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The increasing use of foundation models in biomedical ap-
plications raises opportunities and challenges to analyze the in-
formation captured in the high-dimensional embedding spaces
of different models. Existing tools offer limited capabilities for
comparing information represented in the embedding spaces
of different models. We introduce ema-tool, a Python library
designed to analyze and compare embeddings from different
models for a set of samples, focusing on the representation of
groups known to share similarities. ema-tool examines pair-
wise distances to uncover local and global patterns and tracks
the representations and relationships of these groups across
different embedding spaces. We demonstrate the use of ema-

tool through two examples. In the first example, we analyze
the representation of ion channel proteins across versions of
the ESM protein language models. In the second example,
we analyze the representation of genetic variants within the
HCN1 gene across these models. The source code is available
at https://github.com/broadinstitute/ema.
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Introduction
The emergence of foundation models has revolutionized the
field of natural language processing (NLP) (1–4), and foun-
dation models are gaining popularity in biomedical appli-
cations (5–10). Trained on extensive datasets in a self-
supervised manner, these models learn to represent the data
points and their relationships in a numerical vector space. By
leveraging these learned embedding spaces, the foundation
models achieve competitive performance on several down-
stream tasks (11–13). With an increasing number of models,
the comparison of what has been learned becomes more im-
portant, for example, pre- and post-fine-tuning, models with
different numbers of parameters, or models trained on differ-
ent data modalities. Whilst information learned by the differ-
ent models is commonly evaluated by comparing its perfor-
mance on downstream tasks (6, 13, 14), there has been little
emphasis on directly comparing learned information, such as

embedding spaces, across biomedical foundation models (6).
In contrast, the analysis of embedding spaces is more es-

tablished in fields like NLP, leading to the development of
tools dedicated to simplifying the comparative analysis of
embedding spaces. The published tools for the comparison of
embedding spaces primarily examine nearest-neighbor over-
lap using Euclidean or Cosine distances. embComp (15) and
recomp (16) aggregate changes in nearest neighbors, offer-
ing a global overview of similarity between two embedding
spaces. Other tools allow for the visualization of the near-
est neighbors of a query data point in both embedding spaces
using dimensionality reduction techniques such as Principal
Component Analysis (PCA), t-distributed Stochastic Neigh-
bor Embedding (t-SNE), or Uniform Manifold Approxima-
tion and Projection (UMAP) (17, 18). Further, the Emblaze
tool (19) visualizes how a query data point’s nearest neigh-
bors shift in a different embedding space, showing where
these new neighbors are situated in the current embedding
space. Emblaze also highlights data points with substantial
changes in their neighbors and neighborhoods that exhibit
relatively large changes between embedding spaces.

Whilst the presented tools (15–19) can also be applied to
embeddings of biomedical data, we argue that the compari-
son of embedding spaces from biomedical foundation mod-
els can further be deepened by augmenting the analysis with
prior knowledge of natural groupings of the embedded data
points. The clustering analysis of natural groupings is already
prominent in single embedding space evaluation (6, 20); our
goal is to enhance accessibility and integrate this information
into a comparative analysis.

To bridge this gap and further guide our understanding of
the information captured by foundation models, we introduce
ema-tool, a Python library, designed for a straightforward ini-
tial comparison of diverse embedding spaces in biomedical
data. By enabling users to include various user-defined meta-
data on the natural grouping of data, users can not only com-
pare global statistics of multiple embedding spaces but also
understand the differences in the clustering of natural group-
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ings across different embedding spaces. This approach al-
lows for insights into the proximity of individual data points
as well as the relationships and clustering of entire groups,
e.g., genes or proteins, across embedding spaces. We provide
two example applications of ema-tool for analyzing the rep-
resentation of gene families and gene variants across multiple
large Protein Language Models (PLMs).

Figure 1: Overview of the ema-tool workflow. A Six samples are embedded into
two high-dimensional spaces, V1 and V2. The two embedding spaces are passed
to the ema-tool library along with metadata, grouping the samples into groups A, B,
and C. B In addition to visualization options of the clustering of groups of samples
in each embedding space, ema-tool calculates the pairwise distances between all
sample pairs within each embedding space. C Visualization tools in ema-tool en-
able users to explore changes in pairwise distances between the two embedding
spaces, helping to identify common patterns and groups that show differences in
their relative position in each space.

ema-tool: Methods and Features
Figure 1 provides an overview of the ema-tool workflow.
Given a set of n samples (s1, ...,sn) and at least two embed-
ding spaces Vi µ Rdi , i = 1, 2 (i.e., two functions that map
the sample s to an embedding space: Ei : S æ Vi : s ‘æ v(i)),
ema-tool provides overview statistics and visualizations of
the distribution of samples in each embedding space. Further,
ema-tool computes the pairwise distances between the em-
beddings of all samples. The embedding spaces can then be
compared based on the differences in the pairwise distances,

both on an individual data point level and by comparing user-
defined groups of sample points.

Input Data. ema-tool takes the following input objects:

• Sample information: A pandas DataFrame where the
first column contains unique identifiers for each sam-
ple. Additional columns can include user-defined cat-
egorical and continuous metadata about the samples
such as group labels.

• Embedding spaces: NumPy arrays with rows contain-
ing the embeddings of each sample in the respective
embedding space. In our application examples, each
row contains the embedding of a specific protein se-
quence. Multiple embedding spaces can be loaded into
the library object for comparison. At least two em-
bedding spaces are required for the full analysis. The
dimensions of the embedding spaces of interest can be
of different dimensions.

Analyses Within an Embedding Space. To gain deeper
insights into the properties of each embedding space, ema-

tool offers several analytical tools. Within the same embed-
ding space Vi, ema-tool lets the user analyze the distribu-
tion of the embedding values to gain an initial understanding
of the scale and variance of these values in each embedding
space. The clustering of samples in relation to the metadata
can be analyzed by comparing the correlation of user-defined
groups with clusters identified by unsupervised clustering ap-
proaches. Furthermore, dimensionality reduction methods,
including PCA, UMAP, and t-SNE, can be applied to visu-
ally inspect the variance and clustering within the embedding
space. At each stage, the analysis can be stratified by the
user-defined groups of samples.

Measuring Pairwise Distances. For each pair of sam-
ples sj and sk, the distance of their respective embeddings
dist

1
v(i)

j ,v(i)
k

2
is measured in each embedding space Vi.

The use of conventional distance metrics to measure mean-
ingful distances in high dimensional spaces has been debated
(21, 22). Thus, ema-tool offers a range of different dis-
tance metrics for a comprehensive analysis of the embedding
space, including Manhattan, Euclidean, and Cosine distances
as well as normalized and scaled versions of these. The range
of distance metrics provides different viewpoints on the prox-
imity of data points in the embedding space. In a range of
visualizations, users can explore the distances of groups of
samples to each other.

Analyses Between Embedding Spaces. To un-
derstand the similarities and differences in the re-
lationship of samples across embedding spaces
dist

1
v(1)

j ,v(1)
k

2
vs. dist

1
v(2)

j ,v(2)
k

2
, ema-tool provides

visualization tools to compare sample pairs between two
embedding spaces. The introduced distance metrics can be
used. The provided metadata can be leveraged to identify
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differences between the relationships of groups of samples
among the embedding spaces.

Application Examples
Embedding of Protein Families Across Protein Lan-
guage Models. In this example, we use ema-tool to an-
alyze the embeddings of 102 wild-type protein sequences
across the PLMs ESM-1b (6), ESM-1v (11) and ESM-2 mod-
els (12). For each protein, we retrieve one embedding of
the dimension 1 x 1280 for each of the three ESM models.
The analyzed proteins belong to eight different ion channel
families, which are used as metadata to group the proteins.
The families are voltage-gated potassium channels (Kv),
calcium-activated potassium channels (KCa), inwardly recti-
fying potassium channels (Kir), two-pore potassium channels
(K2P), cyclic nucleotide-gated channels (CNG), hyperpolar-
ization and cyclic-nucleotide gated channels (HCN), tran-
sient receptor potential channels (TRP), and transient re-
ceptor potential related channels (TRPML). We find that
pairwise distances between proteins are correlated between
ESM-1b and ESM-2 (Spearman’s fl = 0.41, p < 0.0001)
and even more pronounced between ESM-1b and ESM-1v
(Spearman’s fl = 0.73, p < 0.0001). When visually comparing
the pairwise distances between protein families, we observe
that all three models seem to embed proteins related to the
Kir family (15 proteins) closer to each other than to proteins
from other families (see Figure 2A I). The embeddings of
other protein families are more heterogeneous between the
models. For example, by visual inspection proteins of the
CNG and HCN families seem more separated in the ESM-1b
space compared to ESM-2 (see Figure 2A II). Our experi-
ments demonstrate the varying representation of protein fam-
ilies for ion channel proteins in the distances of embeddings
across three PLMs.

Embedding of Genetic Variants Across Protein Lan-
guage Models. In a second example, we use ema-tool to
analyze the embeddings of the ESM-1b and ESM-2 model
for 880 genetic missense variants (i.e., single amino acid
changes in the encoded protein sequence) in the HCN1

ion channel gene. These variants are collected from two
sources. 861 variants are collected from the Genome Aggre-
gation Database (gnomAD) (23), the largest publicly avail-
able database for genetic variants that are observed in the
general population and are therefore expected to not increase
the risk for severe diseases with large effect sizes. Addi-
tionally, 19 variants are obtained from the ClinVar database
(24), a large public community data source for variants con-
tributed from clinical diagnostic settings. The selected Clin-
Var variants are expected to be disease-causing with high
confidence. Embeddings are obtained by incorporating the
specific amino acid alteration into the wild-type protein se-
quence corresponding to the HCN1 gene and retrieving an
embedding for this modified sequence. Each embedding is
of dimension 1 x 1280.

By comparing the embedding representations of all 880
HCN1 missense variants to a set of protein features collected

from UniProt (25) and the Genomics 2 Proteins Portal (26),
we find that embeddings of the subset of variants that are lo-
cated in disordered regions of the protein (397 variants) are
clustered in the embedding space of ESM-1b, but not that of
ESM-2, when visually inspecting the first two principle com-
ponents of each embedding space (see Figure 2 B). Interest-
ingly, 100% of the 397 variants located in the disordered re-
gions are putatively benign population variants from the gno-
mAD database. This association between gnomAD missense
variant positions in proteins and disordered regions in pro-
teins is in agreement with previous studies (27–29).

We further leveraged ema-tool to compute the pairwise
Euclidean distances between embeddings of variants within
disordered regions of the protein and between variants in-
side and outside the disordered regions of the protein. In
the embedding space of the ESM-1b model, the distances be-
tween embeddings of variants within disordered regions, n1 =
78,606, are notably lower compared to the distances between
embeddings of variants inside and outside the disordered re-
gions, n2 = 191,751 (median1 = 0.056, median2 = 0.067, re-
spectively, p < 0.0001 in Mann-Whitney U test, one-sided).
In contrast, we did not observe a statistically significant dif-
ference between ESM-2 embeddings of variants within the
disordered regions and those of variants inside and outside of
the disordered regions (median1 = 0.045, median2 = 0.044,
respectively, p = 1.0 in Mann-Whitney U test, one-sided). By
clustering the variants in the disordered regions of the HCN1

gene, the ESM-1b model captures more information in the
distances between embeddings about the disordered region
feature, compared to the ESM-2 model. This result indi-
cates that protein embeddings from the ESM-1b model may
be more suitable as input for variant pathogenicity prediction
for the HCN1 gene compared to those from ESM-2.

Conclusion
In summary, we introduce ema-tool, a Python library for
comparing embeddings in different latent spaces of founda-
tion models. With an emphasis on incorporating available
metadata, ema-tool aims to foster the exploration and com-
parison of embeddings to gain insights into the learned rep-
resentations and ultimately guide the downstream use of the
models in biomedical applications. While the current imple-
mentation of ema-tool supports the analysis of small sets of
samples, further efforts are presently being made to stream-
line distance computations for larger sets of samples. Our
future directions also include the development of additional
quantitative analysis methods to deepen the insights provided
by embedding space comparisons.
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Figure 2: A. Application example 1: Visualising ion channel families in different embedding spaces. Each dot represents the Euclidean distance between the
embeddings of two of the selected ion channel proteins, as indicated on the x and y axes. The color of the dots indicates the respective family of the ion channels. The
upper panels show the distances of the embeddings in the ESM-1b and ESM-1v models. The lower panels show the distances between the embeddings of the ESM-1b and
ESM-2 models. I. Distances of proteins of the Kir family. Embeddings of proteins of the Kir family are closer to each other than to proteins from other families. This trend
is observed in all three embedding spaces. II. Distances of proteins of the HCN and CNG family. In the embeddings from the ESM-1b and ESM-1v models, distances
between embeddings of proteins from the HCN family are closer to each other than they are to embeddings from proteins of the CNG family, and vice versa. This trend is not
observed in the embeddings from the ESM-2 model, where proteins from the HCN family are embedded at similar distances to proteins from their family than to proteins from
the CNG family. The two families are clustered more distinctly in the ESM-1b and ESM-1v models, compared to the ESM-2. B. Application example 2: Scatter plot of the
first two principal components of the HCN1 variant embeddings. Each dot shows the first (x-axis) and second (y-axis) principle components representing embeddings
of an amino acid sequence with a missense mutation. The upper plot shows the first two principal components representing the ESM-1b embeddings, the lower plot the
first two principal components representing the ESM-2 embeddings. The color of the dots indicates whether the mutation occurs within a disordered region of the protein
("Disordered", blue) or outside a disordered region ("Non-disordered", red). The percentage of variance explained by each principal component is shown in brackets on the
respective axis label. Mutations in disordered regions cluster more closely in the first principal component of the ESM-1b embeddings compared to the ESM-2 embeddings.
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