

Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Full Length Article

Embeddings of von Neumann algebras into uniform Roe algebras and quasi-local algebras

Florent P. Baudier^a, Bruno M. Braga^b, Ilijas Farah^{c,d}, Alessandro Vignati^{e,*}, Rufus Willett^f

- ^a Texas A&M University, Department of Mathematics, College Station, TX 77843-3368, USA
- ^b IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
- ^c Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, M3J 1P3, Canada
- ^d Matematički Institut SANU, Kneza Mihaila 36, 11 000 Beograd, p.p. 367, Serbia
- ^e Institut de Mathématiques de Jussieu (IMJ-PRG), Université Paris Cité, Bâtiment Sophie Germain, 8 Place Aurélie Nemours, 75013 Paris, France
- f University of Hawai'i at Mānoa, 2565 McCarthy Mall, Keller 401A, Honolulu, HI 96816, USA

ARTICLE INFO

Article history: Received 29 March 2023 Accepted 7 September 2023 Available online 2 October 2023 Communicated by Stefaan Vaes

Keywords: Uniform Roe algebras Von Neumann algebras Coarse geometry

ABSTRACT

We study which von Neumann algebras can be embedded into uniform Roe algebras and quasi-local algebras associated to a uniformly locally finite metric space X. Under weak assumptions, these C*-algebras contain embedded copies of $\prod_k \operatorname{M}_{n_k}(\mathbb{C})$ for any bounded countable (possibly finite) collection $(n_k)_k$ of natural numbers; we aim to show that they cannot contain any other von Neumann algebras.

One of our main results shows that $L_{\infty}[0,1]$ does not embed into any of those algebras, even by a not-necessarily-normal *-homomorphism. In particular, it follows from the structure theory of von Neumann algebras that any von Neumann algebra which embeds into such algebra must be of the form $\prod_k \mathbf{M}_{n_k}(\mathbb{C})$ for some countable (possibly finite) collection

E-mail addresses: florent@math.tamu.edu (F.P. Baudier), demendoncabraga@gmail.com (B.M. Braga), ifarah@yorku.ca (I. Farah), alessandro.vignati@imj-prg.fr (A. Vignati), rufus@math.hawaii.edu (R. Willett).

URLs: https://www.math.tamu.edu/ (F.P. Baudier), https://sites.google.com/site/demendoncabraga (B.M. Braga), https://ifarah.mathstats.yorku.ca (I. Farah), http://www.automorph.net/avignati (A. Vignati), https://math.hawaii.edu/rufus/ (R. Willett).

^{*} Corresponding author.

 $(n_k)_k$ of natural numbers. Under additional assumptions, we also show that the sequence $(n_k)_k$ has to be bounded: in other words, the only embedded von Neumann algebras are the "obvious" ones.

© 2023 Elsevier Inc. All rights reserved.

Contents

1.	Introd	luction	2
	1.1.	Uniform Roe algebras and quasi-local algebras	2
	1.2.	Goals	3
	1.3.	Results	4
	1.4.	Methods	7
	Outlin	ne of the paper	9
2.	Prelin	ninaries	9
	2.1.	Basic definitions	9
	2.2.	Normal embeddings	9
	2.3.	'Obvious' embeddings	11
3.	Diffus	se abelian von Neumann algebras inside quasi-local algebras	12
4.	Equi-	quasi-locality and equi-approximability	17
5.	Produ	acts of matrix algebras inside quasi-local algebras	21
6.	From	embeddings to WOT-continuous embeddings	29
	6.1.	Embeddings of $\prod_k M_{n_k}(\mathbb{C})$	29
	6.2.	Embeddings of $L_{\infty}(Z,\mu)$	31
	6.3.	A general characterization	33
Data	availab	pility	36
Ackno	owledgi	ments	36
Refer	ences .		36

1. Introduction

1.1. Uniform Roe algebras and quasi-local algebras

Throughout this paper, X is a metric space. We are interested in algebras of operators on $\ell_2(X)$, the Hilbert space of all square-summable functions from X to \mathbb{C} with its canonical Hilbert space structure and orthonormal basis $(\delta_x)_{x\in X}$. We let $\mathcal{B}(\ell_2(X))$ denote the space of bounded operators on $\ell_2(X)$, and, given $A\subseteq X$, $\chi_A\in\mathcal{B}(\ell_2(X))$ denotes the canonical orthogonal projection with image $\ell_2(A)\subseteq\ell_2(X)$.

In noncommutative geometry, one defines algebras of operators on $\ell_2(X)$ with the goal of encoding aspects of the geometry of X in C*-algebraic terms. When interested in the large scale (or 'coarse') geometric properties of X the following two well-known C*-algebras are considered.

Definition 1.1. Let $a \in \mathcal{B}(\ell_2(X))$. The propagation of a is defined by

$$\operatorname{prop}(a) := \sup \{ d(x, z) \mid \langle a\delta_x, \delta_z \rangle \neq 0 \}.$$

The uniform Roe algebra of X, denoted by $C_u^*(X)$, is the norm closure of the *-algebra of operators with finite propagation.

Definition 1.2. The quasi-local algebra of X, denoted by $C_{ql}^*(X)$, consists of all operators $a \in \mathcal{B}(\ell_2(X))$ such that for all $\varepsilon > 0$ there is r > 0 for which, for all $A, B \subseteq X$, $d(A, B) > r^1$ implies $\|\chi_A a \chi_B\| \le \varepsilon$.

These algebras were introduced by J. Roe to study the index theory of elliptic operators on noncompact manifolds ([31,32]). Subsequently, (non-uniform) Roe algebras became important in the set up for the Baum-Connes conjecture ([17,47]); subsequent work ([39,37]) made it clear that there is an equally useful version of the coarse Baum-Connes conjecture based on uniform Roe algebras. Even more recently, the quasi-local algebra has seen increased interest due to applications in index theory ([12,13]).

Researchers in mathematical physics have also started to use uniform Roe algebras in the theory of topological materials and, in particular, topological insulators. Their importance in mathematical physics comes from the fact that, to describe a topological phase, one must choose appropriate observable algebras and symmetry types. The literature in this field has been rapidly growing and we refer the reader to [22,11,19,26,10] for more on the role of uniform Roe algebras and quasi-local algebras in mathematical physics.

Although it is elementary that $C_u^*(X)$ is always a C^* -subalgebra of $C_{ql}^*(X)$, it remains one of the biggest problems in the field to know whether these two algebras are actually the same. This entails the need for better understanding of the structure of each of these algebras. For many spaces, the situation is clear: if X has Yu's property A [48, Definition 2.1], we have that $C_u^*(X) = C_{ql}^*(X)$ ([41, Theorem 3.3], and see also [38]). The class of metric spaces with property A includes for instance all metric spaces with finite asymptotic dimension ([18, Lemma 4.3]) such as finitely generated abelian groups and hyperbolic groups, and all amenable and all linear groups ([15, Page 244]).

1.2. Goals

For the main results of this paper, we assume that all metric spaces are uniformly locally finite (abbreviated as u.l.f.), that is for each r > 0, the balls of radius r have uniformly finite cardinality. This covers the most important examples such as countable discrete groups with a left-invariant proper metric (see for example [46, Lemma A.3.13]), and discretizations of Riemannian manifolds with bounded sectional curvatures and injectivity radius bounded below (see for example [46, Example A.3.21]). To avoid trivial counterexamples, we assume throughout this introduction that X is infinite.

Throughout this paper, if (X, d) is a metric space and $A, B \subseteq X$, we write $d(A, B) = \inf\{d(x, y) \mid x \in A, y \in B\}$; this is of course not a metric.

The uniform Roe algebra and quasi-local algebra of X both have an unusual 'hybrid' personality that sits somewhere between C*-algebra and von Neumann algebra theory. They contain the compact operators $\mathcal{K}(\ell_2(X))$, and are not $\mathcal{B}(\ell_2(X))$ when X is unbounded, so they are very definitely not von Neumann algebras. However, they contain a copy of the von Neumann algebra $\ell_{\infty}(X) \subseteq \mathcal{B}(\ell_2(X))$ as a C*-diagonal in the sense of [23]. The presence of this 'von Neumann diagonal' provides very useful tools such as strong convergence and weak compactness arguments that are not usually available to C*-algebraists: this has been particularly important in work on the rigidity problem for uniform Roe algebras, where the analysis of copies of the von Neumann algebra $\ell_{\infty}(\mathbb{N})$ inside uniform Roe algebras and quasi-local algebras plays a pivotal role (see for example [40,4,45,2]).

More generally, under very weak assumptions on X (see Lemma 2.3 below) the uniform Roe algebra and quasi-local algebra contain embedded copies of the von Neumann algebra $\prod_k \mathrm{M}_{n_k}(\mathbb{C})$ for any bounded sequence $(n_k)_k$ of natural numbers.³ The following 'folk conjecture' has thus been in the air for some time.

Conjecture 1.3. The only von Neumann algebras that can embed into a uniform Roe algebra or a quasi-local algebra associated to a u.l.f. metric space are those of the form $\prod_k M_{n_k}(\mathbb{C})$, where $(n_k)_k$ is a countable (possibly finite) and bounded collection of natural numbers.⁴

It is the purpose of this paper to study this conjecture, i.e. to study which von Neumann algebras can embed into uniform Roe algebras and into quasi-local algebras.⁵

1.3. Results

When talking about embeddability of von Neumann algebras, the question of which topology to consider is important. Precisely, unlike the case of C*-algebras, where every embedding is automatically continuous in the natural (norm) topology, the category of von Neumann algebras admits singular *-homomorphisms that are discontinuous with respect to any of the (many!) natural von Neumann algebra topologies (see §2.2 for further discussion on this). It is also standard in von Neumann algebra theory to assume that all subalgebras contain the unit of the ambient algebra. Here, however, we prove the strongest possible negative results about embeddings: the embeddings are assumed to be merely *-algebraic (and therefore norm-continuous), and we do not assume unitality.

 $^{^{2}}$ See $\S1.4$ for more details about the rigidity problem for uniform Roe algebras.

³ Here, and throughout the paper, we use the usual terminology in operator algebras that, given a sequence of C*-algebras $(A_n)_n$, $\prod_n A_n$ denotes the ℓ_{∞} -sum and $\bigoplus_n A_n$ the c_0 -sum of those algebras.

⁴ See Conjecture 2.4 below for a more precise version of this conjecture.

 $^{^{5}}$ It is also interesting to study which uniform Roe algebras embed into each other: this was initiated in [5].

We can now describe the main results of these notes. We stress that, although we state our non-embedding results in terms of the quasi-local algebra, all of them hold for the uniform Roe algebra as well, since it is included in the quasi-local algebra.

In our investigation of which von Neumann algebras can be found inside some quasilocal algebra, the first step is to classify the *abelian* von Neumann algebras with this property. Recall that an abelian von Neumann algebra \mathcal{M} is of the form $\mathcal{D} \oplus \ell_{\infty}(I)$, where I is the set of all minimal projections in \mathcal{M} , and \mathcal{D} is diffuse, i.e. contains no minimal projections. Note that a diffuse abelian von Neumann algebra acting on a separable Hilbert space is automatically isomorphic to $L_{\infty}[0,1]$ (see for example [43, Theorem III.1.22]), so the reader will lose little generality assuming that \mathcal{D} is $L_{\infty}[0,1]$. Our first main result therefore shows that the only abelian von Neumann algebras that embed in quasi-local algebras are the obvious ones: $\ell_{\infty}(I)$ where I is a countable (possibly finite) set.

Theorem 1.4. Let X be a u.l.f. metric space. There is no *-homomorphic embedding of a diffuse abelian von Neumann algebra into $C_{al}^*(X)$.

We point out that, although not explicitly asked in the literature, the question of whether a uniform Roe algebra could contain a subalgebra isomorphic to $L_{\infty}[0,1]$ was already in the air. In fact, it was even unknown up to now if a masa, i.e. a maximal abelian self-adjoint subalgebra, of a uniform Roe algebra could be isomorphic to $L_{\infty}[0,1]$ (see e.g., [45, §1]). Theorem 1.4 solves this problem negatively.

Using the standard type decomposition of von Neumann agebras (see Proposition 4.8 for details), Theorem 1.4 allows us to obtain the following corollary.

Corollary 1.5. Let X be a u.l.f. metric space and let \mathcal{M} be a von Neumann algebra. If there is a *-homomorphic embedding from \mathcal{M} into $C^*_{ql}(X)$, then \mathcal{M} is isomorphic to $\prod_k M_{n_k}(\mathbb{C})$ for some countable (possibly finite) collection $(n_k)_k$ in \mathbb{N} .

We are then left to understand what kind of products of matrix algebras $\prod_k M_{n_k}(\mathbb{C})$ can be found inside a quasi-local algebra; if Conjecture 1.3 is true, this is possible (if and) only if $(n_k)_k$ is bounded.

In the case that the metric space has property A, our results are already enough to solve this. Indeed, $C_{ql}^*(X) = C_u^*(X)$ by [41, Theorem 3.3], and this algebra is nuclear⁶ by [9, Theorem 5.5.7]. On the other hand, if $(n_k)_k$ is unbounded, $\prod_k M_{n_k}(\mathbb{C})$ is not exact (see for example [29, Theorem A.1]), so cannot embed into a nuclear⁷ C*-algebra. Our results thus imply the following theorem.

⁶ Nuclearity is, by a deep theorem (see [8, IV.3.1.5]), the correct notion of amenability in the category of C^* -algebras. See [9] for background on the notions of nuclearity and exactness discussed here.

⁷ Or even into an exact C*-algebra. However, exactness is equivalent to nuclearity for uniform Roe algebras and quasi-local algebras by [35, Theorem 1.1], so no extra generality is gained this way.

Corollary 1.6. Let X be a u.l.f. metric space with property A. Then the only von Neumann algebras that can embed in $C^*_{ql}(X)$ are the products $\prod_k M_{n_k}(\mathbb{C})$ for some countable (possibly finite) bounded collection $(n_k)_k$ in \mathbb{N} . \square

In order to move beyond the property A case, we need more delicate methods. To motivate what comes next, we recall an important definition, due originally to Yu.

Definition 1.7. An operator $a \in \mathcal{B}(\ell_2(X))$ is a *ghost* if for every $\varepsilon > 0$ there is a finite $F \subseteq X$ such that $||a\delta_x|| < \epsilon$ whenever $x \notin F$.

Compact operators are natural examples of ghosts and understanding when certain ghost operators must be compact is extremely important in coarse geometry. For instance, the following are equivalent for any u.l.f. metric space X: (1) all ghosts in $C_{ql}^*(X)$ are compact, (2) all ghosts in $C_u^*(X)$ are compact, (3) $C_{ql}^*(X)$ is nuclear, (4) $C_u^*(X)$ is nuclear, and (5) X has Yu's property A (see [24, Theorem 5.5], which is based on [34, Theorem 1.3], [41, Theorem 3.3], and [9, Theorem 5.5.7]).

The following is our main result regarding the embeddability of products of matrix algebras inside quasi-local algebras (and, in particular, inside uniform Roe algebras).

Theorem 1.8. Let X be a u.l.f. metric space, and let $(n_k)_k$ be a sequence of natural numbers that tends to infinity. Then any *-homomorphic embedding of $\mathcal{M} = \prod_k \mathrm{M}_{n_k}(\mathbb{C})$ into $\mathrm{C}^*_{ql}(X)$ which sends $\bigoplus_k \mathrm{M}_{n_k}(\mathbb{C})$ to the ideal of ghost operators sends all of \mathcal{M} to the ideal of ghost operators.

Theorem 1.8 is a corollary of a more technical result which does not require the embedding to send $\bigoplus_k \mathrm{M}_{n_k}(\mathbb{C})$ to the ghost operators. Precisely, using the notation of Theorem 1.8, for each $k \in \mathbb{N}$ and $i \in \{1, ..., n_k\}$, let $e_{i,i}^k$ denote the usual diagonal matrix unit in $\mathrm{M}_{n_k}(\mathbb{C})$. We show that if $\Phi: \prod_k \mathrm{M}_{n_k}(\mathbb{C}) \to \mathrm{C}^*_{ql}(X)$ is an embedding, then the collection $\{\Phi(e_{i,i}^k) \mid k \in \mathbb{N}, i \in \{1, ..., n_k\}\}$ is asymptotically a ghost; this is a technical weakening of the assertion that $\Phi(1_{\mathcal{M}})$ is a ghost (see Definition 5.5 and Remark 5.6).

The following immediate consequence of Theorem 1.8 is worth noting.

Corollary 1.9. Suppose that X is a u.l.f. metric space such that $C^*_{ql}(X)$ contains no non-compact ghost projections. Assume that a von Neumann algebra \mathcal{M} *-homomorphically embeds into $C^*_{ql}(X)$ by a map sending minimal projections to compact operators. Then \mathcal{M} is of the form $\prod_k M_{n_k}(\mathbb{C})$ for some countable (possibly finite) bounded collection $(n_k)_k$ in \mathbb{N} .

The assumption that X contains no noncompact ghost projections is strictly weaker than property A: see for example [3, Theorem 5.3]. Nonetheless, there are many interesting u.l.f. spaces that do not satisfy this assumption: most prominently, spaces containing expanders in a suitable sense will not satisfy it (compare [16, pages 348-349]).

Corollary 1.9 is our most complete result on Conjecture 1.3. We do not know whether the geometric assumption on X or the assumption on the embedding in Corollary 1.9 can be weakened or even completely removed.

1.4. Methods

Our strategy to obtain Theorems 1.4 and 1.8 starts with first proving them under the stronger hypothesis that the *-homomorphic embeddings are normal (see §2.2 for definitions). We then get rid of this extra assumption by showing that if $L_{\infty}[0,1]$ *homomorphically embeds into $\mathcal{B}(H)$ for some separable Hilbert space H, then it does so by an embedding which is also normal (see Proposition 6.3). Our proof is completed by using a useful fact that does not seem to appear explicitly in the literature (although it is proved by assembling known results): when \mathcal{M} is a von Neumann algebra with no direct summands of the form $M_n(\mathcal{N})$ for $n \geq 1$ and an infinite-dimensional abelian von Neumann algebra \mathcal{N} , then every representation of \mathcal{M} on a separable Hilbert space is automatically normal (Theorem 6.5; the converse is also true). For expository reasons, we leave both discussions about the normality of *-homomorphic embeddings to the last section of this paper, §6.

We now discuss the main ideas in the proofs of Theorems 1.4 and 1.8 under the extra assumption of normality of the embeddings.

Our proof for Theorem 1.4 strongly depends on working with corona algebras. The quasi-local algebra of a u.l.f. metric space always contains the ideal of compact operators $\mathcal{K}(\ell_2(X))$; therefore, we can look at the quasi-local corona algebra $C_{ql}^*(X)/\mathcal{K}(\ell_2(X))$ (see Definition 3.4). Using results from [41] and [20], we can then identify the center of $C_{ql}^*(X)/\mathcal{K}(\ell_2(X))$ with another important corona algebra: the Higson corona of X (see Definition 3.3). Therefore, by showing that the Higson corona contains 2^{\aleph_0} orthogonal positive non-zero contractions (see Lemma 3.7), we obtain that the center of $C_{ql}^*(X)/\mathcal{K}(\ell_2(X))$ cannot be separably represented.

We then use Johnson–Parrott's Theorem [20] (see Theorem 3.5) to show that if a C*-subalgebra $\mathcal{M} \subseteq \mathcal{B}(\ell_2(X))$ contained in $C^*_{ql}(X)$ is isomorphic to a diffuse abelian von Neumann algebra, then its commutant \mathcal{M}' must contain a copy of the nonseparably represented C*-algebra $C^*_{ql}(X)/\mathcal{K}(\ell_2(X))$. This leads to a contradiction since \mathcal{M}' is clearly separably represented.

To prove Theorem 1.8, we must evoke the idea of subsets of $C_{ql}^*(X)$ being inside of this algebra in an "equi-way". We also obtain analogous equi-results for the uniform Roe algebras. To state them, we must first recall the relevant technical definitions. These were first codified in [4, Definition 4.3] and [5, Definition 3.5].

Definition 1.10. Let X be a metric space.

1. Given $\varepsilon, r > 0$, we say that $a \in \mathcal{B}(\ell_2(X))$ is ε -r-quasi-local if for all $A, B \subseteq X$, with d(A, B) > r, we have that $\|\chi_A a \chi_B\| \le \varepsilon$.

- 2. Given $\varepsilon, r > 0$, we say that $a \in \mathcal{B}(\ell_2(X))$ is ε -r-approximable if there is $b \in \mathcal{B}(\ell_2(X))$, with prop $(b) \le r$, such that $||a b|| \le \varepsilon$.
- 3. A subset $S \subseteq \mathcal{B}(\ell_2(X))$ is equi-quasi-local if for all $\varepsilon > 0$ there is r > 0 such that every $a \in S$ is ε -r-quasi-local. S is equi-approximable if for all $\varepsilon > 0$ there is r > 0 such that every $a \in S$ is ε -r-approximable.

The study of such "equi-sets" in both quasi-local and uniform Roe algebras has proven to be very useful in the study of those algebras. For instance, they have been essential in the solution of the rigidity problem (see [40,2]), as well as in the study of derivations and Hochschild homology of uniform Roe algebras ([28,25]). For the rigidity problem, it was important to show that if a weak operator topology closed subalgebra of $C_{ql}^*(X)$ (resp. $C_u^*(X)$) is isomorphic to $\ell_{\infty}(\mathbb{N})$, then its unit ball is equi-quasi-local (resp. equi-approximable); see [40, Lemma 3.1] and [4, Lemma 4.9], respectively. In this paper, we give a new version of both of these results that seems more practically useful.

Precisely, the next lemma is our main technical result about equi-sets in quasi-local and uniform Roe algebras. We emphasize that the metric space X in this lemma can be arbitrary (i.e., it is not required to be u.l.f. or even locally finite). The following is proved in $\S 4$.

Lemma 1.11. Let X be a metric space and let $\mathcal{M} \subseteq \mathcal{B}(\ell_2(X))$ be a *-subalgebra closed in the weak operator topology and containing a unit $1_{\mathcal{M}}$. Suppose there is an increasing sequence $(p_n)_n$ of central projections in \mathcal{M} that converges to $1_{\mathcal{M}}$ in the strong operator topology and each $p_n\mathcal{M}p_n$ is finite-dimensional.

- 1. If $\mathcal{M} \subseteq C_{al}^*(X)$, then the unit ball of \mathcal{M} is equi-quasi-local.
- 2. If $\mathcal{M} \subseteq C_n^*(X)$, then the unit ball of \mathcal{M} is equi-approximable.

By using the standard type decomposition of von Neumann agebras in Proposition 4.8, Theorem 1.4 and Lemma 1.11 allow us to obtain the following.

Theorem 1.12. Let X be a u.l.f. metric space. Let $\mathcal{M} \subseteq \mathcal{B}(\ell_2(X))$ be a weak operator topology closed C*-subalgebra.

- 1. If $\mathcal{M} \subseteq C_{ql}^*(X)$, then the unit ball of \mathcal{M} is equi-quasi-local.
- 2. If $\mathcal{M} \subseteq C_u^*(X)$, then the unit ball of \mathcal{M} is equi-approximable.

Besides the equi-methods described above, our proof of Theorem 1.8 needs another ingredient: finite-dimensional vector measures. To put this in proper context, the rigidity problem for uniform Roe algebras asked the following: given u.l.f. metric spaces X and Y with *-isomorphic uniform Roe algebras, does it follow that X and Y are coarsely equivalent? Theorem 1.2 of [2] provides a positive answer to this question; the main novelty in its proof was the study of certain finite-dimensional vector measures and the

use of an atomic version of the classic Lyapunov convexity theorem. In $\S5$, we further develop this method obtaining a stronger technical lemma which applies to a wider range of scenarios (see Lemma 5.7)

Outline of the paper

In §2 we establish some notational preliminaries and give additional background. §3 shows non-existence of normal embeddings of diffuse abelian von Neumann algebras into $C_{ql}^*(X)$ using corona methods. §4 contains our results on equi-sets; the main techniques here are based on elementary von Neumann algebra theory and the Baire category theorem. §5 goes into detail on asymptotic ghosts and embeddings of products of matrix algebras using vector measure techniques. Finally, §6 gives our results on automatic normality for representations of von Neumann algebras on separable Hilbert spaces; the techniques used here are again von Neumann algebraic in character.

2. Preliminaries

2.1. Basic definitions

Most of the basic definitions and terminology needed for this paper were already introduced in §1. Here, we only present what is left to introduce. The C*-algebra $\ell_{\infty}(X)$ of all bounded functions from X to $\mathbb C$ is identified with the multiplication operators in $\mathcal B(\ell_2(X))$ in the canonical way: if $a=(a_x)_{x\in X}\in\ell_{\infty}(X)$ and $\xi=(\xi_x)_{x\in X}\in\ell_2(X)$, then $a\xi=(a_x\xi_x)_{x\in X}$. In other words, $a\in\ell_{\infty}(X)$ if and only if $\operatorname{prop}(a)=0$. As such $\ell_{\infty}(X)$ identifies in a canonical way with a maximal abelian subalgebra of $C^*_{ql}(X)$. We denote by $\mathcal K(H)$ the compact operators on a Hilbert space H, and note that $\mathcal K(\ell_2(X))$ is contained in both $C^*_u(X)$ and $C^*_{ql}(X)$ as the unique minimal ideal.

We write WOT (respectively SOT, SOT*) for the weak (respectively strong, strong-*) operator topology on $\mathcal{B}(H)$. We write "SOT- \sum " when we want to be clear that a given sum converges in the strong operator (as opposed to norm) topology.

We follow the standard conventions of the subject: a von Neumann algebra will always be a concrete C*-algebra \mathcal{M} on some Hilbert space H that is closed in the weak operator topology, and such that the unit of \mathcal{M} agrees with the unit of $\mathcal{B}(H)$. A W^* -algebra is an abstract C*-algebra that is isomorphic to some von Neumann algebra; equivalently, a W*-algebra is a C*-algebra which is a dual Banach space. We write \mathcal{M}_1 for the closed unit ball of a von Neumann algebra (or C*-algebra), and $\mathcal{Z}(\mathcal{M})$ for its center. For a family $(p_s)_s$ of projections in a von Neumann algebra, $\bigvee p_s$ denotes their least upper bound, and $\bigwedge p_s$ their greatest lower bound; these always exist.

2.2. Normal embeddings

Von Neumann algebras carry many natural topologies (see for example [8, I.8.6]). In particular, in addition to the WOT and SOT already mentioned, there are the so-called

 σ -weak and σ -strong topologies (also called the ultraweak and ultrastrong topologies). These are important as they are intrinsic to the *-algebraic structure (see for example [43, Corollary III.3.10]), unlike the WOT and SOT, which depend on the representation; however the WOT (respectively SOT) agrees with the σ -weak (respectively σ -strong) topology on bounded sets, so often one can elide the distinction between the two.

Fortunately, the several natural notions of continuity for *-homomorphisms between von Neumann algebras turn out to be the same: we record this below.

Proposition 2.1. Let $\Phi: \mathcal{M} \to \mathcal{N}$ be a *-homomorphism between von Neumann algebras. Then the following are equivalent.⁸

- 1. Φ is normal: if $(a_i)_{i\in I}$ is a bounded increasing net of positive elements of \mathcal{M} , then $\Phi(\sup_{i\in I} a_i) = \sup_{i\in I} \Phi(a_i)$.
- 2. For any collection of orthogonal projections $(p_i)_i$ in \mathcal{M} ,

$$\Phi(\text{SOT-}\sum_{i\in I} p_i) = \text{SOT-}\sum_{i\in I} \Phi(p_i).$$

- 3. Φ is σ -weakly continuous.
- 4. Φ is σ -strongly continuous.
- 5. The restriction of Φ to the unit ball of \mathcal{M} is σ -strongly continuous.
- 6. Φ is continuous with respect to the weak*-topologies induced by the unique preduals (see for example [8, III.2.4.1]) of M and N.

Proof. Parts (1), (3), (4), and (5) are equivalent by [8, III.2.2.2]. Parts (3) and (6) are equivalent as the weak-* and σ -weak topologies are the same (see for example [8, I.8.6.2 and III.2.4.1]). Condition (1) clearly implies (2). Finally, assume that condition (2) holds. Then for any normal linear functional $\psi : \mathcal{N} \to \mathbb{C}$ and orthogonal collection of projections $(p_i)_i, \psi \circ \Phi(\sum p_i) = \sum \psi \circ \Phi(p_i)$. Hence $\psi \circ \Phi$ is also normal by [43, Corollary III.3.11]. As the normal linear functionals are exactly the elements of the predual of a von Neumann algebra (see [8, Page 244]) this says that the dual map $\Phi^* : \mathcal{N}^* \to \mathcal{M}^*$ restricts to a map $\mathcal{N}_* \to \mathcal{M}_*$. Hence Φ is weak-* continuous, i.e. satisfies (6). \square

Note that a normal *-homomorphism Φ is not necessarily WOT-continuous. For example, if H is an infinite-dimensional Hilbert space then the embedding of $\mathcal{B}(H)$ into $\mathcal{B}(H \otimes H)$ that sends a to $a \otimes 1_H$ is not WOT-continuous. (This example really goes to show that WOT is not intrinsic to a given von Neumann algebra, as it depends on the ambient space.) Finally, the restriction of an isomorphism between von Neumann algebras to the unit ball of the domain is continuous in the SOT, WOT, and SOT*-topologies (see [8, §III.2.1.14]).

 $^{^{8}}$ In each of the instances (3)–(6) both the domain and the codomain are considered with respect to the same topology.

Definition 2.2. A *-homomorphism from a von Neumann algebra into either $C_u^*(X)$ or $C_{ql}^*(X)$ is called a *normal embedding* if its kernel is trivial and it satisfies any of the conditions from Proposition 2.1 above when thought of as a *-homomorphism from \mathcal{M} into $\mathcal{B}(\ell_2(X))$.

2.3. 'Obvious' embeddings

Let X be a u.l.f. metric space. Let $(n_k)_k$ be a countable (possibly finite) collection of natural numbers, and assume that X contains a sequence $(X_k)_k$ of uniformly bounded pairwise disjoint subsets such that $|X_k| = n_k$ for each k. Then it is straightforward to see that $C_u^*(X)$ (and therefore $C_{ql}^*(X)$) contains $\prod_k \mathcal{B}(\ell_2(X_k)) \cong \prod_k \mathrm{M}_{n_k}(\mathbb{C})$ as a normally embedded subalgebra. For such a collection $(X_k)_k$ to exist, $(n_k)_k$ must be bounded (as X is u.l.f.), but under very minor assumptions on X, this is the only obstruction.

Lemma 2.3. Let X be an infinite u.l.f. metric space. Assume moreover that X either has asymptotic dimension¹⁰ at least one, or that X is a countable group with a left-invariant bounded geometry metric.

Then for any bounded and countable collection of natural numbers $(n_k)_k$ there exists a sequence $(X_k)_k$ of uniformly bounded disjoint subsets of X such that $|X_k| = n_k$ for all k. In particular, $C_u^*(X)$ (and therefore $C_{ql}^*(X)$) contains a normally embedded copy of $\prod_k M_{n_k}(\mathbb{C})$.

Proof. If X has asymptotic dimension at least one, the result follows easily from [27, Lemma 2.4]. If X is a group, fix $N \in \mathbb{N}$ such that $N \geq n_k$ for all k. Choose a set A in X such that |A| = N, and assume that the diameter of A is s for some s > 0. Choose a collection $(x_k)_k$ in X such that $d(x_k, x_l) > 2s$ for all $k \neq l$. Then the sets $Y_k := x_k A$ are disjoint, and all have cardinality N and diameter s. Hence we can find subsets $X_k \subseteq Y_k$ with the desired property. \square

These observations naturally lead to the following refinement of Conjecture 1.3.

Conjecture 2.4. Let X be a u.l.f. metric space. The only von Neumann algebras that can embed into $C_u^*(X)$ and $C_{ql}^*(X)$ are those of the form $\prod_k M_{n_k}(\mathbb{C})$, where $(n_k)_k$ is a countable (possibly finite) bounded collection of natural numbers. Moreover, $\prod_k M_{n_k}(\mathbb{C})$ embeds into $C_u^*(X)$ or $C_{ql}^*(X)$ if and only if X contains a disjoint collection $(X_k)_k$ of uniformly bounded subsets with $|X_k| = n_k$ for all k.

It is not true that $\prod_k \mathrm{M}_{n_k}(\mathbb{C})$ embeds into $\mathrm{C}^*_{ql}(X)$ for any infinite u.l.f. metric space X and bounded sequence $(n_k)_k$: the simplest counterexample is probably $X = \{n^2 \mid n \in \mathbb{N}\}$

⁹ Here and throughout the paper, we write |A| for the cardinality of a set A.

¹⁰ See for example [33, Chapter 9] for background on asymptotic dimension. We note in particular that a countable group has asymptotic dimension zero if and only if it is an increasing union of finite groups: see [36].

with the metric inherited from \mathbb{R} . We have $C^*_{ql}(X) = C^*_u(X) = \ell_\infty(X) + \mathcal{K}(\ell_2(X))$, from which it follows (for example) that $\prod_{k \in \mathbb{N}} M_2(\mathbb{C})$ cannot embed. Notice however that containing copies of $\prod_{k \in \mathbb{N}} M_n(\mathbb{C})$ for all $n \in \mathbb{N}$, does not characterize being of strictly positive asymptotic dimension: for example, $X = \{(i^2, j^2) \mid (i, j) \in \mathbb{N}^2\}$ is of asymptotic zero dimension, but for each $n \in \mathbb{N}$, $C^*_u(X)$ contains the C*-subalgebra $\prod_{k \in \mathbb{N}} \mathcal{B}(\ell_2(\{(k^2, i^2) \mid 1 \leq i \leq n\}))$, which is *-isomorphic to $\prod_{k \in \mathbb{N}} M_n(\mathbb{C})$.

Progress on the more refined part of the conjecture above would need a careful study of spaces of asymptotic dimension zero; we do not attempt that in this paper, but the question seems interesting.

3. Diffuse abelian von Neumann algebras inside quasi-local algebras

The main goal of this section is to prove Theorem 1.4, i.e. that $C^*_{ql}(X)$ cannot contain an embedded diffuse abelian von Neumann algebra, under the stronger hypothesis of the embedding being also normal. We will then show in §6 that the existence of a *-homomorphic embedding implies the existence of a normal one (see Proposition 6.3), which will then give us Theorem 1.4 in full generality.

We now state the main result of this section.

Theorem 3.1. If X is a u.l.f. metric space and \mathcal{M} is a diffuse abelian von Neumann algebra, then there is no normal embedding of \mathcal{M} into $C^*_{al}(X)$.

Recall that if \mathcal{M} is a von Neumann algebra (or C*-algebra) in $\mathcal{B}(H)$, then \mathcal{M}' denotes its commutant. Recall also that if $p \in \mathcal{M}$ is a projection, then its *central cover* (also called the *central carrier* or *central support*) is the projection

$$z_p := \bigwedge \{ q \in \mathcal{Z}(\mathcal{M}) \mid p \le q \}, \tag{3.1}$$

i.e. the smallest projection in the center of \mathcal{M} that dominates p: see for example [8, III.1.1.5] or [43, page 223] for more details.

The following result is known to experts: see for example the end of the proof of Proposition 1.2.5 in [30]. We thank an anonymous referee for providing us with the current simpler proof.

Proposition 3.2. Let H be a Hilbert space and let $\mathcal{M} \subseteq \mathcal{B}(H)$ be a von Neumann algebra with no minimal projections. Then $\mathcal{M}' \cap \mathcal{K}(H) = \{0\}$.

Proof. Suppose towards a contradiction that $\mathcal{M}' \cap \mathcal{K}(H) \neq \{0\}$. Hence $\mathcal{M}' \cap \mathcal{K}(H)$ contains a non-zero self-adjoint operator, and so it contains a non-zero finite rank projection p by the spectral theorem for self-adjoint compact operators. The *-homomorphism $\phi: \mathcal{M} \to \mathcal{B}(pH)$ defined by cutting down by p is then normal, whence \mathcal{M} splits as a direct sum $\mathcal{M} = \mathcal{N} \oplus \phi(\mathcal{M})$ (compare for example [8, III.1.1.13]). As $\phi(\mathcal{M})$ is a

finite-dimensional von Neumann algebra, it has a minimal projection, contradicting the assumption. $\ \square$

For the next result, we will need to make use of some corona algebras. We start by recalling the definition of the Higson corona of a u.l.f. metric space. See for example [33, §2.3] for more background.

Definition 3.3. Let (X, d) be a u.l.f. metric space.

1. A bounded function $f: X \to \mathbb{C}$ is called a *Higson function*¹¹ if for all $\varepsilon, r > 0$ there is a bounded subset $Z \subseteq X$ such that $|f(x) - f(y)| \le \varepsilon$ for all $x, y \in X \setminus Z$ with $d(x, y) \le r$.

One checks directly that the collection of all Higson functions is a (commutative) C^* -subalgebra of $\ell_{\infty}(X)$.

2. The C*-algebra of all Higson functions is denoted by $C_h(X)$ and the Higson corona¹² of X is defined as $C_Q(X) = C_h(X)/C_0(X)$.

We use the multiplication action of $C_h(X)$ on $\ell_2(X)$ to identify $C_h(X)$ with a C^* subalgebra of $\mathcal{B}(\ell_2(X))$. We moreover use the identification $C_Q(X) = C_h(X)/(C_h(X) \cap \mathcal{K}(\ell_2(X)))$ to identify $C_Q(X)$ with a C^* -subalgebra of the Calkin algebra $\mathcal{B}(\ell_2(X))/\mathcal{K}(\ell_2(X))$.

Definition 3.4. Let X be a metric space.

- 1. The quasi-local corona of X is $Q_{al}^*(X) = C_{al}^*(X)/\mathcal{K}(\ell_2(X))$.
- 2. The uniform Roe corona of X is $Q_u^*(X) = C_u^*(X)/\mathcal{K}(\ell_2(X))$. 13

The next theorem is a straightforward corollary of work of Johnson and Parrott [20]. It will be essential in the proofs of both Proposition 3.6 and Theorem 3.1 below. For the statement of the next few results, let $\pi: \mathcal{B}(H) \to \mathcal{B}(H)/\mathcal{K}(H)$ denote the canonical quotient map, and recall that a masa in a C*-algebra is a maximal abelian self-adjoint subalgebra.

Theorem 3.5 (Johnson and Parrott). Let H be a Hilbert space and $\mathcal{M} \subseteq \mathcal{B}(H)$ be an abelian von Neumann algebra. Then, $(\pi[\mathcal{M}])' = \pi[\mathcal{M}']$. In particular, if \mathcal{M} is a masa of $\mathcal{B}(H)$, then $\pi[\mathcal{M}]$ is a masa of $\mathcal{B}(H)/\mathcal{K}(H)$.

 $[\]overline{\ }^{11}$ Higson functions are also referred to as $slowly\ oscillating\ functions.$

 $^{^{12}}$ In topology, "Higson corona" would usually refer to the maximal ideal space of this C*-algebra; here we refer to the C*-algebra itself.

¹³ The uniform Roe corona of a u.l.f. metric space was first studied in [6]. We do not need it for our main results here, but include some discussion for completeness.

Proof. We just explain how to derive the result from the results of [20, Theorem 2.1]. Clearly $(\pi[\mathcal{M}])' \supseteq \pi[\mathcal{M}']$, so we have to show that if $b \in \mathcal{B}(H)$ is such that $ab-ba \in \mathcal{K}(H)$ for all $a \in \mathcal{M}$, then $b \in \mathcal{M} + \mathcal{K}(H)$. In the terminology of [20], [20, Theorem 2.1] says that \mathcal{M} has property P_2 (this property is not important to us), which by [20, Lemma 1.4] implies that \mathcal{M} has property P_1 . As defined on [20, page 39], property P_1 is exactly the desired conclusion. \square

The following result might be of interest in its own right. Parts of it are known already (see for example [41, Theorem 3.3]), but the complete statement seems to be new.

Proposition 3.6. Let X be a u.l.f. metric space. Then

$$C_Q(X) = \mathcal{Z}(Q_{ql}^*(X)) = \mathcal{Z}(Q_u^*(X)).$$

Proof. By Theorem 3.5, $\ell_{\infty}(X)/C_0(X)$ is a masa in $\mathcal{B}(\ell_2(X))/\mathcal{K}(\ell_2(X))$. Since it is included in each of $Q_u^*(X)$ and $Q_{ql}^*(X)$, it is a masa in each of these algebras. It follows that

$$\mathcal{Z}(Q_u^*(X)) = \{ a \in \ell_{\infty}(X) / C_0(X) \mid [a, b] = 0 \ \forall b \in Q_u^*(X) \}$$

and similarly for $\mathcal{Z}(\mathbf{Q}_{ql}^*(X))$, whence $\mathcal{Z}(\mathbf{Q}_{ql}^*(X)) \subseteq \mathcal{Z}(\mathbf{Q}_u^*(X))$. For all $f \in \mathbf{C}_h(X)$ and all $a \in \mathbf{C}_{ql}^*(X)$, [41, Theorem 3.3] implies $[f,a] \in \mathcal{K}(\ell_2(X))$. Hence $\mathbf{C}_Q(X) \subseteq \mathcal{Z}(\mathbf{Q}_{ql}^*(X)) \subseteq \mathcal{Z}(\mathbf{Q}_u^*(X))$, and it suffices to show that $\mathcal{Z}(\mathbf{Q}_u^*(X)) \subseteq \mathbf{C}_Q(X)$.

Let $a \in \mathcal{Z}(Q_u^*(X))$. As $a \in \ell_\infty(X)/C_0(X) = \pi[\ell_\infty(X)]$, there is $b \in \ell_\infty(X)$ such that $\pi(b) = a$. Let us show that $b \in C_h(X)$. We proceed by contradiction. If this is not the case, we can choose $\varepsilon > 0$, r > 0, and sequences of distinct elements $(x_n)_n$ and $(z_n)_n$ in X such that for all $n \in \mathbb{N}$ we have

$$d(x_n, z_n) \le r$$
 and $|b(x_n) - b(z_n)| \ge \varepsilon$.

Let $v \in \mathcal{B}(\ell_2(X))$ be the partial isometry such that $v\delta_{x_n} = \delta_{z_n}$ for all $n \in \mathbb{N}$ and $v\delta_x = 0$ for all $x \notin \{x_n \mid n \in \mathbb{N}\}$. Since $d(x_n, z_n) \leq r$ for all $n \in \mathbb{N}$, v has finite propagation. By definition of v, it also follows that

$$|\langle (vb - bv)\delta_{x_n}, \delta_{z_n}\rangle| = |b(x_n) - b(z_n)| \ge \varepsilon$$

for all $n \in \mathbb{N}$. As (δ_{x_n}) converges weakly to zero, vb - bv is not compact which implies that

$$\pi(v)a - a\pi(v) = \pi(vb - bv) \neq 0.$$

As $v \in C_u^*(X)$, this show that a cannot be in the center of $Q_u^*(X)$, which is the desired contradiction. \square

Recall that a metric space is *locally finite* if all of its bounded subsets are finite. Variants of the construction in the following lemma are well-known: compare for example the proof of [21, Theorem 3].

Lemma 3.7. Let X be a locally finite metric space and $p \in C^*_{ql}(X)$ be an infinite rank projection. Then there is an orthogonal family of 2^{\aleph_0} non-zero positive contractions in $\pi(p)C_Q(X)\pi(p)$.

Proof. Let ξ_1 be a unit vector in the image of p, and choose a finite subset A_1 of X such that $\|\chi_{A_1}\xi_1 - \xi_1\| \leq 2^{-1-2}$. As χ_{A_1} has finite rank and p has infinite rank, there exists a unit vector ξ_2 that is orthogonal to ξ_1 , that is in the image of p, and is such that $\|\chi_{A_1}\xi_2\| \leq 2^{-2-3}$. Hence $\|\chi_{X\setminus A_1}\xi_2 - \xi_2\| \leq 2^{-2-3}$. Choose a finite subset A_2 of $X\setminus A_1$ such that $\|\chi_{A_2}\xi_2 - \xi_2\| \leq 2^{-2-2}$. Continuing this way¹⁴ we construct an orthonormal sequence (ξ_n) in the image of p and a disjoint sequence $(A_n)_n$ of finite subsets of X such that

$$\|\xi_n - \chi_{A_n} \xi_n\| \le 2^{-n-2} \tag{3.2}$$

for all $n \in \mathbb{N}$. Passing to a subsequence (and using local finiteness of X), we may moreover assume that $d(A_n, A_m) > 3n$ for all $n \neq m$.

Define now $g_n: X \to [0,1]$ by

$$g_n(x) = \max\{0, 1 - d(x, A_n)/n\}.$$

In words, each g_n is identically one on A_n , identically zero outside the n-neighborhood of A_n , and decreases 'with slope 1/n' in between; in particular, it is (1/n)-Lipschitz. As $d(A_n, A_m) > 3n$ for all $n \neq m$, we therefore have that the supports of g_n and g_m are at least n apart for all $n \neq m$. As p is in $C^*_{ql}(X)$ we may thus pass to another subsequence and assume that

$$\|\chi_{\operatorname{supp}(g_n)} p \chi_{\operatorname{supp}(g_m)}\| \le 2^{-n-m} \tag{3.3}$$

for all $n \neq m$ in \mathbb{N} .

For each $M \subseteq \mathbb{N}$, let $g_M : X \to [0,1]$ be defined by

$$g_M(x) := \sum_{n \in M} g_n(x)$$

(notice that given $x \in X$, this sum has at most one nonzero term, so the sum converges pointwise). In other words, looking at each g_n as an element in $\ell_{\infty}(X)$, we have $g_M =$

 $^{^{14}}$ This is sometimes called a *sliding hump* argument: see for example [1, page 14].

SOT- $\sum_{n\in M} g_n$ for all $M\subseteq \mathbb{N}$. As each g_n is (1/n)-Lipschitz, each g_M is a Higson function. For each $M\subseteq \mathbb{N}$, let $h_M=\pi(g_M)$, and let $g=\pi(p)$.

A family S of infinite subsets of \mathbb{N} is almost disjoint if $M_1 \cap M_2$ is finite for all distinct $M_1, M_2 \in S$. Fix an almost disjoint family of infinite subsets of \mathbb{N} of cardinality $2^{\mathbb{N}_0}$ (see for example [14, Proposition 9.2.2] for a proof that such a collection exists). We claim that the collection $(qh_Mq)_{M\in S}$ is the desired family of orthogonal non-zero positive contractions. Clearly, each qh_Mq is a positive contraction. For orthogonality, since the family S is almost disjoint, we only need to consider disjoint $M_1, M_2 \subseteq \mathbb{N}$. In this case, by (3.3), we have, for $n \in M_1$ and all $m \in M_2$, that

$$||pg_npg_mp|| \le ||g_npg_m|| \le 2^{-n-m}$$
.

Therefore,

$$pg_{M_1}pg_{M_2}p = \sum_{n \in M_1} \sum_{m \in M_2} pg_npg_mp$$

converges in norm and, as each pg_npg_mp is compact, $pg_{M_1}pg_{M_2}p$ is compact. At last, using (3.2), we have that

$$||pg_M p\xi_n|| = ||pg_M \xi_n|| \ge ||pg_n \xi_n|| - \sum_{m \ne n} ||pg_m \xi_n||$$

$$\ge ||p\xi_n|| - ||p(1 - g_n)\xi_n|| - \sum_{m \ne n} ||pg_m \chi_{X \setminus A_n} \xi_n|| \ge \frac{1}{2}$$

for all $M \subseteq \mathbb{N}$ and all $n \in \mathbb{N}$. Hence, $pg_M p$ is noncompact for all infinite $M \subseteq \mathbb{N}$. This finishes the proof. \square

Proof of Theorem 3.1. Fix a u.l.f. metric space X. We need to show that if \mathcal{M} is a diffuse abelian von Neumann algebra then there is no normal embedding of \mathcal{M} into $C^*_{ql}(X)$. Suppose for contradiction there is such an embedding, and abuse notation slightly by writing \mathcal{M} for its image. Let $q := \pi(1_{\mathcal{M}})$. Since Φ is normal, \mathcal{M} is a von Neumann subalgebra of $\mathcal{B}(1_{\mathcal{M}}\ell_2(X))$ by [43, Proposition III.3.12]. Furthermore, \mathcal{M} is diffuse and abelian, hence the relative commutant $\mathcal{M}' \cap \mathcal{B}(1_{\mathcal{M}}\ell_2(X))$ contains no compact operators by Proposition 3.2, and so π restricts to an isomorphism between $\mathcal{M}' \cap \mathcal{B}(1_{\mathcal{M}}\ell_2(X)) = 1_{\mathcal{M}}\mathcal{M}'1_{\mathcal{M}}$ and $q\pi(\mathcal{M}')q$. Theorem 3.5 (applied to the von Neumann algebra \mathcal{M} on the Hilbert space $1_{\mathcal{M}}\ell_2(X)$) implies that

$$q\pi[\mathcal{M}']q = q\pi[\mathcal{M}]'q.$$

Furthermore, since $\pi[\mathcal{M}] \subseteq \mathcal{Q}_{ql}^*(X)$, and by Proposition 3.6 the center of $\mathcal{Q}_{ql}^*(X)$ is the Higson corona $\mathcal{C}_Q(X)$, we have

$$qC_Q(X)q \subseteq q\pi[\mathcal{M}]'q$$
.

As \mathcal{M} is diffuse, $1_{\mathcal{M}}$ has infinite rank, so Lemma 3.7 applied to $p = 1_{\mathcal{M}}$ gives that $q\pi[\mathcal{M}]'q$ contains an orthogonal family of 2^{\aleph_0} nonzero positive elements. This gives us a contradiction since $q\pi[\mathcal{M}]'q$ is isomorphic to $\mathcal{M}' \cap \mathcal{B}(1_{\mathcal{M}}\ell_2(X))$, a separably represented C*-algebra. \square

4. Equi-quasi-locality and equi-approximability

We need quantitative ways of saying that certain subsets of $\mathcal{B}(\ell_2(X))$ belong to $\mathrm{C}^*_{ql}(X)$ in a uniform way, and sufficient conditions for this to hold. The present section investigates this problem: Lemma 1.11 from the introduction is the main technical result, which we will use to prove Theorem 1.12 at the end of this section. Although for our results regarding the embeddability of von Neumann algebras, it would be enough to obtain such results only for quasi-local algebras, we also provide versions of these results for uniform Roe algebras for the sake of completeness.

For the definitions of ε -r-quasi-local, ε -r-approximable, equi-quasi-local, and equi-approximable, we refer the reader to Definition 1.10.

The following lemma follows straightforwardly from the fact that compact subsets of metric spaces are totally bounded (cf. [4, Lemma 4.8]).

Lemma 4.1. Let X be a metric space. Then any norm-compact subset of $C^*_{ql}(X)$ is equiquasi-local, and any norm-compact subset of $C^*_{u}(X)$ is equi-approximable.

Proof. The case of $\mathrm{C}^*_u(X)$ is [4, Lemma 4.8] and the quasi-local version follows analogously. For completeness, here is a proof: if $K\subseteq \mathrm{C}^*_{ql}(X)$ is compact and $\varepsilon>0$, pick a finite $A\subseteq K$ which is ε -dense in K. As A is finite, there is r>0 such that every element in A is ε -r-quasi-local. This implies every element in K is 2ε -r-quasi-local, so we are done. \square

Lemma 4.2. Let X be a metric space and for each pair $\varepsilon, r > 0$ let

$$\mathrm{QL}(\varepsilon,r) := \{ a \in \mathcal{B}(\ell_2(X)) \mid a \text{ is } \varepsilon\text{-}r\text{-}quasi\text{-}local and } \|a\| \leq 1 \}$$

and

$$A(\varepsilon,r) := \{ a \in \mathcal{B}(\ell_2(X)) \mid a \text{ is } \varepsilon\text{-}r\text{-}approximable and } \|a\| \leq 1 \}.$$

Both $QL(\varepsilon, r)$ and $A(\varepsilon, r)$ are WOT-closed.

Proof. Let $(a_i)_{i\in I}$ be a net of contractions WOT-converging to some $a\in \mathcal{B}(\ell_2(X))$. As WOT-closed bounded sets are norm closed, $||a||\leq 1$. Fix positive reals ε and r.

Suppose that each a_i is in $QL(\varepsilon, r)$. Fix $A, B \subseteq X$ with d(A, B) > r, so that $\|\chi_A a_i \chi_B\| \le \varepsilon$ for all $i \in I$. As the norm is WOT-lower semicontinuous, it follows that $\|\chi_A a \chi_B\| \le \varepsilon$. So, $a \in QL(\varepsilon, r)$.

Suppose now that each a_i is in $A(\varepsilon, r)$. For each $i \in I$, let $b_i \in \mathcal{B}(\ell_2(X))$ be such that $\operatorname{prop}(b_i) \leq r$ and $\|a_i - b_i\| \leq \varepsilon$. As $(a_i)_{i \in I}$ is bounded, so is $(b_i)_{i \in I}$. As bounded subsets of $\mathcal{B}(\ell_2(X))$ are WOT-precompact, by passing to a subnet we can assume that $b = \operatorname{WOT-lim}_i b_i$ exists. Moreover, since each b_i has propagation at most r, so does b: indeed, if $x, y \in X$ satisfy d(x, y) > r, then $\langle \delta_x, b \delta_y \rangle = \lim_i \langle \delta_x, b_i \delta_y \rangle = 0$. Finally, since $\|a_i - b_i\| \leq \varepsilon$ for all $i \in I$, we have that $\|a - b\| \leq \varepsilon$. This shows that $a \in A(\varepsilon, r)$. \square

We are now ready for the proof of Lemma 1.11 from the introduction.

Proof of Lemma 1.11. Suppose that X is a metric space and $\mathcal{M} \subseteq \mathcal{B}(\ell_2(X))$ is a WOT-closed *-subalgebra with unit $1_{\mathcal{M}}$. Also suppose there is an increasing sequence $(p_n)_n$ of central projections in \mathcal{M} such that each $p_n \mathcal{M} p_n$ is finite-dimensional and SOT- $\lim p_n = 1_{\mathcal{M}}$. Replacing \mathcal{M} with $\mathcal{M} \oplus \mathbb{C}(1-1_{\mathcal{M}})$ and p_n with $p_n \oplus (1-1_{\mathcal{M}})$ if necessary, we can assume without loss of generality that $1_{\mathcal{M}} = 1$.

We now prove (1): Suppose $\mathcal{M} \subseteq \mathrm{C}^*_{ql}(X)$. We need to prove that the unit ball \mathcal{M}_1 of \mathcal{M} is equi-quasi-local. Towards a contradiction, assume the contrary. Then there is $\varepsilon > 0$ such that for all $n \in \mathbb{N}$ there is $a \in \mathcal{M}_1$ which is not ε -n-quasi-local.

Claim 4.3. For all $n, m \in \mathbb{N}$, there is $a \in (1 - p_m)\mathcal{M}$ of norm 1 which is not $\varepsilon/2$ -n-quasi-local.

Proof. Suppose the conclusion of the claim fails for some pair $n, m \in \mathbb{N}$. So, all elements in the unit ball of $(1-p_m)\mathcal{M}$ are $\varepsilon/2$ -n-quasi-local. Since $p_m\mathcal{M}p_m$ is finite dimensional, there is r>0 such that every element in $(p_m\mathcal{M}p_m)_1$ is $\varepsilon/2$ -r-quasi-local (Lemma 4.1); without loss of generality, assume that r>n. Therefore, since every $a\in\mathcal{M}_1$ can be written as $a=p_ma+(1-p_m)a$, this implies that every element in \mathcal{M}_1 is ε -r-quasi-local. This contradicts our choice of ε . \square

Claim 4.4. For each $r \in \mathbb{N}$, $QL(\varepsilon/4, r) \cap \mathcal{M}_1$ has empty interior with respect to the restriction of the WOT-topology to \mathcal{M}_1 .

Proof. Fix $r \in \mathbb{N}$ and suppose towards a contradiction that there is a WOT-open $U \subseteq \mathcal{B}(\ell_2(X))$ such that $U \cap \mathcal{M}_1$ is nonempty and $U \cap \mathcal{M}_1 \subset \mathrm{QL}(\varepsilon/4, r)$. Fix $a \in U \cap \mathcal{M}_1$. So there are $\delta > 0$ and normalized $\xi_1, \ldots, \xi_k, \zeta_1, \ldots, \zeta_k \in \ell_2(X)$ for which the set

$$B := \bigcap_{i=1}^{k} \{ b \in \mathcal{M}_1 \mid |\langle (a-b)\xi_i, \zeta_i \rangle| < \delta \}$$

is included in $QL(\varepsilon/4, r)$. Since SOT- $\lim p_n = 1$, there is $m \in \mathbb{N}$ large enough such that

$$\|(1-p_m)\zeta_i\| < \frac{\delta}{2} \text{ and } \|(1-p_m)a\xi_i\| < \frac{\delta}{2}$$

for all $i \leq k$. Let n > r be such that $p_m a$ is $\varepsilon/4$ -n-quasi-local. By Claim 4.3, there is a contraction $b \in (1-p_m)\mathcal{M}$ which is not $\varepsilon/2$ -n-quasi-local. Then, letting $c = p_m a + b$, we have that

$$||c|| = \max\{||p_m a||, ||b||\} \le 1$$

and that $a-c=(1-p_m)(a-b)$, hence

$$\begin{aligned} |\langle (a-c)\xi_i, \zeta_i \rangle| &= |\langle (1-p_m)(a-b)\xi_i, \zeta_i \rangle| \\ &\leq |\langle (1-p_m)a\xi_i, \zeta_i \rangle| + |\langle b\xi_i, (1-p_m)\zeta_i \rangle| < \delta, \end{aligned}$$

and $c \in B$. As $B \subseteq QL(\varepsilon/4, r)$, c is $\varepsilon/4$ -r-quasi-local. As $p_m a$ is $\varepsilon/4$ -n-quasi-local, this implies that b is $\varepsilon/2$ -n-quasi-local; contradiction. \square

We are now ready to complete the proof of case (1). On bounded sets in \mathcal{M} , the WOT agrees with the ultraweak topology. Since the ultraweak topology coincides with the weak*-topology associated with the predual of \mathcal{M} , the Banach-Alaoglu theorem implies that the unit ball \mathcal{M}_1 of \mathcal{M} is WOT-compact (and of course Hausdorff). By the previous claim and Lemma 4.2, we have that $\mathrm{QL}(\varepsilon/4,r)\cap\mathcal{M}_1$ is a closed subset with empty interior for all r>0. As $\mathcal{M}\subseteq \mathrm{C}^*_{al}(X)$, we have that

$$\mathcal{M}_1 = \bigcup_{r \in \mathbb{N}} (\mathrm{QL}(\varepsilon/4, r) \cap \mathcal{M}_1)$$

and that all sets on the right-hand side are closed and nowhere dense. This contradicts the Baire category theorem, completing the proof of (1).

Proof of Lemma 1.11, (2). We need to show that if $\mathcal{M} \subseteq C_u^*(X)$, then the unit ball of \mathcal{M} is equi-approximable. This proof follows the general strategy of the proof of (1), with Claim 4.3 and Claim 4.4 replaced with the following two claims; the proofs are analogous to the proofs of the former claims and are left to the reader.

Claim 4.5. For all $n, m \in \mathbb{N}$, there is $a \in (1_{\mathcal{M}} - p_m)\mathcal{M}$ of norm 1 which is not $\varepsilon/2$ -n-approximable. \square

Claim 4.6. For each $r \in \mathbb{N}$, $A(\varepsilon/4, r) \cap \mathcal{M}_1$ has empty interior with respect to the restriction of the WOT-topology to \mathcal{M}_1 . \square

As $\mathcal{M} \subseteq C_u^*(X)$, we have that

$$\mathcal{M}_1 = \bigcup_{r \in \mathbb{N}} (A(\varepsilon/4, r) \cap \mathcal{M}_1).$$

As in (1), this contradicts the Baire category theorem. \Box

Proposition 4.7. Let X be a countable metric space and let $\mathcal{M} \subseteq \mathcal{B}(\ell_2(X))$ be a WOT-closed *-subalgebra isomorphic to a direct product of matrix algebras.

- 1. If $\mathcal{M} \subseteq C^*_{ql}(X)$, then the unit ball of \mathcal{M} is equi-quasi-local.
- 2. If $\mathcal{M} \subseteq C_n^*(X)$, then the unit ball of \mathcal{M} is equi-approximable.

Proof. Since $\ell_2(X)$ is separable, \mathcal{M} is a direct product of at most countably many matrix algebras. It therefore contains an increasing sequence $(p_n)_n$ of central projections in \mathcal{M} such that each $p_n \mathcal{M} p_n$ is finite-dimensional and SOT- $\lim p_n = 1_{\mathcal{M}}$. The result then follows from Lemma 1.11. \square

Our next goal is Proposition 4.8, which characterizes W^* -algebras that do not contain a diffuse abelian W^* -subalgebra. This seems likely to be known to experts, but we could not find a proof in the literature so we include one for completeness. It is the final ingredient needed to complete the proof of our main equi-approximability result (Theorem 1.12) from the introduction.

Proposition 4.8. Assume that \mathcal{M} is a W*-algebra such that there is no normal (possibly non-unital) embedding of a diffuse abelian von Neumann algebra into \mathcal{M} . Then \mathcal{M} is isomorphic to $\prod_{i \in I} M_{n_i}(\mathbb{C})$ for some collection $(n_i)_{i \in I}$ of natural numbers.

Proof. Using the type decomposition for von Neumann algebras (see for example [8, III.1.4.7] or [43, Theorem V.1.19]) and the structure theory of type I von Neumann algebras (see for example [8, III.1.5.12 and III.1.5.13] or [43, Theorem V.1.27]), we may write \mathcal{M} as a direct sum

$$\mathcal{M} = \mathcal{M}_I \oplus \mathcal{M}_{II} \oplus \mathcal{M}_{III}$$

where \mathcal{M}_I is the direct product of von Neumann algebras of the form $\mathcal{B}(H_\aleph)\overline{\otimes}\mathcal{N}_\aleph$ with H_\aleph is a Hilbert space of dimension \aleph for a cardinal \aleph and \mathcal{N}_\aleph an abelian von Neumann algebra (possibly zero), and \mathcal{M}_{II} and \mathcal{M}_{III} are of types II and III respectively (possibly zero).

Now, if there is an infinite \aleph such that one of the algebras $\mathcal{B}(H_{\aleph})\overline{\otimes}\mathcal{N}_{\aleph}$ appearing in \mathcal{M}_I is non-zero then H_{\aleph} contains an isometrically embedded copy of $L_2[0,1]$. Hence \mathcal{M} contains a normally embedded copy of $\mathcal{B}(L_2[0,1])$, and therefore a normally embedded copy of the diffuse von Neumann algebra $L_{\infty}[0,1]$, which is impossible. If \mathcal{M}_{II} or \mathcal{M}_{III} is non-zero, then whichever is non-zero must contain a non-zero maximal abelian self-adjoint subalgebra \mathcal{N} : indeed, any von Neumann algebra contains a maximal abelian self-adjoint subalgebra by Zorn's lemma, and such a subalgebra will necessarily be weakly closed and contain the unit. As type II and type III von Neumann algebras have no minimal projections, \mathcal{N} is diffuse, again contradicting our assumption. Hence we may assume $\mathcal{M} = \mathcal{M}_I = \prod_{n \in \mathbb{N}} \mathrm{M}_n(\mathcal{N}_n)$.

As \mathcal{M} contains no abelian diffuse subalgebras, each \mathcal{N}_n must be of the form $\ell_{\infty}(I_n)$ for some set I_n (possibly empty). As

$$\mathrm{M}_n(\ell_\infty(I_n)) \cong \prod_{i \in I_n} \mathrm{M}_n(\mathbb{C}),$$

the result follows. \Box

We are now ready for the proof of Theorem 1.12 from the introduction.

Proof of Theorem 1.12. Suppose X is a u.l.f. metric space and $\mathcal{M} \subseteq \mathrm{C}^*_{ql}(X)$ is a WOT-closed C*-subalgebra. Theorem 3.1 implies there is no normal embedding of a diffuse abelian von Neumann algebra into \mathcal{M} . Proposition 4.8 implies that \mathcal{M} is isomorphic to a product of matrix algebras; moreover, as $\ell_2(X)$ is separable, there can be at most countably many matrix algebras appearing in the product. Proposition 4.7 implies that if $\mathcal{M} \subseteq \mathrm{C}^*_{ql}(X)$ then the unit ball of \mathcal{M} is equi-quasi-local, and that if $\mathcal{M} \subseteq \mathrm{C}^*_{u}(X)$, then the unit ball of \mathcal{M} is equi-approximable. \square

5. Products of matrix algebras inside quasi-local algebras

Combining Theorem 3.1 and Proposition 4.8, in order to understand which von Neumann algebras can be normally embedded inside quasi-local algebras, it suffices to focus on von Neumann algebras of the form $\prod_k M_{n_k}(\mathbb{C})$ for some countable collection $(n_k)_k$ of natural numbers. In this section, we obtain Theorem 1.8 from the introduction with the extra hypothesis that the embedding is also normal. We will then show in §6 that this hypothesis is satisfied automatically.

The following is the main result of this section.

Theorem 5.1. Let X be a u.l.f. metric space, and let $(n_k)_k$ be a sequence of natural numbers that tends to infinity. Then any normal embedding of $\mathcal{M} := \prod_k \mathrm{M}_{n_k}(\mathbb{C})$ into $\mathrm{C}^*_{ql}(X)$ that sends $\bigoplus_k \mathrm{M}_{n_k}(\mathbb{C})$ to the ideal of ghost operators sends all of \mathcal{M} to the ideal of ghost operators.

The proof of Theorem 5.1 will proceed via a series of lemmas. The first of these is a simple observation about Hilbert spaces and can be found, for instance, in [2, Lemma 3.1]. We include its short proof here for the reader's convenience.

Lemma 5.2. Let H be a Hilbert space, $p \in \mathcal{B}(H)$ be a projection, and $\xi \in H$. Then $\|\xi\| = 2\|p\xi - \frac{1}{2}\xi\|$.

Proof. Let u = 2p - 1, so u is a unitary, and in particular an isometry. Hence

$$\|\xi\| = \|u\xi\| = \|2p\xi - \xi\| = 2\|p\xi - \frac{1}{2}\xi\|.$$

The next lemma we need for the proof of Theorem 5.1 is about vector measures, and is taken from [2, Lemma 2.1].¹⁵ Recall that a *vector measure* is a function μ from a σ -algebra Σ of subsets of a given set into a Banach space E which is countably additive in the sense that if $(A_n)_n$ is a sequence of disjoint elements of Σ then $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$, where the sum converges in norm. The norm on \mathbb{R}^m in the statement of the lemma is arbitrary, and the notation conv(S) refers to the convex hull of a subset $S \subseteq \mathbb{R}^m$.

Lemma 5.3 ([2]). Let X be a set, $m \in \mathbb{N}$, and $\mu \colon \mathcal{P}(X) \to (\mathbb{R}^m, \|\cdot\|)$ be a vector measure. For all $\xi \in \text{conv}(\mu[\mathcal{P}(X)])$ there is $A \in \mathcal{P}(X)$ with

$$\|\xi - \mu(A)\| \le m \sup_{x \in X} \|\mu(\{x\})\|. \quad \Box$$

We will use this to establish the following result, which is closely related to [2, Lemma 3.2].

Lemma 5.4. Let X be a u.l.f. metric space. Let $(p_s)_{s\in S}$ be an orthogonal family of projections on $\ell_2(X)$, and assume that for every $A\subseteq S$ the projection $p_A:=\sum_{s\in A}p_s$ is contained in $C^*_{al}(X)$.

Then for every $\gamma > 0$ there is $\delta > 0$ (depending on γ , the geometry of X, and the family $(p_s)_s$) such that if $A \subseteq S$ and $X_A := \{x \in X \mid \|p_A \delta_x\| > \gamma\}$ then for every $x \in X_A$ there exists $s \in A$ such that $\|p_s \delta_x\| \ge \delta$.

Proof. Fix $\varepsilon \in (0, \gamma/8)$. Let $\mathcal{M} \cong \ell_{\infty}(S)$ be the von Neumann algebra generated by the projections p_s . As any element of $\ell_{\infty}(S)$ can be approximated in norm by a finite linear combination of projections of the form p_A for $A \subseteq S$, \mathcal{M} is contained in $C_{ql}^*(X)$. Let $S_1 \subseteq S_2 \subseteq \cdots$ be a sequence of finite subsets of S with union S (such sequence exists as separability of $\ell_2(X)$ implies that S is countable). Applying Lemma 1.11, S0 with S1 is u.l.f., S2 is u.l.f.,

$$m := \sup_{x \in X} |B_r(x)|$$

is finite. Fix $\delta > 0$ such that $2m\delta < \gamma/8$; we claim that this δ has the required property. Assume otherwise for contradiction: if the conclusion of the lemma is false, we can find $A \subseteq S$ and $x \in X_A$ such that

$$\sup_{s \in A} \|p_s \delta_x\| < \delta.$$

¹⁵ The statement of that lemma includes an extra " $+\epsilon$ " on the right hand side of the inequality in the conclusion. However, the extra ϵ is only necessary if one wants the set A in the conclusion to be finite: see the first of the two proofs of Lemma 2.1 given in [2].

¹⁶ Notice that this is not the reason why we proved Lemma 1.11. In fact, for the current proof, [40, Lemma 3.2] would suffice (compare also [4, Lemma 4.9]). The novelty in Lemma 1.11 will be needed only for Theorem 1.8.

Define a vector measure $\mu \colon \mathcal{P}(A) \to \ell_2(B_r(x))$ by

$$\mu(B) := \chi_{B_r(x)} p_B \delta_x. \tag{5.1}$$

By our choice of x, we have that

$$\sup_{s \in A} \|\mu(\{s\})\| \le \sup_{s \in A} \|p_s \delta_x\| < \delta.$$

Since $\dim_{\mathbb{R}}(\ell_2(B_r(x))) = 2\dim_{\mathbb{C}}(\ell_2(B_r(x))) \le 2m$, Lemma 5.3 gives $B \subseteq A$ such that

$$\|\mu(B) - \frac{1}{2}\chi_{B_r(x)}p_A\delta_x\| < 2m\delta. \tag{5.2}$$

By our choice of r, p_B and p_A are ε -r-quasi-local. Therefore, as p_B is ε -r-quasi-local and $d(x, X \setminus B_r(x)) > r$, we get

$$\|\chi_{X \setminus B_r(x)} p_B \delta_x\| \le \varepsilon \text{ and } \|\chi_{X \setminus B_r(x)} p_A \delta_x\| \le \varepsilon.$$
 (5.3)

Let $\xi = p_A \delta_x$, and notice that $p_B \xi = p_B \delta_x$. Then

$$\begin{split} \|p_{B}\xi - \frac{1}{2}\xi\| = & \|p_{B}\delta_{x} - \frac{1}{2}p_{A}\delta_{x}\| \\ \leq & \|p_{B}\delta_{x} - \chi_{B_{r}(x)}p_{B}\delta_{x}\| + \|\chi_{B_{r}(x)}p_{B}\delta_{x} - \frac{1}{2}\chi_{B_{r}(x)}p_{A}\delta_{x}\| \\ + & \|\frac{1}{2}\chi_{B_{r}(x)}p_{A}\delta_{x} - \frac{1}{2}p_{A}\delta_{x}\| \end{split}$$

The first term is, by the first part of (5.3), not greater than ε . The second term is, by (5.2), smaller than $2m\delta$, and the third term is, by the second part of (5.3), not greater than $\varepsilon/2$. Therefore

$$||p_B\xi - \frac{1}{2}\xi|| \le 2m\delta + \frac{3}{2}\varepsilon < \frac{5\gamma}{16}.$$

Lemma 5.2 then implies that $\|\xi\| = \|p_A \delta_x\| < \gamma$. This is a contradiction since $\|p_A \delta_x\| > \gamma$ for all $x \in X_A$. \square

The reader should compare the following definition to the usual notion of a ghost operator (Definition 1.7 from the introduction).

Definition 5.5. Let X be a u.l.f. metric space and let $(q_s)_{s \in S}$ be an orthogonal family of projections on $\ell_2(X)$. We say that $(q_s)_{s \in S}$ is asymptotically a ghost (or an asymptotic ghost) if for all $\epsilon > 0$ there are finite subsets $F \subseteq X$ and $T \subseteq S$ such that

$$\left\| \sum_{s \in S \setminus T} q_s \delta_x \right\| < \epsilon$$

for all $x \in X \setminus F$.

Remark 5.6. As Definition 5.5 is quite technical, let us make a few remarks.

1. Let $q \leq r$ be projections on $\ell_2(X)$, and for $x \in X$ let p_x be the projection onto the span of δ_x . Then the C*-identity implies that

$$||q\delta_x||^2 = ||qp_x||^2 = ||p_xqp_x|| \le ||p_xrp_x|| = ||rp_x||^2 = ||r\delta_x||.$$
(5.4)

Hence in particular, if there is a finite subset $T \subseteq S$ (possibly just the empty set) such that SOT- $\sum_{q \in S \setminus T} q_s$ is a ghost, then $(q_s)_{s \in S}$ is asymptotically a ghost.

2. If $q_s)_{s\in S}$ is an asymptotic ghost, and if each q_s is itself a ghost (for example, if it has finite rank), then SOT- $\sum_{s\in S}q_s$ is also a ghost. Indeed, given $\epsilon>0$ let $T\subseteq S$ and $F\subseteq X$ be finite sets such that $\|\sum_{s\in S\setminus T}q_s\delta_x\|<\epsilon/2$ for all $x\notin F$. As $\sum_{s\in T}q_s$ is a ghost, there is finite $F'\subseteq X$ such that $\|\sum_{s\in T}q_s\delta_x\|<\epsilon/2$ for all $x\notin F'$. Hence for $x\notin F\cup F'$, $\|\sum_{s\in S}q_s\delta_x\|<\epsilon$.

In particular, this discussion and the point above show that asymptotic ghosts are only really interesting when the projections q_s have infinite rank.

3. The converse to point (2) above is false: there are asymptotic ghosts $(q_s)_{s \in S}$ such that for every finite subset $T \subseteq S$, SOT- $\sum_{s \in S \setminus T} q_s$ is not a ghost. Indeed, let $X := \bigsqcup_{n=1}^{\infty} X_n$ be the coarse space built from a sequence $(X_n)_n$ of expander graphs with associated Laplacian $\Delta_X \in \mathcal{B}(\ell_2(X))$ as in the discussion on [16, page 348]. Let $Y = X \times \mathbb{N}$ (equipped with the ℓ_1 -sum metric), and let Δ_Y be the operator that identifies with Δ_X on $\ell_2(X \times \{m\})$. Then Δ_Y is a bounded operator with propagation one, and so in $C_u^*(Y) \subseteq C_{ql}^*(Y)$. Moreover, with respect to the decomposition $\ell_2(Y) = \bigoplus_{n,m \in \mathbb{N}} \ell_2(X_n \times \{m\})$, Δ_Y is a block diagonal operator acting on each $\ell_2(X_n \times \{m\})$ as the graph Laplacian of X_n . As $(X_n)_n$ is an expander, Δ_Y has spectrum contained in $\{0\} \cup [\epsilon, \infty)$ for some $\epsilon > 0$. Following the discussion on [16, page 349], the spectral projection q associated to $\{0\}$ is the block operator that acts on $\ell_2(X_n \times \{m\})$ by the rank one projection with matrix

$$q_{n,m} := \frac{1}{|X_n|} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}.$$
 (5.5)

Define $q_n := \text{SOT-}\sum_{m \in \mathbb{N}} q_{n,m}$ and set $S = \mathbb{N}$. The family $(q_s)_{s \in S}$ is then an asymptotic ghost, but $\text{SOT-}\sum_{s \in T} q_s$ is not a ghost for any nonempty subset T of the index set S: indeed, if t is an element of T, and $\delta = \frac{1}{|X_t|}$, then $\text{SOT-}\sum_{s \in T} q_s$ has infinitely many matrix entries with value δ .

4. In the example from point (3) above, it is also true that $C_{ql}^*(Y)$ itself contains non-trivial (i.e. infinite rank) ghost projections. We do not know of a u.l.f. space X such that $C_{ql}^*(X)$ contains an asymptotic ghost, but no non-trivial ghost projections at all.

 $^{^{17}}$ This remark will be used in the proof of Theorem 5.1.

Constructing such an example, or showing that none can exist, seems an interesting question.

5. On the other hand, if $(q_s)_{s \in S}$ is an asymptotic ghost such that $q_s \neq 0$ for all s, S is infinite, and $\sum_{s \in T} q_s$ is in $C^*_{ql}(X)$ for all $T \subseteq S$, then X does not have property A. Thus the existence of non-trivial asymptotic ghosts in $C^*_{ql}(X)$ is an 'exotic' phenomenon. We will not use this, but sketch a proof for the reader's convenience. We will first construct an infinite $T \subseteq S$ and disjoint finite subset A_s , for $s \in T$, such that $a := SOT-\sum_{s \in T} \chi_{A_s} q_s \chi_{A_s}$ is a non-compact ghost.¹⁸

We first iteratively choose an infinite subset T of S and for each $s \in T$ a finite subset A_s of X such that $\|\chi_{A_s}q_s\chi_{A_s}\| \geq 1/2$ for all $s \in T$, and so that the collection $(A_s)_{s \in T}$ is pairwise disjoint. Indeed, $s \in S$ be arbitrary, and choose a finite subset A_s of X such that $\|\chi_{A_s}q_s\chi_{A_s}\| \geq 1/2$. Set $F_1 = \{s\}$. Now, say a subset F_n consisting of n elements of S has been chosen together with pairwise disjoint finite subsets $(A_s)_{s \in F_n}$ such that $\|\chi_{A_s}q_s\chi_{A_s}\| \geq 1/2$ for all $s \in F_n$. Let $A = \sqcup_{s \in F_n}A_s$. As the set $S \setminus F_n$ is infinite, the projections $(q_s)_{s \in S \setminus F_n}$ SOT-converge to zero. As χ_A is finite rank, there is therefore $s \in S \setminus F_n$ such that $\|q_s\chi_A\| < 1 - (1/\sqrt{2})$. As $\|q_s\| = 1$, there is finite $A_s \subseteq X \setminus A$ with $\|q_s\chi_{A_s}\| \geq 1/\sqrt{2}$. Hence by the C*-equality, $\|\chi_{A_s}q_s\chi_{A_s}\| \geq 1/2$. Set $F_{n+1} = F_n \cup \{s\}$. Let now $T = \bigcup_n F_n$.

Define now $a := \text{SOT-}\sum_{s \in T} \chi_{A_s} q_s \chi_{A_s}$; the sum SOT-converges as the A_s are pairwise disjoint, and is non-compact by pairwise disjointness of the A_s and as $\|\chi_{A_s} q_s \chi_{A_s}\| \ge 1/2$ for all s. We claim moreover that a is a ghost. Indeed, we may argue analogously to point (2) above. Let $\epsilon > 0$. As (q_s) is an asymptotic ghost, there is finite $R \subseteq T$ and finite $F' \subseteq X$ such that for all $x \in X \setminus F'$

$$\left\| \sum_{s \in T \setminus R} q_s \delta_x \right\| < \epsilon. \tag{5.6}$$

As $\sum_{s\in R} \chi_{A_s} q_s \chi_{A_s}$ is finite rank, there is finite $F''\subseteq X$ such that

$$\left\| \sum_{s \in R} \chi_{A_s} q_s \chi_{A_s} \delta_x \right\| < \epsilon \tag{5.7}$$

for all $x \in X \setminus F''$. Let $F = F' \cup F''$. Then for $x \in X \setminus (F' \cup F'')$ we claim that

$$\left\| \sum_{s \in T} \chi_{A_s} q_s \chi_{A_s} \delta_x \right\| < \epsilon,$$

which will show that a is indeed a ghost. Indeed: either (1), x is not in any A_s , in which case the above is zero; or (2) x is in A_{s_0} for some $s_0 \in R$, in which case

¹⁸ The expert reader has already seen this 'usual diagonalization argument' in [7, Lemma 5.6] and in the proof of the equivalence between property A and not having non-compact ghost operators in $C_u^*(X)$, see [34, Lemma 4.2].

$$\left\| \sum_{s \in T} \chi_{A_s} q_s \chi_{A_s} \delta_x \right\| = \left\| \chi_{A_{s_0}} q_{s_0} \chi_{A_{s_0}} \delta_x \right\| = \left\| \sum_{s \in R} \chi_{A_s} q_s \chi_{A_s} \delta_x \right\| < \epsilon$$

by line (5.7); or (3), x is in A_{s_1} for some $s_1 \in T \setminus R$, in which case

$$\left\| \sum_{s \in R} \chi_{A_s} q_s \chi_{A_s} \delta_x \right\| = \left\| \chi_{A_{s_1}} q_{s_1} \delta_x \right\| \le \left\| q_s \delta_x \right\| \le \left\| \sum_{s \in T \setminus R} q_s \delta_x \right\|, < \epsilon$$

where the last inequality is from line (5.6), and the penultimate inequality follows from the argument of line (5.4).

Now, Corollary 4.7 and the fact that $\sum_{s\in R} q_s$ is in $C^*_{ql}(X)$ for all $R\subseteq T$ implies that the family $(q_s)_{s\in T}$ is equi-quasi-local, and one can use this to show that a is in $C^*_{ql}(X)$. Hence X does not have property A by combining [34, Theorem 1.3] and [41, Theorem 3.3]

Our next lemma is an analogue of [2, Corollary 3.3], adapted to the asymptotic ghosts.

Lemma 5.7. Let (X, d) be a u.l.f. metric space and let $(p_s)_{s \in S}$ be an orthogonal collection of projections in $\mathcal{B}(\ell_2(X))$. Consider the following three conditions on $(p_s)_{s \in S}$.

- (i) The projection SOT- $\sum_{s\in A} p_s$ is in $C_{ql}^*(X)$ for all $A\subseteq S$.
- (ii) The projection SOT- $\sum_{s \in S} p_s$ is not a ghost.
- (iii) The collection $(p_s)_{s \in S}$ is not asymptotically a ghost,
- 1. Conditions (i) and (ii) together imply that there are $\delta > 0$, an infinite subset $X' \subseteq X$, and a function $f: X' \to S$ such that $||p_{f(x)}\delta_x|| \ge \delta$ for all $x \in X'$.
- Conditions (i) and (iii) together imply that there are δ > 0, an infinite subset X' ⊆ X, and a function f: X' → S such that ||p_{f(x)}δ_x|| ≥ δ for all x ∈ X' and for every finite T ⊆ S there exists finite F ⊆ X such that f(x) ∈ S \ T for all x ∈ X' \ F (in other words, f(x) tends to infinity in S as x tends to infinity in X').

Remark 5.8. This is the moment when we can see that replacing the notion of a ghost projection with that of an asymptotic ghost has its merits. Let Y and $(q_s)_{s \in S}$ be the asymptotic ghost constructed in Remark 5.6, part (3). Then $\sum_{s \in S} q_s$ is not a ghost. Moreover, any function $f: X' \to S$ with the properties as in Lemma 5.7 (1) necessarily takes finite image, and it therefore cannot satisfy the requirements on f stated in (2). This shows that the assumption that $(q_s)_{s \in S}$ is not an asymptotic ghost is necessary to deduce the stronger conclusion of Lemma 5.7.

Proof of Lemma 5.7. In order to simplify notation, for each $A \subseteq S$ we define

$$p_A := \text{SOT-} \sum_{s \in A} p_s.$$

(1) Assume that $(p_s)_s$ satisfies (i) and (ii). Then p_S is not a ghost and therefore there must exist $\gamma > 0$ such that the set

$$X_S := \{ x \in X \mid ||p_S \delta_x|| > \gamma \}$$

is infinite. Lemma 5.4 implies there exists $\delta > 0$ such that for every $x \in X_S$ some $f(x) \in S$ satisfies $||p_{f(x)}\delta_x|| > \delta$, so we are done with this part if we define $X' := X_S$.

(2) Now assume (i) and (iii) from the statement of Lemma 5.7. Fix a nested collection $S_1 \subseteq S_2 \subseteq \cdots$ of finite subsets of S whose union is S, and define $q_n := \sum_{s \in S \setminus S_n} p_s$. As $(p_s)_s$ is not asymptotically a ghost there is $\gamma > 0$ such that for every $n \in \mathbb{N}$ the set

$$X_n := \{ x \in X \mid ||p_n \delta_x|| > \gamma \}$$

is infinite. By the monotonicity property as in line (5.4) above and the fact that the sequence $(q_n)_n$ is decreasing, we see that $X_1 \supseteq X_2 \supseteq \cdots$. As each X_n is infinite, we may choose a sequence $(x_n)_n$ of distinct elements of X such that $x_n \in X_n$ for all X. Lemma 5.4 gives $\delta > 0$ such that for every n there exists $f(x_n) \in S \setminus S_n$ which satisfies $\|p_{f(x)}\delta_x\| < \delta$. Setting $X' := \{x_n \mid n \in \mathbb{N}\}$, we are done. \square

Theorem 5.1 will be obtained as a corollary of the following more technical result.

Theorem 5.9. Let X be a u.l.f. metric space, let $(n_k)_k$ be a sequence of natural numbers that converges to infinity, let $\mathcal{M} := \prod_k \mathrm{M}_{n_k}(\mathbb{C})$, and let $\Phi : \mathcal{M} \to \mathrm{C}^*_{ql}(X)$ be a normal *-homomorphic embedding. Let $S := \{(i,k) \in \mathbb{N} \times \mathbb{N} \mid 1 \leq i \leq n_k\}$. For each $s = (i,k) \in S$, let $e^k_{i,i}$ be the corresponding diagonal matrix unit in $\mathrm{M}_{n_k}(\mathbb{C})$, and define $q_s := \Phi(e^k_{i,i})$. Then $(q_s)_{s \in S}$ is asymptotically a ghost.

Proof. Assume for contradiction that $(q_s)_s$ is not asymptotically a ghost. Then, by the second part of Lemma 5.7 there are $\delta > 0$, an infinite subset $X' \subseteq X$, and a function $f: X' \to S$ such that

$$||q_{f(x)}\delta_x|| \ge \delta$$
 for all $x \in X'$. (5.8)

Moreover, Lemma 5.7 guarantees that f can be taken so that for every fixed value of k there are only finitely many pairs (i,k) in S. Therefore, if we write f(x) = (i(x), k(x)), it follows that

$$k(x) \to \infty$$
 as $x \to \infty$ (5.9)

(i.e. for any $K \in \mathbb{N}$ there exists a finite $F \subseteq X'$ such that if $x \in X' \setminus F$, then $k(x) \geq K$). For each $k \in \mathbb{N}$ and each pair $i, j \in \{1, ..., n_k\}$, let $e_{i,j}^k$ denote the matrix in $M_{n_k}(\mathbb{C})$ with 1 its (i, j)-entry and zero in all others, and set

$$v_{i,j}^k := \Phi(e_{i,j}^k).$$

Claim 5.10. There are $\gamma, r > 0$ such that for all $x \in X'$ and $j \in \{1, ..., n_{k(x)}\}$ there is $z = z(x, j) \in B_r(x)$ such that $\|\chi_{\{z\}} v_{j, i(x)}^{k(x)} \delta_x\| \ge \gamma$.

Proof. By Lemma 1.11,¹⁹ the family $\{v_{i,j}^k \mid k \in \mathbb{N}, i, j \in \{1, ..., n_k\}\}$ is equi-quasi-local. So, there is r > 0 such that each $v_{i,j}^k$ is $(\delta/2)$ -r-quasi-local. Let $m = \sup_{x \in X} |B_r(x)|$ and set $\gamma = \delta/(2m)$; we claim this γ has the desired property.

Fix $x \in X'$ and $j \in \{1, ..., n_{k(x)}\}$. Line (5.8) gives $||q_{f(x)}\delta_x|| \geq \delta$; since $v_{j,i(x)}^{k(x)}$ is a partial isometry with source projection $q_{f(x)}$, we have that $||v_{j,i(x)}^{k(x)}\delta_x|| \geq \delta$. By our choice of r, we must have

$$\left\|\chi_{B_r(x)}v_{j,i(x)}^{k(x)}\delta_x\right\| \ge \delta/2.$$

Therefore, by the choice of γ , there is $z \in B_r(x)$ such that

$$\left\|\chi_{\{z\}}v_{j,i(x)}^{k(x)}\delta_x\right\| \ge \gamma. \quad \Box$$

Claim 5.11. Given $\gamma, r > 0$, let $\{z(x, j) \mid x \in X', j \in \{1, ..., n_{k(x)}\}\}$ be as given by the previous claim. Then

$$\lim_{x \to \infty} |\{z(x,j) \mid j \in \{1, ..., n_{k(x)}\}\}| = \infty.$$

Proof. Let $N \in \mathbb{N}$ be arbitrary. Let $K \in \mathbb{N}$ be such that for all $k \geq K$, $n_k \geq N\gamma^{-2}$. Line (5.9) gives a finite subset $F \subseteq X'$ such that $k(x) \geq K$ for all $x \in X' \setminus F$. We claim that $|\{z(x,j) \mid j \in \{1,...,n_{k(x)}\}\}| \geq N$ whenever $x \in X' \setminus F$, which will establish the claim.

Let $x \in X' \setminus F$ and $j \in \{1, ..., n_{k(x)}\}$. As $\|\chi_{\{z(x,j)\}} v_{j,i(x)}^{k(x)} \delta_x\| \ge \gamma$ we have that with s = (j, k(x)) (using the fact that $0 \le p \le q$ implies $\|aq\| \ge \|ap\|$ for all operators a)

$$\|q_{s}\delta_{z(x,j)}\| = \|\chi_{\{z(x,j)\}}q_{s}\| \ge \|\chi_{\{z(x,j)\}}v_{j,i(x)}^{n(x)}(v_{j,i(x)}^{n(x)})^{*}\|$$

$$\ge \|\chi_{\{z(x,j)\}}v_{j,i(x)}^{n(x)}\| \ge \|\chi_{\{z(x,j)\}}v_{j,i(x)}^{n(x)}\delta_{x}\| \ge \gamma. \quad (5.10)$$

Fix $x \in X'$ and for $z \in X$ let

$$G = G(z) := \{ i \le n_{k(x)} \mid z(x, i) = z \}.$$

Using the Pythagorean theorem and line (5.10), we have that

$$1 \ge \left\| \sum_{j \in G} q_{j,k(x)} \delta_z \right\|^2 = \sum_{i \in G} \|q_{j,k(x)} \delta_z\|^2 \ge \gamma^2 |G|.$$

¹⁹ This is the place where we use Lemma 1.11, and equi-approximability, or equi-quasi-locality results from earlier papers would not suffice.

Hence, $|G(z)| \leq \gamma^{-2}$. Since $z \in X$ was arbitrary and $i \in \{1, \ldots, n_{k(x)}\}$, this implies that $|\{z(x,j) \mid j \in \{1, \ldots, n_{k(x)}\}\}| \geq n_{k(x)}\gamma^2$. Since $n(k) \geq N\gamma^{-2}$, this set is larger than N for $x \in X' \setminus F$, so we are done. \square

We are now ready to complete the proof of Theorem 5.9. Indeed, Claims 5.10 and 5.11 combined imply that for any $N \in \mathbb{N}$ we can find $x \in X'$ such that $B_r(x)$ contains at least N distinct points of the form z(x,j). This contradicts that X is u.l.f. \square

Finally, we can complete this section with the proof of Theorem 5.1.

Proof of Theorem 5.1. Suppose that X is a u.l.f. metric space, $(n_k)_k$ is a sequence of natural numbers that tends to infinity, and that $\Phi \colon \mathcal{M} = \prod_k \mathrm{M}_{n_k}(\mathbb{C}) \to \mathrm{C}^*_{ql}(X)$ is a normal embedding sending $\bigoplus_n \mathrm{M}_n(\mathbb{C})$ inside the ghost operators. We need to prove that $\Phi(1_{\mathcal{M}})$ is a ghost.

With notation $q_s := \Phi(e_{i,i}^k)$ as in the statement of Theorem 5.9 we have that the collection $(q_s)_{s \in S}$ is asymptotically a ghost. However, by assumption every q_s is itself a ghost. Hence by Remark 5.6, part (2), $\Phi(1_{\mathcal{M}}) = \sum_{s \in S} q_s$ is also a ghost. \square

6. From embeddings to WOT-continuous embeddings

In §3 and §5, we proved versions of Theorems 1.4 and 1.8 with the extra assumption that the embeddings are normal. In this section, we show that this extra assumption is not needed for the validity of those theorems.

The main tools that we use here are several automatic normality results for von Neumann algebras which might be of interest in their own right (at least some of them seem likely to be known to experts). For the sake of completeness, we include a characterization of when exactly a von Neumann algebra admits a non-normal representation on a separable Hilbert space, although we do not need this for our main results.

6.1. Embeddings of $\prod_k M_{n_k}(\mathbb{C})$

It turns out that if $(n_k)_k$ tends to infinity, then any representation of $\prod_k M_{n_k}(\mathbb{C})$ on a separable Hilbert space is normal. This is due to Takemoto: see [42, Theorem 1]. Takemoto's result has apparently been overlooked: its proof closely resembles the proof of [43, Theorem V.5.1]. The only difference is in the proof of Case I in [43, Theorem V.5.1], where now one has to argue that for every n the projections $p_{n,j,k}$ can be constructed for sufficiently large j (in the type II case covered by [43, Theorem V.5.1], they exist for arbitrarily large n).

As the precise statement we want is not explicit in Takemoto's paper [42], we show how to derive it.

Theorem 6.1 (Takemoto). Let $(n_k)_k$ be a sequence of natural numbers that tends to infinity. Then every representation of $\mathcal{M} := \prod_{k \in \mathbb{N}} \mathrm{M}_{n_k}(\mathbb{C})$ on a separable Hilbert space is normal.

Proof. Let $\pi: \mathcal{M} \to \mathcal{B}(H)$ be a non-normal representation on a Hilbert space H; we must show that H is non-separable. According to Proposition 2.1, part (2), there is a collection of orthogonal projections $(p_i)_i$ in \mathcal{M} such that SOT- $\sum \pi(p_i) < \pi(\text{SOT-}\sum p_i)$. For each $k \in \mathbb{N}$, let $1_k \in \mathcal{M}$ be the unit of the factor $M_{n_k}(\mathbb{C})$, and for each $n \in \mathbb{N}$, let

$$e_n := \sum_{\{k \mid n_k = n\}} 1_k,$$

so $e_n \in \mathcal{M}$ is a central projection in \mathcal{M} such that $e_n \mathcal{M}$ is exactly the *n*-homogeneous part of \mathcal{M} (possibly zero). Let $p_{i,n} := p_i e_n$, and let $q_n := e_n - \sum_i p_{i,n}$ (only finitely many terms in the sum are non-zero, as $\{k \mid n_k = n\}$ is finite for every n). Then

SOT-
$$\sum_{n} \pi(e_n) = \text{SOT-}\sum_{n} \left(\pi(q_n) + \sum_{i} \pi(p_{i,n})\right)$$
$$= \text{SOT-}\sum_{n} \pi(q_n) + \text{SOT-}\sum_{i} \pi(p_{i,n})$$
(6.1)

As for each i, SOT- $\sum_{n} p_{i,n} = p_i$, we have that

$$SOT-\sum_{i,n} \pi(p_{i,n}) \le SOT-\sum_{i} \pi(p_i) < \pi(SOT-\sum_{i} p_i),$$
(6.2)

so combining lines (6.1) and (6.2) we get

SOT-
$$\sum_{n} \pi(e_n) < \text{SOT-}\sum_{n} \pi(q_n) + \pi \left(\text{SOT-}\sum_{i} p_i \right).$$

As SOT- $\sum_i p_i = \text{SOT-}\sum_{n,i} p_{i,n}$ and as SOT- $\sum_n \pi(q_n) \le \pi(\text{SOT-}\sum_n q_n)$, this implies that

SOT-
$$\sum_{n} \pi(e_n) < \pi \left(\text{SOT-} \sum_{n} q_n \right) + \pi \left(\text{SOT-} \sum_{n,i} p_{i,n} \right)$$

= $\pi \left(\text{SOT-} \sum_{n} \left(q_n + \sum_{i} p_{i,n} \right) \right) = \pi(1_{\mathcal{M}}).$

Define $r := \pi(1_{\mathcal{M}}) - \text{SOT-}\sum_n \pi(e_n)$, which is a non-zero projection in $\pi(\mathcal{M})'$. Then $m \mapsto r\pi(m)r$ is a non-zero representation of \mathcal{M} on rH that contains all the e_n in its kernel. Hence [42, Theorem 1]²⁰ implies that rH is non-separable. \square

²⁰ More precisely: Takemoto requires $e_n \neq 0$ for all n, and our assumption that $n_k \to \infty$ implies only that $e_n \neq 0$ for infinitely many n; nonetheless, the same proof as of [42, Theorem 1] gives the result (compare also [42, Remark on page 575], which makes a related point).

Proof of Theorem 1.8. Suppose X is a u.l.f. metric space, $(n_k)_k$ is a sequence of natural numbers that tends to infinity, and $\Phi \colon \prod_k \mathrm{M}_{n_k}(\mathbb{C}) \to \mathrm{C}^*_{ql}(X)$ is a *-homomorphic embedding which sends $\bigoplus_k \mathrm{M}_{n_k}(\mathbb{C})$ to the ideal of ghost operators. By Theorem 6.5, Φ is normal, and Theorem 5.9 implies that Φ sends all of \mathcal{M} to the ideal of ghost operators. \square

Remark 6.2. It is also possible to adapt the proof of [5, Theorem 4.3] to show that if there is a norm-continuous *-homomorphic embedding of $\prod_k \mathrm{M}_{n_k}(\mathbb{C})$ into $\mathrm{C}^*_{ql}(X)$, then there is a similar embedding that is also normal; this would be good enough for our results. We chose here to go through Takemoto's theorem instead as it seemed more conceptual to rely on a very general von Neumann algebra result than on something that seems special to uniform Roe algebras.

6.2. Embeddings of $L_{\infty}(Z,\mu)$

In this subsection we show that if there exists a (possibly non-normal) embedding of $L_{\infty}(Z,\mu)$ into $\mathcal{B}(H)$ for some separable H, there is a non-trivial corner of $L_{\infty}(Z,\mu)$ on which the embedding is normal.

We will actually prove this in much more generality. The following is the main result of this subsection.

Proposition 6.3. Let \mathcal{M} be a von Neumann algebra, and let $\pi : \mathcal{M} \to \mathcal{B}(H)$ be a (not necessarily normal, not necessarily faithful, and not necessarily unital) representation of \mathcal{M} on a separable Hilbert space. Then there exists a non-zero projection $r \in \mathcal{M}$ such that the restriction of π to the corner $r\mathcal{M}r$ is normal.

Example 6.4. Separability of H is necessary for Proposition 6.3 to hold. Indeed, let $\mathcal{M} = L_{\infty}[0,1]$, and let $\pi: \mathcal{M} \to \mathcal{B}(H)$ be the direct sum of all one-dimensional representations. No one-dimensional representation of a diffuse abelian von Neumann algebra is normal (we will show this in the proof of Theorem 6.5 below). As any corner of \mathcal{M} is a diffuse abelian von Neumann algebra, the conclusion of Proposition 6.3 fails. Notice that, if one considers a single one-dimensional representation ρ of \mathcal{M} , then the only possible r making Proposition 6.3 true has to belong to the kernel of ρ .

For the proof of Proposition 6.3, recall that a projection p in a von Neumann algebra is called *countably decomposable*, or σ -finite, if any family of orthogonal subprojections of p is countable.

Proof of Proposition 6.3. Using [8, III.1.2.6] there exists a family of $(c_i)_i$ of mutually orthogonal countably decomposable projections in \mathcal{M} such that $\sum_i c_i = 1_{\mathcal{M}}$ (we really only need that some c_i is non-zero). Hence replacing \mathcal{M} with $c_i \mathcal{M} c_i$ for any i such that $c_i \neq 0$, we may assume that \mathcal{M} is countably decomposable.

As in the proof of Proposition 4.8 we may write \mathcal{M} as a direct sum

$$\mathcal{M} = \mathcal{M}_I \oplus \mathcal{M}_{II} \oplus \mathcal{M}_{III}$$

where \mathcal{M}_I is the direct product of von Neumann algebras of the form $\mathcal{B}(H_\aleph)\overline{\otimes}\mathcal{N}_\aleph$ with H_\aleph is a Hilbert space of dimension \aleph for a cardinal \aleph and \mathcal{N}_\aleph an abelian von Neumann algebra (possibly zero), and \mathcal{M}_{II} and \mathcal{M}_{III} are of types II and III respectively (possibly zero). If any of the summands \mathcal{M}_{III} , \mathcal{M}_{II} , or $\mathcal{B}(H_\aleph)\overline{\otimes}\mathcal{N}_\aleph$ with \aleph infinite are non-zero, then [43, Theorem V.5.1] implies that the restriction of π to that summand is normal, and we are done.

Therefore \mathcal{M} has a corner which is n-homogeneous for some n, and by replacing \mathcal{M} with this corner we may assume that \mathcal{M} is of the form $M_n(\mathbb{C}) \overline{\otimes} \mathcal{N}$ for an abelian von Neumann algebra \mathcal{N} . In particular, we may assume that \mathcal{M} has a normal tracial state, say τ .

Let $(p_j)_{j\in J}$ be a family of mutually orthogonal non-zero projections in $\mathcal{B}(H)$ that is maximal with respect to the following condition:

(*) There exists a (countable, as \mathcal{M} is countably decomposable) family of mutually orthogonal non-zero projections $(q_{n,j})_{n\in\mathbb{N}}$ in \mathcal{M} such that $p_j = \pi(\text{SOT-}\sum_n q_{n,j}) - \text{SOT-}\sum_n \pi(q_{n,j})$ (and this difference is non-zero).

Of course, the family (p_j) might be empty. As H is separable, we may assume that J is a subset of \mathbb{N} . Now, for each $j \in J$, choose $n(j) \in \mathbb{N}$ such that

$$\tau\left(\text{SOT-}\sum_{n\geq n(j)}q_{n,j}\right)<2^{-j-2}$$

 $(n(j) \text{ exists by normality of } \tau)$. For each $j \in J$, define $q_j := \text{SOT-}\sum_{n \geq n(j)} q_{n,j}$, and define $q := \bigvee_{j \in J} q_j^{21}$; we claim $r := 1_{\mathcal{M}} - q$ has the desired property that the restriction of Φ to $r\mathcal{M}r$ is normal.

We first show that r is non-zero. Note that for any finite $F \subseteq J$, $\tau(\bigvee_{j \in F} q_j) \le \tau(\sum_{j \in F} q_j)$ by repeated applications of [8, III.1.1.3]. Applying the definition of normality to the increasing net $(\bigvee_{j \in F} q_j)_{F \subseteq J \text{ finite}}$ gives

$$\tau(q) = \tau \left(\lim_{F} \bigvee_{j \in F} q_j \right) = \lim_{F} \tau \left(\bigvee_{j \in F} q_j \right) \le \lim_{F} \sum_{j \in F} \tau(q_j) = \sum_{j \in J} \tau(q_j)$$
$$\le \sum_{j \in \mathbb{N}} 2^{-j-2} = 1/2.$$

The different q_j need not be orthogonal, so this is an honest supremum, not a sum.

Hence in particular, $\tau(r) \geq 1/2$, so r is non-zero.

We finally claim that π restricted to $r\mathcal{M}r$ is normal. The definition of p_j (see (*) above) implies that $\pi(q_j) \geq p_j$. Hence for any j, $\pi(q) \geq \pi(q_j) \geq p_j$. Hence $1_H - \pi(q)$ is orthogonal to all the p_j . As $\pi(r) = \pi(1_{\mathcal{M}} - q) \leq 1_H - \pi(q)$, this implies that $\pi(r)$ is orthogonal to all the p_j too. Assume for contradiction that π is not normal when restricted to $r\mathcal{M}r$. Then by condition (2) in Proposition 2.1, there exists a family of non-zero mutually orthogonal projections $(q_{p,n})_{n\in\mathbb{N}}$ in $r\mathcal{M}r$ such that

$$p := \pi \left(\text{SOT-} \sum_{n} q_{p,n} \right) - \text{SOT-} \sum_{n} \pi(q_{p,n}) \neq 0.$$

However, $p \leq \pi(r)$, so p is orthogonal to all the p_j , contradicting maximality of the family (p_j) . \square

We are now ready to complete the remaining proofs of the theorems from the introduction.

Proof of Theorem 1.4. Suppose that X is a u.l.f. metric space. Let \mathcal{N} be a diffuse abelian von Neumann algebra that embeds into $C_{ql}^*(X)$. Proposition 6.3 then implies that there is a normal embedding of $pL_{\infty}(Z,\mu)p$ into $C_{ql}^*(X)$, where p is a non-zero projection in \mathcal{N} . Since each non-zero corner of \mathcal{N} is itself a diffuse abelian von Neumann algebra, we have a normal embedding of a diffuse abelian von Neumann algebra into $C_{ql}^*(X)$. This contradicts Theorem 3.1, which asserts that there are no such normal embeddings. \square

Proof of Corollary 1.5. Suppose X is a u.l.f. metric space and \mathcal{M} is a von Neumann algebra that embeds into $\mathrm{C}^*_{ql}(X)$. By Theorem 1.4 \mathcal{M} has no embedded diffuse abelian WOT-closed subalgebras, hence Proposition 4.8 and separability of $\ell_2(X)$ imply that \mathcal{M} is isomorphic to $\prod_k \mathrm{M}_{n_k}(\mathbb{C})$ for some sequence $(n_k)_{k\in\mathbb{N}}\subseteq\mathbb{N}$. \square

Proof of Corollary 1.9. Assume that X is a u.l.f. metric space such that $\mathrm{C}^*_{ql}(X)$ contains no noncompact ghost projections and a von Neumann algebra \mathcal{M} *-homomorphically embeds into $\mathrm{C}^*_{ql}(X)$ by a map sending minimal projections to compact operators. Corollary 1.5 implies that \mathcal{M} is isomorphic to $\prod_k \mathrm{M}_{n_k}(\mathbb{C})$ for some sequence $(n_k)_{k\in\mathbb{N}}\subseteq\mathbb{N}$. It follows that the embeddings send $\bigoplus_k \mathrm{M}_{n_k}(\mathbb{C})$ to compact operators.

Assume towards a contradiction that the sequence $(n_k)_k$ is unbounded. Applying Theorem 1.8 to the composition of the embeddings, we conclude that all of $\prod_k \mathrm{M}_{n_k}(\mathbb{C})$ is sent to ghost operators. This contradicts the assumption that all ghosts in $\mathrm{C}^*_{ql}(X)$ are compact. \square

6.3. A general characterization

Finally in this section, we include a characterization of those von Neumann algebras that admit a non-normal representation on a separable Hilbert space. We also show that

any von Neumann algebra that can be represented on a separable Hilbert space has separable predual. These results are included for the sake of completeness: they are not used for any of our results on embeddings into quasi-local algebras.

Theorem 6.5. The following are equivalent for every von Neumann algebra \mathcal{M} .

- 1. \mathcal{M} has no direct summands of the form $M_n(\mathcal{N})$ for $n \geq 1$ and an infinite-dimensional abelian von Neumann algebra \mathcal{N} .
- 2. Every representation of \mathcal{M} on a separable Hilbert space is automatically normal.
- Every representation of M on a finite-dimensional Hilbert space is automatically normal.

Proof. Assume (1). As in the proof of Proposition 4.8 we may write \mathcal{M} as a direct sum

$$\mathcal{M} = \mathcal{M}_0 \oplus \mathcal{M}_1$$

where \mathcal{M}_0 is a direct product of von Neumann algebras of the form $M_n(\mathcal{N}_n)$ for some abelian von Neumann algebra \mathcal{N}_n , and \mathcal{M}_1 contains no summand of finite type I. Using [43, Theorem V.5.1], every representation of \mathcal{M}_1 on a separable Hilbert space is automatically normal, so we may assume $\mathcal{M} = \mathcal{M}_0$. Moreover, assumption (1) tells us that each \mathcal{N}_n must be finite-dimensional (possibly zero). Hence either \mathcal{M} is finite-dimensional (in which case any representation at all is normal), or \mathcal{M} is infinite-dimensional and of the form $\prod_k M_{n_k}(\mathbb{C})$ for a sequence $(n_k)_k$ that converges to infinity. Theorem 6.1 then gives us condition (2).

The implication from condition (2) to (3) is trivial, so it remains to show that (3) implies (1). Assume that (1) fails. We first consider the case when \mathcal{M} is abelian; we may assume moreover that \mathcal{M} is infinite-dimensional, otherwise (1) is trivially true. Let $(p_i)_{i\in I}$ be a maximal collection of mutually orthogonal minimal projections in \mathcal{M} (possibly empty). Then $\mathcal{M} \cong \mathcal{D} \oplus \ell_{\infty}(I)$, where \mathcal{D} is diffuse (possibly zero). If I is infinite, then the *-homomorphism $\phi:\ell_{\infty}(I)\to\mathbb{C}$ defined by evaluation along any non-principal ultrafilter on I is a non-normal representation on a one-dimensional Hilbert space. If I is finite, \mathcal{D} must be non-zero by infinite-dimensionality of \mathcal{M} . As \mathcal{D} is a non-zero commutative \mathbb{C}^* -algebra, there is a (non-zero) multiplicative linear functional $\phi:\mathcal{D}\to\mathbb{C}$. As \mathcal{D} is diffuse, for any non-zero projection $p\in\mathcal{D}$ there is a non-zero projection $p_0\leq p$ such that $\phi(p)=0$: this follows as we can write p=q+r for two non-zero orthogonal projections q and r; as ϕ can only take the values 0 and 1 on projections, it must send at least one of q and r to zero. Hence if $(p_i)_i$ is a maximal family of orthogonal projections in \mathcal{D} such that $\phi(p_i)=0$, we have that $\sum_i p_1=1_{\mathcal{D}}$ so $\phi(\sum p_i)=1$ even though $\phi(p_i)=0$ for all i. Hence ϕ is not normal and (3) fails.

For the general case, suppose that \mathcal{M} has a direct summand of the form $M_n(\mathcal{N})$, where $n \geq 1$ and \mathcal{N} is an infinite-dimensional abelian von Neumann algebra. The above

argument gives a non-normal representation $\phi : \mathcal{N} \to \mathbb{C}$, and the amplification $\phi \otimes 1_n : \mathcal{N} \otimes M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is then also not normal. \square

Remark 6.6. We ought to comment on a glaring difference between Proposition 6.3 and the stronger statement for $\prod_n \mathrm{M}_n(\mathbb{C})$ in Theorem 6.1 (and other von Neumann algebras that do not have an infinite-dimensional summand of type I) given in the implication from (1) to (2) in Theorem 6.5. In the latter case, every *-homomorphism is automatically normal. In the case of $L_{\infty}(Z,\mu)$, we only claim that if there is an injective *-homomorphism, then its restriction to the corner defined by a non-zero projection in the algebra is a nontrivial normal *-homomorphism. The implication from (2) to (1) in Theorem 6.5 shows that this conclusion cannot be improved.

This is analogous to the situation with embeddings of corona C*-algebras. In the abelian case, an abundant supply of nontrivial embeddings (also constructed using ultrafilters, in a manner similar to the proof that (3) implies (1) in Theorem 6.5) abound in ZFC while in the case of e.g., the Calkin algebra forcing axioms imply that all endomorphisms are trivial ([44]). An analogous result conjecturally holds for the coronas of separable C*-algebras that are simple C*-algebras.

Proposition 6.7. Let \mathcal{M} be a von Neumann algebra, and assume there exists a (not necessarily normal and not necessarily unital) faithful representation $\pi: \mathcal{M} \to \mathcal{B}(H)$ of \mathcal{M} on a separable Hilbert space. Then \mathcal{M} has separable predual.

For the proof, recall that the *density character* of a Banach space is the smallest possible cardinality of a dense subset.

Proof. As in the proof of Proposition 6.3, we may use [43, Theorem V.5.1] and the structure theory of von Neumann algebras to reduce to the case that $\mathcal{M} = \prod_{n \in \mathbb{N}} M_n(\mathcal{N}_n)$ where each \mathcal{N}_n is abelian. Hence it suffices to prove the result for all the von Neumann algebras \mathcal{N}_n . Let us assume therefore that \mathcal{M} is abelian.

For each projection $p \in \mathcal{M}$, let $\kappa(p)$ be the density character of the predual of $p\mathcal{M}p$. Let F be a maximal family of orthogonal projections in \mathcal{M} such that if $p \in F$ and $q \in \mathcal{M}$ is a non-zero projection such that $q \leq p$, then $\kappa(q) = \kappa(p)$. Define $p_0 := 1_{\mathcal{M}} - \sum_{p \in F} p$, which we claim is zero. Indeed, if not the definition of F allows us to build a decreasing sequence $p_0 \geq p_1 \geq p_2 \geq \cdots$ of projections in \mathcal{M} such that $\kappa(p_n) > \kappa(p_{n+1})$ for all n. This, however, gives a strictly decreasing infinite sequence of cardinals, which is impossible.

We claim next that for all $p \in F$, $p\mathcal{M}p$ has separable predual. If this does not hold for some p, Proposition 6.3 gives non-zero $r \leq p$ such that π restricted to $r\mathcal{M}r$ is normal. However, by definition of F, $r\mathcal{M}r$ is non-separable, and the map $(\pi|_{r\mathcal{M}r})_* : \mathcal{B}(H)_* \to (r\mathcal{M}r)_*$ is onto as π is injective, so this is a contradiction.

Finally, as \mathcal{M} is abelian, $\mathcal{M} = \prod_{p \in F} p \mathcal{M} p$, so we are done. \square

Data availability

No data was used for the research described in the article.

Acknowledgments

This paper was written under the auspices of the American Institute of Mathematics (AIM) SQuaREs program as part of the 'Expanders, ghosts, and Roe algebras' SQuaRE project. F.B. was partially supported by the US National Science Foundation under the grants DMS-1800322 and DMS-2055604, B.M.B. was partially supported by the US National Science Foundation under the grant DMS-2054860, by FAPERJ (Proc. E-26/200.167/2023), and by CNPq (Proc. 303571/2022-5). I.F. is partially supported by NSERC. A.V. is supported by an 'Emergence en Recherche' IdeX grant from Université Paris Cité and an ANR grant (ANR-17-CE40-0026). R.W. is partially supported by the US National Science Foundation under the grant DMS-1901522. We would like to thank the anonymous referee for their comments and suggestions (especially for comment (5) of the referee report).

References

- F. Albiac, N. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006.
- [2] F. Baudier, B.M. Braga, I. Farah, A. Khukhro, A. Vignati, R. Willett, Uniform Roe algebras of uniformly locally finite metric spaces are rigid, Invent. Math. 230 (3) (2022) 1071–1100.
- [3] B.M. Braga, Y. Chung, K. Li, Coarse Baum-Connes conjecture and rigidity for Roe algebras, J. Funct. Anal. 279 (9) (2020) 108728.
- [4] B.M. Braga, I. Farah, On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces, Trans. Am. Math. Soc. 374 (2) (2021) 1007–1040.
- [5] B.M. Braga, I. Farah, A. Vignati, Embeddings of uniform Roe algebras, Commun. Math. Phys. 377 (3) (2020) 1853–1882.
- [6] B.M. Braga, I. Farah, A. Vignati, Uniform Roe coronas, Adv. Math. 389 (2021) 107886.
- [7] B.M. Braga, I. Farah, A. Vignati, General uniform Roe algebra rigidity, Ann. Inst. Fourier (Grenoble) 72 (1) (2022) 301–337.
- [8] B. Blackadar, Operator algebras, in: Theory of C*-Algebras and Von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III, in: Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006.
- [9] N.P. Brown, N. Ozawa, C*-Algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008.
- [10] C. Bourne, Locally equivalent quasifree states and index theory, J. Phys. A 55 (10) (2022) 104004.
- [11] E. Ewert, R. Meyer, Coarse geometry and topological phases, Commun. Math. Phys. 366 (3) (2019) 1069–1098.
- [12] A. Engel, Index theorems for uniformly elliptic operators, N.Y. J. Math. 24 (2018) 543-587.
- [13] A. Engel, Rough index theory on spaces of polynomial growth and contractibility, J. Noncommut. Geom. 13 (2) (2019) 617–666.
- [14] I. Farah, Combinatorial Set Theory and C*-Algebras, Springer Monographs in Mathematics, Springer, 2019.
- [15] E. Guentner, N. Higson, S. Weinberger, The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci. (101) (2005) 243–268.
- [16] N. Higson, V. Lafforgue, G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2) (2002) 330–354.

- [17] N. Higson, J. Roe, On the coarse Baum-Connes conjecture, Novikov conjectures, index theorems and rigidity, in: Vol. 2 (Oberwolfach, 1993), in: London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, Cambridge, 1995, pp. 227–254.
- [18] N. Higson, J. Roe, Amenable group actions and the Novikov conjecture, J. Reine Angew. Math. 519 (2000) 143–153.
- [19] C. Jones, Remarks on anomalous symmetries of C*-algebras, Commun. Math. Phys. 388 (1) (2021) 385–417.
- [20] B.E. Johnson, S.K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972) 39–61.
- [21] J. Keesling, The one dimensional Cech cohomology of the Higson compactification and its corona, Topol. Proc. 19 (1994) 129–148.
- [22] Y. Kubota, Controlled topological phases and bulk-edge correspondence, Commun. Math. Phys. 349 (2) (2017) 493–525.
- [23] A. Kumjian, On C*-diagonals, Can. J. Math. 38 (4) (1986) 969–1008.
- [24] K. Li, P. Nowak, J. Špakula, J. Zhang, Quasi-local algebras and asymptotic expanders, Groups Geom. Dyn. 15 (2021) 655–682.
- [25] M. Lorentz, The Hochschild cohomology of uniform Roe algebras, in: Cyclic Cohomology at 40: Achievements and Future Prospects, in: Proc. Sympos. Pure Math., vol. 105, Amer. Math. Soc., Providence, RI, 2023, pp. 239–256, ©2023.
- [26] M. Ludewig, G. Thiang, Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry, Commun. Math. Phys. 386 (1) (2021) 87–106.
- [27] K. Li, R. Willett, Low-dimensional properties of uniform Roe algebras, J. Lond. Math. Soc. (2) 97 (1) (2018) 98–124.
- [28] M. Lorentz, R. Willett, Bounded derivations on uniform Roe algebras, Rocky Mt. J. Math. 50 (5) (2020) 1747–1758.
- [29] N. Ozawa, An application of expanders to $\mathbb{B}(\ell_2) \otimes \mathbb{B}(\ell_2)$, J. Funct. Anal. 198 (2003) 499–510.
- [30] S. Popa, Correspondences, INCREST Preprint. Available at https://www.math.ucla.edu/~popa/popa-correspondences.pdf, 1986.
- [31] J. Roe, An index theorem on open manifolds. I, II, J. Differ. Geom. 27 (1) (1988) 87–113, 115–136.
- [32] J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Am. Math. Soc. 104 (497) (1993), x+90.
- [33] J. Roe, Lectures on Coarse Geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003.
- [34] J. Roe, R. Willett, Ghostbusting and property A, J. Funct. Anal. 266 (3) (2014) 1674–1684.
- [35] H. Sako, Finite-dimensional approximation properties for uniform Roe algebras, J. Lond. Math. Soc. (2) 102 (2020) 623–644.
- [36] J. Smith, On asymptotic dimension of countable abelian groups, Topol. Appl. 153 (12) (2006) 2047–2054.
- [37] J. Špakula, Uniform K-homology theory, J. Funct. Anal. 257 (1) (2009) 88–121.
- [38] J. Špakula, A. Tikuisis, Relative commutant pictures of Roe algebras, Commun. Math. Phys. 365 (3) (2019) 1019–1048.
- [39] G. Skandalis, J.L. Tu, G. Yu, The coarse Baum-Connes conjecture and groupoids, Topology 41 (4) (2002) 807–834.
- [40] J. Špakula, R. Willett, On rigidity of Roe algebras, Adv. Math. 249 (2013) 289–310.
- [41] J. Špakula, J. Zhang, Quasi-locality and property A, J. Funct. Anal. 278 (1) (2020) 108299.
- [42] H. Takemoto, W*-algebra with a non-separable cyclic representation, Tohoku Math. J. (2) 20 (1968) 567–576.
- [43] M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York-Heidelberg, 1979.
- [44] A. Vaccaro, Trivial endomorphisms of the Calkin algebra, Isr. J. Math. 247 (2) (2022) 873–903.
- [45] S. White, R. Willett, Cartan subalgebras of uniform Roe algebras, Groups Geom. Dyn. 14 (2020) 949–989.
- [46] R. Willett, G. Yu, Higher Index Theory, Cambridge University Press, 2020.
- [47] G. Yu, Coarse Baum-Connes conjecture, K-theory 9 (1995) 199–221.
- [48] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (1) (2000) 201–240.