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(nk)x of natural numbers. Under additional assumptions, we
also show that the sequence (ny)r has to be bounded: in
other words, the only embedded von Neumann algebras are
the “obvious” ones.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Uniform Roe algebras and quasi-local algebras

Throughout this paper, X is a metric space. We are interested in algebras of operators
on ¢5(X), the Hilbert space of all square-summable functions from X to C with its
canonical Hilbert space structure and orthonormal basis (0, ),c x. We let B(¢2(X)) denote
the space of bounded operators on ¢5(X), and, given A C X, x4 € B({2(X)) denotes
the canonical orthogonal projection with image ¢2(A) C lo(X).

In noncommutative geometry, one defines algebras of operators on ¢5(X) with the
goal of encoding aspects of the geometry of X in C*-algebraic terms. When interested
in the large scale (or ‘coarse’) geometric properties of X the following two well-known
C*-algebras are considered.

Definition 1.1. Let a € B(¢2(X)). The propagation of a is defined by

prop(a) := sup{d(z, z) | {(ads,0,) # 0}.
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The uniform Roe algebra of X, denoted by C(X), is the norm closure of the x-algebra
of operators with finite propagation.

Definition 1.2. The quasi-local algebra of X, denoted by CZI(X), consists of all operators
a € B(l3(X)) such that for all € > 0 there is » > 0 for which, for all A,B C X,
d(A, B) > r! implies || xaaxgs| <e.

These algebras were introduced by J. Roe to study the index theory of elliptic op-
erators on noncompact manifolds ([31,32]). Subsequently, (non-uniform) Roe algebras
became important in the set up for the Baum-Connes conjecture ([17,47]); subsequent
work ([39,37]) made it clear that there is an equally useful version of the coarse Baum-
Connes conjecture based on uniform Roe algebras. Even more recently, the quasi-local
algebra has seen increased interest due to applications in index theory ([12,13]).

Researchers in mathematical physics have also started to use uniform Roe algebras
in the theory of topological materials and, in particular, topological insulators. Their
importance in mathematical physics comes from the fact that, to describe a topological
phase, one must choose appropriate observable algebras and symmetry types. The liter-
ature in this field has been rapidly growing and we refer the reader to [22,11,19,26,10]
for more on the role of uniform Roe algebras and quasi-local algebras in mathematical
physics.

Although it is elementary that Cj,(X) is always a C*-subalgebra of Cy,;(X), it remains
one of the biggest problems in the field to know whether these two algebras are actually
the same. This entails the need for better understanding of the structure of each of
these algebras. For many spaces, the situation is clear: if X has Yu’s property A [48,
Definition 2.1], we have that Cj,(X) = C},(X) ([41, Theorem 3.3], and see also [38]). The
class of metric spaces with property A includes for instance all metric spaces with finite
asymptotic dimension ([18, Lemma 4.3]) such as finitely generated abelian groups and
hyperbolic groups, and all amenable and all linear groups ([15, Page 244]).

1.2. Goals

For the main results of this paper, we assume that all metric spaces are uniformly
locally finite (abbreviated as wu.l.f.), that is for each r > 0, the balls of radius r have
uniformly finite cardinality. This covers the most important examples such as countable
discrete groups with a left-invariant proper metric (see for example [46, Lemma A.3.13]),
and discretizations of Riemannian manifolds with bounded sectional curvatures and in-
jectivity radius bounded below (see for example [46, Example A.3.21]). To avoid trivial
counterexamples, we assume throughout this introduction that X is infinite.

! Throughout this paper, if (X, d) is a metric space and A, B C X, we write d(A, B) = inf{d(z,y) | = €
A, y € B}; this is of course not a metric.
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The uniform Roe algebra and quasi-local algebra of X both have an unusual ‘hybrid’
personality that sits somewhere between C*-algebra and von Neumann algebra theory.
They contain the compact operators K(¢2(X)), and are not B(¢3(X)) when X is un-
bounded, so they are very definitely not von Neumann algebras. However, they contain
a copy of the von Neumann algebra £ (X) C B(¢2(X)) as a C*-diagonal in the sense
of [23]. The presence of this ‘von Neumann diagonal’ provides very useful tools such as
strong convergence and weak compactness arguments that are not usually available to
C*-algebraists: this has been particularly important in work on the rigidity problem for
uniform Roe algebras,” where the analysis of copies of the von Neumann algebra £, (N)
inside uniform Roe algebras and quasi-local algebras plays a pivotal role (see for example
[40,4,45,2]).

More generally, under very weak assumptions on X (see Lemma 2.3 below) the uniform
Roe algebra and quasi-local algebra contain embedded copies of the von Neumann algebra
[T, M, (C) for any bounded sequence (ny)j of natural numbers.” The following ‘folk
conjecture’ has thus been in the air for some time.

Conjecture 1.3. The only von Neumann algebras that can embed into a uniform Roe
algebra or a quasi-local algebra associated to a u.l.f. metric space are those of the form
[ M,,, (C), where (ng)x is a countable (possibly finite) and bounded collection of nat-
ural numbers.*

It is the purpose of this paper to study this conjecture, i.e. to study which von Neu-
mann algebras can embed into uniform Roe algebras and into quasi-local algebras.”

1.3. Results

When talking about embeddability of von Neumann algebras, the question of which
topology to consider is important. Precisely, unlike the case of C*-algebras, where every
embedding is automatically continuous in the natural (norm) topology, the category of
von Neumann algebras admits singular *-homomorphisms that are discontinuous with
respect to any of the (many!) natural von Neumann algebra topologies (see §2.2 for
further discussion on this). It is also standard in von Neumann algebra theory to assume
that all subalgebras contain the unit of the ambient algebra. Here, however, we prove the
strongest possible negative results about embeddings: the embeddings are assumed to
be merely x-algebraic (and therefore norm-continuous), and we do not assume unitality.

2 See §1.4 for more details about the rigidity problem for uniform Roe algebras.

3 Here, and throughout the paper, we use the usual terminology in operator algebras that, given a sequence
of C*-algebras (An)n, [, An denotes the £oo-sum and @,, A, the co-sum of those algebras.

4 See Conjecture 2.4 below for a more precise version of this conjecture.

5 It is also interesting to study which uniform Roe algebras embed into each other: this was initiated in

[5].
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We can now describe the main results of these notes. We stress that, although we
state our non-embedding results in terms of the quasi-local algebra, all of them hold for
the uniform Roe algebra as well, since it is included in the quasi-local algebra.

In our investigation of which von Neumann algebras can be found inside some quasi-
local algebra, the first step is to classify the abelian von Neumann algebras with this
property. Recall that an abelian von Neumann algebra M is of the form D@ £, (I), where
I is the set of all minimal projections in M, and D is diffuse, i.e. contains no minimal
projections. Note that a diffuse abelian von Neumann algebra acting on a separable
Hilbert space is automatically isomorphic to L[0,1] (see for example [43, Theorem
II1.1.22]), so the reader will lose little generality assuming that D is L[0, 1]. Our first
main result therefore shows that the only abelian von Neumann algebras that embed in
quasi-local algebras are the obvious ones: ¢, (I) where I is a countable (possibly finite)
set.

Theorem 1.4. Let X be a u.l.f. metric space. There is no *-homomorphic embedding of
a diffuse abelian von Neumann algebra into C},(X).

We point out that, although not explicitly asked in the literature, the question of
whether a uniform Roe algebra could contain a subalgebra isomorphic to Ls[0, 1] was
already in the air. In fact, it was even unknown up to now if a masa, i.e. a maximal abelian
self-adjoint subalgebra, of a uniform Roe algebra could be isomorphic to L0, 1] (see
e.g., [45, §1]). Theorem 1.4 solves this problem negatively.

Using the standard type decomposition of von Neumann agebras (see Proposition 4.8
for details), Theorem 1.4 allows us to obtain the following corollary.

Corollary 1.5. Let X be a u.l.f. metric space and let M be a von Neumann algebra. If
there is a *-homomorphic embedding from M into CZI(X), then M is isomorphic to
[1. M, (C) for some countable (possibly finite) collection (ny)y in N.

We are then left to understand what kind of products of matrix algebras [[, M, (C)
can be found inside a quasi-local algebra; if Conjecture 1.3 is true, this is possible (if
and) only if (ng) is bounded.

In the case that the metric space has property A, our results are already enough to
solve this. Indeed, C},(X) = C(X) by [41, Theorem 3.3], and this algebra is nuclear® by
[9, Theorem 5.5.7]. On the other hand, if (n4) is unbounded, [], My, (C) is not exact
(see for example [29, Theorem A.1]), so cannot embed into a nuclear” C*-algebra. Our
results thus imply the following theorem.

6 Nuclearity is, by a deep theorem (see [8, IV.3.1.5]), the correct notion of amenability in the category of
C*-algebras. See [9] for background on the notions of nuclearity and exactness discussed here.

7 Or even into an exact C*-algebra. However, exactness is equivalent to nuclearity for uniform Roe algebras
and quasi-local algebras by [35, Theorem 1.1], so no extra generality is gained this way.
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Corollary 1.6. Let X be a u.l.f. metric space with property A. Then the only von Neu-
mann algebras that can embed in C(X) are the products [[;, My, (C) for some countable
(possibly finite) bounded collection (ng)y in N. O

In order to move beyond the property A case, we need more delicate methods. To
motivate what comes next, we recall an important definition, due originally to Yu.

Definition 1.7. An operator a € B(¢2(X)) is a ghost if for every € > 0 there is a finite
F C X such that ||ad;|| < € whenever x ¢ F'.

Compact operators are natural examples of ghosts and understanding when certain
ghost operators must be compact is extremely important in coarse geometry. For in-
stance, the following are equivalent for any u.Lf. metric space X: (1) all ghosts in C7,(X)
are compact, (2) all ghosts in Cj,(X) are compact, (3) C,(X) is nuclear, (4) C}(X) is
nuclear, and (5) X has Yu’s property A (see [24, Theorem 5.5], which is based on [34,
Theorem 1.3], [41, Theorem 3.3], and [9, Theorem 5.5.7]).

The following is our main result regarding the embeddability of products of matrix
algebras inside quasi-local algebras (and, in particular, inside uniform Roe algebras).

Theorem 1.8. Let X be a u.lLf. metric space, and let (ny)r be a sequence of natural
numbers that tends to infinity. Then any x-homomorphic embedding of M =[], My, (C)
into C7(X) which sends @y My, (C) to the ideal of ghost operators sends all of M to
the ideal of ghost operators.

Theorem 1.8 is a corollary of a more technical result which does not require the
embedding to send @, M, (C) to the ghost operators. Precisely, using the notation of
Theorem 1.8, for each k € N and i € {1,...,ng}, let eﬁi denote the usual diagonal matrix
unit in My, (C). We show that if ® : [[, My, (C) — C},(X) is an embedding, then the
collection {®(ef;) | k € N,i € {1,...,nx}} is asymptotically a ghost; this is a technical
weakening of the assertion that ®(1,,) is a ghost (see Definition 5.5 and Remark 5.6).

The following immediate consequence of Theorem 1.8 is worth noting.

Corollary 1.9. Suppose that X is a u.l.f. metric space such that CZl(X) contains no non-
compact ghost projections. Assume that a von Neumann algebra M x-homomorphically
embeds into CZI(X) by a map sending minimal projections to compact operators. Then
M is of the form [, My, (C) for some countable (possibly finite) bounded collection
(nk)k in N.

The assumption that X contains no noncompact ghost projections is strictly weaker
than property A: see for example [3, Theorem 5.3]. Nonetheless, there are many interest-
ing u.l.f. spaces that do not satisfy this assumption: most prominently, spaces containing
expanders in a suitable sense will not satisfy it (compare [16, pages 348-349]).
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Corollary 1.9 is our most complete result on Conjecture 1.3. We do not know whether
the geometric assumption on X or the assumption on the embedding in Corollary 1.9
can be weakened or even completely removed.

1.4. Methods

Our strategy to obtain Theorems 1.4 and 1.8 starts with first proving them under
the stronger hypothesis that the s-homomorphic embeddings are normal (see §2.2 for
definitions). We then get rid of this extra assumption by showing that if L.,[0,1] *-
homomorphically embeds into B(H) for some separable Hilbert space H, then it does so
by an embedding which is also normal (see Proposition 6.3). Our proof is completed by
using a useful fact that does not seem to appear explicitly in the literature (although
it is proved by assembling known results): when M is a von Neumann algebra with no
direct summands of the form M, (A) for n > 1 and an infinite-dimensional abelian von
Neumann algebra A, then every representation of M on a separable Hilbert space is
automatically normal (Theorem 6.5; the converse is also true). For expository reasons,
we leave both discussions about the normality of *-homomorphic embeddings to the last
section of this paper, §6.

We now discuss the main ideas in the proofs of Theorems 1.4 and 1.8 under the extra
assumption of normality of the embeddings.

Our proof for Theorem 1.4 strongly depends on working with corona algebras. The
quasi-local algebra of a u.l.f. metric space always contains the ideal of compact opera-
tors K(¢2(X)); therefore, we can look at the quasi-local corona algebra C7(X)/K(£2(X))
(see Definition 3.4). Using results from [41] and [20], we can then identify the cen-
ter of C},(X)/K(f2(X)) with another important corona algebra: the Higson corona of
X (see Definition 3.3). Therefore, by showing that the Higson corona contains 2%° or-
thogonal positive non-zero contractions (see Lemma 3.7), we obtain that the center of

2(X)/K(£2(X)) cannot be separably represented.

We then use Johnson-Parrott’s Theorem [20] (see Theorem 3.5) to show that if a
C*-subalgebra M C B(f3(X)) contained in Cy,(X) is isomorphic to a diffuse abelian von
Neumann algebra, then its commutant M’ must contain a copy of the nonseparably rep-
resented C*-algebra C7,(X)/K(f2(X)). This leads to a contradiction since M’ is clearly
separably represented.

To prove Theorem 1.8, we must evoke the idea of subsets of C},(X) being inside of
this algebra in an “equi-way”. We also obtain analogous equi-results for the uniform Roe
algebras. To state them, we must first recall the relevant technical definitions. These
were first codified in [4, Definition 4.3] and [5, Definition 3.5].

Definition 1.10. Let X be a metric space.

1. Given e,r > 0, we say that a € B({3(X)) is e-r-quasi-local if for all A, B C X, with
d(A, B) > r, we have that | xaaxs| < e.
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2. Given ¢,r > 0, we say that a € B(¢3(X)) is e-r-approzimable if there is b € B({2(X)),
with prop(b) < r, such that |ja —b|| <e.

3. A subset S C B(l3(X)) is equi-quasi-local if for all € > 0 there is » > 0 such that
every a € S is e-r-quasi-local. S is equi-approzimable if for all € > 0 there is r > 0
such that every a € S is e-r-approximable.

The study of such “equi-sets” in both quasi-local and uniform Roe algebras has proven
to be very useful in the study of those algebras. For instance, they have been essential
in the solution of the rigidity problem (see [40,2]), as well as in the study of derivations
and Hochschild homology of uniform Roe algebras ([28,25]). For the rigidity problem,
it was important to show that if a weak operator topology closed subalgebra of CZl(X )
(resp. C; (X)) is isomorphic to oo (N), then its unit ball is equi-quasi-local (resp. equi-
approximable); see [40, Lemma 3.1] and [4, Lemma 4.9], respectively. In this paper, we
give a new version of both of these results that seems more practically useful.

Precisely, the next lemma is our main technical result about equi-sets in quasi-local
and uniform Roe algebras. We emphasize that the metric space X in this lemma can
be arbitrary (i.e., it is not required to be u.Lf. or even locally finite). The following is
proved in §4.

Lemma 1.11. Let X be a metric space and let M C B(¢3(X)) be a *-subalgebra closed
in the weak operator topology and containing a unit 1. Suppose there is an increasing
sequence (pp)n of central projections in M that converges to 1xq in the strong operator
topology and each p, Mp,, is finite-dimensional.

1. If M C C}(X), then the unit ball of M is equi-quasi-local.
2. If M C Ci(X), then the unit ball of M is equi-approxzimable.

By using the standard type decomposition of von Neumann agebras in Proposition 4.8,
Theorem 1.4 and Lemma 1.11 allow us to obtain the following.

Theorem 1.12. Let X be a w.l.f. metric space. Let M C B(¢2(X)) be a weak operator
topology closed C*-subalgebra.

1. If M C Cy(X), then the unit ball of M is equi-quasi-local.
2. If M C Ci(X), then the unit ball of M is equi-approximable.

Besides the equi-methods described above, our proof of Theorem 1.8 needs another
ingredient: finite-dimensional vector measures. To put this in proper context, the rigidity
problem for uniform Roe algebras asked the following: given u.l.f. metric spaces X and
Y with #-isomorphic uniform Roe algebras, does it follow that X and Y are coarsely
equivalent? Theorem 1.2 of [2] provides a positive answer to this question; the main
novelty in its proof was the study of certain finite-dimensional vector measures and the
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use of an atomic version of the classic Lyapunov convexity theorem. In §5, we further
develop this method obtaining a stronger technical lemma which applies to a wider range
of scenarios (see Lemma 5.7)

Outline of the paper

In §2 we establish some notational preliminaries and give additional background. §3
shows non-existence of normal embeddings of diffuse abelian von Neumann algebras into
C’;l(X ) using corona methods. §4 contains our results on equi-sets; the main techniques
here are based on elementary von Neumann algebra theory and the Baire category the-
orem. §5 goes into detail on asymptotic ghosts and embeddings of products of matrix
algebras using vector measure techniques. Finally, §6 gives our results on automatic nor-
mality for representations of von Neumann algebras on separable Hilbert spaces; the
techniques used here are again von Neumann algebraic in character.

2. Preliminaries

2.1. Basic definitions

Most of the basic definitions and terminology needed for this paper were already
introduced in §1. Here, we only present what is left to introduce. The C*-algebra £ (X)
of all bounded functions from X to C is identified with the multiplication operators in
B(¢2(X)) in the canonical way: if a = (a;)zex € loo(X) and € = (§;)zex € €2(X), then
a€ = (a3 )zex. In other words, a € £ (X) if and only if prop(a) = 0. As such £ (X)
identifies in a canonical way with a maximal abelian subalgebra of C7;(X). We denote by
KC(H) the compact operators on a Hilbert space H, and note that KC(¢2(X)) is contained
in both C;;(X) and C},(X) as the unique minimal ideal.

We write WOT (respectively SOT, SOT*) for the weak (respectively strong, strong-*)
operator topology on B(H). We write “SOT->_” when we want to be clear that a given
sum converges in the strong operator (as opposed to norm) topology.

We follow the standard conventions of the subject: a von Neumann algebra will always
be a concrete C*-algebra M on some Hilbert space H that is closed in the weak operator
topology, and such that the unit of M agrees with the unit of B(H). A W*-algebra is
an abstract C*-algebra that is isomorphic to some von Neumann algebra; equivalently,
a Wr-algebra is a C*-algebra which is a dual Banach space. We write M for the closed
unit ball of a von Neumann algebra (or C*-algebra), and Z(M) for its center. For a
family (ps)s of projections in a von Neumann algebra, \/ps denotes their least upper
bound, and A ps their greatest lower bound; these always exist.

2.2. Normal embeddings

Von Neumann algebras carry many natural topologies (see for example [8, 1.8.6]). In
particular, in addition to the WOT and SOT already mentioned, there are the so-called
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o-weak and o-strong topologies (also called the ultraweak and ultrastrong topologies).
These are important as they are intrinsic to the x-algebraic structure (see for example
[43, Corollary I11.3.10]), unlike the WOT and SOT, which depend on the representation;
however the WOT (respectively SOT) agrees with the o-weak (respectively o-strong)
topology on bounded sets, so often one can elide the distinction between the two.

Fortunately, the several natural notions of continuity for *-homomorphisms between
von Neumann algebras turn out to be the same: we record this below.

Proposition 2.1. Let ® : M — N be a x-homomorphism between von Neumann algebras.
Then the following are equivalent.®

1. ® is normal: if (a;)icr s a bounded increasing net of positive elements of M, then
O (sup;c; a;) = sup;e; P(a;).
2. For any collection of orthogonal projections (p;); in M,

®(SOT-3c; pi) = SOT-3,; ®(pi).

® is o-weakly continuous.
P is o-strongly continuous.
The restriction of ® to the unit ball of M is o-strongly continuous.

S G o

® is continuous with respect to the weak*-topologies induced by the unique preduals
(see for example [8, II1.2.4.1]) of M and N.

Proof. Parts (1), (3), (4), and (5) are equivalent by [8, II1.2.2.2]. Parts (3) and (6)
are equivalent as the weak-+ and o-weak topologies are the same (see for example [8,
1.8.6.2 and I11.2.4.1]). Condition (1) clearly implies (2). Finally, assume that condition
(2) holds. Then for any normal linear functional ¢ : N’ — C and orthogonal collection of
projections (p;)i, ¥o@(> p;) = > 1o ®(p;). Hence 1o P is also normal by [43, Corollary
I11.3.11]. As the normal linear functionals are exactly the elements of the predual of a
von Neumann algebra (see [8, Page 244]) this says that the dual map ®* : N** — M*
restricts to a map N, — M,. Hence ® is weak-* continuous, i.e. satisfies (6). O

Note that a normal *-homomorphism & is not necessarily WOT-continuous. For ex-
ample, if H is an infinite-dimensional Hilbert space then the embedding of B(H) into
B(H ® H) that sends a to a ® 1y is not WOT-continuous. (This example really goes to
show that WOT is not intrinsic to a given von Neumann algebra, as it depends on the
ambient space.) Finally, the restriction of an isomorphism between von Neumann alge-
bras to the unit ball of the domain is continuous in the SOT, WOT, and SOT*-topologies
(see [8, §II1.2.1.14]).

8 In each of the instances (3)—(6) both the domain and the codomain are considered with respect to the
same topology.
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Definition 2.2. A x-homomorphism from a von Neumann algebra into either C*(X) or
Cy(X) is called a normal embedding if its kernel is trivial and it satisfies any of the
conditions from Proposition 2.1 above when thought of as a *-homomorphism from M

into B(¢2(X)).
2.8. ‘Obvious’ embeddings

Let X be a u.lf. metric space. Let (ng)r be a countable (possibly finite) collection of
natural numbers, and assume that X contains a sequence (Xj); of uniformly bounded
pairwise disjoint subsets such that | X| = ny, for each k.” Then it is straightforward to see
that C;(X) (and therefore C7;(X)) contains [[, B(f2(Xk)) = [, My, (C) as a normally
embedded subalgebra. For such a collection (X)x to exist, (ng)r must be bounded (as
X is u.l.f.), but under very minor assumptions on X, this is the only obstruction.

Lemma 2.3. Let X be an infinite u.l.f. metric space. Assume moreover that X either has

10" at least one, or that X is a countable group with a left-invariant

asymptotic dimension
bounded geometry metric.

Then for any bounded and countable collection of natural numbers (ny) there exists
a sequence (Xy )i of uniformly bounded disjoint subsets of X such that | X| = ny for all

k. In particular, C;(X) (and therefore C7/ (X)) contains a normally embedded copy of

[T My, (C).

Proof. If X has asymptotic dimension at least one, the result follows easily from [27,
Lemma 2.4]. If X is a group, fix N € N such that N > ny, for all k. Choose a set A in
X such that |A] = N, and assume that the diameter of A is s for some s > 0. Choose a
collection (z)g in X such that d(zy,x;) > 2s for all k # . Then the sets Y, := A are
disjoint, and all have cardinality IV and diameter s. Hence we can find subsets X C Y
with the desired property. O

These observations naturally lead to the following refinement of Conjecture 1.3.

Conjecture 2.4. Let X be a u.l.f. metric space. The only von Neumann algebras that
can embed into C;,(X) and C},(X) are those of the form [], M, (C), where (ng); is a
countable (possibly finite) bounded collection of natural numbers. Moreover, [ [, My, (C)
embeds into C}(X) or Cy,(X) if and only if X contains a disjoint collection (X)y of
uniformly bounded subsets with | X| = ny, for all k.

It is not true that [, My, (C) embeds into Cy,;(X) for any infinite u.l.f. metric space X
and bounded sequence (ny)x: the simplest counterexample is probably X = {n? | n € N}

9 Here and throughout the paper, we write |A| for the cardinality of a set A.

10 See for example [33, Chapter 9] for background on asymptotic dimension. We note in particular that a
countable group has asymptotic dimension zero if and only if it is an increasing union of finite groups: see
[36].
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with the metric inherited from R. We have C},(X) = Cp(X) = loo(X) + K(L2(X)),
from which it follows (for example) that [], . M2(C) cannot embed. Notice however
that containing copies of [[, .y Mn(C) for all n € N, does not characterize being of
strictly positive asymptotic dimension: for example, X = {(i?,j?) | (i,j) € N2} is of
asymptotic zero dimension, but for each n € N, C#(X) contains the C*-subalgebra
[Teen B(l2({(k?,i?) | 1 < i < n})), which is *-isomorphic to [T, My (C).

Progress on the more refined part of the conjecture above would need a careful study
of spaces of asymptotic dimension zero; we do not attempt that in this paper, but the
question seems interesting.

3. Diffuse abelian von Neumann algebras inside quasi-local algebras

The main goal of this section is to prove Theorem 1.4, i.e. that CZZ(X) cannot contain
an embedded diffuse abelian von Neumann algebra, under the stronger hypothesis of
the embedding being also normal. We will then show in §6 that the existence of a *-
homomorphic embedding implies the existence of a normal one (see Proposition 6.3),
which will then give us Theorem 1.4 in full generality.

We now state the main result of this section.

Theorem 3.1. If X is a u.l.f. metric space and M is a diffuse abelian von Neumann
algebra, then there is no normal embedding of M into CZI(X).

Recall that if M is a von Neumann algebra (or C*-algebra) in B(H), then M’ denotes
its commutant. Recall also that if p € M is a projection, then its central cover (also
called the central carrier or central support) is the projection

2= Na€ ZM)|p<q}, (3.1)

i.e. the smallest projection in the center of M that dominates p: see for example [8,
I11.1.1.5] or [43, page 223] for more details.

The following result is known to experts: see for example the end of the proof of
Proposition 1.2.5 in [30]. We thank an anonymous referee for providing us with the
current simpler proof.

Proposition 3.2. Let H be a Hilbert space and let M C B(H) be a von Neumann algebra
with no minimal projections. Then M’ NK(H) = {0}.

Proof. Suppose towards a contradiction that M’ N KC(H) # {0}. Hence M’ N K(H)
contains a non-zero self-adjoint operator, and so it contains a non-zero finite rank projec-
tion p by the spectral theorem for self-adjoint compact operators. The *-homomorphism
¢ : M — B(pH) defined by cutting down by p is then normal, whence M splits as
a direct sum M = N @ ¢(M) (compare for example [8, I11.1.1.13]). As ¢p(M) is a
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finite-dimensional von Neumann algebra, it has a minimal projection, contradicting the
assumption. 0O

For the next result, we will need to make use of some corona algebras. We start by
recalling the definition of the Higson corona of a u.lf. metric space. See for example [33,
§2.3] for more background.

Definition 3.3. Let (X, d) be a u.Lf. metric space.

1. A bounded function f: X — C is called a Higson function'! if for all e,r > 0 there
is a bounded subset Z C X such that |f(z) — f(y)| < e for all z,y € X \ Z with
d(z,y) <.

One checks directly that the collection of all Higson functions is a (commutative) C*-

subalgebra of o (X).

2. The C*-algebra of all Higson functions is denoted by Cp,(X) and the Higson corona'?

of X is defined as Cg(X) = Cp,(X)/Co(X).

We use the multiplication action of Cp(X) on f2(X) to identify Cp,(X) with a C*-
subalgebra of B(¢2(X)). We moreover use the identification Cg(X) = Cp(X)/(Cr(X) N
K(€2(X)) to identify Cq(X) with a C*-subalgebra of the Calkin algebra B(¢2(X))/K(€2(X)).

Definition 3.4. Let X be a metric space.

1. The quasi-local corona of X is Q) (X) = C3(X)/K(£2(X)).
2. The uniform Roe corona of X is Q}(X) = C(X)/K(l2(X))."?

The next theorem is a straightforward corollary of work of Johnson and Parrott [20].
It will be essential in the proofs of both Proposition 3.6 and Theorem 3.1 below. For
the statement of the next few results, let 7: B(H) — B(H)/K(H) denote the canonical
quotient map, and recall that a masa in a C*-algebra is a maximal abelian self-adjoint
subalgebra.

Theorem 3.5 (Johnson and Parrott). Let H be a Hilbert space and M C B(H) be an
abelian von Neumann algebra. Then, (1[M]) = n[M’]. In particular, if M is a masa of
B(H), then n[M] is a masa of B(H)/K(H).

1 Higson functions are also referred to as slowly oscillating functions.

12 1n topology, “Higson corona” would usually refer to the maximal ideal space of this C*-algebra; here we
refer to the C*-algebra itself.

13 The uniform Roe corona of a u.lLf. metric space was first studied in [6]. We do not need it for our main
results here, but include some discussion for completeness.
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Proof. We just explain how to derive the result from the results of [20, Theorem 2.1].
Clearly (n[M)])" D w[M'], so we have to show that if b € B(H) is such that ab—ba € K(H)
for all a € M, then b € M + K(H). In the terminology of [20], [20, Theorem 2.1] says
that M has property Py (this property is not important to us), which by [20, Lemma 1.4]
implies that M has property Py. As defined on [20, page 39], property P; is exactly the
desired conclusion. 0O

The following result might be of interest in its own right. Parts of it are known already
(see for example [41, Theorem 3.3]), but the complete statement seems to be new.

Proposition 3.6. Let X be a u.l.f. metric space. Then

Co(X) = 2(Qu(X)) = Z(Qu(X)).

Proof. By Theorem 3.5, £o(X)/Co(X) is a masa in B(¢2(X))/K(¢2(X)). Since it is
included in each of Q; (X) and Q};(X), it is a masa in each of these algebras. It follows
that

Z(Qu(X)) = {a € Lo (X)/Co(X) | [a,b] = 0 Vb € Q(X)}

and similarly for Z(Qy; (X)), whence Z(Qy; (X)) C Z(Q}(X)). For all f € C;(X) and all
a € Cy(X), [41, Theorem 3.3] implies [f,a] € K({2(X)). Hence Cq(X) C Z(Q;, (X)) C
Z(Qr (X)), and it suffices to show that Z(Q% (X)) C Co(X).

Let a € Z(QX(X)). As a € £oo(X)/Co(X) = 7[loo(X)], there is b € £oo(X) such that
m(b) = a. Let us show that b € Cp,(X). We proceed by contradiction. If this is not the
case, we can choose ¢ > 0, r > 0, and sequences of distinct elements (z,,), and (z,), in

X such that for all n € N we have

d(xp,zn) <7 and |b(z,) — b(zn)| > e
Let v € B(¢2(X)) be the partial isometry such that vd,,, = d,, for alln € N and v, =0
for all z ¢ {x,, | n € N}. Since d(z,, z,) < r for all n € N, v has finite propagation. By
definition of v, it also follows that

|<(Ub - bv)61n7§zn>| = |b($n> - b(zn)| > ¢

for all n € N. As (d,,) converges weakly to zero, vb — bv is not compact which implies
that

m(v)a — an(v) = w(vb — bv) # 0.

As v € C}(X), this show that a cannot be in the center of Q}(X), which is the desired
contradiction. O
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Recall that a metric space is locally finite if all of its bounded subsets are finite.
Variants of the construction in the following lemma are well-known: compare for example
the proof of [21, Theorem 3].

Lemma 3.7. Let X be a locally finite metric space and p € CZZ(X) be an infinite rank
projection. Then there is an orthogonal family of 280 non-zero positive contractions in

m(p)Co(X)m(p).

Proof. Let & be a unit vector in the image of p, and choose a finite subset A; of X
such that ||xa,& — &1 < 27172, As ya, has finite rank and p has infinite rank, there
exists a unit vector &5 that is orthogonal to &1, that is in the image of p, and is such that
[xa,&2ll < 27273 Hence [|xx\4,& — &2fl < 27273 Choose a finite subset Ay of X \ 4y
such that ||xa,& — & < 27272, Continuing this way'* we construct an orthonormal
sequence (&) in the image of p and a disjoint sequence (A, ), of finite subsets of X such
that

1€n = Xa,6nll <27772 (3.2)

for all n € N. Passing to a subsequence (and using local finiteness of X), we may
moreover assume that d(A4,, A,,) > 3n for all n # m.
Define now g, : X — [0, 1] by

gn(z) = max{0,1 — d(z, A,)/n}.

In words, each g, is identically one on A,,, identically zero outside the n-neighborhood
of A,, and decreases ‘with slope 1/n’ in between; in particular, it is (1/n)-Lipschitz. As
d(An, Ap) > 3n for all n # m, we therefore have that the supports of g, and g,,, are at
least n apart for all n # m. As p is in CZZ(X ) we may thus pass to another subsequence
and assume that

[ Xsupp(gn)PXsupp(gm)ll <2777 (3.3)

for all n # m in N.
For each M C N, let gpr: X — [0, 1] be defined by

g () := Z gn(T)

neM

(notice that given x € X, this sum has at most one nonzero term, so the sum converges
pointwise). In other words, looking at each g, as an element in £, (X), we have g =

4 This is sometimes called a sliding hump argument: see for example [1, page 14].
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SOT- Zné
function. For each M C N, let hyy = w(gar), and let ¢ = 7(p).

A family S of infinite subsets of N is almost disjoint if M} N My is finite for all
distinct M7, My € S. Fix an almost disjoint family of infinite subsets of N of cardinality

v 9n for all M C N. As each g, is (1/n)-Lipschitz, each g is a Higson

2% (see for example [14, Proposition 9.2.2] for a proof that such a collection exists).
We claim that the collection (gharq)pes is the desired family of orthogonal non-zero
positive contractions. Clearly, each ghpsq is a positive contraction. For orthogonality,
since the family S is almost disjoint, we only need to consider disjoint M7, My C N. In
this case, by (3.3), we have, for n € M; and all m € Ma, that

1Pgn2gmP|| < |gnpgml|l < 27"7™.

Therefore,

PIMPIMD = D D PInPImP
neM; meMa

converges in norm and, as each pg,pgmp is compact, pgars, Pgar,p is compact.
At last, using (3.2), we have that

||ngp€nH = ||ng€nH > ||pgn£n|| - Z HpngnH
m#n

> ||p€nH - Hp(l - gn)fn” - Z ||pngX\An€n|| > %

m#n

for all M C N and all n € N. Hence, pgy/p is noncompact for all infinite M C N. This
finishes the proof. O

Proof of Theorem 3.1. Fix a u.l.f. metric space X. We need to show that if M is a diffuse
abelian von Neumann algebra then there is no normal embedding of M into Cj,(X).
Suppose for contradiction there is such an embedding, and abuse notation slightly by
writing M for its image. Let ¢ := w(1aq). Since ® is normal, M is a von Neumann
subalgebra of B(1¢2(X)) by [43, Proposition I11.3.12]. Furthermore, M is diffuse and
abelian, hence the relative commutant M’ NB(1f2(X)) contains no compact operators
by Proposition 3.2, and so 7 restricts to an isomorphism between M’ N B(1af2(X)) =
IpmM’'1pq and g (M’)q. Theorem 3.5 (applied to the von Neumann algebra M on the
Hilbert space 1p4f2(X)) implies that

qr[M']q = qr[M]'q.

Furthermore, since 7[M] C Qy,(X), and by Proposition 3.6 the center of Qy,(X) is the
Higson corona Cg(X), we have

qCo(X)q C gn[M]'q.
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As M is diffuse, 1, has infinite rank, so Lemma 3.7 applied to p = 1 gives that
qm[M)]'q contains an orthogonal family of 2% nonzero positive elements. This gives us a
contradiction since gr[M]’q is isomorphic to M’ NB(1r¢2(X)), a separably represented
C*-algebra. O

4. Equi-quasi-locality and equi-approximability

We need quantitative ways of saying that certain subsets of B(¢2(.X)) belong to C7,(X)
in a uniform way, and sufficient conditions for this to hold. The present section inves-
tigates this problem: Lemma 1.11 from the introduction is the main technical result,
which we will use to prove Theorem 1.12 at the end of this section. Although for our
results regarding the embeddability of von Neumann algebras, it would be enough to
obtain such results only for quasi-local algebras, we also provide versions of these results
for uniform Roe algebras for the sake of completeness.

For the definitions of e-r-quasi-local, e-r-approximable, equi-quasi-local, and equi-
approximable, we refer the reader to Definition 1.10.

The following lemma follows straightforwardly from the fact that compact subsets of
metric spaces are totally bounded (cf. [4, Lemma 4.8]).

Lemma 4.1. Let X be a metric space. Then any norm-compact subset of CEZ(X) 18 equi-
quasi-local, and any norm-compact subset of C%(X) is equi-approzimable.

Proof. The case of C%(X) is [4, Lemma 4.8] and the quasi-local version follows analo-
gously. For completeness, here is a proof: if K C CZI(X) is compact and € > 0, pick a
finite A C K which is e-dense in K. As A is finite, there is 7 > 0 such that every element
in A is e-r-quasi-local. This implies every element in K is 2e-r-quasi-local, so we are
done. O

Lemma 4.2. Let X be a metric space and for each pair e, > 0 let

QL(e,7) :={a € B(la(X)) | a is e-r-quasi-local and |al|

IN

1}
and

Ale,r) :={a € B(lz(X)) | a is e-r-approzimable and ||a|| < 1}.
Both QL(e,r) and A(e,r) are WOT-closed.

Proof. Let (a;);cr be a net of contractions WOT-converging to some a € B(¢2(X)). As
WOT-closed bounded sets are norm closed, ||a|| < 1. Fix positive reals € and r.

Suppose that each a; is in QL(g,r). Fix A/B C X with d(A,B) > r, so that
Ixaa;xgl < e for all i € I. As the norm is WOT-lower semicontinuous, it follows
that |[xaaxs| <e.So, a € QL(e,r).
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Suppose now that each a; is in A(e,r). For each i € I, let b, € B(¢2(X)) be such
that prop(b;) < r and ||a; — b;|| < e. As (a;)ier is bounded, so is (b;);cr. As bounded
subsets of B(¢2(X)) are WOT-precompact, by passing to a subnet we can assume that
b = WOT-lim; b; exists. Moreover, since each b; has propagation at most r, so does b:
indeed, if z,y € X satisfy d(z,y) > r, then (0, bd,) = lim;(d,,b;d,) = 0. Finally, since
la; — bi]| < e for all ¢ € I, we have that ||a — b|| < e. This shows that a € A(e,r). O

We are now ready for the proof of Lemma 1.11 from the introduction.

Proof of Lemma 1.11. Suppose that X is a metric space and M C B(¢5(X)) is a WOT-
closed x-subalgebra with unit 1,4. Also suppose there is an increasing sequence (py,),, of
central projections in M such that each p, Mp,, is finite-dimensional and SOT-lim p,, =
1. Replacing M with M @ C(1 — 1) and p,, with p, @ (1 — 1) if necessary, we can
assume without loss of generality that 1,4 = 1.

We now prove (1): Suppose M C C7;(X). We need to prove that the unit ball M,
of M is equi-quasi-local. Towards a contradiction, assume the contrary. Then there is
€ > 0 such that for all n € N there is a € My which is not e-n-quasi-local.

Claim 4.3. For all n,m € N, there is a € (1 — p,,)M of norm 1 which is not ¢/2-n-quasi-
local.

Proof. Suppose the conclusion of the claim fails for some pair n,m € N. So, all elements
in the unit ball of (1 — p,,,) M are €/2-n-quasi-local. Since p,, Mp,, is finite dimensional,
there is » > 0 such that every element in (p,,Mpym)1 is €/2-r-quasi-local (Lemma 4.1);
without loss of generality, assume that r > n. Therefore, since every a € M; can be
written as a = pa+ (1 — pm)a, this implies that every element in M is e-r-quasi-local.
This contradicts our choice of e. O

Claim 4.4. For each r € N, QL(¢/4,r) N M; has empty interior with respect to the
restriction of the WOT-topology to M.

Proof. Fix » € N and suppose towards a contradiction that there is a WOT-open U C
B(¢3(X)) such that U N M; is nonempty and U N My C QL(e/4,r). Fix a € U N M;.
So there are § > 0 and normalized &1, ...,k 1, .- .,k € £2(X) for which the set

k
B=({be M |[{(a—b)& )| <)

=1

is included in QL(e/4,r). Since SOT-lim p,, = 1, there is m € N large enough such that

1) 0
(1 —pm)Gill < 3 and [|(1 — pm)a&| < 3
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for all ¢ < k. Let n > r be such that p,a is /4-n-quasi-local. By Claim 4.3, there is a
contraction b € (1 — p,, )M which is not £/2-n-quasi-local. Then, letting ¢ = p,,a+b, we
have that

lell = max{[|pmall, [b]]} <1

and that a — ¢ = (1 — p;,)(a — b), hence

[((a — )&, G) = (1 — pm)(a — b)&i, )|
S |<(1 - pm)a’gia <z>‘ + |<b§Z7 (1 _pm)CiH < 67

and ¢ € B. As B C QL(g/4,r), c is ¢/4-r-quasi-local. As p,,a is €/4-n-quasi-local, this
implies that b is €/2-n-quasi-local; contradiction. O

We are now ready to complete the proof of case (1). On bounded sets in M, the
WOT agrees with the ultraweak topology. Since the ultraweak topology coincides with
the weak*-topology associated with the predual of M, the Banach—Alaoglu theorem
implies that the unit ball M; of M is WOT-compact (and of course Hausdorff). By the
previous claim and Lemma 4.2, we have that QL(s/4,7) N M, is a closed subset with
empty interior for all 7 > 0. As M C C},(X), we have that

M, = U (QL(5/47 ’I“) N Ml)
reN

and that all sets on the right-hand side are closed and nowhere dense. This contradicts
the Baire category theorem, completing the proof of (1).

Proof of Lemma 1.11, (2). We need to show that if M C C%(X), then the unit ball of
M is equi-approximable. This proof follows the general strategy of the proof of (1), with
Claim 4.3 and Claim 4.4 replaced with the following two claims; the proofs are analogous
to the proofs of the former claims and are left to the reader.

Claim 4.5. For all n,m € N, there is a € (1p1 — pim)M of norm 1 which is not €/2-n-
approximable. O

Claim 4.6. For each r € N, A(g/4,r) N M; has empty interior with respect to the
restriction of the WOT-topology to My. O

As M C C}(X), we have that

My = [ (Ae/4,r)n My).
reN

As in (1), this contradicts the Baire category theorem. 0O
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Proposition 4.7. Let X be a countable metric space and let M C B(2(X)) be a WOT-
closed *-subalgebra isomorphic to a direct product of matriz algebras.

1. If M C Cy(X), then the unit ball of M is equi-quasi-local.
2. If M C Ci(X), then the unit ball of M is equi-approximable.

Proof. Since ¢5(X) is separable, M is a direct product of at most countably many matrix
algebras. It therefore contains an increasing sequence (py,), of central projections in M
such that each p, Mp, is finite-dimensional and SOT-limp, = 1. The result then
follows from Lemma 1.11. O

Our next goal is Proposition 4.8, which characterizes W*-algebras that do not contain
a diffuse abelian W*-subalgebra. This seems likely to be known to experts, but we
could not find a proof in the literature so we include one for completeness. It is the
final ingredient needed to complete the proof of our main equi-approximability result
(Theorem 1.12) from the introduction.

Proposition 4.8. Assume that M is a W*-algebra such that there is no normal (possibly
non-unital) embedding of a diffuse abelian von Neumann algebra into M. Then M is
isomorphic to [[,c; My, (C) for some collection (n;)icr of natural numbers.

Proof. Using the type decomposition for von Neumann algebras (see for example [8,
I11.1.4.7] or [43, Theorem V.1.19]) and the structure theory of type I von Neumann
algebras (see for example [8, I11.1.5.12 and II1.1.5.13] or [43, Theorem V.1.27]), we may
write M as a direct sum

M=M;@® M ® Mirr

where M is the direct product of von Neumann algebras of the form B(Hy)®@MNy with
Hy, is a Hilbert space of dimension R for a cardinal R and Ay an abelian von Neumann
algebra (possibly zero), and M;; and M are of types II and III respectively (possibly
Z€ero).

Now, if there is an infinite X such that one of the algebras B(Hyx)®MNy appearing in
M is non-zero then Hy contains an isometrically embedded copy of L2[0,1]. Hence M
contains a normally embedded copy of B(L5[0,1]), and therefore a normally embedded
copy of the diffuse von Neumann algebra L.,[0, 1], which is impossible. If M;; or M
is non-zero, then whichever is non-zero must contain a non-zero maximal abelian self-
adjoint subalgebra N: indeed, any von Neumann algebra contains a maximal abelian
self-adjoint subalgebra by Zorn’s lemma, and such a subalgebra will necessarily be weakly
closed and contain the unit. As type II and type III von Neumann algebras have no
minimal projections, N is diffuse, again contradicting our assumption. Hence we may

assume M = Mj =[], ey Mn(Ny).
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As M contains no abelian diffuse subalgebras, each N,, must be of the form £, (I,)
for some set I,, (possibly empty). As

M (foe (1)) = ] Ma(©),

i€l

the result follows. O
We are now ready for the proof of Theorem 1.12 from the introduction.

Proof of Theorem 1.12. Suppose X is a u.L.f. metric space and M C C},(X) is a WOT-
closed C*-subalgebra. Theorem 3.1 implies there is no normal embedding of a diffuse
abelian von Neumann algebra into M. Proposition 4.8 implies that M is isomorphic
to a product of matrix algebras; moreover, as ¢2(X) is separable, there can be at most
countably many matrix algebras appearing in the product. Proposition 4.7 implies that
if M C C7,(X) then the unit ball of M is equi-quasi-local, and that if M C C}(X), then
the unit ball of M is equi-approximable. 0O

5. Products of matrix algebras inside quasi-local algebras

Combining Theorem 3.1 and Proposition 4.8, in order to understand which von Neu-
mann algebras can be normally embedded inside quasi-local algebras, it suffices to focus
on von Neumann algebras of the form [], M,, (C) for some countable collection ()
of natural numbers. In this section, we obtain Theorem 1.8 from the introduction with
the extra hypothesis that the embedding is also normal. We will then show in §6 that
this hypothesis is satisfied automatically.

The following is the main result of this section.

Theorem 5.1. Let X be a u.l.f. metric space, and let (ng)r be a sequence of natural
numbers that tends to infinity. Then any normal embedding of M := [[, M, (C) into
Cy(X) that sends @, M, (C) to the ideal of ghost operators sends all of M to the ideal
of ghost operators.

The proof of Theorem 5.1 will proceed via a series of lemmas. The first of these is a
simple observation about Hilbert spaces and can be found, for instance, in [2, Lemma
3.1]. We include its short proof here for the reader’s convenience.

Lemma 5.2. Let H be a Hilbert space, p € B(H) be a projection, and & € H. Then
€1l = 2[|p€ — 3€]I-

Proof. Let u =2p — 1, so u is a unitary, and in particular an isometry. Hence

€N = llugll = 112p& — &Il = 2Ilpé — 3¢ll. O
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The next lemma we need for the proof of Theorem 5.1 is about vector measures, and is
taken from [2, Lemma 2.1].'° Recall that a vector measure is a function p from a o-algebra
Y. of subsets of a given set into a Banach space E which is countably additive in the
sense that if (A,), is a sequence of disjoint elements of ¥ then u(lJ,, An) = >, u(An),
where the sum converges in norm. The norm on R™ in the statement of the lemma is
arbitrary, and the notation conv(S) refers to the convex hull of a subset S C R™.

Lemma 5.3 (/2]). Let X be a set, m € N, and p: P(X) = (R™,||-||) be a vector measure.
For all & € conv(pu[P(X)]) there is A € P(X) with

1€ = n(A)I <msup lp({z})]l. ©
reX

We will use this to establish the following result, which is closely related to [2, Lemma
3.2].

Lemma 5.4. Let X be a u.l.f. metric space. Let (ps)ses be an orthogonal family of pro-
jections on €3(X), and assume that for every A C S the projection pa := Y 4 Ds is
contained in Ch(X).

Then for every v > 0 there is 6 > 0 (depending on ~y, the geometlry of X, and the
family (ps)s) such that if A C S and X4 = {x € X | |[pads|| > v} then for every
x € X4 there exists s € A such that ||psdz| > 9.

Proof. Fix ¢ € (0,7/8). Let M = (,(S) be the von Neumann algebra generated by
the projections ps. As any element of /o, (S) can be approximated in norm by a finite
linear combination of projections of the form p4 for A C S, M is contained in C’;l(X ).
Let S; C Sy C -+ be a sequence of finite subsets of S with union S (such sequence
exists as separability of f5(X) implies that S is countable). Applying Lemma 1.11,
with p,, := pg, gives r > 0 such that py4 is e-r-quasi-local for all A C S. Since X is u.lL.f,

m := sup |B,.(z)]
zeX

is finite. Fix 0 > 0 such that 2md < /8; we claim that this § has the required property.
Assume otherwise for contradiction: if the conclusion of the lemma is false, we can
find A C S and z € X4 such that

sup ||psdz|| < 0.
s€EA

15 The statement of that lemma includes an extra “4€” on the right hand side of the inequality in the
conclusion. However, the extra € is only necessary if one wants the set A in the conclusion to be finite: see
the first of the two proofs of Lemma 2.1 given in [2].

16 Notice that this is not the reason why we proved Lemma 1.11. In fact, for the current proof, [40, Lemma
3.2] would suffice (compare also [4, Lemma 4.9]). The novelty in Lemma 1.11 will be needed only for
Theorem 1.8.



F.P. Baudier et al. / Journal of Functional Analysis 286 (2024) 110186 23

Define a vector measure pu: P(A) — ¢2(B,(z)) by

1(B) = XB,(2)PB0a- (5.1)

By our choice of x, we have that
sup [[u({s})[| < sup [|psde| < 6.
sEA seA
Since dimg (¢2(B(z))) = 2dimc (¢2(B,(z))) < 2m, Lemma 5.3 gives B C A such that

|n(B) — %XB,,,(x)pACS;cH < 2md. (5.2)

By our choice of r, pp and p4 are e-r-quasi-local. Therefore, as pp is e-r-quasi-local and
d(z, X \ B.(z)) > r, we get

IXx\B,(2)PBOz|| <€ and |[xx\B,(2)Pad:| < & (5.3)

Let € = pad,, and notice that pg€ = pgd,. Then

IpBE — 3¢l =|lpBds — 2pads|l
SllpB(S(E - XBT(z)pBazH + HXBT(I)deI - %XBT(r)pA(Sa:H
+ 14X, (2)PA0s — 2D ASL||
The first term is, by the first part of (5.3), not greater than €. The second term is, by

(5.2), smaller than 2md, and the third term is, by the second part of (5.3), not greater
than e/2. Therefore

Ips€ — 3€ll < 2mé + Ze < 3.

Lemma 5.2 then implies that ||£|| = ||pads|| < . This is a contradiction since ||pads|| > v
forallz € X4. O

The reader should compare the following definition to the usual notion of a ghost
operator (Definition 1.7 from the introduction).

Definition 5.5. Let X be a u.l.f. metric space and let (¢s)ses be an orthogonal family of
projections on f5(X). We say that (¢s)ses is asymptotically a ghost (or an asymptotic
ghost) if for all € > 0 there are finite subsets F C X and T C S such that

> 4l

seS\T

<€

forallz € X \ F.
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Remark 5.6. As Definition 5.5 is quite technical, let us make a few remarks.

1. Let ¢ < r be projections on ¢5(X), and for x € X let p, be the projection onto the
span of §,. Then the C*-identity implies that

I?

g0z 1% = llgpall* = lIpzapzll < Iperpall = lrpall* = rdall. (5-4)

Hence in particular, if there is a finite subset T C S (possibly just the empty set)
such that SOT- quS\T s is a ghost, then (¢s)ses is asymptotically a ghost.

2. If'7 (gs)ses is an asymptotic ghost, and if each g; is itself a ghost (for example, if it
has finite rank), then SOT-}__ _¢qs is also a ghost. Indeed, given € > 0 let T C S
and I C X be finite sets such that || 3 g\ 7 qs02[ < e€/2 forall z ¢ F. As 37 1,
is a ghost, there is finite /" C X such that || Y . ¢s0.| < €/2 for all z ¢ F’. Hence
forx ¢ FUF', || cq0s0:] <e

In particular, this discussion and the point above show that asymptotic ghosts are
only really interesting when the projections ¢, have infinite rank.

3. The converse to point (2) above is false: there are asymptotic ghosts (gs)ses such
that for every finite subset 7' C S, SOT-}_ ¢\ 7 ¢s is not a ghost. Indeed, let X :=
52, X, be the coarse space built from a sequence (X,,), of expander graphs with
associated Laplacian Ay € B(¢2(X)) as in the discussion on [16, page 348]. Let
Y = X x N (equipped with the ¢;-sum metric), and let Ay be the operator that
identifies with Ax on f2(X x {m}). Then Ay is a bounded operator with propagation
one, and so in C};(Y) C C,(Y). Moreover, with respect to the decomposition £2(Y) =
D, men L2(Xn x {m}), Ay is a block diagonal operator acting on each £2(X, x {m})
as the graph Laplacian of X,,. As (X,,),, is an expander, Ay has spectrum contained
in {0} U[e, 00) for some € > 0. Following the discussion on [16, page 349], the spectral
projection g associated to {0} is the block operator that acts on 5(X,, x {m}) by the
rank one projection with matrix

1

nom = —— 5.5
o = (>

1 ... 1
Define gy, := SOT-) N @n,m and set S = N. The family (¢s)ses is then an asymp-
totic ghost, but SOT- ) _; ¢, is not a ghost for any nonempty subset 7" of the index
set S: indeed, if ¢ is an element of T', and § = ‘le then SOT- )" _ ¢s has infinitely
many matrix entries with value 9.

4. In the example from point (3) above, it is also true that C7,(Y") itself contains non-

trivial (i.e. infinite rank) ghost projections. We do not know of a u.l.f. space X such
that C;l(X ) contains an asymptotic ghost, but no non-trivial ghost projections at all.

17 This remark will be used in the proof of Theorem 5.1.
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Constructing such an example, or showing that none can exist, seems an interesting
question.

5. On the other hand, if (¢s)ses is an asymptotic ghost such that g5 # 0 for all s, S
is infinite, and > . ¢ is in CZZ(X) for all T C S, then X does not have property
A. Thus the existence of non-trivial asymptotic ghosts in CZZ(X ) is an ‘exotic’ phe-
nomenon. We will not use this, but sketch a proof for the reader’s convenience. We
will first construct an infinite 7" C S and disjoint finite subset Ay, for s € T, such
that a := SOT-)_ ., X4.,¢sxa, is a non-compact ghost.'®

We first iteratively choose an infinite subset T' of S and for each s € T a finite

> 1/2 for all s € T, and so that the collection

(As)ser is pairwise disjoint. Indeed, s € S be arbitrary, and choose a finite subset A

subset As of X such that ||xa.gsxa,

of X such that ||xa.gsxa.|l > 1/2. Set Fy = {s}. Now, say a subset F,, consisting of n
elements of S has been chosen together with pairwise disjoint finite subsets (As)ser,
> 1/2 for all s € F,,. Let A = Usep, As. As the set S\ F,, is
infinite, the projections (¢s)ses\r, SOT-converge to zero. As x4 is finite rank, there
is therefore s € S\ F,, such that ||gsxal < 1 — (1/v/2). As ||gs|| = 1, there is finite
As € X\ A with ||gsxa.] > 1/4/2. Hence by the C*-equality, Ixa.qsxa.ll > 1/2. Set
Fpi1=F,U{s}. Let now T' = J,, F,,.

Define now a := SOT- ZseT XA.QsXA,; the sum SOT-converges as the A, are

such that ||xa,¢sxa,

pairwise disjoint, and is non-compact by pairwise disjointness of the A; and as

XA gsxA,
argue analogously to point (2) above. Let € > 0. As (gs) is an asymptotic ghost, there
is finite R C T and finite F” C X such that for all x € X \ F’

> a0,

seT\R

> 1/2 for all s. We claim moreover that a is a ghost. Indeed, we may

< e. (5.6)

As ) cp XA.qsXA, is finite rank, there is finite F” C X such that

> Xa.4:XA,0x

SER

<e€ (5.7)

forallz € X \ F”. Let F = F'UF”. Then for x € X \ (F' U F") we claim that

Z XA, 45X A, 0z

seT

< €,

which will show that a is indeed a ghost. Indeed: either (1), x is not in any Ay, in
which case the above is zero; or (2) z is in A, for some sy € R, in which case

18 The expert reader has already seen this ‘usual diagonalization argument’ in [7, Lemma 5.6] and in the
proof of the equivalence between property A and not having non-compact ghost operators in CJ (X), see
[34, Lemma 4.2].



26 F.P. Baudier et al. / Journal of Functional Analysis 286 (2024) 110186

D XA.4sx4.0x

seT

> X4,4sx4.0x
SER

= ||XAsquOXASO 61” = <€

by line (5.7); or (3), = is in Ay, for some s; € T'\ R, in which case

> a4,

seT\R

> Xa.45Xa,0x

SER

= [Ixa,, 251 02| < [lgsda]| < <€

where the last inequality is from line (5.6), and the penultimate inequality follows
from the argument of line (5.4).

Now, Corollary 4.7 and the fact that »_ rgs is in C})(X) for all R C T implies
that the family (¢s)ser is equi-quasi-local, and one can use this to show that a is in
C7,(X). Hence X does not have property A by combining [34, Theorem 1.3] and [41,
Theorem 3.3]

Our next lemma is an analogue of [2, Corollary 3.3], adapted to the asymptotic ghosts.

Lemma 5.7. Let (X, d) be a w.l.f. metric space and let (ps)ses be an orthogonal collection
of projections in B(l2(X)). Consider the following three conditions on (ps)scs-

(i) The projection SOT-3_ _ , ps is in C3)(X) for all AC S.
(i) The projection SOT-3 " o ps is not a ghost.
(iii) The collection (ps)ses is not asymptotically a ghost,

1. Conditions (i) and (i) together imply that there are § > 0, an infinite subset X' C X,
and a function f: X" — S such that ||psz)0e| > 6 for all x € X'.

2. Conditions (i) and (iii) together imply that there are § > 0, an infinite subset X' C X,
and a function f: X' — S such that ||ps )0z > 6 for all x € X' and for every finite
T C S there exists finite F C X such that f(z) € S\T for allz € X'\ F (in other
words, f(x) tends to infinity in S as x tends to infinity in X').

Remark 5.8. This is the moment when we can see that replacing the notion of a ghost
projection with that of an asymptotic ghost has its merits. Let Y and (¢s)ses be the
asymptotic ghost constructed in Remark 5.6, part (3). Then > ses s is not a ghost.
Moreover, any function f: X’ — S with the properties as in Lemma 5.7 (1) necessarily
takes finite image, and it therefore cannot satisfy the requirements on f stated in (2).
This shows that the assumption that (gs)ses is not an asymptotic ghost is necessary to
deduce the stronger conclusion of Lemma 5.7.

Proof of Lemma 5.7. In order to simplify notation, for each A C .S we define

pa = SOT- Zps.

seA
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(1) Assume that (ps)s satisfies (i) and (ii). Then pg is not a ghost and therefore there
must exist v > 0 such that the set

Xs = {r € X | ||lpsdz|| >~}

is infinite. Lemma 5.4 implies there exists § > 0 such that for every x € Xg some
f(x) € S satisfies ||py()0z]| > 0, so we are done with this part if we define X’ := X.
(2) Now assume (i) and (iii) from the statement of Lemma 5.7. Fix a nested collection
S1 C Sy C --- of finite subsets of S whose union is S, and define ¢, := ZseS\Sn ps. As
(ps)s is not asymptotically a ghost there is v > 0 such that for every n € N the set

X =4z € X | ||lpnbs|| >~}

is infinite. By the monotonicity property as in line (5.4) above and the fact that the
sequence (gy,)n is decreasing, we see that X; O X5 D ---. As each X, is infinite, we
may choose a sequence (z,), of distinct elements of X such that z, € X, for all X.
Lemma 5.4 gives § > 0 such that for every n there exists f(x,) € S\ S, which satisfies
[Pf ()02 < 6. Setting X" := {x,, | n € N}, we are done. O

Theorem 5.1 will be obtained as a corollary of the following more technical result.

Theorem 5.9. Let X be a u.lf. metric space, let (ny)r be a sequence of natural numbers
that converges to infinity, let M =[] My, (C), and let ® : M — C},(X) be a normal *-
homomorphic embedding. Let S := {(i,k) € NxN |1 <4i <ny}. For each s = (i,k) € S,
let ef’i be the corresponding diagonal matriz unit in My, (C), and define qs := @(ef’i).
Then (qs)ses s asymptotically a ghost.

Proof. Assume for contradiction that (¢s)s is not asymptotically a ghost. Then, by the
second part of Lemma 5.7 there are 6 > 0, an infinite subset X’ C X, and a function
f: X’ — S such that

lqf()0z]l =6 forall ze X' (5.8)

Moreover, Lemma 5.7 guarantees that f can be taken so that for every fixed value of k
there are only finitely many pairs (¢, k) in S. Therefore, if we write f(z) = (i(x), k(z)),
it follows that

k(z) > 00 as x— o0 (5.9)

(i.e. for any K € N there exists a finite ' C X’ such that if z € X'\ F, then k(z) > K).
For each k € N and each pair 4, j € {1,...,nt}, let e} ; denote the matrix in My, (C) with
1 its (i, 7)-entry and zero in all others, and set
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Claim 5.10. There are v, > 0 such that for all z € X" and j € {1,...,np(;)} there is

z = z(x,j) € B-(z) such that ||X{z}U ) 6y | >.

Jii(x)" %
Proof. By Lemma 1.11,' the family {vf; | k€ N,i,j € {l,..,n.}} is equi-quasi-local.
So, there is 7 > 0 such that each v¥ . is (§/2)-r-quasi-local. Let m = sup, . x |B-(z)| and
set v = d/(2m); we claim this ~ has the desired property.

Fix z € X" and j € {1,...,np() }. Line (5.8) gives [|qs)0z|| > 9; since v; (Z(;)
k(x)

partial isometry with source projection g¢(,), we have that ||v z(x)d || > . By our choice

is a

of r, we must have

x5, @05 S 02| = 8/2.

Therefore, by the choice of v, there is z € B,.(x) such that

HX{Z}U] i(x) Oz H 27. O

Claim 5.11. Given ~,7 > 0, let {z(z,7) | * € X',j € {1,...,nke) }} be as given by the
previous claim. Then

mlggo Hz(z,75) [ 7€ {1, ....,np@) } = o0

Proof. Let N € N be arbitrary. Let K € N be such that for all k > K, n;, > Ny 2. Line
(5.9) gives a finite subset F' C X’ such that k(z) > K for all z € X'\ F. We claim that
Hz(z,7) | 7 € {1,...,ng) }}| > N whenever x € X'\ F', which will establish the claim.

Let v € X'\ F and j € {1,...,npm)} As ||X{Z(m7j)}vf(if;)5$|| > ~ we have that with
= (4, k(x)) (using the fact that 0 < p < ¢ implies |lag|| > ||ap]|| for all operators a)

a50-o.) | = [Xga@ayasll = Ixgaan ], E(i)(vﬂ%)*ll
2 ||X{z z])}vjz (z) | = HX{Z z,j }v]z x)(s H > . (510)
Fix z € X’ and for z € X let

G =G(z) = {i <np | 2(z,1) = 2}

Using the Pythagorean theorem and line (5.10), we have that

2
1> @0zl =Y N gir@d:? > G
= qj,k(x) - q5,k(x)0z = .
jeG i€G
19 This is the place where we use Lemma 1.11, and equi-approximability, or equi-quasi-locality results from

earlier papers would not suffice.
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Hence, |G(2)| <~~2. Since z € X was arbitrary and i € {1,...,ny(,)}, this implies that
{z(z,5) | 7 € {1, s ni) }H = ni)y®- Since n(k) > N~~2, this set is larger than N for
x € X'\ F, so we are done. O

We are now ready to complete the proof of Theorem 5.9. Indeed, Claims 5.10 and
5.11 combined imply that for any N € N we can find € X’ such that B,.(z) contains
at least N distinct points of the form z(z, j). This contradicts that X is u.l.f. O

Finally, we can complete this section with the proof of Theorem 5.1.

Proof of Theorem 5.1. Suppose that X is a u.l.f. metric space, (ny)x is a sequence of
natural numbers that tends to infinity, and that ®: M = [, My, (C) — C};(X) is a
normal embedding sending @,, M,,(C) inside the ghost operators. We need to prove that
®(1pq) is a ghost.

With notation ¢, := <I>(ef,i) as in the statement of Theorem 5.9 we have that the
collection (gs)ses is asymptotically a ghost. However, by assumption every gy is itself a
ghost. Hence by Remark 5.6, part (2), ®(1a) = >, g qs is also a ghost. O

6. From embeddings to WOT-continuous embeddings

In §3 and §5, we proved versions of Theorems 1.4 and 1.8 with the extra assumption
that the embeddings are normal. In this section, we show that this extra assumption is
not needed for the validity of those theorems.

The main tools that we use here are several automatic normality results for von Neu-
mann algebras which might be of interest in their own right (at least some of them seem
likely to be known to experts). For the sake of completeness, we include a characteriza-
tion of when exactly a von Neumann algebra admits a non-normal representation on a
separable Hilbert space, although we do not need this for our main results.

6.1. Embeddings of ], My, (C)

It turns out that if (n), tends to infinity, then any representation of [[, My, (C)
on a separable Hilbert space is normal. This is due to Takemoto: see [42, Theorem 1].
Takemoto’s result has apparently been overlooked: its proof closely resembles the proof of
[43, Theorem V.5.1]. The only difference is in the proof of Case I in [43, Theorem V.5.1],
where now one has to argue that for every n the projections p,_ ;, can be constructed
for sufficiently large j (in the type II case covered by [43, Theorem V.5.1], they exist for
arbitrarily large n).

As the precise statement we want is not explicit in Takemoto’s paper [42], we show
how to derive it.
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Theorem 6.1 (Takemoto). Let (ny)r be a sequence of natural numbers that tends to in-
finity. Then every representation of M := [],cy Mn, (C) on a separable Hilbert space is
normal.

Proof. Let 7 : M — B(H) be a non-normal representation on a Hilbert space H; we
must show that H is non-separable. According to Proposition 2.1, part (2), there is a
collection of orthogonal projections (p;); in M such that SOT->_ w(p;) < 7(SOT-3_ p;).
For each k € N, let 1, € M be the unit of the factor M, (C), and for each n € N, let

Ep = Z lk,
{klnr=n}

so e, € M is a central projection in M such that e, M is exactly the n-homogeneous
part of M (possibly zero). Let p; , := pien, and let ¢, := e, — >, pi» (only finitely
many terms in the sum are non-zero, as {k | ny = n} is finite for every n). Then

SOT-Y 7(en) = SOT-Y (ﬂ(qn) > w(pm))
=SOT-> " m(gn) + SOT- > m(pin) (6.1)

n 7,1

As for each i, SOT-Y" p;n, = pi, we have that

SOT->_ 7 (pin) < SOT-3_m(pi) < 7(SOT-3 _pi), (6:2)

7,n [

so combining lines (6.1) and (6.2) we get

SOT- " m(en) < SOT-S " w(gn) + W(SOT— > pi>.

As SOT-3 ", pi = SOT-3_ i pin and as SOT-3° 7(gn) < 7(SOT-3_, ¢n), this implies
that

= w(SOT-Z (qn + Zpi,n)> =7m(1m).

Define r := w(1p) — SOT-)", 7(ey), which is a non-zero projection in 7(M)’. Then
m — rm(m)r is a non-zero representation of M on rH that contains all the e, in its

SOT-Y " 7(en) < w(SOT— 3 qn> n W(SOT— 3 pi,n)

kernel. Hence [42, Theorem 1]°° implies that rH is non-separable. O

20 More precisely: Takemoto requires e,, # 0 for all n, and our assumption that n, — oo implies only that
en # 0 for infinitely many n; nonetheless, the same proof as of [42, Theorem 1] gives the result (compare
also [42, Remark on page 575], which makes a related point).
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Proof of Theorem 1.8. Suppose X is a u.Lf. metric space, (ng) is a sequence of natu-
ral numbers that tends to infinity, and ®: [, My, (C) — C},(X) is a x-homomorphic
embedding which sends @, M,,, (C) to the ideal of ghost operators. By Theorem 6.5,
® is normal, and Theorem 5.9 implies that ® sends all of M to the ideal of ghost
operators. O

Remark 6.2. It is also possible to adapt the proof of [5, Theorem 4.3] to show that if there
is a norm-continuous *-homomorphic embedding of [, M,, (C) into C7,(X), then there
is a similar embedding that is also normal; this would be good enough for our results.
We chose here to go through Takemoto’s theorem instead as it seemed more conceptual
to rely on a very general von Neumann algebra result than on something that seems
special to uniform Roe algebras.

6.2. Embeddings of Loo(Z, 1)

In this subsection we show that if there exists a (possibly non-normal) embedding of
Loo(Z, 1) into B(H) for some separable H, there is a non-trivial corner of Lo (Z, 1) on
which the embedding is normal.

We will actually prove this in much more generality. The following is the main result
of this subsection.

Proposition 6.3. Let M be a von Neumann algebra, and let 7 : M — B(H) be a (not
necessarily normal, not necessarily faithful, and not necessarily unital) representation of
M on a separable Hilbert space. Then there exists a non-zero projection r € M such that
the restriction of w to the corner rMr is normal.

Example 6.4. Separability of H is necessary for Proposition 6.3 to hold. Indeed, let M =
L[0,1], and let # : M — B(H) be the direct sum of all one-dimensional representations.
No one-dimensional representation of a diffuse abelian von Neumann algebra is normal
(we will show this in the proof of Theorem 6.5 below). As any corner of M is a diffuse
abelian von Neumann algebra, the conclusion of Proposition 6.3 fails. Notice that, if
one considers a single one-dimensional representation p of M, then the only possible r
making Proposition 6.3 true has to belong to the kernel of p.

For the proof of Proposition 6.3, recall that a projection p in a von Neumann algebra
is called countably decomposable, or o-finite, if any family of orthogonal subprojections
of p is countable.

Proof of Proposition 6.3. Using [8, II1.1.2.6] there exists a family of (¢;); of mutually
orthogonal countably decomposable projections in M such that >, ¢; = 1 (we really
only need that some ¢; is non-zero). Hence replacing M with ¢; Mc; for any ¢ such that
¢; 7 0, we may assume that M is countably decomposable.
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As in the proof of Proposition 4.8 we may write M as a direct sum
M=Mp @ M ® Mirg

where M is the direct product of von Neumann algebras of the form B(Hy)®@MNy with
Hy, is a Hilbert space of dimension R for a cardinal R and Ay an abelian von Neumann
algebra (possibly zero), and M;; and M are of types II and III respectively (possibly
zero). If any of the summands My 7, My, or B(Hx)®Nyx with R infinite are non-zero,
then [43, Theorem V.5.1] implies that the restriction of 7 to that summand is normal,
and we are done.

Therefore M has a corner which is n-homogeneous for some n, and by replacing M
with this corner we may assume that M is of the form M,,(C)®N for an abelian von
Neumann algebra N. In particular, we may assume that M has a normal tracial state,
say T.

Let (pj)jes be a family of mutually orthogonal non-zero projections in B(H) that is
maximal with respect to the following condition:

(¥) There exists a (countable, as M is countably decomposable) family of mutually or-
thogonal non-zero projections (¢, j)nen in M such that p; = 7(SOT-3" qn ;) —
SOT-3", 7(qn,;) (and this difference is non-zero).

Of course, the family (p;) might be empty. As H is separable, we may assume that J is
a subset of N. Now, for each j € J, choose n(j) € N such that

T(SOT— Z qn,j> < 27972

nzn(j)

(n(j) exists by normality of 7). For each j € J, define ¢; := SOT- Zn>n(j) Qn.j, and
define ¢ := V¢ ; ¢;*"; we claim 7 := 1,4 — ¢ has the desired property that the restriction
of ® to rMr is normal.

We first show that r is non-zero. Note that for any finite F' C J, 7(V,cpq;) <

7(3_,er 4j) by repeated applications of [8, II1.1.1.3]. Applying the definition of normality

to the increasing net (VjeF qj)FgJ finite ives

7(q) = T(li;p \/ qj> = 1%117’( \/ qj) < liﬁnZT(qﬂ = ZT(Qj)

JEF JEF JjEF jeJ
<) 2 =1/2

JEN

21 The different q;j need not be orthogonal, so this is an honest supremum, not a sum.
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Hence in particular, 7(r) > 1/2, so r is non-zero.

We finally claim that 7 restricted to Mo is normal. The definition of p; (see (x)
above) implies that 7(¢;) > p;. Hence for any j, m(q) > m(q;) > p,;. Hence 1y — 7(q)
is orthogonal to all the p;. As n(r) = 7(Ip — q) < 1y — 7(q), this implies that 7(r)
is orthogonal to all the p; too. Assume for contradiction that 7 is not normal when
restricted to rMr. Then by condition (2) in Proposition 2.1, there exists a family of
non-zero mutually orthogonal projections (gp n)nen in rMr such that

pi=m (SOT- > qp7n> —SOT-> " w(gpn) # 0.

However, p < w(r), so p is orthogonal to all the p;, contradicting maximality of the
family (p;). O

We are now ready to complete the remaining proofs of the theorems from the intro-
duction.

Proof of Theorem 1.4. Suppose that X is a u.l.f. metric space. Let A be a diffuse abelian
von Neumann algebra that embeds into C7;(X). Proposition 6.3 then implies that there
is a normal embedding of pLoo(Z, 1)p into Cj,(X), where p is a non-zero projection in
N. Since each non-zero corner of N is itself a diffuse abelian von Neumann algebra, we
have a normal embedding of a diffuse abelian von Neumann algebra into C7,(X). This
contradicts Theorem 3.1, which asserts that there are no such normal embeddings. O

Proof of Corollary 1.5. Suppose X is a u.l.f. metric space and M is a von Neumann
algebra that embeds into C’;l(X ). By Theorem 1.4 M has no embedded diffuse abelian
WOT-closed subalgebras, hence Proposition 4.8 and separability of £5(X) imply that M
is isomorphic to [], My, (C) for some sequence (nx)reny € N. O

Proof of Corollary 1.9. Assume that X is a u.Lf. metric space such that C},(X) contains
no noncompact ghost projections and a von Neumann algebra M s-homomorphically
embeds into CZI(X ) by a map sending minimal projections to compact operators. Corol-
lary 1.5 implies that M is isomorphic to [], My, (C) for some sequence (n;)reny € N.
It follows that the embeddings send €, My, (C) to compact operators.

Assume towards a contradiction that the sequence (ng)r is unbounded. Applying
Theorem 1.8 to the composition of the embeddings, we conclude that all of [, M,, (C)
is sent to ghost operators. This contradicts the assumption that all ghosts in C’;l(X ) are
compact. O

6.53. A general characterization

Finally in this section, we include a characterization of those von Neumann algebras
that admit a non-normal representation on a separable Hilbert space. We also show that
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any von Neumann algebra that can be represented on a separable Hilbert space has
separable predual. These results are included for the sake of completeness: they are not
used for any of our results on embeddings into quasi-local algebras.

Theorem 6.5. The following are equivalent for every von Neumann algebra M.

1. M has no direct summands of the form M, (N) forn > 1 and an infinite-dimensional
abelian von Neumann algebra N .

2. Ewvery representation of M on a separable Hilbert space is automatically normal.

3. Ewvery representation of M on a finite-dimensional Hilbert space is automatically nor-
mal.

Proof. Assume (1). As in the proof of Proposition 4.8 we may write M as a direct sum

M= Mo d M,

where M is a direct product of von Neumann algebras of the form M, (N,,) for some
abelian von Neumann algebra A,,, and M contains no summand of finite type I. Using
[43, Theorem V.5.1], every representation of M; on a separable Hilbert space is auto-
matically normal, so we may assume M = M. Moreover, assumption (1) tells us that
each N, must be finite-dimensional (possibly zero). Hence either M is finite-dimensional
(in which case any representation at all is normal), or M is infinite-dimensional and of
the form [[, M, (C) for a sequence (ny); that converges to infinity. Theorem 6.1 then
gives us condition (2).

The implication from condition (2) to (3) is trivial, so it remains to show that (3)
implies (1). Assume that (1) fails. We first consider the case when M is abelian; we
may assume moreover that M is infinite-dimensional, otherwise (1) is trivially true.
Let (p;)icr be a maximal collection of mutually orthogonal minimal projections in M
(possibly empty). Then M = D @ £y (I), where D is diffuse (possibly zero). If I is
infinite, then the x-homomorphism ¢ : £, (I) — C defined by evaluation along any non-
principal ultrafilter on I is a non-normal representation on a one-dimensional Hilbert
space. If I is finite, D must be non-zero by infinite-dimensionality of M. As D is a
non-zero commutative C*-algebra, there is a (non-zero) multiplicative linear functional
¢ : D — C. As D is diffuse, for any non-zero projection p € D there is a non-zero
projection py < p such that ¢(p) = 0: this follows as we can write p = g + r for two
non-zero orthogonal projections ¢ and r; as ¢ can only take the values 0 and 1 on
projections, it must send at least one of ¢ and r to zero. Hence if (p;); is a maximal
family of orthogonal projections in D such that ¢(p;) = 0, we have that >, p; = 1p so
¢(>_pi) = 1 even though ¢(p;) = 0 for all i. Hence ¢ is not normal and (3) fails.

For the general case, suppose that M has a direct summand of the form M, (N),
where n > 1 and A is an infinite-dimensional abelian von Neumann algebra. The above
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argument gives a non-normal representation ¢ : N'— C, and the amplification ¢ ® 1,, :
N @M, (C) — M, (C) is then also not normal. O

Remark 6.6. We ought to comment on a glaring difference between Proposition 6.3 and
the stronger statement for [] M, (C) in Theorem 6.1 (and other von Neumann algebras
that do not have an infinite-dimensional summand of type I) given in the implication
from (1) to (2) in Theorem 6.5. In the latter case, every x-homomorphism is auto-
matically normal. In the case of Lo (Z,u), we only claim that if there is an injective
x-homomorphism, then its restriction to the corner defined by a non-zero projection in
the algebra is a nontrivial normal x-homomorphism. The implication from (2) to (1) in
Theorem 6.5 shows that this conclusion cannot be improved.

This is analogous to the situation with embeddings of corona C*-algebras. In the
abelian case, an abundant supply of nontrivial embeddings (also constructed using ul-
trafilters, in a manner similar to the proof that (3) implies (1) in Theorem 6.5) abound
in ZFC while in the case of e.g., the Calkin algebra forcing axioms imply that all endo-
morphisms are trivial ([44]). An analogous result conjecturally holds for the coronas of
separable C*-algebras that are simple C*-algebras.

Proposition 6.7. Let M be a von Neumann algebra, and assume there exists a (not nec-
essarily normal and not necessarily unital) faithful representation 7 : M — B(H) of M
on a separable Hilbert space. Then M has separable predual.

For the proof, recall that the density character of a Banach space is the smallest
possible cardinality of a dense subset.

Proof. As in the proof of Proposition 6.3, we may use [43, Theorem V.5.1] and the
structure theory of von Neumann algebras to reduce to the case that M = [],, .y Mn(Ny)
where each N, is abelian. Hence it suffices to prove the result for all the von Neumann
algebras N,,. Let us assume therefore that M is abelian.

For each projection p € M, let x(p) be the density character of the predual of pMp.
Let F' be a maximal family of orthogonal projections in M such that if p € F and ¢ € M
is a non-zero projection such that ¢ < p, then (q) = x(p). Define po := 1y — > cp D,
which we claim is zero. Indeed, if not the definition of F' allows us to build a decreasing
sequence py > p; > pe > --- of projections in M such that x(p,) > k(pns1) for
all n. This, however, gives a strictly decreasing infinite sequence of cardinals, which is
impossible.

We claim next that for all p € F, pMp has separable predual. If this does not hold for
some p, Proposition 6.3 gives non-zero v < p such that m restricted to rMr is normal.
However, by definition of F', rMr is non-separable, and the map (7|, pr)s @ B(H)s —
(rMr), is onto as 7 is injective, so this is a contradiction.

Finally, as M is abelian, M = Hper./\/lp, so we are done. O
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