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We study which von Neumann algebras can be embedded 
into uniform Roe algebras and quasi-local algebras associated 
to a uniformly locally finite metric space X. Under weak 
assumptions, these C∗-algebras contain embedded copies 
of 

∏
k Mnk (C) for any bounded countable (possibly finite) 

collection (nk)k of natural numbers; we aim to show that 
they cannot contain any other von Neumann algebras.
One of our main results shows that L∞[0, 1] does not embed 
into any of those algebras, even by a not-necessarily-normal 
∗-homomorphism. In particular, it follows from the structure 
theory of von Neumann algebras that any von Neumann 
algebra which embeds into such algebra must be of the form ∏

k Mnk (C) for some countable (possibly finite) collection 
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(nk)k of natural numbers. Under additional assumptions, we 
also show that the sequence (nk)k has to be bounded: in 
other words, the only embedded von Neumann algebras are 
the “obvious” ones.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Uniform Roe algebras and quasi-local algebras

Throughout this paper, X is a metric space. We are interested in algebras of operators 
on �2(X), the Hilbert space of all square-summable functions from X to C with its 
canonical Hilbert space structure and orthonormal basis (δx)x∈X . We let B(�2(X)) denote 
the space of bounded operators on �2(X), and, given A ⊆ X, χA ∈ B(�2(X)) denotes 
the canonical orthogonal projection with image �2(A) ⊆ �2(X).

In noncommutative geometry, one defines algebras of operators on �2(X) with the 
goal of encoding aspects of the geometry of X in C∗-algebraic terms. When interested 
in the large scale (or ‘coarse’) geometric properties of X the following two well-known 
C∗-algebras are considered.

Definition 1.1. Let a ∈ B(�2(X)). The propagation of a is defined by

prop(a) := sup{d(x, z) | 〈aδx, δz〉 �= 0}.
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The uniform Roe algebra of X, denoted by C∗
u(X), is the norm closure of the ∗-algebra 

of operators with finite propagation.

Definition 1.2. The quasi-local algebra of X, denoted by C∗
ql(X), consists of all operators 

a ∈ B(�2(X)) such that for all ε > 0 there is r > 0 for which, for all A, B ⊆ X, 
d(A, B) > r1 implies ‖χAaχB‖ ≤ ε.

These algebras were introduced by J. Roe to study the index theory of elliptic op-
erators on noncompact manifolds ([31,32]). Subsequently, (non-uniform) Roe algebras 
became important in the set up for the Baum-Connes conjecture ([17,47]); subsequent 
work ([39,37]) made it clear that there is an equally useful version of the coarse Baum-
Connes conjecture based on uniform Roe algebras. Even more recently, the quasi-local 
algebra has seen increased interest due to applications in index theory ([12,13]).

Researchers in mathematical physics have also started to use uniform Roe algebras 
in the theory of topological materials and, in particular, topological insulators. Their 
importance in mathematical physics comes from the fact that, to describe a topological 
phase, one must choose appropriate observable algebras and symmetry types. The liter-
ature in this field has been rapidly growing and we refer the reader to [22,11,19,26,10]
for more on the role of uniform Roe algebras and quasi-local algebras in mathematical 
physics.

Although it is elementary that C∗
u(X) is always a C∗-subalgebra of C∗

ql(X), it remains 
one of the biggest problems in the field to know whether these two algebras are actually 
the same. This entails the need for better understanding of the structure of each of 
these algebras. For many spaces, the situation is clear: if X has Yu’s property A [48, 
Definition 2.1], we have that C∗

u(X) = C∗
ql(X) ([41, Theorem 3.3], and see also [38]). The 

class of metric spaces with property A includes for instance all metric spaces with finite 
asymptotic dimension ([18, Lemma 4.3]) such as finitely generated abelian groups and 
hyperbolic groups, and all amenable and all linear groups ([15, Page 244]).

1.2. Goals

For the main results of this paper, we assume that all metric spaces are uniformly 
locally finite (abbreviated as u.l.f.), that is for each r > 0, the balls of radius r have 
uniformly finite cardinality. This covers the most important examples such as countable 
discrete groups with a left-invariant proper metric (see for example [46, Lemma A.3.13]), 
and discretizations of Riemannian manifolds with bounded sectional curvatures and in-
jectivity radius bounded below (see for example [46, Example A.3.21]). To avoid trivial 
counterexamples, we assume throughout this introduction that X is infinite.

1 Throughout this paper, if (X, d) is a metric space and A, B ⊆ X, we write d(A, B) = inf{d(x, y) | x ∈
A, y ∈ B}; this is of course not a metric.



4 F.P. Baudier et al. / Journal of Functional Analysis 286 (2024) 110186
The uniform Roe algebra and quasi-local algebra of X both have an unusual ‘hybrid’ 
personality that sits somewhere between C∗-algebra and von Neumann algebra theory. 
They contain the compact operators K(�2(X)), and are not B(�2(X)) when X is un-
bounded, so they are very definitely not von Neumann algebras. However, they contain 
a copy of the von Neumann algebra �∞(X) ⊆ B(�2(X)) as a C∗-diagonal in the sense 
of [23]. The presence of this ‘von Neumann diagonal’ provides very useful tools such as 
strong convergence and weak compactness arguments that are not usually available to 
C∗-algebraists: this has been particularly important in work on the rigidity problem for 
uniform Roe algebras,2 where the analysis of copies of the von Neumann algebra �∞(N)
inside uniform Roe algebras and quasi-local algebras plays a pivotal role (see for example 
[40,4,45,2]).

More generally, under very weak assumptions on X (see Lemma 2.3 below) the uniform 
Roe algebra and quasi-local algebra contain embedded copies of the von Neumann algebra ∏

k Mnk
(C) for any bounded sequence (nk)k of natural numbers.3 The following ‘folk 

conjecture’ has thus been in the air for some time.

Conjecture 1.3. The only von Neumann algebras that can embed into a uniform Roe 
algebra or a quasi-local algebra associated to a u.l.f. metric space are those of the form ∏

k Mnk
(C), where (nk)k is a countable (possibly finite) and bounded collection of nat-

ural numbers.4

It is the purpose of this paper to study this conjecture, i.e. to study which von Neu-
mann algebras can embed into uniform Roe algebras and into quasi-local algebras.5

1.3. Results

When talking about embeddability of von Neumann algebras, the question of which 
topology to consider is important. Precisely, unlike the case of C∗-algebras, where every 
embedding is automatically continuous in the natural (norm) topology, the category of 
von Neumann algebras admits singular ∗-homomorphisms that are discontinuous with 
respect to any of the (many!) natural von Neumann algebra topologies (see §2.2 for 
further discussion on this). It is also standard in von Neumann algebra theory to assume 
that all subalgebras contain the unit of the ambient algebra. Here, however, we prove the 
strongest possible negative results about embeddings: the embeddings are assumed to 
be merely ∗-algebraic (and therefore norm-continuous), and we do not assume unitality.

2 See §1.4 for more details about the rigidity problem for uniform Roe algebras.
3 Here, and throughout the paper, we use the usual terminology in operator algebras that, given a sequence 

of C∗-algebras (An)n, ∏n An denotes the �∞-sum and ⊕n An the c0-sum of those algebras.
4 See Conjecture 2.4 below for a more precise version of this conjecture.
5 It is also interesting to study which uniform Roe algebras embed into each other: this was initiated in 

[5].
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We can now describe the main results of these notes. We stress that, although we 
state our non-embedding results in terms of the quasi-local algebra, all of them hold for 
the uniform Roe algebra as well, since it is included in the quasi-local algebra.

In our investigation of which von Neumann algebras can be found inside some quasi-
local algebra, the first step is to classify the abelian von Neumann algebras with this 
property. Recall that an abelian von Neumann algebra M is of the form D⊕�∞(I), where 
I is the set of all minimal projections in M, and D is diffuse, i.e. contains no minimal 
projections. Note that a diffuse abelian von Neumann algebra acting on a separable 
Hilbert space is automatically isomorphic to L∞[0, 1] (see for example [43, Theorem 
III.1.22]), so the reader will lose little generality assuming that D is L∞[0, 1]. Our first 
main result therefore shows that the only abelian von Neumann algebras that embed in 
quasi-local algebras are the obvious ones: �∞(I) where I is a countable (possibly finite) 
set.

Theorem 1.4. Let X be a u.l.f. metric space. There is no ∗-homomorphic embedding of 
a diffuse abelian von Neumann algebra into C∗

ql(X).

We point out that, although not explicitly asked in the literature, the question of 
whether a uniform Roe algebra could contain a subalgebra isomorphic to L∞[0, 1] was 
already in the air. In fact, it was even unknown up to now if a masa, i.e. a maximal abelian 
self-adjoint subalgebra, of a uniform Roe algebra could be isomorphic to L∞[0, 1] (see 
e.g., [45, §1]). Theorem 1.4 solves this problem negatively.

Using the standard type decomposition of von Neumann agebras (see Proposition 4.8
for details), Theorem 1.4 allows us to obtain the following corollary.

Corollary 1.5. Let X be a u.l.f. metric space and let M be a von Neumann algebra. If 
there is a ∗-homomorphic embedding from M into C∗

ql(X), then M is isomorphic to ∏
k Mnk

(C) for some countable (possibly finite) collection (nk)k in N.

We are then left to understand what kind of products of matrix algebras 
∏

k Mnk
(C)

can be found inside a quasi-local algebra; if Conjecture 1.3 is true, this is possible (if 
and) only if (nk)k is bounded.

In the case that the metric space has property A, our results are already enough to 
solve this. Indeed, C∗

ql(X) = C∗
u(X) by [41, Theorem 3.3], and this algebra is nuclear6 by 

[9, Theorem 5.5.7]. On the other hand, if (nk)k is unbounded, 
∏

k Mnk
(C) is not exact 

(see for example [29, Theorem A.1]), so cannot embed into a nuclear7 C∗-algebra. Our 
results thus imply the following theorem.

6 Nuclearity is, by a deep theorem (see [8, IV.3.1.5]), the correct notion of amenability in the category of 
C∗-algebras. See [9] for background on the notions of nuclearity and exactness discussed here.
7 Or even into an exact C∗-algebra. However, exactness is equivalent to nuclearity for uniform Roe algebras 

and quasi-local algebras by [35, Theorem 1.1], so no extra generality is gained this way.
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Corollary 1.6. Let X be a u.l.f. metric space with property A. Then the only von Neu-
mann algebras that can embed in C∗

ql(X) are the products 
∏

k Mnk
(C) for some countable 

(possibly finite) bounded collection (nk)k in N. �
In order to move beyond the property A case, we need more delicate methods. To 

motivate what comes next, we recall an important definition, due originally to Yu.

Definition 1.7. An operator a ∈ B(�2(X)) is a ghost if for every ε > 0 there is a finite 
F ⊆ X such that ‖aδx‖ < ε whenever x /∈ F .

Compact operators are natural examples of ghosts and understanding when certain 
ghost operators must be compact is extremely important in coarse geometry. For in-
stance, the following are equivalent for any u.l.f. metric space X: (1) all ghosts in C∗

ql(X)
are compact, (2) all ghosts in C∗

u(X) are compact, (3) C∗
ql(X) is nuclear, (4) C∗

u(X) is 
nuclear, and (5) X has Yu’s property A (see [24, Theorem 5.5], which is based on [34, 
Theorem 1.3], [41, Theorem 3.3], and [9, Theorem 5.5.7]).

The following is our main result regarding the embeddability of products of matrix 
algebras inside quasi-local algebras (and, in particular, inside uniform Roe algebras).

Theorem 1.8. Let X be a u.l.f. metric space, and let (nk)k be a sequence of natural 
numbers that tends to infinity. Then any ∗-homomorphic embedding of M =

∏
k Mnk

(C)
into C∗

ql(X) which sends 
⊕

k Mnk
(C) to the ideal of ghost operators sends all of M to 

the ideal of ghost operators.

Theorem 1.8 is a corollary of a more technical result which does not require the 
embedding to send 

⊕
k Mnk

(C) to the ghost operators. Precisely, using the notation of 
Theorem 1.8, for each k ∈ N and i ∈ {1, ..., nk}, let eki,i denote the usual diagonal matrix 
unit in Mnk

(C). We show that if Φ :
∏

k Mnk
(C) → C∗

ql(X) is an embedding, then the 
collection {Φ(eki,i) | k ∈ N, i ∈ {1, ..., nk}} is asymptotically a ghost; this is a technical 
weakening of the assertion that Φ(1M) is a ghost (see Definition 5.5 and Remark 5.6).

The following immediate consequence of Theorem 1.8 is worth noting.

Corollary 1.9. Suppose that X is a u.l.f. metric space such that C∗
ql(X) contains no non-

compact ghost projections. Assume that a von Neumann algebra M ∗-homomorphically 
embeds into C∗

ql(X) by a map sending minimal projections to compact operators. Then 
M is of the form 

∏
k Mnk

(C) for some countable (possibly finite) bounded collection 
(nk)k in N.

The assumption that X contains no noncompact ghost projections is strictly weaker 
than property A: see for example [3, Theorem 5.3]. Nonetheless, there are many interest-
ing u.l.f. spaces that do not satisfy this assumption: most prominently, spaces containing 
expanders in a suitable sense will not satisfy it (compare [16, pages 348-349]).
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Corollary 1.9 is our most complete result on Conjecture 1.3. We do not know whether 
the geometric assumption on X or the assumption on the embedding in Corollary 1.9
can be weakened or even completely removed.

1.4. Methods

Our strategy to obtain Theorems 1.4 and 1.8 starts with first proving them under 
the stronger hypothesis that the ∗-homomorphic embeddings are normal (see §2.2 for 
definitions). We then get rid of this extra assumption by showing that if L∞[0, 1] ∗-
homomorphically embeds into B(H) for some separable Hilbert space H, then it does so 
by an embedding which is also normal (see Proposition 6.3). Our proof is completed by 
using a useful fact that does not seem to appear explicitly in the literature (although 
it is proved by assembling known results): when M is a von Neumann algebra with no 
direct summands of the form Mn(N ) for n ≥ 1 and an infinite-dimensional abelian von 
Neumann algebra N , then every representation of M on a separable Hilbert space is 
automatically normal (Theorem 6.5; the converse is also true). For expository reasons, 
we leave both discussions about the normality of ∗-homomorphic embeddings to the last 
section of this paper, §6.

We now discuss the main ideas in the proofs of Theorems 1.4 and 1.8 under the extra 
assumption of normality of the embeddings.

Our proof for Theorem 1.4 strongly depends on working with corona algebras. The 
quasi-local algebra of a u.l.f. metric space always contains the ideal of compact opera-
tors K(�2(X)); therefore, we can look at the quasi-local corona algebra C∗

ql(X)/K(�2(X))
(see Definition 3.4). Using results from [41] and [20], we can then identify the cen-
ter of C∗

ql(X)/K(�2(X)) with another important corona algebra: the Higson corona of 
X (see Definition 3.3). Therefore, by showing that the Higson corona contains 2ℵ0 or-
thogonal positive non-zero contractions (see Lemma 3.7), we obtain that the center of 
C∗

ql(X)/K(�2(X)) cannot be separably represented.
We then use Johnson–Parrott’s Theorem [20] (see Theorem 3.5) to show that if a 

C∗-subalgebra M ⊆ B(�2(X)) contained in C∗
ql(X) is isomorphic to a diffuse abelian von 

Neumann algebra, then its commutant M′ must contain a copy of the nonseparably rep-
resented C∗-algebra C∗

ql(X)/K(�2(X)). This leads to a contradiction since M′ is clearly 
separably represented.

To prove Theorem 1.8, we must evoke the idea of subsets of C∗
ql(X) being inside of 

this algebra in an “equi-way”. We also obtain analogous equi-results for the uniform Roe 
algebras. To state them, we must first recall the relevant technical definitions. These 
were first codified in [4, Definition 4.3] and [5, Definition 3.5].

Definition 1.10. Let X be a metric space.

1. Given ε, r > 0, we say that a ∈ B(�2(X)) is ε-r-quasi-local if for all A, B ⊆ X, with 
d(A, B) > r, we have that ‖χAaχB‖ ≤ ε.
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2. Given ε, r > 0, we say that a ∈ B(�2(X)) is ε-r-approximable if there is b ∈ B(�2(X)), 
with prop(b) ≤ r, such that ‖a − b‖ ≤ ε.

3. A subset S ⊆ B(�2(X)) is equi-quasi-local if for all ε > 0 there is r > 0 such that 
every a ∈ S is ε-r-quasi-local. S is equi-approximable if for all ε > 0 there is r > 0
such that every a ∈ S is ε-r-approximable.

The study of such “equi-sets” in both quasi-local and uniform Roe algebras has proven 
to be very useful in the study of those algebras. For instance, they have been essential 
in the solution of the rigidity problem (see [40,2]), as well as in the study of derivations 
and Hochschild homology of uniform Roe algebras ([28,25]). For the rigidity problem, 
it was important to show that if a weak operator topology closed subalgebra of C∗

ql(X)
(resp. C∗

u(X)) is isomorphic to �∞(N), then its unit ball is equi-quasi-local (resp. equi-
approximable); see [40, Lemma 3.1] and [4, Lemma 4.9], respectively. In this paper, we 
give a new version of both of these results that seems more practically useful.

Precisely, the next lemma is our main technical result about equi-sets in quasi-local 
and uniform Roe algebras. We emphasize that the metric space X in this lemma can 
be arbitrary (i.e., it is not required to be u.l.f. or even locally finite). The following is 
proved in §4.

Lemma 1.11. Let X be a metric space and let M ⊆ B(�2(X)) be a ∗-subalgebra closed 
in the weak operator topology and containing a unit 1M. Suppose there is an increasing 
sequence (pn)n of central projections in M that converges to 1M in the strong operator 
topology and each pnMpn is finite-dimensional.

1. If M ⊆ C∗
ql(X), then the unit ball of M is equi-quasi-local.

2. If M ⊆ C∗
u(X), then the unit ball of M is equi-approximable.

By using the standard type decomposition of von Neumann agebras in Proposition 4.8, 
Theorem 1.4 and Lemma 1.11 allow us to obtain the following.

Theorem 1.12. Let X be a u.l.f. metric space. Let M ⊆ B(�2(X)) be a weak operator 
topology closed C∗-subalgebra.

1. If M ⊆ C∗
ql(X), then the unit ball of M is equi-quasi-local.

2. If M ⊆ C∗
u(X), then the unit ball of M is equi-approximable.

Besides the equi-methods described above, our proof of Theorem 1.8 needs another 
ingredient: finite-dimensional vector measures. To put this in proper context, the rigidity 
problem for uniform Roe algebras asked the following: given u.l.f. metric spaces X and 
Y with ∗-isomorphic uniform Roe algebras, does it follow that X and Y are coarsely 
equivalent? Theorem 1.2 of [2] provides a positive answer to this question; the main 
novelty in its proof was the study of certain finite-dimensional vector measures and the 
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use of an atomic version of the classic Lyapunov convexity theorem. In §5, we further 
develop this method obtaining a stronger technical lemma which applies to a wider range 
of scenarios (see Lemma 5.7)

Outline of the paper

In §2 we establish some notational preliminaries and give additional background. §3
shows non-existence of normal embeddings of diffuse abelian von Neumann algebras into 
C∗

ql(X) using corona methods. §4 contains our results on equi-sets; the main techniques 
here are based on elementary von Neumann algebra theory and the Baire category the-
orem. §5 goes into detail on asymptotic ghosts and embeddings of products of matrix 
algebras using vector measure techniques. Finally, §6 gives our results on automatic nor-
mality for representations of von Neumann algebras on separable Hilbert spaces; the 
techniques used here are again von Neumann algebraic in character.

2. Preliminaries

2.1. Basic definitions

Most of the basic definitions and terminology needed for this paper were already 
introduced in §1. Here, we only present what is left to introduce. The C∗-algebra �∞(X)
of all bounded functions from X to C is identified with the multiplication operators in 
B(�2(X)) in the canonical way: if a = (ax)x∈X ∈ �∞(X) and ξ = (ξx)x∈X ∈ �2(X), then 
aξ = (axξx)x∈X . In other words, a ∈ �∞(X) if and only if prop(a) = 0. As such �∞(X)
identifies in a canonical way with a maximal abelian subalgebra of C∗

ql(X). We denote by 
K(H) the compact operators on a Hilbert space H, and note that K(�2(X)) is contained 
in both C∗

u(X) and C∗
ql(X) as the unique minimal ideal.

We write WOT (respectively SOT, SOT∗) for the weak (respectively strong, strong-∗) 
operator topology on B(H). We write “SOT-

∑
” when we want to be clear that a given 

sum converges in the strong operator (as opposed to norm) topology.
We follow the standard conventions of the subject: a von Neumann algebra will always 

be a concrete C∗-algebra M on some Hilbert space H that is closed in the weak operator 
topology, and such that the unit of M agrees with the unit of B(H). A W∗-algebra is 
an abstract C∗-algebra that is isomorphic to some von Neumann algebra; equivalently, 
a W∗-algebra is a C∗-algebra which is a dual Banach space. We write M1 for the closed 
unit ball of a von Neumann algebra (or C∗-algebra), and Z(M) for its center. For a 
family (ps)s of projections in a von Neumann algebra, 

∨
ps denotes their least upper 

bound, and 
∧
ps their greatest lower bound; these always exist.

2.2. Normal embeddings

Von Neumann algebras carry many natural topologies (see for example [8, I.8.6]). In 
particular, in addition to the WOT and SOT already mentioned, there are the so-called 
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σ-weak and σ-strong topologies (also called the ultraweak and ultrastrong topologies). 
These are important as they are intrinsic to the ∗-algebraic structure (see for example 
[43, Corollary III.3.10]), unlike the WOT and SOT, which depend on the representation; 
however the WOT (respectively SOT) agrees with the σ-weak (respectively σ-strong) 
topology on bounded sets, so often one can elide the distinction between the two.

Fortunately, the several natural notions of continuity for ∗-homomorphisms between 
von Neumann algebras turn out to be the same: we record this below.

Proposition 2.1. Let Φ : M → N be a ∗-homomorphism between von Neumann algebras. 
Then the following are equivalent.8

1. Φ is normal: if (ai)i∈I is a bounded increasing net of positive elements of M, then 
Φ(supi∈I ai) = supi∈I Φ(ai).

2. For any collection of orthogonal projections (pi)i in M,

Φ(SOT-
∑

i∈I pi) = SOT-
∑

i∈I Φ(pi).

3. Φ is σ-weakly continuous.
4. Φ is σ-strongly continuous.
5. The restriction of Φ to the unit ball of M is σ-strongly continuous.
6. Φ is continuous with respect to the weak∗-topologies induced by the unique preduals 

(see for example [8, III.2.4.1]) of M and N .

Proof. Parts (1), (3), (4), and (5) are equivalent by [8, III.2.2.2]. Parts (3) and (6)
are equivalent as the weak-∗ and σ-weak topologies are the same (see for example [8, 
I.8.6.2 and III.2.4.1]). Condition (1) clearly implies (2). Finally, assume that condition
(2) holds. Then for any normal linear functional ψ : N → C and orthogonal collection of 
projections (pi)i, ψ ◦Φ(

∑
pi) =

∑
ψ ◦Φ(pi). Hence ψ ◦Φ is also normal by [43, Corollary 

III.3.11]. As the normal linear functionals are exactly the elements of the predual of a 
von Neumann algebra (see [8, Page 244]) this says that the dual map Φ∗ : N ∗ → M∗

restricts to a map N∗ → M∗. Hence Φ is weak-∗ continuous, i.e. satisfies (6). �
Note that a normal ∗-homomorphism Φ is not necessarily WOT-continuous. For ex-

ample, if H is an infinite-dimensional Hilbert space then the embedding of B(H) into 
B(H ⊗H) that sends a to a ⊗ 1H is not WOT-continuous. (This example really goes to 
show that WOT is not intrinsic to a given von Neumann algebra, as it depends on the 
ambient space.) Finally, the restriction of an isomorphism between von Neumann alge-
bras to the unit ball of the domain is continuous in the SOT, WOT, and SOT∗-topologies 
(see [8, §III.2.1.14]).

8 In each of the instances (3)–(6) both the domain and the codomain are considered with respect to the 
same topology.
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Definition 2.2. A ∗-homomorphism from a von Neumann algebra into either C∗
u(X) or 

C∗
ql(X) is called a normal embedding if its kernel is trivial and it satisfies any of the 

conditions from Proposition 2.1 above when thought of as a ∗-homomorphism from M
into B(�2(X)).

2.3. ‘Obvious’ embeddings

Let X be a u.l.f. metric space. Let (nk)k be a countable (possibly finite) collection of 
natural numbers, and assume that X contains a sequence (Xk)k of uniformly bounded 
pairwise disjoint subsets such that |Xk| = nk for each k.9 Then it is straightforward to see 
that C∗

u(X) (and therefore C∗
ql(X)) contains 

∏
k B(�2(Xk)) ∼=

∏
k Mnk

(C) as a normally 
embedded subalgebra. For such a collection (Xk)k to exist, (nk)k must be bounded (as 
X is u.l.f.), but under very minor assumptions on X, this is the only obstruction.

Lemma 2.3. Let X be an infinite u.l.f. metric space. Assume moreover that X either has 
asymptotic dimension10 at least one, or that X is a countable group with a left-invariant 
bounded geometry metric.

Then for any bounded and countable collection of natural numbers (nk)k there exists 
a sequence (Xk)k of uniformly bounded disjoint subsets of X such that |Xk| = nk for all 
k. In particular, C∗

u(X) (and therefore C∗
ql(X)) contains a normally embedded copy of ∏

k Mnk
(C).

Proof. If X has asymptotic dimension at least one, the result follows easily from [27, 
Lemma 2.4]. If X is a group, fix N ∈ N such that N ≥ nk for all k. Choose a set A in 
X such that |A| = N , and assume that the diameter of A is s for some s > 0. Choose a 
collection (xk)k in X such that d(xk, xl) > 2s for all k �= l. Then the sets Yk := xkA are 
disjoint, and all have cardinality N and diameter s. Hence we can find subsets Xk ⊆ Yk

with the desired property. �
These observations naturally lead to the following refinement of Conjecture 1.3.

Conjecture 2.4. Let X be a u.l.f. metric space. The only von Neumann algebras that 
can embed into C∗

u(X) and C∗
ql(X) are those of the form 

∏
k Mnk

(C), where (nk)k is a 
countable (possibly finite) bounded collection of natural numbers. Moreover, 

∏
k Mnk

(C)
embeds into C∗

u(X) or C∗
ql(X) if and only if X contains a disjoint collection (Xk)k of 

uniformly bounded subsets with |Xk| = nk for all k.

It is not true that 
∏

k Mnk
(C) embeds into C∗

ql(X) for any infinite u.l.f. metric space X
and bounded sequence (nk)k: the simplest counterexample is probably X = {n2 | n ∈ N}

9 Here and throughout the paper, we write |A| for the cardinality of a set A.
10 See for example [33, Chapter 9] for background on asymptotic dimension. We note in particular that a 
countable group has asymptotic dimension zero if and only if it is an increasing union of finite groups: see 
[36].
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with the metric inherited from R. We have C∗
ql(X) = C∗

u(X) = �∞(X) + K(�2(X)), 
from which it follows (for example) that 

∏
k∈N M2(C) cannot embed. Notice however 

that containing copies of 
∏

k∈N Mn(C) for all n ∈ N, does not characterize being of 
strictly positive asymptotic dimension: for example, X = {(i2, j2) | (i, j) ∈ N2} is of 
asymptotic zero dimension, but for each n ∈ N, C∗

u(X) contains the C∗-subalgebra ∏
k∈N B(�2({(k2, i2) | 1 ≤ i ≤ n})), which is ∗-isomorphic to 

∏
k∈N Mn(C).

Progress on the more refined part of the conjecture above would need a careful study 
of spaces of asymptotic dimension zero; we do not attempt that in this paper, but the 
question seems interesting.

3. Diffuse abelian von Neumann algebras inside quasi-local algebras

The main goal of this section is to prove Theorem 1.4, i.e. that C∗
ql(X) cannot contain 

an embedded diffuse abelian von Neumann algebra, under the stronger hypothesis of 
the embedding being also normal. We will then show in §6 that the existence of a ∗-
homomorphic embedding implies the existence of a normal one (see Proposition 6.3), 
which will then give us Theorem 1.4 in full generality.

We now state the main result of this section.

Theorem 3.1. If X is a u.l.f. metric space and M is a diffuse abelian von Neumann 
algebra, then there is no normal embedding of M into C∗

ql(X).

Recall that if M is a von Neumann algebra (or C∗-algebra) in B(H), then M′ denotes 
its commutant. Recall also that if p ∈ M is a projection, then its central cover (also 
called the central carrier or central support) is the projection

zp :=
∧

{q ∈ Z(M) | p ≤ q}, (3.1)

i.e. the smallest projection in the center of M that dominates p: see for example [8, 
III.1.1.5] or [43, page 223] for more details.

The following result is known to experts: see for example the end of the proof of 
Proposition 1.2.5 in [30]. We thank an anonymous referee for providing us with the 
current simpler proof.

Proposition 3.2. Let H be a Hilbert space and let M ⊆ B(H) be a von Neumann algebra 
with no minimal projections. Then M′ ∩ K(H) = {0}.

Proof. Suppose towards a contradiction that M′ ∩ K(H) �= {0}. Hence M′ ∩ K(H)
contains a non-zero self-adjoint operator, and so it contains a non-zero finite rank projec-
tion p by the spectral theorem for self-adjoint compact operators. The ∗-homomorphism 
φ : M → B(pH) defined by cutting down by p is then normal, whence M splits as 
a direct sum M = N ⊕ φ(M) (compare for example [8, III.1.1.13]). As φ(M) is a 
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)).
finite-dimensional von Neumann algebra, it has a minimal projection, contradicting the 
assumption. �

For the next result, we will need to make use of some corona algebras. We start by 
recalling the definition of the Higson corona of a u.l.f. metric space. See for example [33, 
§2.3] for more background.

Definition 3.3. Let (X, d) be a u.l.f. metric space.

1. A bounded function f : X → C is called a Higson function11 if for all ε, r > 0 there 
is a bounded subset Z ⊆ X such that |f(x) − f(y)| ≤ ε for all x, y ∈ X \ Z with 
d(x, y) ≤ r.

One checks directly that the collection of all Higson functions is a (commutative) C∗-
subalgebra of �∞(X).

2. The C∗-algebra of all Higson functions is denoted by Ch(X) and the Higson corona12

of X is defined as CQ(X) = Ch(X)/C0(X).

We use the multiplication action of Ch(X) on �2(X) to identify Ch(X) with a C∗-
subalgebra of B(�2(X)). We moreover use the identification CQ(X) = Ch(X)/(Ch(X) ∩
K(�2(X)) to identify CQ(X) with a C∗-subalgebra of the Calkin algebra B(�2(X))/K(�2(X

Definition 3.4. Let X be a metric space.

1. The quasi-local corona of X is Q∗
ql(X) = C∗

ql(X)/K(�2(X)).
2. The uniform Roe corona of X is Q∗

u(X) = C∗
u(X)/K(�2(X)).13

The next theorem is a straightforward corollary of work of Johnson and Parrott [20]. 
It will be essential in the proofs of both Proposition 3.6 and Theorem 3.1 below. For 
the statement of the next few results, let π : B(H) → B(H)/K(H) denote the canonical 
quotient map, and recall that a masa in a C∗-algebra is a maximal abelian self-adjoint 
subalgebra.

Theorem 3.5 (Johnson and Parrott). Let H be a Hilbert space and M ⊆ B(H) be an 
abelian von Neumann algebra. Then, (π[M])′ = π[M′]. In particular, if M is a masa of 
B(H), then π[M] is a masa of B(H)/K(H).

11 Higson functions are also referred to as slowly oscillating functions.
12 In topology, “Higson corona” would usually refer to the maximal ideal space of this C∗-algebra; here we 
refer to the C∗-algebra itself.
13 The uniform Roe corona of a u.l.f. metric space was first studied in [6]. We do not need it for our main 
results here, but include some discussion for completeness.
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Proof. We just explain how to derive the result from the results of [20, Theorem 2.1]. 
Clearly (π[M])′ ⊇ π[M′], so we have to show that if b ∈ B(H) is such that ab −ba ∈ K(H)
for all a ∈ M, then b ∈ M + K(H). In the terminology of [20], [20, Theorem 2.1] says 
that M has property P2 (this property is not important to us), which by [20, Lemma 1.4]
implies that M has property P1. As defined on [20, page 39], property P1 is exactly the 
desired conclusion. �

The following result might be of interest in its own right. Parts of it are known already 
(see for example [41, Theorem 3.3]), but the complete statement seems to be new.

Proposition 3.6. Let X be a u.l.f. metric space. Then

CQ(X) = Z(Q∗
ql(X)) = Z(Q∗

u(X)).

Proof. By Theorem 3.5, �∞(X)/C0(X) is a masa in B(�2(X))/K(�2(X)). Since it is 
included in each of Q∗

u(X) and Q∗
ql(X), it is a masa in each of these algebras. It follows 

that

Z(Q∗
u(X)) = {a ∈ �∞(X)/C0(X) | [a, b] = 0 ∀b ∈ Q∗

u(X)}

and similarly for Z(Q∗
ql(X)), whence Z(Q∗

ql(X)) ⊆ Z(Q∗
u(X)). For all f ∈ Ch(X) and all 

a ∈ C∗
ql(X), [41, Theorem 3.3] implies [f, a] ∈ K(�2(X)). Hence CQ(X) ⊆ Z(Q∗

ql(X)) ⊆
Z(Q∗

u(X)), and it suffices to show that Z(Q∗
u(X)) ⊆ CQ(X).

Let a ∈ Z(Q∗
u(X)). As a ∈ �∞(X)/C0(X) = π[�∞(X)], there is b ∈ �∞(X) such that 

π(b) = a. Let us show that b ∈ Ch(X). We proceed by contradiction. If this is not the 
case, we can choose ε > 0, r > 0, and sequences of distinct elements (xn)n and (zn)n in 
X such that for all n ∈ N we have

d(xn, zn) ≤ r and |b(xn) − b(zn)| ≥ ε.

Let v ∈ B(�2(X)) be the partial isometry such that vδxn
= δzn for all n ∈ N and vδx = 0

for all x /∈ {xn | n ∈ N}. Since d(xn, zn) ≤ r for all n ∈ N, v has finite propagation. By 
definition of v, it also follows that

|〈(vb− bv)δxn
, δzn〉| = |b(xn) − b(zn)| ≥ ε

for all n ∈ N. As (δxn
) converges weakly to zero, vb − bv is not compact which implies 

that

π(v)a− aπ(v) = π(vb− bv) �= 0.

As v ∈ C∗
u(X), this show that a cannot be in the center of Q∗

u(X), which is the desired 
contradiction. �
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Recall that a metric space is locally finite if all of its bounded subsets are finite. 
Variants of the construction in the following lemma are well-known: compare for example 
the proof of [21, Theorem 3].

Lemma 3.7. Let X be a locally finite metric space and p ∈ C∗
ql(X) be an infinite rank 

projection. Then there is an orthogonal family of 2ℵ0 non-zero positive contractions in 
π(p)CQ(X)π(p).

Proof. Let ξ1 be a unit vector in the image of p, and choose a finite subset A1 of X
such that ‖χA1ξ1 − ξ1‖ ≤ 2−1−2. As χA1 has finite rank and p has infinite rank, there 
exists a unit vector ξ2 that is orthogonal to ξ1, that is in the image of p, and is such that 
‖χA1ξ2‖ ≤ 2−2−3. Hence ‖χX\A1ξ2 − ξ2‖ ≤ 2−2−3. Choose a finite subset A2 of X \ A1
such that ‖χA2ξ2 − ξ2‖ ≤ 2−2−2. Continuing this way14 we construct an orthonormal 
sequence (ξn) in the image of p and a disjoint sequence (An)n of finite subsets of X such 
that

‖ξn − χAn
ξn‖ ≤ 2−n−2 (3.2)

for all n ∈ N. Passing to a subsequence (and using local finiteness of X), we may 
moreover assume that d(An, Am) > 3n for all n �= m.

Define now gn : X → [0, 1] by

gn(x) = max{0, 1 − d(x,An)/n}.

In words, each gn is identically one on An, identically zero outside the n-neighborhood
of An, and decreases ‘with slope 1/n’ in between; in particular, it is (1/n)-Lipschitz. As 
d(An, Am) > 3n for all n �= m, we therefore have that the supports of gn and gm are at 
least n apart for all n �= m. As p is in C∗

ql(X) we may thus pass to another subsequence 
and assume that

‖χsupp(gn)pχsupp(gm)‖ ≤ 2−n−m (3.3)

for all n �= m in N.
For each M ⊆ N, let gM : X → [0, 1] be defined by

gM (x) :=
∑
n∈M

gn(x)

(notice that given x ∈ X, this sum has at most one nonzero term, so the sum converges 
pointwise). In other words, looking at each gn as an element in �∞(X), we have gM =

14 This is sometimes called a sliding hump argument: see for example [1, page 14].
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SOT-
∑

n∈M gn for all M ⊆ N. As each gn is (1/n)-Lipschitz, each gM is a Higson 
function. For each M ⊆ N, let hM = π(gM ), and let q = π(p).

A family S of infinite subsets of N is almost disjoint if M1 ∩ M2 is finite for all 
distinct M1, M2 ∈ S. Fix an almost disjoint family of infinite subsets of N of cardinality 
2ℵ0 (see for example [14, Proposition 9.2.2] for a proof that such a collection exists). 
We claim that the collection (qhMq)M∈S is the desired family of orthogonal non-zero 
positive contractions. Clearly, each qhMq is a positive contraction. For orthogonality, 
since the family S is almost disjoint, we only need to consider disjoint M1, M2 ⊆ N. In 
this case, by (3.3), we have, for n ∈ M1 and all m ∈ M2, that

‖pgnpgmp‖ ≤ ‖gnpgm‖ ≤ 2−n−m.

Therefore,

pgM1pgM2p =
∑

n∈M1

∑
m∈M2

pgnpgmp

converges in norm and, as each pgnpgmp is compact, pgM1pgM2p is compact.
At last, using (3.2), we have that

‖pgMpξn‖ = ‖pgMξn‖ ≥ ‖pgnξn‖ −
∑
m�=n

‖pgmξn‖

≥ ‖pξn‖ − ‖p(1 − gn)ξn‖ −
∑
m�=n

‖pgmχX\An
ξn‖ ≥ 1

2

for all M ⊆ N and all n ∈ N. Hence, pgMp is noncompact for all infinite M ⊆ N. This 
finishes the proof. �
Proof of Theorem 3.1. Fix a u.l.f. metric space X. We need to show that if M is a diffuse 
abelian von Neumann algebra then there is no normal embedding of M into C∗

ql(X). 
Suppose for contradiction there is such an embedding, and abuse notation slightly by 
writing M for its image. Let q := π(1M). Since Φ is normal, M is a von Neumann 
subalgebra of B(1M�2(X)) by [43, Proposition III.3.12]. Furthermore, M is diffuse and 
abelian, hence the relative commutant M′∩B(1M�2(X)) contains no compact operators 
by Proposition 3.2, and so π restricts to an isomorphism between M′ ∩ B(1M�2(X)) =
1MM′1M and qπ(M′)q. Theorem 3.5 (applied to the von Neumann algebra M on the 
Hilbert space 1M�2(X)) implies that

qπ[M′]q = qπ[M]′q.

Furthermore, since π[M] ⊆ Q∗
ql(X), and by Proposition 3.6 the center of Q∗

ql(X) is the 
Higson corona CQ(X), we have

qCQ(X)q ⊆ qπ[M]′q.
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As M is diffuse, 1M has infinite rank, so Lemma 3.7 applied to p = 1M gives that 
qπ[M]′q contains an orthogonal family of 2ℵ0 nonzero positive elements. This gives us a 
contradiction since qπ[M]′q is isomorphic to M′∩B(1M�2(X)), a separably represented 
C∗-algebra. �
4. Equi-quasi-locality and equi-approximability

We need quantitative ways of saying that certain subsets of B(�2(X)) belong to C∗
ql(X)

in a uniform way, and sufficient conditions for this to hold. The present section inves-
tigates this problem: Lemma 1.11 from the introduction is the main technical result, 
which we will use to prove Theorem 1.12 at the end of this section. Although for our 
results regarding the embeddability of von Neumann algebras, it would be enough to 
obtain such results only for quasi-local algebras, we also provide versions of these results 
for uniform Roe algebras for the sake of completeness.

For the definitions of ε-r-quasi-local, ε-r-approximable, equi-quasi-local, and equi-
approximable, we refer the reader to Definition 1.10.

The following lemma follows straightforwardly from the fact that compact subsets of 
metric spaces are totally bounded (cf. [4, Lemma 4.8]).

Lemma 4.1. Let X be a metric space. Then any norm-compact subset of C∗
ql(X) is equi-

quasi-local, and any norm-compact subset of C∗
u(X) is equi-approximable.

Proof. The case of C∗
u(X) is [4, Lemma 4.8] and the quasi-local version follows analo-

gously. For completeness, here is a proof: if K ⊆ C∗
ql(X) is compact and ε > 0, pick a 

finite A ⊆ K which is ε-dense in K. As A is finite, there is r > 0 such that every element 
in A is ε-r-quasi-local. This implies every element in K is 2ε-r-quasi-local, so we are 
done. �
Lemma 4.2. Let X be a metric space and for each pair ε, r > 0 let

QL(ε, r) := {a ∈ B(�2(X)) | a is ε-r-quasi-local and ‖a‖ ≤ 1}

and

A(ε, r) := {a ∈ B(�2(X)) | a is ε-r-approximable and ‖a‖ ≤ 1}.

Both QL(ε, r) and A(ε, r) are WOT-closed.

Proof. Let (ai)i∈I be a net of contractions WOT-converging to some a ∈ B(�2(X)). As 
WOT-closed bounded sets are norm closed, ‖a‖ ≤ 1. Fix positive reals ε and r.

Suppose that each ai is in QL(ε, r). Fix A, B ⊆ X with d(A, B) > r, so that 
‖χAaiχB‖ ≤ ε for all i ∈ I. As the norm is WOT-lower semicontinuous, it follows 
that ‖χAaχB‖ ≤ ε. So, a ∈ QL(ε, r).
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Suppose now that each ai is in A(ε, r). For each i ∈ I, let bi ∈ B(�2(X)) be such 
that prop(bi) ≤ r and ‖ai − bi‖ ≤ ε. As (ai)i∈I is bounded, so is (bi)i∈I . As bounded 
subsets of B(�2(X)) are WOT-precompact, by passing to a subnet we can assume that 
b = WOT- limi bi exists. Moreover, since each bi has propagation at most r, so does b: 
indeed, if x, y ∈ X satisfy d(x, y) > r, then 〈δx, bδy〉 = limi〈δx, biδy〉 = 0. Finally, since 
‖ai − bi‖ ≤ ε for all i ∈ I, we have that ‖a − b‖ ≤ ε. This shows that a ∈ A(ε, r). �

We are now ready for the proof of Lemma 1.11 from the introduction.

Proof of Lemma 1.11. Suppose that X is a metric space and M ⊆ B(�2(X)) is a WOT-
closed ∗-subalgebra with unit 1M. Also suppose there is an increasing sequence (pn)n of 
central projections in M such that each pnMpn is finite-dimensional and SOT- lim pn =
1M. Replacing M with M ⊕C(1 − 1M) and pn with pn ⊕ (1 − 1M) if necessary, we can 
assume without loss of generality that 1M = 1.

We now prove (1): Suppose M ⊆ C∗
ql(X). We need to prove that the unit ball M1

of M is equi-quasi-local. Towards a contradiction, assume the contrary. Then there is 
ε > 0 such that for all n ∈ N there is a ∈ M1 which is not ε-n-quasi-local.

Claim 4.3. For all n, m ∈ N, there is a ∈ (1 − pm)M of norm 1 which is not ε/2-n-quasi-
local.

Proof. Suppose the conclusion of the claim fails for some pair n, m ∈ N. So, all elements 
in the unit ball of (1 − pm)M are ε/2-n-quasi-local. Since pmMpm is finite dimensional, 
there is r > 0 such that every element in (pmMpm)1 is ε/2-r-quasi-local (Lemma 4.1); 
without loss of generality, assume that r > n. Therefore, since every a ∈ M1 can be 
written as a = pma +(1 −pm)a, this implies that every element in M1 is ε-r-quasi-local. 
This contradicts our choice of ε. �
Claim 4.4. For each r ∈ N, QL(ε/4, r) ∩ M1 has empty interior with respect to the 
restriction of the WOT-topology to M1.

Proof. Fix r ∈ N and suppose towards a contradiction that there is a WOT-open U ⊆
B(�2(X)) such that U ∩M1 is nonempty and U ∩M1 ⊂ QL(ε/4, r). Fix a ∈ U ∩M1. 
So there are δ > 0 and normalized ξ1, . . . , ξk, ζ1, . . . , ζk ∈ �2(X) for which the set

B :=
k⋂

i=1
{b ∈ M1 | |〈(a− b)ξi, ζi〉| < δ}

is included in QL(ε/4, r). Since SOT- lim pn = 1, there is m ∈ N large enough such that

‖(1 − pm)ζi‖ <
δ and ‖(1 − pm)aξi‖ <

δ

2 2



F.P. Baudier et al. / Journal of Functional Analysis 286 (2024) 110186 19
for all i ≤ k. Let n > r be such that pma is ε/4-n-quasi-local. By Claim 4.3, there is a 
contraction b ∈ (1 − pm)M which is not ε/2-n-quasi-local. Then, letting c = pma + b, we 
have that

‖c‖ = max{‖pma‖, ‖b‖} ≤ 1

and that a − c = (1 − pm)(a − b), hence

|〈(a− c)ξi, ζi〉| = |〈(1 − pm)(a− b)ξi, ζi〉|
≤ |〈(1 − pm)aξi, ζi〉| + |〈bξi, (1 − pm)ζi〉| < δ,

and c ∈ B. As B ⊆ QL(ε/4, r), c is ε/4-r-quasi-local. As pma is ε/4-n-quasi-local, this 
implies that b is ε/2-n-quasi-local; contradiction. �

We are now ready to complete the proof of case (1). On bounded sets in M, the 
WOT agrees with the ultraweak topology. Since the ultraweak topology coincides with 
the weak∗-topology associated with the predual of M, the Banach–Alaoglu theorem 
implies that the unit ball M1 of M is WOT-compact (and of course Hausdorff). By the 
previous claim and Lemma 4.2, we have that QL(ε/4, r) ∩ M1 is a closed subset with 
empty interior for all r > 0. As M ⊆ C∗

ql(X), we have that

M1 =
⋃
r∈N

(QL(ε/4, r) ∩M1)

and that all sets on the right-hand side are closed and nowhere dense. This contradicts 
the Baire category theorem, completing the proof of (1).

Proof of Lemma 1.11, (2). We need to show that if M ⊆ C∗
u(X), then the unit ball of 

M is equi-approximable. This proof follows the general strategy of the proof of (1), with 
Claim 4.3 and Claim 4.4 replaced with the following two claims; the proofs are analogous 
to the proofs of the former claims and are left to the reader.

Claim 4.5. For all n, m ∈ N, there is a ∈ (1M − pm)M of norm 1 which is not ε/2-n-
approximable. �
Claim 4.6. For each r ∈ N, A(ε/4, r) ∩ M1 has empty interior with respect to the 
restriction of the WOT-topology to M1. �

As M ⊆ C∗
u(X), we have that

M1 =
⋃
r∈N

(A(ε/4, r) ∩M1).

As in (1), this contradicts the Baire category theorem. �
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Proposition 4.7. Let X be a countable metric space and let M ⊆ B(�2(X)) be a WOT-
closed ∗-subalgebra isomorphic to a direct product of matrix algebras.

1. If M ⊆ C∗
ql(X), then the unit ball of M is equi-quasi-local.

2. If M ⊆ C∗
u(X), then the unit ball of M is equi-approximable.

Proof. Since �2(X) is separable, M is a direct product of at most countably many matrix 
algebras. It therefore contains an increasing sequence (pn)n of central projections in M
such that each pnMpn is finite-dimensional and SOT- lim pn = 1M. The result then 
follows from Lemma 1.11. �

Our next goal is Proposition 4.8, which characterizes W ∗-algebras that do not contain 
a diffuse abelian W ∗-subalgebra. This seems likely to be known to experts, but we 
could not find a proof in the literature so we include one for completeness. It is the 
final ingredient needed to complete the proof of our main equi-approximability result 
(Theorem 1.12) from the introduction.

Proposition 4.8. Assume that M is a W∗-algebra such that there is no normal (possibly 
non-unital) embedding of a diffuse abelian von Neumann algebra into M. Then M is 
isomorphic to 

∏
i∈I Mni

(C) for some collection (ni)i∈I of natural numbers.

Proof. Using the type decomposition for von Neumann algebras (see for example [8, 
III.1.4.7] or [43, Theorem V.1.19]) and the structure theory of type I von Neumann 
algebras (see for example [8, III.1.5.12 and III.1.5.13] or [43, Theorem V.1.27]), we may 
write M as a direct sum

M = MI ⊕MII ⊕MIII

where MI is the direct product of von Neumann algebras of the form B(Hℵ)⊗Nℵ with 
Hℵ is a Hilbert space of dimension ℵ for a cardinal ℵ and Nℵ an abelian von Neumann 
algebra (possibly zero), and MII and MIII are of types II and III respectively (possibly 
zero).

Now, if there is an infinite ℵ such that one of the algebras B(Hℵ)⊗Nℵ appearing in 
MI is non-zero then Hℵ contains an isometrically embedded copy of L2[0, 1]. Hence M
contains a normally embedded copy of B(L2[0, 1]), and therefore a normally embedded 
copy of the diffuse von Neumann algebra L∞[0, 1], which is impossible. If MII or MIII

is non-zero, then whichever is non-zero must contain a non-zero maximal abelian self-
adjoint subalgebra N : indeed, any von Neumann algebra contains a maximal abelian 
self-adjoint subalgebra by Zorn’s lemma, and such a subalgebra will necessarily be weakly 
closed and contain the unit. As type II and type III von Neumann algebras have no 
minimal projections, N is diffuse, again contradicting our assumption. Hence we may 
assume M = MI =

∏
n∈N Mn(Nn).
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As M contains no abelian diffuse subalgebras, each Nn must be of the form �∞(In)
for some set In (possibly empty). As

Mn(�∞(In)) ∼=
∏
i∈In

Mn(C),

the result follows. �
We are now ready for the proof of Theorem 1.12 from the introduction.

Proof of Theorem 1.12. Suppose X is a u.l.f. metric space and M ⊆ C∗
ql(X) is a WOT-

closed C∗-subalgebra. Theorem 3.1 implies there is no normal embedding of a diffuse 
abelian von Neumann algebra into M. Proposition 4.8 implies that M is isomorphic 
to a product of matrix algebras; moreover, as �2(X) is separable, there can be at most 
countably many matrix algebras appearing in the product. Proposition 4.7 implies that 
if M ⊆ C∗

ql(X) then the unit ball of M is equi-quasi-local, and that if M ⊆ C∗
u(X), then 

the unit ball of M is equi-approximable. �
5. Products of matrix algebras inside quasi-local algebras

Combining Theorem 3.1 and Proposition 4.8, in order to understand which von Neu-
mann algebras can be normally embedded inside quasi-local algebras, it suffices to focus 
on von Neumann algebras of the form 

∏
k Mnk

(C) for some countable collection (nk)k
of natural numbers. In this section, we obtain Theorem 1.8 from the introduction with 
the extra hypothesis that the embedding is also normal. We will then show in §6 that 
this hypothesis is satisfied automatically.

The following is the main result of this section.

Theorem 5.1. Let X be a u.l.f. metric space, and let (nk)k be a sequence of natural 
numbers that tends to infinity. Then any normal embedding of M :=

∏
k Mnk

(C) into 
C∗

ql(X) that sends 
⊕

k Mnk
(C) to the ideal of ghost operators sends all of M to the ideal 

of ghost operators.

The proof of Theorem 5.1 will proceed via a series of lemmas. The first of these is a 
simple observation about Hilbert spaces and can be found, for instance, in [2, Lemma 
3.1]. We include its short proof here for the reader’s convenience.

Lemma 5.2. Let H be a Hilbert space, p ∈ B(H) be a projection, and ξ ∈ H. Then 
‖ξ‖ = 2‖pξ − 1

2ξ‖.

Proof. Let u = 2p − 1, so u is a unitary, and in particular an isometry. Hence

‖ξ‖ = ‖uξ‖ = ‖2pξ − ξ‖ = 2‖pξ − 1ξ‖. �
2
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The next lemma we need for the proof of Theorem 5.1 is about vector measures, and is 
taken from [2, Lemma 2.1].15 Recall that a vector measure is a function μ from a σ-algebra 
Σ of subsets of a given set into a Banach space E which is countably additive in the 
sense that if (An)n is a sequence of disjoint elements of Σ then μ(

⋃
n An) =

∑
n μ(An), 

where the sum converges in norm. The norm on Rm in the statement of the lemma is 
arbitrary, and the notation conv(S) refers to the convex hull of a subset S ⊆ Rm.

Lemma 5.3 ([2]). Let X be a set, m ∈ N, and μ : P(X) → (Rm, ‖ ·‖) be a vector measure. 
For all ξ ∈ conv(μ[P(X)]) there is A ∈ P(X) with

‖ξ − μ(A)‖ ≤ m sup
x∈X

‖μ({x})‖. �
We will use this to establish the following result, which is closely related to [2, Lemma 

3.2].

Lemma 5.4. Let X be a u.l.f. metric space. Let (ps)s∈S be an orthogonal family of pro-
jections on �2(X), and assume that for every A ⊆ S the projection pA :=

∑
s∈A ps is 

contained in C∗
ql(X).

Then for every γ > 0 there is δ > 0 (depending on γ, the geometry of X, and the 
family (ps)s) such that if A ⊆ S and XA := {x ∈ X | ‖pAδx‖ > γ} then for every 
x ∈ XA there exists s ∈ A such that ‖psδx‖ ≥ δ.

Proof. Fix ε ∈ (0, γ/8). Let M ∼= �∞(S) be the von Neumann algebra generated by 
the projections ps. As any element of �∞(S) can be approximated in norm by a finite 
linear combination of projections of the form pA for A ⊆ S, M is contained in C∗

ql(X). 
Let S1 ⊆ S2 ⊆ · · · be a sequence of finite subsets of S with union S (such sequence 
exists as separability of �2(X) implies that S is countable). Applying Lemma 1.11,16
with pn := pSn

gives r > 0 such that pA is ε-r-quasi-local for all A ⊆ S. Since X is u.l.f.,

m := sup
x∈X

|Br(x)|

is finite. Fix δ > 0 such that 2mδ < γ/8; we claim that this δ has the required property.
Assume otherwise for contradiction: if the conclusion of the lemma is false, we can 

find A ⊆ S and x ∈ XA such that

sup
s∈A

‖psδx‖ < δ.

15 The statement of that lemma includes an extra “+ε” on the right hand side of the inequality in the 
conclusion. However, the extra ε is only necessary if one wants the set A in the conclusion to be finite: see 
the first of the two proofs of Lemma 2.1 given in [2].
16 Notice that this is not the reason why we proved Lemma 1.11. In fact, for the current proof, [40, Lemma 
3.2] would suffice (compare also [4, Lemma 4.9]). The novelty in Lemma 1.11 will be needed only for 
Theorem 1.8.
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Define a vector measure μ : P(A) → �2(Br(x)) by

μ(B) := χBr(x)pBδx. (5.1)

By our choice of x, we have that

sup
s∈A

‖μ({s})‖ ≤ sup
s∈A

‖psδx‖ < δ.

Since dimR(�2(Br(x))) = 2 dimC(�2(Br(x))) ≤ 2m, Lemma 5.3 gives B ⊆ A such that

‖μ(B) − 1
2χBr(x)pAδx‖ < 2mδ. (5.2)

By our choice of r, pB and pA are ε-r-quasi-local. Therefore, as pB is ε-r-quasi-local and 
d(x, X \Br(x)) > r, we get

‖χX\Br(x)pBδx‖ ≤ ε and ‖χX\Br(x)pAδx‖ ≤ ε. (5.3)

Let ξ = pAδx, and notice that pBξ = pBδx. Then

‖pBξ − 1
2ξ‖ =‖pBδx − 1

2pAδx‖
≤‖pBδx − χBr(x)pBδx‖ + ‖χBr(x)pBδx − 1

2χBr(x)pAδx‖
+ ‖1

2χBr(x)pAδx − 1
2pAδx‖

The first term is, by the first part of (5.3), not greater than ε. The second term is, by 
(5.2), smaller than 2mδ, and the third term is, by the second part of (5.3), not greater 
than ε/2. Therefore

‖pBξ − 1
2ξ‖ ≤ 2mδ + 3

2ε <
5γ
16 .

Lemma 5.2 then implies that ‖ξ‖ = ‖pAδx‖ < γ. This is a contradiction since ‖pAδx‖ > γ

for all x ∈ XA. �
The reader should compare the following definition to the usual notion of a ghost 

operator (Definition 1.7 from the introduction).

Definition 5.5. Let X be a u.l.f. metric space and let (qs)s∈S be an orthogonal family of 
projections on �2(X). We say that (qs)s∈S is asymptotically a ghost (or an asymptotic 
ghost) if for all ε > 0 there are finite subsets F ⊆ X and T ⊆ S such that

∥∥∥∥∥
∑

s∈S\T
qsδx

∥∥∥∥∥ < ε

for all x ∈ X \ F .
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Remark 5.6. As Definition 5.5 is quite technical, let us make a few remarks.

1. Let q ≤ r be projections on �2(X), and for x ∈ X let px be the projection onto the 
span of δx. Then the C∗-identity implies that

‖qδx‖2 = ‖qpx‖2 = ‖pxqpx‖ ≤ ‖pxrpx‖ = ‖rpx‖2 = ‖rδx‖. (5.4)

Hence in particular, if there is a finite subset T ⊆ S (possibly just the empty set) 
such that SOT-

∑
q∈S\T qs is a ghost, then (qs)s∈S is asymptotically a ghost.

2. If17 (qs)s∈S is an asymptotic ghost, and if each qs is itself a ghost (for example, if it 
has finite rank), then SOT-

∑
s∈S qs is also a ghost. Indeed, given ε > 0 let T ⊆ S

and F ⊆ X be finite sets such that ‖ 
∑

s∈S\T qsδx‖ < ε/2 for all x /∈ F . As 
∑

s∈T qs
is a ghost, there is finite F ′ ⊆ X such that ‖ 

∑
s∈T qsδx‖ < ε/2 for all x /∈ F ′. Hence 

for x /∈ F ∪ F ′, ‖ 
∑

s∈S qsδx‖ < ε.
In particular, this discussion and the point above show that asymptotic ghosts are 

only really interesting when the projections qs have infinite rank.
3. The converse to point (2) above is false: there are asymptotic ghosts (qs)s∈S such 

that for every finite subset T ⊆ S, SOT-
∑

s∈S\T qs is not a ghost. Indeed, let X :=
�∞

n=1 Xn be the coarse space built from a sequence (Xn)n of expander graphs with 
associated Laplacian ΔX ∈ B(�2(X)) as in the discussion on [16, page 348]. Let 
Y = X × N (equipped with the �1-sum metric), and let ΔY be the operator that 
identifies with ΔX on �2(X×{m}). Then ΔY is a bounded operator with propagation 
one, and so in C∗

u(Y ) ⊆ C∗
ql(Y ). Moreover, with respect to the decomposition �2(Y ) =⊕

n,m∈N �2(Xn×{m}), ΔY is a block diagonal operator acting on each �2(Xn×{m})
as the graph Laplacian of Xn. As (Xn)n is an expander, ΔY has spectrum contained 
in {0} ∪ [ε, ∞) for some ε > 0. Following the discussion on [16, page 349], the spectral 
projection q associated to {0} is the block operator that acts on �2(Xn×{m}) by the 
rank one projection with matrix

qn,m := 1
|Xn|

⎛
⎝1 . . . 1

...
. . .

...
1 . . . 1

⎞
⎠ . (5.5)

Define qn := SOT-
∑

m∈N qn,m and set S = N. The family (qs)s∈S is then an asymp-
totic ghost, but SOT-

∑
s∈T qs is not a ghost for any nonempty subset T of the index 

set S: indeed, if t is an element of T , and δ = 1
|Xt| , then SOT-

∑
s∈T qs has infinitely 

many matrix entries with value δ.
4. In the example from point (3) above, it is also true that C∗

ql(Y ) itself contains non-
trivial (i.e. infinite rank) ghost projections. We do not know of a u.l.f. space X such 
that C∗

ql(X) contains an asymptotic ghost, but no non-trivial ghost projections at all. 

17 This remark will be used in the proof of Theorem 5.1.
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Constructing such an example, or showing that none can exist, seems an interesting 
question.

5. On the other hand, if (qs)s∈S is an asymptotic ghost such that qs �= 0 for all s, S
is infinite, and 

∑
s∈T qs is in C∗

ql(X) for all T ⊆ S, then X does not have property 
A. Thus the existence of non-trivial asymptotic ghosts in C∗

ql(X) is an ‘exotic’ phe-
nomenon. We will not use this, but sketch a proof for the reader’s convenience. We 
will first construct an infinite T ⊆ S and disjoint finite subset As, for s ∈ T , such 
that a := SOT-

∑
s∈T χAs

qsχAs
is a non-compact ghost.18

We first iteratively choose an infinite subset T of S and for each s ∈ T a finite 
subset As of X such that ‖χAs

qsχAs
‖ ≥ 1/2 for all s ∈ T , and so that the collection 

(As)s∈T is pairwise disjoint. Indeed, s ∈ S be arbitrary, and choose a finite subset As

of X such that ‖χAs
qsχAs

‖ ≥ 1/2. Set F1 = {s}. Now, say a subset Fn consisting of n
elements of S has been chosen together with pairwise disjoint finite subsets (As)s∈Fn

such that ‖χAs
qsχAs

‖ ≥ 1/2 for all s ∈ Fn. Let A = �s∈Fn
As. As the set S \ Fn is 

infinite, the projections (qs)s∈S\Fn
SOT-converge to zero. As χA is finite rank, there 

is therefore s ∈ S \ Fn such that ‖qsχA‖ < 1 − (1/
√

2). As ‖qs‖ = 1, there is finite 
As ⊆ X \A with ‖qsχAs

‖ ≥ 1/
√

2. Hence by the C∗-equality, ‖χAs
qsχAs

‖ ≥ 1/2. Set 
Fn+1 = Fn ∪ {s}. Let now T =

⋃
n Fn.

Define now a := SOT-
∑

s∈T χAs
qsχAs

; the sum SOT-converges as the As are 
pairwise disjoint, and is non-compact by pairwise disjointness of the As and as 
‖χAs

qsχAs
‖ ≥ 1/2 for all s. We claim moreover that a is a ghost. Indeed, we may 

argue analogously to point (2) above. Let ε > 0. As (qs) is an asymptotic ghost, there 
is finite R ⊆ T and finite F ′ ⊆ X such that for all x ∈ X \ F ′

∥∥∥∥∥
∑

s∈T\R
qsδx

∥∥∥∥∥ < ε. (5.6)

As 
∑

s∈R χAs
qsχAs

is finite rank, there is finite F ′′ ⊆ X such that
∥∥∥∥∥
∑
s∈R

χAs
qsχAs

δx

∥∥∥∥∥ < ε (5.7)

for all x ∈ X \ F ′′. Let F = F ′ ∪ F ′′. Then for x ∈ X \ (F ′ ∪ F ′′) we claim that∥∥∥∥∥
∑
s∈T

χAs
qsχAs

δx

∥∥∥∥∥ < ε,

which will show that a is indeed a ghost. Indeed: either (1), x is not in any As, in 
which case the above is zero; or (2) x is in As0 for some s0 ∈ R, in which case

18 The expert reader has already seen this ‘usual diagonalization argument’ in [7, Lemma 5.6] and in the 
proof of the equivalence between property A and not having non-compact ghost operators in C∗

u(X), see 
[34, Lemma 4.2].
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∥∥∥∥∥
∑
s∈T

χAs
qsχAs

δx

∥∥∥∥∥ = ‖χAs0
qs0χAs0

δx‖ =

∥∥∥∥∥
∑
s∈R

χAs
qsχAs

δx

∥∥∥∥∥ < ε

by line (5.7); or (3), x is in As1 for some s1 ∈ T \R, in which case
∥∥∥∥∥
∑
s∈R

χAs
qsχAs

δx

∥∥∥∥∥ = ‖χAs1
qs1δx‖ ≤ ‖qsδx‖ ≤

∥∥∥∥∥
∑

s∈T\R
qsδx

∥∥∥∥∥, < ε

where the last inequality is from line (5.6), and the penultimate inequality follows 
from the argument of line (5.4).

Now, Corollary 4.7 and the fact that 
∑

s∈R qs is in C∗
ql(X) for all R ⊆ T implies 

that the family (qs)s∈T is equi-quasi-local, and one can use this to show that a is in 
C∗

ql(X). Hence X does not have property A by combining [34, Theorem 1.3] and [41, 
Theorem 3.3]

Our next lemma is an analogue of [2, Corollary 3.3], adapted to the asymptotic ghosts.

Lemma 5.7. Let (X, d) be a u.l.f. metric space and let (ps)s∈S be an orthogonal collection 
of projections in B(�2(X)). Consider the following three conditions on (ps)s∈S.

(i) The projection SOT-
∑

s∈A ps is in C∗
ql(X) for all A ⊆ S.

(ii) The projection SOT-
∑

s∈S ps is not a ghost.
(iii) The collection (ps)s∈S is not asymptotically a ghost,

1. Conditions (i) and (ii) together imply that there are δ > 0, an infinite subset X ′ ⊆ X, 
and a function f : X ′ → S such that ‖pf(x)δx‖ ≥ δ for all x ∈ X ′.

2. Conditions (i) and (iii) together imply that there are δ > 0, an infinite subset X ′ ⊆ X, 
and a function f : X ′ → S such that ‖pf(x)δx‖ ≥ δ for all x ∈ X ′ and for every finite 
T ⊆ S there exists finite F ⊆ X such that f(x) ∈ S \ T for all x ∈ X ′ \ F (in other 
words, f(x) tends to infinity in S as x tends to infinity in X ′).

Remark 5.8. This is the moment when we can see that replacing the notion of a ghost 
projection with that of an asymptotic ghost has its merits. Let Y and (qs)s∈S be the 
asymptotic ghost constructed in Remark 5.6, part (3). Then 

∑
s∈S qs is not a ghost. 

Moreover, any function f : X ′ → S with the properties as in Lemma 5.7 (1) necessarily 
takes finite image, and it therefore cannot satisfy the requirements on f stated in (2). 
This shows that the assumption that (qs)s∈S is not an asymptotic ghost is necessary to 
deduce the stronger conclusion of Lemma 5.7.

Proof of Lemma 5.7. In order to simplify notation, for each A ⊆ S we define

pA := SOT-
∑

ps.

s∈A
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(1) Assume that (ps)s satisfies (i) and (ii). Then pS is not a ghost and therefore there 
must exist γ > 0 such that the set

XS := {x ∈ X | ‖pSδx‖ > γ}

is infinite. Lemma 5.4 implies there exists δ > 0 such that for every x ∈ XS some 
f(x) ∈ S satisfies ‖pf(x)δx‖ > δ, so we are done with this part if we define X ′ := XS .

(2) Now assume (i) and (iii) from the statement of Lemma 5.7. Fix a nested collection 
S1 ⊆ S2 ⊆ · · · of finite subsets of S whose union is S, and define qn :=

∑
s∈S\Sn

ps. As 
(ps)s is not asymptotically a ghost there is γ > 0 such that for every n ∈ N the set

Xn := {x ∈ X | ‖pnδx‖ > γ}

is infinite. By the monotonicity property as in line (5.4) above and the fact that the 
sequence (qn)n is decreasing, we see that X1 ⊇ X2 ⊇ · · · . As each Xn is infinite, we 
may choose a sequence (xn)n of distinct elements of X such that xn ∈ Xn for all X. 
Lemma 5.4 gives δ > 0 such that for every n there exists f(xn) ∈ S \ Sn which satisfies 
‖pf(x)δx‖ < δ. Setting X ′ := {xn | n ∈ N}, we are done. �

Theorem 5.1 will be obtained as a corollary of the following more technical result.

Theorem 5.9. Let X be a u.l.f. metric space, let (nk)k be a sequence of natural numbers 
that converges to infinity, let M :=

∏
k Mnk

(C), and let Φ : M → C∗
ql(X) be a normal ∗-

homomorphic embedding. Let S := {(i, k) ∈ N×N | 1 ≤ i ≤ nk}. For each s = (i, k) ∈ S, 
let eki,i be the corresponding diagonal matrix unit in Mnk

(C), and define qs := Φ(eki,i). 
Then (qs)s∈S is asymptotically a ghost.

Proof. Assume for contradiction that (qs)s is not asymptotically a ghost. Then, by the 
second part of Lemma 5.7 there are δ > 0, an infinite subset X ′ ⊆ X, and a function 
f : X ′ → S such that

‖qf(x)δx‖ ≥ δ for all x ∈ X ′. (5.8)

Moreover, Lemma 5.7 guarantees that f can be taken so that for every fixed value of k
there are only finitely many pairs (i, k) in S. Therefore, if we write f(x) = (i(x), k(x)), 
it follows that

k(x) → ∞ as x → ∞ (5.9)

(i.e. for any K ∈ N there exists a finite F ⊆ X ′ such that if x ∈ X ′ \F , then k(x) ≥ K). 
For each k ∈ N and each pair i, j ∈ {1, ..., nk}, let eki,j denote the matrix in Mnk

(C) with 
1 its (i, j)-entry and zero in all others, and set

vki,j := Φ(eki,j).
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Claim 5.10. There are γ, r > 0 such that for all x ∈ X ′ and j ∈ {1, ..., nk(x)} there is 
z = z(x, j) ∈ Br(x) such that ‖χ{z}v

k(x)
j,i(x)δx‖ ≥ γ.

Proof. By Lemma 1.11,19 the family {vki,j | k ∈ N, i, j ∈ {1, ..., nk}} is equi-quasi-local. 
So, there is r > 0 such that each vki,j is (δ/2)-r-quasi-local. Let m = supx∈X |Br(x)| and 
set γ = δ/(2m); we claim this γ has the desired property.

Fix x ∈ X ′ and j ∈ {1, ..., nk(x)}. Line (5.8) gives ‖qf(x)δx‖ ≥ δ; since vk(x)
j,i(x) is a 

partial isometry with source projection qf(x), we have that ‖vk(x)
j,i(x)δx‖ ≥ δ. By our choice 

of r, we must have

∥∥χBr(x)v
k(x)
j,i(x)δx

∥∥ ≥ δ/2.

Therefore, by the choice of γ, there is z ∈ Br(x) such that

∥∥χ{z}v
k(x)
j,i(x)δx

∥∥ ≥ γ. �
Claim 5.11. Given γ, r > 0, let {z(x, j) | x ∈ X ′, j ∈ {1, ..., nk(x)}} be as given by the 
previous claim. Then

lim
x→∞

|{z(x, j) | j ∈ {1, ..., nk(x)}}| = ∞.

Proof. Let N ∈ N be arbitrary. Let K ∈ N be such that for all k ≥ K, nk ≥ Nγ−2. Line 
(5.9) gives a finite subset F ⊆ X ′ such that k(x) ≥ K for all x ∈ X ′ \ F . We claim that 
|{z(x, j) | j ∈ {1, ..., nk(x)}}| ≥ N whenever x ∈ X ′ \ F , which will establish the claim.

Let x ∈ X ′ \ F and j ∈ {1, ..., nk(x)}. As ‖χ{z(x,j)}v
k(x)
j,i(x)δx‖ ≥ γ we have that with 

s = (j, k(x)) (using the fact that 0 ≤ p ≤ q implies ‖aq‖ ≥ ‖ap‖ for all operators a)

∥∥qsδz(x,j)∥∥ =
∥∥χ{z(x,j)}qs

∥∥ ≥ ‖χ{z(x,j)}v
n(x)
j,i(x)(v

n(x)
j,i(x))

∗‖

≥ ‖χ{z(x,j)}v
n(x)
j,i(x)‖ ≥

∥∥χ{z(x,j)}v
n(x)
j,i(x)δx

∥∥ ≥ γ. (5.10)

Fix x ∈ X ′ and for z ∈ X let

G = G(z) := {i ≤ nk(x) | z(x, i) = z}.

Using the Pythagorean theorem and line (5.10), we have that

1 ≥
∥∥∥∥∥
∑
j∈G

qj,k(x)δz

∥∥∥∥∥
2

=
∑
i∈G

‖qj,k(x)δz‖2 ≥ γ2|G|.

19 This is the place where we use Lemma 1.11, and equi-approximability, or equi-quasi-locality results from 
earlier papers would not suffice.
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Hence, |G(z)| ≤ γ−2. Since z ∈ X was arbitrary and i ∈ {1, . . . , nk(x)}, this implies that 
|{z(x, j) | j ∈ {1, ..., nk(x)}}| ≥ nk(x)γ

2. Since n(k) ≥ Nγ−2, this set is larger than N for 
x ∈ X ′ \ F , so we are done. �

We are now ready to complete the proof of Theorem 5.9. Indeed, Claims 5.10 and 
5.11 combined imply that for any N ∈ N we can find x ∈ X ′ such that Br(x) contains 
at least N distinct points of the form z(x, j). This contradicts that X is u.l.f. �

Finally, we can complete this section with the proof of Theorem 5.1.

Proof of Theorem 5.1. Suppose that X is a u.l.f. metric space, (nk)k is a sequence of 
natural numbers that tends to infinity, and that Φ: M =

∏
k Mnk

(C) → C∗
ql(X) is a 

normal embedding sending 
⊕

n Mn(C) inside the ghost operators. We need to prove that 
Φ(1M) is a ghost.

With notation qs := Φ(eki,i) as in the statement of Theorem 5.9 we have that the 
collection (qs)s∈S is asymptotically a ghost. However, by assumption every qs is itself a 
ghost. Hence by Remark 5.6, part (2), Φ(1M) =

∑
s∈S qs is also a ghost. �

6. From embeddings to WOT-continuous embeddings

In §3 and §5, we proved versions of Theorems 1.4 and 1.8 with the extra assumption 
that the embeddings are normal. In this section, we show that this extra assumption is 
not needed for the validity of those theorems.

The main tools that we use here are several automatic normality results for von Neu-
mann algebras which might be of interest in their own right (at least some of them seem 
likely to be known to experts). For the sake of completeness, we include a characteriza-
tion of when exactly a von Neumann algebra admits a non-normal representation on a 
separable Hilbert space, although we do not need this for our main results.

6.1. Embeddings of 
∏

k Mnk
(C)

It turns out that if (nk)k tends to infinity, then any representation of 
∏

k Mnk
(C)

on a separable Hilbert space is normal. This is due to Takemoto: see [42, Theorem 1]. 
Takemoto’s result has apparently been overlooked: its proof closely resembles the proof of 
[43, Theorem V.5.1]. The only difference is in the proof of Case I in [43, Theorem V.5.1], 
where now one has to argue that for every n the projections pn,j,k can be constructed 
for sufficiently large j (in the type II case covered by [43, Theorem V.5.1], they exist for 
arbitrarily large n).

As the precise statement we want is not explicit in Takemoto’s paper [42], we show 
how to derive it.
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Theorem 6.1 (Takemoto). Let (nk)k be a sequence of natural numbers that tends to in-
finity. Then every representation of M :=

∏
k∈N Mnk

(C) on a separable Hilbert space is 
normal.

Proof. Let π : M → B(H) be a non-normal representation on a Hilbert space H; we 
must show that H is non-separable. According to Proposition 2.1, part (2), there is a 
collection of orthogonal projections (pi)i in M such that SOT-

∑
π(pi) < π(SOT-

∑
pi). 

For each k ∈ N, let 1k ∈ M be the unit of the factor Mnk
(C), and for each n ∈ N, let

en :=
∑

{k|nk=n}
1k,

so en ∈ M is a central projection in M such that enM is exactly the n-homogeneous 
part of M (possibly zero). Let pi,n := pien, and let qn := en −

∑
i pi,n (only finitely 

many terms in the sum are non-zero, as {k | nk = n} is finite for every n). Then

SOT-
∑
n

π(en) = SOT-
∑
n

(
π(qn) +

∑
i

π(pi,n)
)

= SOT-
∑
n

π(qn) + SOT-
∑
i,n

π(pi,n) (6.1)

As for each i, SOT-
∑

n pi,n = pi, we have that

SOT-
∑
i,n

π(pi,n) ≤ SOT-
∑
i

π(pi) < π(SOT-
∑
i

pi), (6.2)

so combining lines (6.1) and (6.2) we get

SOT-
∑
n

π(en) < SOT-
∑
n

π(qn) + π
(
SOT-

∑
i

pi

)
.

As SOT-
∑

i pi = SOT-
∑

n,i pi,n and as SOT-
∑

n π(qn) ≤ π(SOT-
∑

n qn), this implies 
that

SOT-
∑
n

π(en) < π
(
SOT-

∑
n

qn

)
+ π

(
SOT-

∑
n,i

pi,n

)

= π
(
SOT-

∑
n

(
qn +

∑
i

pi,n

))
= π(1M).

Define r := π(1M) − SOT-
∑

n π(en), which is a non-zero projection in π(M)′. Then 
m �→ rπ(m)r is a non-zero representation of M on rH that contains all the en in its 
kernel. Hence [42, Theorem 1]20 implies that rH is non-separable. �
20 More precisely: Takemoto requires en �= 0 for all n, and our assumption that nk → ∞ implies only that 
en �= 0 for infinitely many n; nonetheless, the same proof as of [42, Theorem 1] gives the result (compare 
also [42, Remark on page 575], which makes a related point).
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Proof of Theorem 1.8. Suppose X is a u.l.f. metric space, (nk)k is a sequence of natu-
ral numbers that tends to infinity, and Φ:

∏
k Mnk

(C) → C∗
ql(X) is a ∗-homomorphic 

embedding which sends 
⊕

k Mnk
(C) to the ideal of ghost operators. By Theorem 6.5, 

Φ is normal, and Theorem 5.9 implies that Φ sends all of M to the ideal of ghost 
operators. �
Remark 6.2. It is also possible to adapt the proof of [5, Theorem 4.3] to show that if there 
is a norm-continuous ∗-homomorphic embedding of 

∏
k Mnk

(C) into C∗
ql(X), then there 

is a similar embedding that is also normal; this would be good enough for our results. 
We chose here to go through Takemoto’s theorem instead as it seemed more conceptual 
to rely on a very general von Neumann algebra result than on something that seems 
special to uniform Roe algebras.

6.2. Embeddings of L∞(Z, μ)

In this subsection we show that if there exists a (possibly non-normal) embedding of 
L∞(Z, μ) into B(H) for some separable H, there is a non-trivial corner of L∞(Z, μ) on 
which the embedding is normal.

We will actually prove this in much more generality. The following is the main result 
of this subsection.

Proposition 6.3. Let M be a von Neumann algebra, and let π : M → B(H) be a (not 
necessarily normal, not necessarily faithful, and not necessarily unital) representation of 
M on a separable Hilbert space. Then there exists a non-zero projection r ∈ M such that 
the restriction of π to the corner rMr is normal.

Example 6.4. Separability of H is necessary for Proposition 6.3 to hold. Indeed, let M =
L∞[0, 1], and let π : M → B(H) be the direct sum of all one-dimensional representations. 
No one-dimensional representation of a diffuse abelian von Neumann algebra is normal 
(we will show this in the proof of Theorem 6.5 below). As any corner of M is a diffuse 
abelian von Neumann algebra, the conclusion of Proposition 6.3 fails. Notice that, if 
one considers a single one-dimensional representation ρ of M, then the only possible r
making Proposition 6.3 true has to belong to the kernel of ρ.

For the proof of Proposition 6.3, recall that a projection p in a von Neumann algebra 
is called countably decomposable, or σ-finite, if any family of orthogonal subprojections 
of p is countable.

Proof of Proposition 6.3. Using [8, III.1.2.6] there exists a family of (ci)i of mutually 
orthogonal countably decomposable projections in M such that 

∑
i ci = 1M (we really 

only need that some ci is non-zero). Hence replacing M with ciMci for any i such that 
ci �= 0, we may assume that M is countably decomposable.
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(

As in the proof of Proposition 4.8 we may write M as a direct sum

M = MI ⊕MII ⊕MIII

where MI is the direct product of von Neumann algebras of the form B(Hℵ)⊗Nℵ with 
Hℵ is a Hilbert space of dimension ℵ for a cardinal ℵ and Nℵ an abelian von Neumann 
algebra (possibly zero), and MII and MIII are of types II and III respectively (possibly 
zero). If any of the summands MIII , MII , or B(Hℵ)⊗Nℵ with ℵ infinite are non-zero, 
then [43, Theorem V.5.1] implies that the restriction of π to that summand is normal, 
and we are done.

Therefore M has a corner which is n-homogeneous for some n, and by replacing M
with this corner we may assume that M is of the form Mn(C)⊗N for an abelian von 
Neumann algebra N . In particular, we may assume that M has a normal tracial state, 
say τ .

Let (pj)j∈J be a family of mutually orthogonal non-zero projections in B(H) that is 
maximal with respect to the following condition:

∗) There exists a (countable, as M is countably decomposable) family of mutually or-
thogonal non-zero projections (qn,j)n∈N in M such that pj = π(SOT-

∑
n qn,j) −

SOT-
∑

n π(qn,j) (and this difference is non-zero).

Of course, the family (pj) might be empty. As H is separable, we may assume that J is 
a subset of N. Now, for each j ∈ J , choose n(j) ∈ N such that

τ

(
SOT-

∑
n≥n(j)

qn,j

)
< 2−j−2

(n(j) exists by normality of τ). For each j ∈ J , define qj := SOT-
∑

n≥n(j) qn,j , and 
define q :=

∨
j∈J qj

21; we claim r := 1M− q has the desired property that the restriction 
of Φ to rMr is normal.

We first show that r is non-zero. Note that for any finite F ⊆ J , τ(
∨

j∈F qj) ≤
τ(
∑

j∈F qj) by repeated applications of [8, III.1.1.3]. Applying the definition of normality 
to the increasing net (

∨
j∈F qj)F⊆J finite gives

τ(q) = τ

(
lim
F

∨
j∈F

qj

)
= lim

F
τ
( ∨

j∈F

qj

)
≤ lim

F

∑
j∈F

τ(qj) =
∑
j∈J

τ(qj)

≤
∑
j∈N

2−j−2 = 1/2.

21 The different qj need not be orthogonal, so this is an honest supremum, not a sum.



F.P. Baudier et al. / Journal of Functional Analysis 286 (2024) 110186 33
Hence in particular, τ(r) ≥ 1/2, so r is non-zero.
We finally claim that π restricted to rMr is normal. The definition of pj (see (∗) 

above) implies that π(qj) ≥ pj . Hence for any j, π(q) ≥ π(qj) ≥ pj . Hence 1H − π(q)
is orthogonal to all the pj . As π(r) = π(1M − q) ≤ 1H − π(q), this implies that π(r)
is orthogonal to all the pj too. Assume for contradiction that π is not normal when 
restricted to rMr. Then by condition (2) in Proposition 2.1, there exists a family of 
non-zero mutually orthogonal projections (qp,n)n∈N in rMr such that

p := π

(
SOT-

∑
n

qp,n

)
− SOT-

∑
n

π(qp,n) �= 0.

However, p ≤ π(r), so p is orthogonal to all the pj , contradicting maximality of the 
family (pj). �

We are now ready to complete the remaining proofs of the theorems from the intro-
duction.

Proof of Theorem 1.4. Suppose that X is a u.l.f. metric space. Let N be a diffuse abelian 
von Neumann algebra that embeds into C∗

ql(X). Proposition 6.3 then implies that there 
is a normal embedding of pL∞(Z, μ)p into C∗

ql(X), where p is a non-zero projection in 
N . Since each non-zero corner of N is itself a diffuse abelian von Neumann algebra, we 
have a normal embedding of a diffuse abelian von Neumann algebra into C∗

ql(X). This 
contradicts Theorem 3.1, which asserts that there are no such normal embeddings. �
Proof of Corollary 1.5. Suppose X is a u.l.f. metric space and M is a von Neumann 
algebra that embeds into C∗

ql(X). By Theorem 1.4 M has no embedded diffuse abelian 
WOT-closed subalgebras, hence Proposition 4.8 and separability of �2(X) imply that M
is isomorphic to 

∏
k Mnk

(C) for some sequence (nk)k∈N ⊆ N. �
Proof of Corollary 1.9. Assume that X is a u.l.f. metric space such that C∗

ql(X) contains 
no noncompact ghost projections and a von Neumann algebra M ∗-homomorphically 
embeds into C∗

ql(X) by a map sending minimal projections to compact operators. Corol-
lary 1.5 implies that M is isomorphic to 

∏
k Mnk

(C) for some sequence (nk)k∈N ⊆ N. 
It follows that the embeddings send

⊕
k Mnk

(C) to compact operators.
Assume towards a contradiction that the sequence (nk)k is unbounded. Applying 

Theorem 1.8 to the composition of the embeddings, we conclude that all of 
∏

k Mnk
(C)

is sent to ghost operators. This contradicts the assumption that all ghosts in C∗
ql(X) are 

compact. �
6.3. A general characterization

Finally in this section, we include a characterization of those von Neumann algebras 
that admit a non-normal representation on a separable Hilbert space. We also show that 
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any von Neumann algebra that can be represented on a separable Hilbert space has 
separable predual. These results are included for the sake of completeness: they are not 
used for any of our results on embeddings into quasi-local algebras.

Theorem 6.5. The following are equivalent for every von Neumann algebra M.

1. M has no direct summands of the form Mn(N ) for n ≥ 1 and an infinite-dimensional 
abelian von Neumann algebra N .

2. Every representation of M on a separable Hilbert space is automatically normal.
3. Every representation of M on a finite-dimensional Hilbert space is automatically nor-

mal.

Proof. Assume (1). As in the proof of Proposition 4.8 we may write M as a direct sum

M = M0 ⊕M1

where M0 is a direct product of von Neumann algebras of the form Mn(Nn) for some 
abelian von Neumann algebra Nn, and M1 contains no summand of finite type I. Using 
[43, Theorem V.5.1], every representation of M1 on a separable Hilbert space is auto-
matically normal, so we may assume M = M0. Moreover, assumption (1) tells us that 
each Nn must be finite-dimensional (possibly zero). Hence either M is finite-dimensional 
(in which case any representation at all is normal), or M is infinite-dimensional and of 
the form 

∏
k Mnk

(C) for a sequence (nk)k that converges to infinity. Theorem 6.1 then 
gives us condition (2).

The implication from condition (2) to (3) is trivial, so it remains to show that (3)
implies (1). Assume that (1) fails. We first consider the case when M is abelian; we 
may assume moreover that M is infinite-dimensional, otherwise (1) is trivially true. 
Let (pi)i∈I be a maximal collection of mutually orthogonal minimal projections in M
(possibly empty). Then M ∼= D ⊕ �∞(I), where D is diffuse (possibly zero). If I is 
infinite, then the ∗-homomorphism φ : �∞(I) → C defined by evaluation along any non-
principal ultrafilter on I is a non-normal representation on a one-dimensional Hilbert 
space. If I is finite, D must be non-zero by infinite-dimensionality of M. As D is a 
non-zero commutative C∗-algebra, there is a (non-zero) multiplicative linear functional 
φ : D → C. As D is diffuse, for any non-zero projection p ∈ D there is a non-zero 
projection p0 ≤ p such that φ(p) = 0: this follows as we can write p = q + r for two 
non-zero orthogonal projections q and r; as φ can only take the values 0 and 1 on 
projections, it must send at least one of q and r to zero. Hence if (pi)i is a maximal 
family of orthogonal projections in D such that φ(pi) = 0, we have that 

∑
i p1 = 1D so 

φ(
∑

pi) = 1 even though φ(pi) = 0 for all i. Hence φ is not normal and (3) fails.
For the general case, suppose that M has a direct summand of the form Mn(N ), 

where n ≥ 1 and N is an infinite-dimensional abelian von Neumann algebra. The above 



F.P. Baudier et al. / Journal of Functional Analysis 286 (2024) 110186 35
argument gives a non-normal representation φ : N → C, and the amplification φ ⊗ 1n :
N ⊗ Mn(C) → Mn(C) is then also not normal. �
Remark 6.6. We ought to comment on a glaring difference between Proposition 6.3 and 
the stronger statement for 

∏
n Mn(C) in Theorem 6.1 (and other von Neumann algebras 

that do not have an infinite-dimensional summand of type I) given in the implication 
from (1) to (2) in Theorem 6.5. In the latter case, every ∗-homomorphism is auto-
matically normal. In the case of L∞(Z, μ), we only claim that if there is an injective 
∗-homomorphism, then its restriction to the corner defined by a non-zero projection in 
the algebra is a nontrivial normal ∗-homomorphism. The implication from (2) to (1) in 
Theorem 6.5 shows that this conclusion cannot be improved.

This is analogous to the situation with embeddings of corona C∗-algebras. In the 
abelian case, an abundant supply of nontrivial embeddings (also constructed using ul-
trafilters, in a manner similar to the proof that (3) implies (1) in Theorem 6.5) abound 
in ZFC while in the case of e.g., the Calkin algebra forcing axioms imply that all endo-
morphisms are trivial ([44]). An analogous result conjecturally holds for the coronas of 
separable C∗-algebras that are simple C∗-algebras.

Proposition 6.7. Let M be a von Neumann algebra, and assume there exists a (not nec-
essarily normal and not necessarily unital) faithful representation π : M → B(H) of M
on a separable Hilbert space. Then M has separable predual.

For the proof, recall that the density character of a Banach space is the smallest 
possible cardinality of a dense subset.

Proof. As in the proof of Proposition 6.3, we may use [43, Theorem V.5.1] and the 
structure theory of von Neumann algebras to reduce to the case that M =

∏
n∈N Mn(Nn)

where each Nn is abelian. Hence it suffices to prove the result for all the von Neumann 
algebras Nn. Let us assume therefore that M is abelian.

For each projection p ∈ M, let κ(p) be the density character of the predual of pMp. 
Let F be a maximal family of orthogonal projections in M such that if p ∈ F and q ∈ M
is a non-zero projection such that q ≤ p, then κ(q) = κ(p). Define p0 := 1M −

∑
p∈F p, 

which we claim is zero. Indeed, if not the definition of F allows us to build a decreasing 
sequence p0 ≥ p1 ≥ p2 ≥ · · · of projections in M such that κ(pn) > κ(pn+1) for 
all n. This, however, gives a strictly decreasing infinite sequence of cardinals, which is 
impossible.

We claim next that for all p ∈ F , pMp has separable predual. If this does not hold for 
some p, Proposition 6.3 gives non-zero r ≤ p such that π restricted to rMr is normal. 
However, by definition of F , rMr is non-separable, and the map (π|rMr)∗ : B(H)∗ →
(rMr)∗ is onto as π is injective, so this is a contradiction.

Finally, as M is abelian, M =
∏

p∈F pMp, so we are done. �
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