potentially high AOD bias over bright sur-
faces. However, the negative correlation (r =—0.22) be-
tween the VIIRS/ASHE data and the WCL-determined SPH
suggests significant discrepancies in their spatial resolution
when collocating.

Using the definition of SPHex(, the TROPOMI/ALH prod-
uct slightly overestimates the SPH by approximately 158 m,
but it maintains overall reasonable performance, as indicated
by the MAE and RMSE values, and a weak positive correla-
tion (r =0.241) with lidar observations. However, this eval-
uation could be influenced by a limited number of colloca-
tions. Choosing the appropriate SPH definition to interpret
the TROPOMI ALH algorithm differs on a case-by-case ba-
sis, as shown in the reconstructed lidar curtains (Sect. 4.3).
When multi-layer structures are detected in the sample cases
(Fig. 7b), the SPH from the TROPOMI ALH algorithm is
regarded as the average computation of aerosol optical prop-
erties, resulting in a poor comparison with the lidar SPH. On
the other hand, the TROPOMI ALH algorithm shows encour-
aging potential for characterizing SPHyp in homogenous,
well-developed smoke layers (Fig. S4f and i). Multi-layer
aerosols, inaccurate aerosol-type detection, and biased UVAI
retrievals over bright areas with complex terrain are all poten-
tial causes of retrieval uncertainties in the TROPOMI/ALH
product.

Overall, the discrepancies between passive satellite re-
trievals and lidar measurements with respect to observing
SPH primarily stem from their different approaches to char-
acterizing smoke aerosol. Passive satellites typically operate
under the assumption of a singular aerosol layer within the
atmospheric column, a simplification that often fails to ac-
count for the presence of multiple layers actively captured
by lidars. This divergence creates a challenge in aligning
satellite-derived SPH data with lidar observations due to the
uncertainty in correlating equivalent layers. Further investi-
gation of the smoke plume physics and vertical aerosol distri-
butions are provided in the following sections using the WCL
vertical profiles, including comparisons with passive satellite
SPH products.
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Figure 4. Scatterplots of the satellite SPH retrievals from MODIS-Terra/MAIAC, MODIS-Aqua/MAIAC, MISR/MERLIN, VIIRS/ASHE,
and TROPOMI/ALH versus the WCL-determined SPH using two different definitions: SPHyop (left, blue) and SPHex; (right, red). Results
are for the total collocated lidar—satellite pairs using reconstructed WCL vertical cross-sections during August 2018. Dotted lines denote the
ratios of 2:1, 1:1, and 1 : 2 for reference. The shaded areas show the estimated density of the collocated pairs. Points closer to the fire
(within 20 km) are shown as left-pointing triangles, whereas those farther away, in the downwind area, are shown as right-pointing triangles.
The triangle size denotes the corresponding AOD value. Note that the subpanel axis scales for each satellite product are different. Evaluation
metrics used to assess the performance of satellite products are MB (km) — mean bias; MAE (km) — mean absolute error; RMSE (km) — root-
mean-square error; R? (unitless) — coefficient of determination; and r (unitless) — Pearson correlation coefficient (* signifies a p value < 0.05

and ** indicates a p value < 0.01).

4.2 Leveraging airborne lidar measurements to
characterize plume behavior and SPH

Through the use of airborne lidar measurements, our study
seeks to understand how well a passive satellite remote-
sensing technique can retrieve the SPH. The lidar profiles al-
low for multiple aerosol layers to be sampled, unlike the con-
ventional passive satellite aerosol height retrieval algorithm
which presumes the presence of a single, homogeneously
distributed aerosol layer throughout the entire atmosphere.
Despite different measurement concepts when it comes to
multiple layers of plumes, to ensure comparability between
passive retrievals and active observations of smoke plume be-
havior for ease of calculation, we emphasize the significance
of an effective height parameter. The two different SPH def-
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initions (Sect. 3.1) used to determine this parameter give an
indication of the height of the wildfire smoke aerosol distri-
bution as a single number.

In Fig. 5, the height distributions of wildfire smoke plumes
during BB-FLUX in August 2018 are shown using two def-
initions of the lidar-derived SPH. Caution should be taken
when identifying key criteria used to define the SPH prior
to evaluating the satellite retrievals. This is because SPHyop
(Fig. 5a) has a vertical extent spanning from 0.5 to 5.5 km,
with the most common height being approximately 2.25 km,
whereas SPHey; (Fig. 5b) exhibits a vertical range from 0.5
to 4.5 km, with its peak observed at roughly 1.2 km. For SPH
values less than 3.5km, the occurrence of smoke plumes
identified within one single layer is significantly higher than
that of multi-layer smoke plumes (> 60 % for each height
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bin), suggesting that the columnar SPH values obtained from
satellite retrievals can be compared with those measured
via upward-facing lidar profiles, as smoke plumes produced
by wildfire typically exhibit a single-aerosol-layer structure.
This finding holds particularly true for wildfires of decreased
fire intensity under suppression operations (i.e., some flight
dates approach the corresponding fire containment date listed
in Table 2).

It should be noted that the upward-sampled WCL can only
provide a partial vertical segment and not a fully resolved
cross-section of the smoke plumes from the lowest flight
height due to the restricted lidar laser penetration in optically
thick smoke plumes. For instance, when probing the plume
centerline, there is complete attenuation of the lidar beam,
resulting in a loss of data samples. However, the WCL can
successfully delineate the atmosphere on each pass in the
less dense portions of smoke plumes. Therefore, the verti-
cal structure of individual smoke plumes reconstructed from
airborne WCL measurements yields the vertical profiles of
the mean aerosol extinction coefficient, reflecting the aver-
age conditions of smoke plumes over multi-leg UWKA sam-
pling periods (see more details in Sects. 3.3 and 4.3). In terms
of the lidar-derived SPH biases identified in our study, we
observe three main scenarios: (1) underestimation of SPHyop
(i.e., optically thick plumes limiting vertical extent); (2) over-
estimation of SPHex; (i.e., the upward-pointing lidar not sam-
pling below aircraft); and (3) underestimation of both SPHyo
and SPHey; in situations where the lidar faces dense smoke
above and cannot measure below the aircraft.

4.3 Reconstructed lidar curtain and lidar—satellite
comparison

It is necessary to implement post-processing procedures to
conduct a comparative analysis between lidar observations
and satellite retrievals. Here, we present detailed recon-
structed lidar vertical cross-sections of the aerosol extinc-
tion coefficient along with the collocated satellite SPH on
19 August 2018, for the morning (0819a, Fig. 6) and after-
noon (0819b, Fig. 7) flights. Similar plots are included in
Figs. S4 and S5 for each flight. Figures 6a and 7a demon-
strate that the smoke plume coverage of the MISR/MERLIN
product aligns well with the manually identified plume area
and reveals high-resolution SPH retrievals. In contrast, the
MODIS/MAIAC product with the highest spatial resolution
displays lower SPH values in general over biomass-burning
regions. Meanwhile, both the VIIRS/ASHE product and the
TROPOMI/ALH product indicate that higher SPH values are
generally shifted towards the downwind region.

The vertical distributions of wildfire smoke aerosols
(Figs. 6b and 7b) are useful to visualize the smoke plume
structure and provide more information about the physical
processes influencing aerosol layering in the atmosphere. A
visual comparison of the SPH values from the four satellite
products against the WCL is presented in Figs. 6b and 7b.
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In Fig. 6b, even when faced with intricate aerosol structures,
the MISR/MERLIN data are capable of reaching SPHyqp, €x-
cept for thin plumes with comparably low AOD values. The
MODIS-Terra/MAIAC SPH is similar to SPHey;, although
it is unable to distinguish the top of multiple aerosol lay-
ers and, consequently, produces exceptionally low SPH val-
ues. As the reconstructed aerosol vertical cross-section for
Fig. 7b is located in the downwind region, there is an in-
crease in SPHyop and SPHex with distance from the fire. We
recommend caution when using the MODIS-Aqua/MAIAC
product for estimating downwind SPH, as its effectiveness in
such scenarios is not always optimal (also refer to Fig. S4b
and ¢ for more details). This limitation in the MAIAC PIH
algorithm has also been reported in previous studies (Lya-
pustin et al., 2019; Lorfa-Salazar et al., 2021). Regarding
heterogeneous aerosol vertical profiles, the spatial agreement
between the collocated VIIRS/ASHE SPH values and the
two SPH definitions is poor, despite achieving, on average,
a good numerical agreement with SPHyqp. This is partly due
to the coarse spatial resolution of OMPS UVAI data used
in the algorithm (~ 50 km at nadir; ~ 100 km near the scan
edge) not being able to represent finer-scale features. The
TROPOMI/ALH data are consistent with the SPHey; values,
given the observed overestimation of SPHey, attributable to
the elevated flight height. The potential explanation for this
phenomenon is that, in cases where there may be several lay-
ers of smoke aerosols, the retrieved SPH would be the aver-
age height of the plume, which is much lower than the height
of the optically thick aerosol layer (Michailidis et al., 2023).

According to these results and specific fires studied, the
MODIS/MAIAC product struggles with most heterogeneous
aerosol structures, even in close proximity to active fire
sources. Even though the MISR/MERLIN product aims to
capture the top boundary of the smoke plume, it can be highly
biased in thin plume height estimates with low AOD or for
a more complex aerosol structure with multiple aerosol lay-
ers. The challenges observed for the VIIRS/ASHE retrievals
are as follows: (1) poor correlation with general trends in
lidar measurements and (2) they may not accurately repre-
sent complex atmospheric conditions with multiple aerosol
layers. Out of the four satellite SPH datasets that we investi-
gated, TROPOMI/ALH has the least variance in the retrieved
SPH across spatial areas. This is not ideal for practical use,
as real-world wildfire and smoke plume activity varies sig-
nificantly in space and time. However, elevated smoke layers
with a high aerosol loading over dark surfaces at not very
high altitudes are favorable for the TROPOMI ALH algo-
rithm to retrieve vertically localized aerosol layers in the free
troposphere (FT).

4.4 The SPH application

Knowing the SPH has additional benefits beyond atmo-
spheric modeling; here, we illustrate how the SPH can be
used to improve our understanding of surface air pollution
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Figure 5. Ratios of single-layer and multi-layer aerosol structures in the 0.5 km wide bins using two different WCL-determined SPH
definitions: (a) SPHiop and (b) SPHex(. Lines indicate the probability mass function (PMF). Note that the WCL plume height data are
equally binned by setting the bin width parameter to 0.5km, and the bins are spread out in the range from 0.5 to 5.5km for SPHypp and in

the range from 0.5 to 4.5 km for SPHex;.

concentrations and smoke plume dynamics resulting from
fire—atmosphere interactions. By using both definitions of the
SPH, SPHy,p and SPHey,, additional insights related to plume
dynamics can be assessed. How smoke aerosols are vertically
distributed throughout the atmosphere plays a dominant role
in estimating surface particulate matter (PM) models from
satellite AOD products. High-elevation smoke aerosol lay-
ers above the planetary boundary layer height (PBLH) lead
to high column AOD while not elevating the near-surface
PM levels. Generally, aerosol concentrations are low in the
higher, relatively stable atmospheric layers above the plan-
etary boundary layer (PBL). However, large wildfires can
have vigorous buoyant plume cores that lift the smoke plume
into the FT or even the stratosphere (Fromm et al., 2019),
thereby contributing to elevated aerosol concentrations above
the PBLH. Based on the approximate burned area in Ta-
ble 2, the fires in our study meet the definition of a megafire
(10000-100000 ha) suggested by Linley et al. (2022), but
it should be noted that fire size alone cannot characterize
the fire intensity, activity, or resulting smoke plume behav-
ior (Tedim et al., 2018). The ratio of the effective SPH to
PBLH (SPH : PBLH) is an indicator of the AOD and surface
PM concentration relationship (Cheeseman et al., 2020). We
incorporated the modeled PBLH from the Weather Research
and Forecasting (WRF) model (as shown in Fig. 8), so we
can better understand local meteorology and its impact on
the wildfire SPH. The WRF model, for our use, has a do-
main extending over the WUS with a 4 km spatial resolution,
nudged with observations from weather stations as well as
balloon soundings. The PBLH values were recalculated from
the WRF simulations using the vertical potential temperature
gradient method or the Richardson number method (de Ar-
ruda Moreira et al., 2020). The locations and elevations of
each balloon sounding station are given in Table S3, details
of the WRF model configuration are listed in Table S4, and
results of the WRF model evaluation are shown in Fig. S6.
In Fig. 8, there is no clear single pattern for the vertical
spread of the smoke plume due to the fire—atmosphere cou-
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pling and boundary layer turbulence (Sun et al., 2009; Deng
et al., 2022b). The difference between SPHyop and SPHex;
is often greater within a single plume than the differences
across different plumes. Based on the wildfire information
in Table 2, we can qualitatively discuss the differences be-
tween SPHyop : PBLH and SPHex : PBLH for each wildfire
in terms of their start dates, approximate containment dates,
and approximate acres burned. SPH : PBLH characterizes a
joint interaction between buoyant plume cores and bound-
ary layer mixing (e.g., entrainment and wind shear). It also
depends on other important factors such as the fire size, dis-
tance from the fire source, and the fire spread. In some cases,
high SPHyop : PBLH (> 1) and low SPHeyx¢ : PBLH (< 1) oc-
cur concurrently, as shown in Fig. 8. This means that a higher
columnar AOD does not necessarily give rise to the majority
of the smoke plume concentrations being above the PBL. For
instance, the Watson Creek Fire, which started on 15 Au-
gust 2018, had two flight missions, 0819a and 0819b, and
their aviation operation dates were close to the fire start date,
compared with the 0824a and 0825a flights. The challeng-
ing terrain with dense fuel on the ground facilitated rapid fire
spread, and the fire was not contained. Therefore, we can ex-
pect that the intense fire behavior would generate a higher
number of smoke plumes injected into the FT, where both
SPHiop : PBLH and SPHey : PBLH are larger than 1. A total
of 5d later, as the fire activity decreased and containment of
the fire increased to 15 %, there was likely more smoldering
and, thus, lower plume heights. The SPH¢y; reaches a simi-
lar level to the PBLH, although SPHy,, : PBLH remains rela-
tively high. When comparing the morning and afternoon SPH
patterns, the morning SPH relationships are less complex
and potentially easier to model. In contrast, turbulence, con-
vection, and fire—atmosphere interactions contribute to more
chaotic plume and PBL dynamics in the afternoon, and the
growth rate of the fire exceeds the growth rate of the PBL.
The Sheep Creek Fire is an exception due to a timely and
consistent fire response, making rare SPH behavior in the af-
ternoon possible: smoke plumes were contained within the
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Figure 6. (a) The nearest satellite pixels of MODIS-Terra/MAIAC and MISR/MERLIN to the corresponding airborne lidar points along
the 0819a flight track during the reconstructed time period from 17:12 to 19:12 UTC (highlighted in green). Wind barbs are plotted along
the trajectory with each short barb representing 5 kn and each long barb representing 10 kn. The star symbol indicates the center location
of the Watson Creek Fire taken from the incident report system (InciWeb). Note that the NASA Worldview MODIS Terra true-color (i.e.,
corrected reflectance) images are shown beneath the satellite-retrieved SPH maps, along with the user-drawn smoke plume polygons (denoted
as the dashed white region). (b) Composite latitude—height cross-sections of the reconstructed WCL vertical aerosol extinction coefficient at
355 nm, overlaid with WCL-determined SPHop and SPHex¢ and the collocated satellite-retrieved mean SPH with error bars, for the Watson
Creek Fire in the morning on 19 August 2018 with the corresponding AOD.
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PBL. Additionally, a significant portion of the lidar vertical
cross-section is missing for the 0823a flight during the South
Sugarloaf Fire, as depicted in Fig. S4g. In spite of the fire size
indicating a megafire (Linley et al., 2022), the absence of the
extinction coefficient data as well as in situ sampling in the
downwind region (Table 2) led to low estimates of SPHyp
and SPHey:.

5 Summary and conclusions

The notion of the SPH can be visualized as the vertical dis-
placement from the ground to the upper atmosphere, marking
the extent to which smoke plumes ascend. This parameter is
vital for simulating the initial stage of plume production and
predicting the potential spread of smoke from wildfires (e.g.,
Walter et al., 2016; Tang et al., 2022). If smoke is emitted
above the PBL, it tends to persist longer and travel farther.
Smoke emitted within the PBL adversely impacts AQ and
increases ground-level air pollution concentrations.

Current efforts to study the wildfire SPH mainly rely on
the use of active lidar data and passive satellite sensor re-
trievals. However, these instruments face inherent spatial and
temporal limitations, such as their inability to swiftly adapt
to changes in fire and smoke plume behavior. Nonetheless,
fusing multi-satellite products to estimate the SPH is still an
evolving field. Transported smoke aerosols can form com-
plex, multi-layer structures, but this study has shown that
a single, uniform aerosol layer is encountered more fre-
quently than previously assumed. This means that a single
value can be used to describe the height of the aerosol layer.
With this more straightforward representation, scientists can
more readily incorporate aerosol layer data into climate and
AQ models, including our earlier discussion of an effec-
tive SPH concept. We used two SPH definitions for com-
parisons because the SPH criterion varies between plume
rise retrieval algorithms, given their diverse representations
of aerosol vertical allocation that may not sufficiently re-
flect the real wildfire-associated smoke aerosol layering. We
also employed two different collocation methods to provide
lidar—satellite collocated pairs. Collocation uncertainties can
be caused by the discrepancy between the coarse spatial res-
olution of the satellite retrieval algorithm and the fine-scale
variability in wildfire smoke plume activity detected by high-
resolution active lidar measurements.

The results in this paper reaffirmed that uncertainties in
multiple satellite-derived SPH products arise from differ-
ent remote-sensing techniques (Tosca et al., 2011; Flower
and Kahn, 2017). The current state of satellite-based SPH
products is impacted by significant errors, which we ascribe
mostly to either complex multiple aerosol layers or to thin
transparent plumes. The user recommendations and main
conclusions drawn from this study are as follows:

1. The MAIAC PIH algorithm necessitates careful qual-
ity verification, as its SPH retrievals are routinely
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lower than the lidar measurements, especially for
MODIS-Aqua/MAIAC. We suggest selecting SPHex¢
as a suitable height metric to evaluate the MODIS-
Terra/MAIAC product when the distance from the fire
source is < 20 km and when AOD at 355nm > 1.

2. The MISR plume height climatology is promising to
help locate wildfire-associated SPHy,, and provide the
best estimates over mountainous terrain. However, as
WUS fires have become more frequent since the 2000s,
the available MISR/MERLIN datasets are relatively
minimal. Some challenges associated with using MIS-
R/MERLIN include the limited timing of MISR over-
passes (which only occur in the late morning, local time)
and the labor-intensive nature of operating the MINX
software to digitize the smoke plumes.

3. Both the VIIRS/ASHE and the TROPOMI/ALH prod-
ucts show great potential for characterizing SPHyop in a
single homogenous aerosol-rich layer. An overestima-
tion of the SPH in the near-fire-event region and an un-
derestimation of the SPH in the downwind region still
prevail. We find that large retrieval errors occur in the
studied cases, underscoring the need for a robust qual-
ity screening approach related to the UVAI parameteri-
zation.

However, the performance evaluation of four satellite SPH
products presented here indicates only a weak to moderate
correlation between passive satellite retrievals and airborne
lidar observations. Deploying both passive and active sensors
in tandem can offer a synergistic approach, filling gaps in our
understanding of fire and smoke plume behavior by utiliz-
ing the unique strengths of each method. The lack of syn-
chronization between satellite overpass times and variations
in fire activity and aerosol layering is responsible for more
than half of the collocation mismatches. It is expected that
future satellites, equipped with active or passive sensors, can
increase the chances of capturing a large wildfire event at its
peak, as exemplified by improved spatial and temporal cov-
erage of the Advanced Baseline Imager (ABI) on geostation-
ary satellites. Notably, NASA’s forthcoming aerosol inves-
tigations from space, such as AOS (Atmosphere Observing
System), MAIA (Multi-Angle Imager for Aerosols), PACE
(Plankton, Aerosol, Cloud, ocean Ecosystem), and TEMPO
(Tropospheric Emissions: Monitoring of Pollution), are ex-
pected to play a pivotal role in this regard. By integrating
data from multiple satellite systems as a potential solution to
the synchronization issue, scientists can create a more com-
prehensive and improved picture of wildfire plume rise.

This study provides a preliminary comparison reference
for multiple satellite-based SPH applications. Our findings
serve to connect smoke transport and AQ forecasting frame-
works and future satellite missions that aim to quantify the
vertical distribution of aerosols in the atmosphere, similar to
the efforts of Raffuse et al. (2012), Solomos et al. (2015),
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Figure 8. Box plots comparing the 30 min average modeled PBLH (gray) with the WCL-determined SPH using two different definitions
(SPHiop, blue; SPHex¢, red) for the morning (shaded by green) and afternoon (shaded by yellow) flight missions. Each panel represents
a single wildfire case. Upper and lower whiskers represent the 95th and Sth percentiles, respectively, while the box spans from the 25th
percentile to the 75th percentile. The line inside the box represents the median (the 50th percentile), and the triangle indicates the mean of
the range of height values. Note that the range of WCL SPH measurements for both morning (0820a) and afternoon (0820b) flight missions

on 20 August 2018 is limited because only a small fraction of the flight track transects is considered valid for reconstruction.

Ke et al. (2021), and Kumar et al. (2022). Therefore, we
encourage conversations between the communities involved
in satellite remote sensing and atmospheric modeling to en-
hance the diversity of perspectives and foster a consensus on
the measurement and comprehension of effective SPH with
greater clarity.

Appendix A: Evaluation metrics for collocated
lidar—satellite SPH comparison

We evaluate the performance of a satellite SPH product
against lidar observations using the following statistics: mean
bias (MB), mean absolute error (MAE), root-mean-square er-
ror (RMSE), coefficient of determination (R?), and Pearson
correlation coefficient (r). The metrics are calculated for the
SPH using Eqgs. (A1) to (AS):

MB = SPHiatenite — SPHiidar, (A1)
MAE — ZlNzl |SPHlidar,]i]_ SPHsatellite,i | 7 (A2)
N 2
RMSE — Zi:l (SPHlidar,;v_ SPHsatellite,i) 7 (A3)

N 2
>~ (SPHiiar.i — SPHsaceliie. )
R =1-"— = (A4)
> i1 (SPHiidar,i — SPHiidar)
P (SPHiigar,i — SPHiidar) (SPHsatelite.i — SPHatellite) (AS5)

r= .
\/Z,Nzl (SPH]idar,i — SPHiidar '2\/Z;N:l (SPHsalellile,i - SPHsalellite)z

Here, SPHiigar,; is the ith collocated lidar measurement,
SPHgaeltite,; 1 the ith collocated satellite retrieval, SPHjidar
is the arithmetic mean of the collocated lidar measurements,
SPHgtenite 1S the arithmetic mean of the collocated satellite
retrievals, and N is the number of collocated pairs.
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The MB represents the average bias of a satellite SPH
product, but it should be interpreted cautiously because pos-
itive and negative errors will cancel out. The MAE measures
the average over the sample absolute differences between li-
dar measurements and satellite retrievals where all individ-
ual differences have equal weight, without considering their
direction. The RMSE is the square root of the average of
squared differences between lidar measurements and satellite
retrievals. The RMSE is more useful when large outlier errors
are particularly undesirable. Unlike the RMSE, the MAE is
an unambiguous measure of average error magnitude. The
R? provides a statistical measure of how well a satellite SPH
retrieval algorithm reflects the real-world conditions, as mea-
sured by the more direct lidar technique. The closer the R?
is to 1, the more reliable the satellite retrieval is with respect
to representing the actual SPH. A negative R? happens when
the performance of the satellite SPH product is worse than
the mean absolute deviation of the lidar observations. The r
value is a measure of the strength of a linear association be-
tween two variables, indicating that the distribution of both
lidar measurements and satellite retrievals for SPH has a sim-
ilar trend in the change. The best performance that a satellite
SPH product would have for these evaluation metrics is as
follows: MB (km) = 0, MAE (km) =0, RMSE (km) =0, R?
(unitless) =1, and r (unitless) = 1.
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Table B1. Additional statistical evaluation of four satellite-derived SPH products against WCL-determined SPH observations. Note that the
satellite SPH information is only shown in one column to be compared with two distinctive WCL-determined SPH definitions. The metrics
presented in the table are as follows: SD — standard deviation; Q25 — lower quartile, 25 % of the data lie below this value; Q50 — median,
50 % of the data lie below this value; and Q75 — upper quartile, 25 % of the data lie above this value.

WCL-determined SPH

SPHiop \ SPHext
MODIS-Terra/MAIAC  No. collocated pairs (spatial average) 163
Lidar observations, mean & 1 SD (km) 2.162 £0.542 ‘ 1.382 £0.368
Satellite retrievals, mean & 1 SD (km) 0.733 £0.447
Lidar observations, max/min (km) 3.903/1.254 ‘ 2.253/0.800
Satellite retrievals, max/min (km) 2.114/0.015

Lidar observations, Q25, Q50, Q75 (km)
Satellite retrievals, Q25, Q50, Q75 (km)

1.776, 2.064, 2.508 ‘ 1.131, 1.298, 1.581
0.438, 0.687, 0.903

MODIS-Aqua/MAIAC

No. collocated pairs (spatial average) 114

Lidar observations, mean 4= 1 SD (km) 2.686 £0.797 ‘ 1.790 £ 0.644
Satellite retrievals, mean &= 1 SD (km) 0.425+0.262

Lidar observations, max/min (km) 4.215/1.374 ‘ 3.422/0.800
Satellite retrievals, max/min (km) 0.935/0.025

Lidar observations, Q25, Q50, Q75 (km)
Satellite retrievals, Q25, Q50, Q75 (km)

2.063, 2.627, 3.350 ‘ 1.274,1.728,2.325
0.192, 0.379, 0.697

MISR/MERLIN No. collocated pairs (spatial average) 90
Lidar observations, mean 4= 1 SD (km) 2.216 £0.506 ‘ 1.498 +£0.449
Satellite retrievals, mean 4= 1 SD (km) 2.124 £0.625
Lidar observations, max/min (km) 2.982/1.254 ‘ 2.253/0.853
Satellite retrievals, max/min (km) 3.029/0.625
Lidar observations, Q25, Q50, Q75 (km)  1.791, 2.204, 2.648 ‘ 1.129, 1.428, 1.969
Satellite retrievals, Q25, Q50, Q75 (km) 1.658, 2.083, 2.801
VIIRS/ASHE No. collocated pairs (matched pair) 130
Lidar observations, mean & 1 SD (km) 2.823 £0.999 ‘ 1.895 £0.890
Satellite retrievals, mean &= 1 SD (km) 2,707 £1.165
Lidar observations, max/min (km) 5.493/1.497 ‘ 4.003/0.811
Satellite retrievals, max/min (km) 4.930/0.231
Lidar observations, Q25, Q50, Q75 (km) 1.977,2.904, 3.318 ‘ 1.094, 1.629, 2.489
Satellite retrievals, Q25, Q50, Q75 (km) 2.060, 2.683, 3.579
TROPOMI/ALH No. collocated pairs (matched pair) 127
Lidar observations, mean =1 SD (km) 2.677£1.075 ‘ 1.894 £0.936
Satellite retrievals, mean =1 SD (km) 2.052 £0.588
Lidar observations, max/min (km) 5.493/1.374 ‘ 4.003/0.734
Satellite retrievals, max/min (km) 3.425/1.412

Lidar observations, Q25, Q50, Q75 (km)
Satellite retrievals, Q25, Q50, Q75 (km)

1.718, 2.337, 3.308 ‘ 1.019, 1.542, 2.684
1.546, 1.802, 2.431
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Data availability. The MODIS/MAIAC MCD19A2
Version 6.1 data product can be found at
https://doi.org/10.5067/MODIS/MCD19A2.061 (Lyapustin

and Wang, 2022). The Atmospheric Science Data Center hosts a
web-based interface for freely downloading the MISR/MERLIN
plume files at  https://10dup05.larc.nasa.gov/merlin/merlin#
(NASA, 2022a). The TROPOMI/ALH Level 2 data
are publicly available to users via the Copernicus
Data  Space  Ecosystem at  https://doi.org/10.5270/S5P-
7gdiapn (ESA, 2021). The VIIRS/ASHE data can be
obtained from the VIIRS Deep Blue aerosol group
(https://doi.org/10.5067/VIIRS/AERDB_L2_VIIRS_SNPP.002,

NASA, 2022b). The BB-FLUX WCL data can be
obtained from the official UWKA project website
(https://doi.org/10.15786/M25W9D, University of Wyoming

— Flight Center, 2007). Balloon sounding data are available from
the Atmospheric Soundings — Wyoming Weather Web website
(https://weather.uwyo.edu/upperair/sounding.html, University of
Wyoming, 1996).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-3673-2024-supplement.
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