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CUDA is designed specifically for NVIDIA GPUs and is not compatible with non-NVIDIA devices. Enabling

CUDA execution on alternative backends could greatly benefit the hardware community by fostering a more

diverse software ecosystem.

To address the need for portability, our objective is to develop a framework that meets key requirements,

such as extensive coverage, comprehensive end-to-end support, superior performance, and hardware scala-

bility. Existing solutions that translate CUDA source code into other high-level languages, however, fall short

of these goals.

In contrast to these source-to-source approaches, we present a novel framework, CuPBoP, which treats

CUDA as a portable language in its own right. Compared to two commercial source-to-source solutions, CuP-

BoP offers a broader coverage and superior performance for the CUDA-to-CPU migration. Additionally, we

evaluate the performance of CuPBoP against manually optimized CPU programs, highlighting the differences

between CPU programs derived from CUDA and those that are manually optimized.

Furthermore, we demonstrate the hardware scalability of CuPBoP by showcasing its successful migration

of CUDA to AMD GPUs.

To promote further research in this field, we have released CuPBoP as an open-source resource.
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1 INTRODUCTION

CUDA provides developers with a flexible and powerful toolkit to harness the processing power
of GPUs to accelerate compute-heavy applications, such as physics simulations [29, 34, 50] and
Deep Learning models [41, 45]. The CUDA programming model offers a high-level interface for
expressing data-parallel computations, allowing programmers to focus on the algorithmic and
computational aspects of their applications. In addition, CUDA features several powerful libraries,
including cuBLAS [13], cuFFT [15], and cuDNN [14], which provide users with optimized imple-
mentations of fundamental operations in linear algebra, FFT, and Deep Learning. This enables
programmers to write efficient and scalable code with minimal effort.
However, it should be noted that CUDA is a proprietary language that can only be executed on

NVIDIA GPUs. Due to the high cost and occasional shortages in supply chains, high-end or server-
class NVIDIA GPUs may not be affordable for every researcher and developer. Furthermore, some
of the most powerful supercomputers do not contain NVIDIAGPUs. For example, Fugaku contains
only Fujitsu A64FX CPUs [31], and Frontier uses both AMD CPUs and AMD GPUs [62]. These
supercomputers, although providing a huge amount of computational resources, cannot execute
CUDA applications.

1.1 Motivation

It is worthwhile to summarize the benefits of making CUDA portable to other devices. First, as an
increasing number of researchers use CUDA to implement GPU programs, enabling the portability
of these programs to other devices can enhance their software ecosystem and promote better hard-
ware design for non-NVIDIA vendors. Additionally, it can diversify the application ecosystem for
supercomputers that do not have NVIDIA GPUs. Specifically, since CPUs are among the most ubiq-
uitous and affordable hardware in data centers and consumer platforms, executing CUDA on CPUs
can provide additional benefits. First, it allows single-kernel-multiple-device execution [48] in
CPU-GPU heterogeneous systems, which can reduce runtime [47] and/or lower energy consump-
tion [63]. Second, developers can leverage well-developed CPU debug toolkits for CUDA programs.
Taking into account all of the benefits mentioned above, we can summarize several goals that

should be considered when designing frameworks for CUDA migrations:

Software Coverage: The solutions should handle the most common CUDA applications, specifi-
cally supporting widely used CUDA APIs in popular applications.

End-to-end: The solutions should seamlessly support off-the-shelf CUDA programs without re-
quiring any manual pre/post-processing of the CUDA programs or the translated programs. The
solutions should migrate both CUDA kernel programs and host programs.

Performance: The solutions should effectively utilize the computational resources of the target
devices. For CPU backends, the transformed programs should utilize SIMD instructions and multi-
ple cores. Although some solutions [21, 30, 58] aim to use CPU toolkits to debug CUDA programs,
real CUDA applications often contain heavy workloads that cannot be executed on CPUs within
a reasonable timeframe without efficiently utilizing the CPU computation resources.

Compatibility: The CUDA migration process involves various toolkits, such as compilation
and runtime components. The solutions should strive to be compatible with the existing
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compilation/runtime software as much as possible and should avoid any modifications to off-the-
shelf compilers or NVIDIA SDKs.

Hardware Scalability: The solutions should be scalable to support different devices, and the
migration process for different devices should follow the same workflow to avoid redundant work.
We acknowledge that the design of solutions for CUDA migration may be constrained by com-

mercial limitations. However, in this article, we will NOT consider these limitations.

1.2 Limitations of Existing Solutions

The most popular approach for CUDA migrations is source-to-source translation [5, 7, 21, 52, 60,
61]. For instance, AMD proposes HIPIFY [7], a compiler-level toolkit that translates CUDA pro-
grams to HIP programs, which can be run on AMDGPUs. Intel also develops DPCT [5] to translate
CUDA to SYCL, enabling execution on Intel CPUs/GPUs. We refer to these solutions as “src2src”
solutions. These solutions are typically lightweight, as they rely solely on source code transforma-
tions. Moreover, since the input and output are human-readable high-level source code, they are
easy to maintain. However, the effectiveness of these solutions heavily relies on the similarity be-
tween CUDA and the target languages. As discussed in Section 3.1, the differences between CUDA
and target languages can hinder src2src solutions from achieving high software coverage without
manual post-processing. Additionally, as CUDA is still rapidly evolving, the target languages may
not have counterparts for certain CUDA features, posing challenges in achieving high software
coverage. Another challenge arises from hardware scalability. To make CUDA portable to vari-
ous hardware, the translators need to translate CUDA to portable languages such as SYCL [38]
and OpenCL [54]. However, since portable languages encompass different hardware architectures,
their development often lags behind the evolution of CUDA languages. This presents challenges
in supporting new CUDA features, as updating the portable languages requires significant effort
due to the involvement of multiple hardware architectures.

1.3 Insight and Contribution

In contrast to existing approaches that translate CUDA to portable languages, this article presents
a novel approach of making CUDA itself a portable language. This involves implementing both
compiler and runtime components. The compiler components are responsible for parsing CUDA
source code and generating executable programs for non-NVIDIA devices. The runtime compo-
nents handle CUDA-specific functionality, such as kernel launches and memory management, by
implementing them for non-NVIDIA devices and integrating them into libraries.
By eliminating the need for third-party languages, our approach simplifies the achievement of

the proposed goals. We can focus directly on CUDAwithout being concerned about the differences
between CUDA and other languages. Supporting new CUDA features only requires updating the
compiler and/or runtime components, without the involvement of updating portable languages or
CUDA translators.
This article contributes the following technical contributions:

— Introduce CuPBoP, a framework that makes CUDA a portable language.
— Discuss the co-design of compilation and runtime in the implementation of CuPBoP.
— Compare the software coverage and performance of CuPBoP with two commercial CUDA
migration solutions.

— Compare CuPBoP with manually optimized CPU programs and identify the gaps between
CPU programs translated from CUDA and manually optimized CPU programs.

— Demonstrate the hardware scalability of CuPBoP by describing its support for AMD GPUs
as a proof-of-concept [25].
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— Release the codebase as open-source projects.12

To provide readers with a comprehensive understanding of the compiler and runtime compo-
nents in CuPBoP, this article primarily focuses on the CPU backend. Supporting GPU-to-CPU
migration poses greater challenges compared to GPU-to-GPU migration, such as CUDA-to-HIP.
However, we also include the results of supporting CUDA on AMD GPUs as a proof of concept to
showcase the hardware scalability of CuPBoP.
In the remaining sections of the article, we present a high-level overview of CuPBoP in

Section 2. We discuss the insights and critical design decisions underlying the framework in
Section 3. Section 4 delves into several technical challenges encountered during the implemen-
tation of CuPBoP. The evaluation of CuPBoP and its comparison with other CUDA migration
solutions are presented in Section 5. In Section 6, we introduce the AMD backend of CuPBoP as
a proof-of-concept to demonstrate its hardware scalability. We explore related works in Section 7,
and finally, we conclude the article in Section 8.

2 CUPBOP

CuPBoP (Cuda for Parallelized and Broad-range Processors) is a framework designed to address
the limitations of src2src solutions by making CUDA a portable language. It enables the execution
of CUDA programs on non-NVIDIA devices.

2.1 Workflow

Figure 1 illustrates the workflow of CuPBoP for generating CPU/AMD GPU executables from
CUDA source code. The CUDA code consists of both host and kernel programs, where the host
program executes on the CPU device, and the kernel program executes on NVIDIA GPUs. The
workflow can be divided into three stages.

In the first stage, CuPBoP utilizes Clang [46] to compile the CUDA source code, producing two
separate intermediate representations (IRs): LLVM IRs for the host program and NVVM IRs
[55] for the kernel program.

In the second stage, CuPBoP applies various compilation transformations on the LLVM/NVVM
IRs. These transformations are crucial for adapting the CUDA code to the target CPU or AMD
GPU architectures. To avoid modifying the off-the-shelf compiler, we do not integrate these trans-
formations into the LLVM codebase. Instead, we utilize existing LLVM APIs to build two IR-to-IR
translators. These translators accept the LLVM/NVVM IRs compiled from the first stage, apply
IR-to-IR transformations on them, and output transformed LLVM IRs.
In the final stage, the transformed LLVM/NVVM IRs are compiled to object files and linked

with the CuPBoP CPU/AMDGPU runtime libraries, resulting in the generation of CPU/AMDGPU
executable files.
Although supporting different backends requires various compilation transformations and run-

time libraries, all backends follow the same workflow.

2.2 Supported/Unsupported CUDA Features

CuPBoP supports most commonly used CUDA APIs, ensuring compatibility with memory man-
agement, kernel launches, static/dynamic shared memory, global synchronization, CUDA streams,
CUDA events, constantmemory, and commonmath functions (e.g., ceil, floor, sqrt). However, there
are certain CUDA features that are not supported in CuPBoP for various reasons:

1CPU backend: https://github.com/cupbop/CuPBoP
2AMD GPU backend [25]: https://github.com/gthparch/CuPBoP-AMD
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Fig. 1. The workflow of CuPBoP for generating CPU/AMD GPU executable files from CUDA source code.

The purple elements in the diagram represent the compilation transformations and runtime libraries included

in CuPBoP.

Texture memory:While it is theoretically possible to support texture memory on CPUs, execut-
ing texture memory operations with high performance on CPUs is challenging, as these operations
are closely tied to NVIDIA GPU hardware. Therefore, supporting texture memory on CPUs is not
a high priority for CuPBoP. However, CuPBoP does support texture memory for AMD GPUs.

PTX assembly: PTX assembly is specific to NVIDIA and may not be portable to other architec-
tures due to differences in register and memory fences. Since the primary goal of CuPBoP is to
achieve performance portability [59] with CUDA, it does not function as a CUDA emulator; there-
fore, PTX assembly is not supported.

CUDA libraries: Certain CUDA libraries, such as cuBLAS and cuDNN, play a critical role in HPC
applications. However, migrating these libraries is highly dependent on the target hardware. For
example, CuPBoP can utilize Intel oneMKL[16] and AOCL [12] for Intel CPUs and AMD CPUs
migration, respectively. Supporting these libraries requires significant effort, and it is an area
that CuPBoP plans to explore in future updates.
It is important to note that, to the best of our knowledge, none of the existing CUDA-to-CPU

solutions [5, 7, 28, 53, 58, 65] support texture memory or CUDA libraries. Support for PTX
assembly is exclusive to projects [18, 32] that utilize CPUs as CUDA emulators without targeting
high performance.

3 INSIGHTS

In this section, we discuss three important technical decisions for migrating CUDA to CPUs. The
first challenge is how to parse and analyze CUDA source code to achieve high coverage with-
out requiring manual pre- or post-processing. The second challenge is how to efficiently execute
Single-Program-Multiple-Data (SPMD) applications on CPUs. The third decision is about how
to launch CUDA kernels efficiently by utilizing the multiple CPU cores.

3.1 Front-end

The first design decision is how to parse and analyze CUDA source code to achieve high cover-
age without requiring manual pre- or post-processing. The src2src solutions typically treat CUDA
source code as text files and convert CUDA programs into other high-level languages such as
HIP [7], OpenCL [37, 52, 60], and SYCL [5]. These translators rely on AST analysis or regular
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Table 1. The Differences between APIs in CUDA and the Target Languages

CUDA OpenCL SYCL

✗ platform selectors
✗ context ✗
✗ device selectors
stream command queue queue
✗ program ✗
function kernel single_task
kernel launch enqueueNDRangeKernel submit
__shfl_up_sync ✗ shift_group_left∗

∗shift_group_left does not support operations on a subset of sub_group. Thus, it

cannot be used to replace __shfl_up_sync directly.

expressions, which are lightweight. Moreover, the input and output of these translators are high-
level languages, which makes the translation process human-readable and amenable to manual
pre- or post-processing.
However, src2src solutions face challenges due to differences in APIs across languages. When

translating CUDA to another language, such as OpenCL or SYCL, translators must handle the
discrepancies in API functions and data structures. Table 1 provides an example of some APIs used
in CUDA, OpenCL, and SYCL, highlighting the differences. These differences can require additional
code generation or manual modifications to ensure correctness and compatibility. For example,
when translating CUDA into OpenCL, translators have to generate platform, context, device, and
program variables that do not exist in CUDA. Additionally, some CUDA features (e.g., warp shuffle
functions) do not have direct counterparts in the target language, necessitating updates to both
the target language and the translators to support these features.
Instead of using AST analysis toolkits, CuPBoP uses the Clang compiler to parse CUDA source

code and generate IR files, which is the standard approach for compiling CUDA programs for
NVIDIA GPUs. The resulting IR files are transformed, compiled to object binary files, and linked
with CuPBoP’s runtime libraries. Unlike src2src solutions, CuPBoP does not rely on other pro-
gramming languages. In our evaluation section, we show that CuPBoP achieves higher coverage
than two commercial src2src solutions. The difference between CuPBoP and src2src solutions is
shown in Figure 2.

3.2 Kernel Launch

One of the most crucial CUDA APIs is the kernel launch: The host thread invokes a kernel with a
specified grid size and block size. The kernel is then executed byдrid_size∗block_size GPU threads.
To support GPU-to-CPU migration, the most straightforward solution is to use a CPU thread to re-
place a GPU thread. Specifically, the transformed CPU programs fork the same amount of threads
as GPU programs. While this mechanism is simple to implement, it typically results in lower per-
formance. In most cases, CUDA programs contain more than thousands of threads, whereas a
modern commercial CPU only has hundreds of cores. Thus, launching thousands of threads will
cause frequent context switching, significantly impairing CPU performance. This mechanism, al-
though with low efficiency, is frequently used for debugging toolkits [2, 58], as it can generate
CPU executable file without significantly changing CUDA programs.
To support the execution of SPMD programs on CPUs with high performance, two solutions

are commonly used: the fiber solution and the loop solution (Figure 3). Both solutions collapse
the workload within a GPU block into a single function, which can be executed by a CPU thread.
Thus, for a CUDA kernel launch with дrid_size and block_size , only дrid_size CPU threads are
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Fig. 2. Different mechanisms are employed for parsing CUDA source code. Src2src solutions translate CUDA

code to other high-level languages. In contrast, CuPBoP relies on an off-the-shelf compiler to compile the

CUDA source code and generate IRs. These IRs are then subjected to various transformations (not shown in

the diagram) and linked with the CuPBoP runtime libraries.

needed after the transformations. Although this is a software solution, it also represents a hardware
mapping where a GPU Streaming Multiprocessor (SM) is mapped to a CPU core. Given that
modern GPUs and CPUs have a comparable number of SMs and cores (e.g., the NVIDIA A100
GPU with 108 SMs and the AMD EPYC 9654P CPU with 96 cores), this mapping is rational.
The fiber solution, which is used in HIP-CPU [6], replaces GPU threads with lightweight CPU

fibers. 3 This solution provides runtime libraries that implement CUDA kernel launch by launching
CPU fibers. For a CUDA launch with дrid_size blocks and block_size threads for each block, the
fiber solution launches дrid_size CPU threads, and each CPU thread contains block_size fibers. A
CPU thread executes a fiber at a time and switches to execute the next fiber when it encounters a
“yield” function. Thus, these fibers form an implicit loop.

The loop solution is a compilation transformation that is proposed in MCUDA [65]. The loop
solution generates loops to wrap the original CUDA source code. The loop length (a.k.a. trip count)
is block_size . Each CUDA thread is mapped to an iteration in the transformed CPU program. The
loop solution has less overhead than the fiber solution, since the iteration switching overhead
is much lower than the fiber switching overhead. Additionally, the loop solution generates paral-
lelized loops, allowing transformed CPU programs to potentially utilize SIMD instructions [36, 44].
Therefore, CuPBoP chooses the loop solution. In Section 5.3.1, we compare the performance of
CuPBoP (loop solution) and HIP-CPU (fiber solution).
Although this article does NOT present fiber solutions or loop solutions as our contributions,

it is the first to provide a performance comparison of these two different mechanisms. The article
aims to contribute by shedding light on these mechanisms, highlighting their differences, and
evaluating their performance. By doing so, it offers valuable insight into the efficacy of using fiber
solutions and loop solutions for specific use cases.

3.3 Runtime

To fully utilize CPU computational resources, CuPBoP implements a runtime system that supports
multiple thread execution. During initialization, CuPBoP launches a thread pool consisting of a
number of threads equal to the number of CPU cores. A host thread is responsible for memory
management and kernel launch, while communication between the host thread and pool threads

3Fiber is a unit of execution that is lighter than the thread [51].
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Fig. 3. Two solutions for executing SPMD programs on CPUs with high performance. CuPBoP implements

the loop solution. While this article does NOT present fiber solutions or loop solutions as contributions, it is

the first to provide a performance comparison of these two different mechanisms.

is achieved using the producer-consumer model: When a CUDA kernel launch is executed, the
host thread creates multiple instances of kernel variable (Listing 3) and pushes them to the queue.
The pool threads then check the queue and fetch any available tasks. The kernel launch process is
illustrated in Figure 4.
Since both the push and fetch operations must be atomic, accessing the task queue frequently

can lead to performance degradation. For instance, when a CUDA kernel launch has 64 GPU blocks,
the host thread pushes 64 kernel variable instances to the queue, and the pool threads need to fetch
the queue 64 times. To minimize the number of queue accesses, CuPBoP provides a hyperparame-
ter called block_per_f etch that specifies how many block instances are executed for each fetch. In
Figure 4, block_per_fetch is set to 16, so each kernel variable instance corresponds to 16 blocks.
This way, the host thread and pool threads only need to push and fetch the queue 4 times,
respectively.
The block_per_fetch parameter can significantly impact performance. If block_per_fetch is too

small, then there will be many atomic push and fetch operations that harm performance. However,
if block_per_fetch is too large, then the number of kernel variable instances may be fewer than the
number of pool threads, causing some threads to remain idle. To give users control over this trade-
off, CuPBoP allows the block_per_fetch value to be set as a hyperparameter. By default, CuPBoP
sets block_per_fetch to match the number of CPU cores.
It should be noted that while OpenMP offers similar functionality to schedule parallel tasks on

CPUs, the decision to implement a separate schedule system in CuPBoP is driven by the specific re-
quirements and goals of the framework, prioritizing lightweight design and scalability to different
backend devices. Another reason for not using OpenMP is its interface, which is overly general and
makes it difficult to support certain CUDA runtime functions. For example, implementing CUDA
streams is difficult within the OpenMP framework.

4 IMPLEMENTATION

In this section, we summarize several challenges and corresponding solutions for the CuPBoP
implementation. We use the program in Listing 1 as an example. The CUDA program comprises
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Fig. 4. The process of kernel launch. CuPBoPmaintains a producer-consumermodel to implement the kernel

launch. For a CUDA kernel involves 64 GPU blocks, and with block_per_f etch set to 16, the host thread

initializes four kernel variable instances and pushes them into the task queue. These instances will be fetched

and executed by threads in the pool.

two functions: a host function and a kernel function. The kernel function declares an external
variable named s that resides in the GPU-shared memory. The size of this variable is determined
at runtime and is equal to n * sizeof(int).
There are several challenges to migrating the program. First, the CUDA program uses shared

memory features. There is no corresponding memory for CPUs. CuPBoP has to implement mem-
ory mapping to replace these memories. Second, the kernel uses a CUDA intrinsic function to
get the block index. CuPBoP needs to support the CUDA intrinsic functions correctly on CPUs.
Third, the CUDA kernel launch is a variadic function, which can accept arbitrary numbers/types
of arguments. CuPBoP has to support all the use cases. Last but not least, the CUDA program uses
dynamic shared memory, where the size of s is known at the runtime when invoking kernel launch.
Thus, CuPBoP has to rely on compilation-runtime co-design to support this feature.

1 __global__ void kernel(int *d, int offset) {
2 extern __shared__ int s[];
3 int t = threadIdx.x;
4 s[t] = d[t]+ offset+blockIdx.x;
5 }
6 void host() {
7 kernel <<<1, n, n * sizeof(int)>>>(d_d , n);
8 }

Listing 1. A CUDA program with dynamic shared memory.

The transformed program is shown in Listing 2. In real cases, the transformed program is in
binary format, but we have presented it in C++ for easy understanding.
We now go through several compilation transformations that are applied by CuPBoP.

4.1 Memory Mapping

NVIDIA GPUs have an explicit hierarchical memory system, including private memory for single
threads, shared memory within a block, and constant/global memories that are shared between
blocks. These memories do not have direct mappings on CPU architectures.
To support these memories on CPUs, CuPBoP implements a compilation transformation to re-

place all CUDA global and constant memory with CPU heap memory, since CPU heap memory is
accessible to all CPU threads. Additionally, CuPBoP replaces all CUDA shared memory with CPU
thread local storage. The insight is, as described in Section 3.2, a CUDA block is mapped to a CPU
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thread. Therefore, GPU-shared memories, which are shared within a block but different among
blocks, should be mapped to CPU thread local storage.
As shown in Listing 2, the shared memory pointer is mapped to thread local storage (line 3).

The assignment of the pointer is done at runtime, which is described in Section 4.4.

4.2 CUDA Intrinsic Functions

Certain CUDA intrinsic functions are essential in CUDA applications. For example, blockIdx.x
can return the block index for a block. NVIDIA GPUs use special registers [11] to support these
intrinsic functions. For example, the ctaid register stores the unique CUDA block ID.
However, these registers do not have equivalents in CPU architectures. Therefore, CuPBoP ap-

plies a transformation on the kernel code to insert declarations of auxiliary variables that are used
to replace these registers. In Listing2, CuPBoP inserts external declarations of blockIdx_x and
block_size on lines 1–2. The variable blockIdx_x is used to replace the CUDA intrinsic function
blockIdx.x to represent the block index. The assignment of these variables is done at runtime.

1 extern __thread size_t blockIdx_x ;
2 extern __thread size_t block_size ;
3 extern __thread int* dynamic_shared_p ;
4 void cpu_kernel (int** p) {
5 // prologue for unpacking in a kernel side
6 int * d = *(( int **) p[0]); // dereference the first element of the packed pointer to

get the first argument
7 int offset = *(( int *) p[1]); // dereference the second element of the packed pointer

to get the second argument
8 // end of prologue
9 for(size_t threadIdx = 0; threadIdx < block_size ; threadIdx ++) {
10 int t = threadIdx;
11 dynamic_shared_p [t] = d[t]+ offset+blockIdx_x ;
12 }
13 }
14 void host() {
15 // prologue for packing
16 int** p = malloc (2 * sizeof(int *)); // allocate an array of pointers. Since the

original kernel has 2 arguments , the array size should also be 2.
17 int** p0 = new int *; // allocate a pointer that refers to the first argument
18 *p0 = d_d; // store the value of the first argument
19 p[0] = (int *)p0; // store the first argument into the first element of the array
20 int* p1 = new int; // allocate a pointer that refers to the second argument
21 *p1 = n; // store the value of the second argument
22 p[1] = (int *)p1; // store the second argument into the second element of the array
23 // end of prologue
24 // the CUDA kernel launch will be replaced later
25 cpu_kernel <<<1, n, n * sizeof(int)>>>(p);
26 }

Listing 2. The CPU program translated by CuPBoP from Listing 1.

4.3 Variadic Function

As discussed in Section 3.3, when a host thread executes a kernel launch function, it pushes in-
stances of kernel variable to the task queue. However, CUDA programs contain kernel functions
with varying numbers of parameters and types, making it challenging to create a universal inter-
face for all kernel functions.
To address this issue, CuPBoP applies compilation transformations on both host programs and

kernel programs. These transformations insert auxiliary instructions to pack/unpack the kernel
parameters. Specifically, CuPBoP inserts instructions to pack all parameters into a pointer that
points to the packed parameters (Listing 2, lines 16–22). Thus, the arguments of any kernel launch
would be the same. CuPBoP also inserts instructions to unpack the packed argument (p) into the
original arguments (d and o f f set ) (Listing 2, lines 6–7) in the kernel programs.
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4.4 Kernel Launch

The kernel launch implementation involves compilation and runtime co-design. For example, to
support dynamic shared memory features, CuPBoP has to replace dynamic shared memory vari-
ables by CPU thread local storage during compilation and assign valid addresses to these pointers
at runtime.

1 typedef struct kernel {
2 void *(* func_ptr)(void *);
3 void **args;
4 // auxiliary variables
5 int block_index_start ;
6 int block_index_end;
7 int block_size ;
8 size_t dynamic_shared_mem_size ;
9 };

Listing 3. The structure of kernel variable.

As described in Section 3.3, to implement CUDA kernel launch, the host thread constructs ker-
nel variable instances and pushes them into the task queue. The definition of the kernel variable
structure is shown in Listing 3. The kernel variable stores the function point of the transformed
kernel programs (cpu_kernel in Listing 2) in func_ptr. The packed argument is stored in args. The
kernel variable also stores runtime configuration, such as the block size and the size of dynamic
shared memory.
The pool threads fetch kernel variable instances from the queue. When a thread successfully

fetches a kernel variable instance, it sets the auxiliary variables for kernel execution and then
executes the kernel function as a normal CPU function. The code shown in Listing 4 is part of
the function run in the pool threads. After successfully fetching a kernel variable instance ker ,
the pool thread uses the kernel variable instance to set auxiliary variables (blockIdx_x, block_size,
and dynamic_shared_p) required in the kernel programs and then executes the kernel program
as a normal function call (line 6). The pool thread allocates the memory for the dynamic shared
memory variables in line 4.

1 // after fetching a kernel variable instance ker
2 __thread size_t block_size = ker.block_size ;
3 __thread size_t blockIdx_x ;
4 __thread int* dynamic_shared_p = (int *) malloc(ker.dynamic_shared_mem_size );
5 for (blockIdx_x =ker.block_index_start ;blockIdx_x <=ker.block_index_end;blockIdx_x ++){
6 ker.func_ptr(ker.args);
7 }

Listing 4. Set auxiliary variables and execute kernels.

5 EVALUATION

5.1 Setting Up

The evaluations are executed on two platforms that include Intel CPUs, AMD CPUs, and NVIDIA
GPUs. The platforms’ specifications are summarized in Table 3. For certain evaluations, we com-
pare the results of CuPBoP with those of DPC++[5] and HIP-CPU [6]. As CuPBoP is primarily
designed to achieve high performance on CPUs, we do not evaluate frameworks [21, 30, 58] that
are designed solely for debugging purposes rather than aiming for high performance.
Two benchmarks, Rodinia [24] and Hetero-Mark [66], along with an application called Clover-

leaf [4], are utilized for evaluation purposes. The Rodinia benchmark is used to assess the software
coverage, as it consists of applications with various C/C++ syntax, code structure, and build pro-
cesses. However, for performance evaluation, the Hetero-Mark benchmark is preferred for three
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Table 2. The Versions of Software Used for Evaluation

Software Version/Commit

CUDA 12
DPC++ [5] 2024.0.2
HIPIFY [7] rocm-5.7.0
HIP-CPU [6] 56f559
Hetero-Mark [66] b8ea32
Rodinia [24] 9c10d3
Cloverleaf [4] 03c780

Table 3. Hardware Environment Configurations

Server Name CPU/GPU CPU cores/GPU SMs Peak FLOP/s Memory (GB) L2 cache/shared memory

Server-Intel Intel Gold6226R (×2) 32 5.93 T∗ 376 16 MB

Server-AMD-A30
AMD EPYC 7502 (×2) 64 5.12 T∗ 264 16 MB

NVIDIA A30 GPU 56 10.3 T 24 128 KB
∗estimated value.

reasons. First, all frameworks achieve high coverage on the Hetero-Mark benchmark, providing
a larger set of data points for evaluation. Second, the Hetero-Mark applications offer knobs to
adjust input size and computation workload, allowing for sufficiently large execution times to
mitigate measurement errors. Last, the Hetero-Mark benchmark provides well-defined profiling
code sections that facilitate the understanding of kernel execution time. Additionally, profiling re-
sults from Cloverleaf, a mini-app that solves the compressible Euler equations, are included. The
developers of Cloverleaf have implemented various manually optimized versions, including an 18-
kernel CUDA implementation, with host programs written in both C++ and Fortran. As neither
HIPIFY nor DPCT successfully translate Cloverleaf to CPUs, we only measure the execution time
of CuPBoP and compare it with Cloverleaf’s OpenMP implementation. The software information
for the evaluation is listed in Table 2.

5.2 Software Coverage

We evaluate the software coverage on the Rodinia benchmark [24] on the Sever-Intel platform.
We show the overall software coverage evaluation result in Figure 5. We also list the evaluation
results for each application in Table 4. There are 23 applications in Rodinia-CUDA. Four of them
(hybridsort, kmeans, mummergpu, and leukocyte) utilize CUDA texture memory, which is not
supported by any framework. Compared to HIP-CPU (60.9%) and DPC++ (65.2%), CuPBoP achieves
the highest coverage (73.9%) in the evaluation.
CuPBoP raises runtime error/incorrect results in two applications: The Huffman application in-

volves instructions that left shift a 4 bytes integrated variable for 32 bits. This instruction shows
different behaviors on NVIDIA GPUs and Intel CPUs. CuPBoP raises a segfault in the Heartwall
application. This is due to the compiler overoptimizing some variables, which are freed before ref-
erences. We find that manually preprocessing the CUDA source code enables CuPBoP to generate
correct results. Specifically, for the heartwall application, inserting an extra __syncthreads() in
the source code allows the compiler to correctly apply the analysis on the transformed CPU pro-
gram. For Huffman, changing the instruction from “tmp = dw << 32-bit” to “tmp = (bit != 0)
? (dw << (32 - bit)) : 0;” fixes the incorrect result.
HIP-CPU does not contain any compilation transformations. It only contains header files that im-

plement HIP built-in functions for CPUs. Thus, it does not raise runtime errors. As HIP-CPU does
not have compilation transformation, it cannot support dynamic shared memory, which involves

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 60. Publication date: June 2024.



CuPBoP: Making CUDA a Portable Language 60:13

Fig. 5. The coverage on the Rodinia benchmark. The detail information is shown in Table 4.

Table 4. We Evaluate All 23 Applications in Rodinia-Benchmark on

Different CUDA-to-CPU Solutions and Verify the Correctness of

Transformed CPU Programs

Program DPC++ HIP-CPU CuPBoP

b+tree ✓ no support ✓
backprop ✓ no support ✓
bfs incorrect result ✓ ✓
gaussian ✓ ✓ ✓
hotspot ✓ ✓ ✓
hotspot3D ✓ ✓ ✓
lud ✓ ✓ ✓
myocyte incorrect result ✓ ✓
nn ✓ ✓ ✓
nw ✓ ✓ ✓
particlefilter ✓ ✓ ✓
pathfinder ✓ ✓ ✓
srad ✓ ✓ ✓
streamcluster ✓ ✓ ✓
cfd ✓ ✓ ✓
lavaMD ✓ ✓ ✓
heartwall incorrect result no support runtime error
huffman ✓ no support incorrect result
dwt2d incorrect result no support ✓
hybridsort no support no support no support
kmeans no support no support no support
mummergpu no support no support no support
leukocyte no support no support no support

The CuPBoP achieves the highest coverage.

compiler-runtime co-design. Additionally, it relies on C++17. Some of its code is incompatible with
legacy C syntax, which is used in b+tree and backprop applications. Thus, it has more unsupported
applications than CuPBoP.
DPC++ converts CUDA to SYCL and utilizes the Intel oneAPI compiler to generate executable

CPU programs. DPC++ produces incorrect outputs for bfs and myocyte, with many values being
NAN. We assume that these issues primarily arise from the implementation of the SYCL on CPUs.
This assumption is supported by the fact that for the b+tree and Huffman examples, the same
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transformed SYCL source code produces incorrect outputs with DPC++ 2021.4.0, yet generates
correct outputs with DPC++ 2024.0.2. Thus, this suggests that the CUDA-to-SYCL translator is
likely functioning correctly, and the errors stem from the SYCL environment. It is worth noting
that our evaluated DPC++ coverage (65.2%) is different from the one (87%) reported in Reference
[22]. This is due to two reasons. First, the authors in Reference [22] focus on exploring the upper
bound of the coverage. Thus, they involve manual post-processing on transformed SYCL programs
to generate the correct programs. Second, the runtime evaluations are done on different platforms.
Our coverage is measured by executing the transformed SYCL programs on Intel 6226R CPUs and
comparing the output with the original CUDA programs executed on NVIDIA A30 GPUs. As the
authors in Reference [22] do not report the details of the correctness evaluation, we assume they
verify the correctness of SYCL programs by executing them on Intel GPUs/NVIDIA GPUs.

We alsomeasure the coverage on the Hetero-Mark benchmark. The applications in Hetero-Mark
are relatively simple and do not involve complex C/C++ syntax and CUDA features. As a result,
all three frameworks support 8 out of the 10 benchmarks. The BST and KNN applications rely on
CUDA system-wide atomics features that are not supported by any frameworks.
We also attempt to migrate CloverLeaf-CUDA to CPUs. The CUDA implementation consists of

18 CUDA kernels, while the host programs are written in both C++ and Fortran. CuPBoP success-
fully translates the CUDA implementation to a CPU program. However, both DPC++ and HIPIFY
fail to generate correct CPU programs. They struggle to handle the syntactic sugars that are widely
used in the codebase, such as the example shown in Listing 5. This poses a challenge for src2src
solutions, as they aim to produce human-readable code as output. To avoid generating complex
code, they do not expand macros during translation, which makes it difficult to support syntactic
sugars that involve intricate macro usages. However, as CuPBoP implements transformations on
the LLVM IR level, it does not need to handle these syntactic sugars.

1 #define CUDALAUNCH (funcname , ...) \
2 funcname <<<num_blocks , BLOCK_SZ >>>(x_min , x_max , y_min , y_max , __VA_ARGS__);

Listing 5. A syntactic sugar that cannot be translated by DPC++ or HIPIFY.

5.3 Performance

5.3.1 CUDA-to-CPU Frameworks. In this section, we measure the runtime of the transformed
CPU application for the Rodinia and Hetero-Mark benchmarks. To ensure accurate measurements,
we adjust the tuning knobs provided by the benchmarks to increase the execution time and mini-
mizemeasurement discrepancies.We execute andmeasure each application seven times and report
the median execution time. Although there are available SYCL/HIP programs for the same appli-
cations [42], to ensure a fair comparison, we use DPCT/HIPIFY to generate SYCL/HIP programs
from CUDA programs instead of using off-the-shelf SYCL/HIP programs.
We assess the end-to-end runtime of three CUDA-to-CPU solutions on x86 CPUs (Serverl-Intel),

and the results are presented in Table 5. Among the three solutions, CuPBoP demonstrates the
highest performance in 17 of the 24 applications. On average, CuPBoP achieves a speedup of ap-
proximately 1.31× compared to DPC++, and around 1.66× compared to HIP-CPU.
Some applications exhibit significant performance variances among the frameworks. We ana-

lyze the performance of these applications in detail:
BS and FIR: The BS application invokes around 20,000 CUDA kernel launches, and each kernel
launch only invokes 32 GPU blocks. Additionally, the CUDA kernel contains only simple floating
point calculations. Thus, the workload is too lightweight for CPU cores, and most of the runtime
is spent on kernel launch. CuPBoP uses a lock-free queue [9] to implement kernel launch and
provides knobs to set the block_per_f etch parameter, which can further decrease the overhead
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Table 5. The Runtime (Second) on Rodinia and Hetero-Mark Benchmarks

Benchmark Application DPC++ HIP-CPU CuPBoP

Rodinia backprop 2.42 N/A 1.96

b+tree 2.67 N/A 2.24

bfs N/A 1.27 1.14

Gaussian 0.85 8.49 1.67
hotspot 1.24 1.27 1.07

hotspot3D 1.32 1.73 1.27

lud 1.33 0.95 1.16
myocyte N/A 0.40 0.15

nn 1.23 1.35 1.21

nw 1.32 1.77 1.59
particlefilter 0.85 0.84 0.83

pathfinder 2.57 2.42 2.36

srad 3.93 8.31 2.89

streamcluster 17.97 21.09 18.44
lavaMD 0.25 0.18 0.15

CFD 6.86 5.38 5.94
Hetero-Mark AES 56.41 55.87 50.54

BS 1.70 2.00 0.64

EP 2.81 27.02 3.65
FIR 2.92 3.44 0.63

GA 1.04 1.43 0.33

Hist 2.21 1.90 1.89

Kmeans 1.63 3.50 3.29
PR 4.11 4.35 3.84

We bold the shortest runtime for each application. For all 24 applications, CuPBoP

achieves the highest performance in 17 of them.

for kernel launch. As a result, CuPBoP achieves the highest performance. The same reason also
applies to the FIR application.
EP andKMeans: The CUDA kernel in EP contains nested loops, which can be optimized with vec-
tor instructions. DPC++, developed by Intel, optimizes these loops with the highest performance
on Intel CPUs. As HIP-CPU applies the fiber solution, which does not group CUDA threads into
loops, it cannot benefit from SIMD instructions. While CuPBoP depends on the off-the-shelf LLVM
compiler to apply auto-vectorization, it does not achieve the same level of vectorization as the In-
tel compiler. We attempt to manually set some flags during LLVM optimizations (e.g., allowing
floating-point calculation reordering) and get programs with higher performance. This issue is
a traditional compiler optimization problem that extends beyond the scope of CUDA migration.
Similarly, KMeans contains loops that can only be well-optimized by DPC++, which relies on the
Intel compiler.
CFD: CFD implements the redundant flux calculation that is used in the fields of electrical en-
gineering. The CUDA program is computation-intensive and contains a significant number of
floating point calculations. Therefore, compiler optimization is critical for performance. Both
DPC++ and CuPBoP rely on the loop solution, which applies compiler optimizations to trans-
formed CPU programs that are relatively complex and challenging to optimize effectively. In
contrast, HIP-CPU is implemented using the fiber solution, which directly applies compiler opti-
mizations to GPU kernels. Since GPU kernels are much simpler than transformed CPU programs,
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Fig. 6. The Roofline model for the CPU and GPU in Table 3.

compilers can optimize them more effectively. As a result, HIP-CPU achieves the highest perfor-
mance. To assess the importance of compiler optimizations on original GPU kernels, we intention-
ally skip compilation optimization on CUDA programs and apply O3 optimization only to trans-
formed CPU programs. Compared with applying O3 optimization to both the GPU kernels and
transformed CPU programs (5.94 sec), applying optimizations only to transformed CPU programs
increases the runtime to 10.53 sec for CuPBoP.

5.3.2 Manual Optimized CPU Programs. Although CuPBoP can achieve higher performance
compared to other CUDA-to-CPU solutions, it remains an open question whether it can execute
CUDA on CPUs with performance comparable to executing CUDA on GPUs. As described in
Table 3, modern CPUs and GPUs possess similar magnitudes of computational resources, lead-
ing to the expectation that CUDA programs could achieve comparable performance on both plat-
forms. However, our evaluation of five applications from Hetero-Mark, which involve floating
point computations and are easy to estimating FLOPs and memory access, reveals significant
insights. The results, illustrated with the Roofline model [67] in Figure 6, show that while the
CUDA programs are well-optimized for NVIDIA GPUs—achieving high performance close to the
upper bound—the transformed CPU programs fall far short of the CPU’s peak performance. Conse-
quently, we conclude that high-performance CUDA programs may not necessarily be transformed
into high-performance CPU programs.
To investigate the performance gap between CPU programs transformed from CUDA and man-

ually optimized CPU programs, we use the Cloverleaf application as a case study. This application
offers both well-optimized CUDA (for GPU) and OpenMP (for CPU) implementations.
We profile the runtime on Sever-AMD-A30 and show the result in Figure 7. We have two obser-

vations. First, the ratio of execution time in CuPBoP and CUDA is different. For the CUDA pro-
gram, the Halo Exchange takes around 50% total execution time.While in CuPBoP, theMomentum
advection becomes the hot spot, which takes around 33% execution time.
Another observation is the runtime distribution between CuPBoP and OpenMP are similar,

but the runtime in CuPBoP is longer than OpenMP. We study the functions for the Momentum
Advection and show the simplified code in Listing 6. The CUDA program and the OpenMP pro-
gram have different data mappings: They use different functions (THARR2D and FTNREF2D) to
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Fig. 7. The execution time of CloverLeaf application. (CuPBoP: 2.374 sec, OpenMP: 0.5162 sec, NVIDIA-A30:

0.2785 sec).

maintain a 2D array. Additionally, OpenMPuses explicit pragma to guide the vectorization. As CuP-
BoP translates programs from CUDA, the translated CPU program has complicated array access
and cannot use the SIMD instructions well.

1 // CUDA
2 node_flux[THARR2D(0, 0, 1)] = mass_flux_x[THARR2D(0, -1, 1)];
3 // OpenMP
4 #pragma omp for private(j)
5 for (k=y_min;k<= y_max +1;k++) {
6 #pragma ivdep
7 for (j=x_min -2;j<=x_max +2;j++) {
8 node_flux[FTNREF2D(j,k,x_max+5,x_min -2,y_min -2)]= mass_flux_x[FTNREF2D(j,k-1,x_max

+5,x_min -2,y_min -2)];
9 }
10 }

Listing 6. The simplified code of the Momentum Advection function in CUDA and OpenMP.

1 // original CUDA program
2 uint32_t index = threadIdx.x;
3 while (index < num_pixels ) {
4 uint32_t color = pixels[index ];
5 priv_hist[color ]++;
6 index += blockDim.x;
7 }
8 // transformed CPU program
9 for(size threadId =0; threadId <BLOCK_SIZE ;threadId ++) {
10 uint32_t index = threadId;
11 while (index < num_pixels ) {
12 uint32_t color = pixels[index ]; // poor locality
13 priv_hist[color ]++;
14 index += BLOCK_SIZE ;
15 }
16 }

Listing 7. The original CUDA program and transformed CPU program for Hist benchmark.
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Fig. 8. The ideal CUDA memory access pattern may lead to poor CPU locality after the GPU-to-CPU trans-

formation. We could apply memory reordering to gain higher cache locality to speed up the transformed

CPU programs.

In addition to the vectorization issue, we have identified another critical memory access issue.
We present the original CUDA program and the transformed CPU program for the Hetero-Mark
Hist benchmark in Listing 7. We also visualize the memory access patterns for easy understanding
in Figure 8. Figure 8(a) shows that each GPU thread accesses memory addresses with a large stride.
This pattern enables coalesced memory accesses within a GPU warp (i.e., all memory requests
within a warp are sequential). However, this feature will cause a low cache hit rate when the ker-
nel is transformed into a CPU program (Figure 8(b)). By reordering the memory access sequence
(Figure 8(c)), the CPU program can achieve a much higher hit rate. A similar transformation can
also be used to speed up other examples like the GA. With manual memory access transformation,
the LLC hit rate can be significantly improved, as shown in Table 6. Although memory reorder-
ing may resemble loop reordering, which involves interchanging the outer and inner loops in
Listing 7 (outer loop: line 9, inner loop: line 11), the existing loop interchange transformations
cannot handle this case. This limitation arises because the inner loop depends on the induction
variable (threadId) of the outer loop.

From the evaluation, we demonstrate that CuPBoP exceeds two existing CUDA-to-CPU solu-
tions in terms of coverage and performance. However, there still exists a gap between CPU pro-
grams transformed from CUDA and manually optimized CPU programs. We identify two aspects
(vectorization and memory access pattern) that hinder the current framework from achieving per-
formance portability and propose a potential solution (memory reordering) to enable CUDA per-
formance portability on CPUs. We do NOT apply the manual optimizations on CuPBoP when
comparing with other CUDA-to-CPU solutions.
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Table 6. For Some CUDA Programs, the Transformed CPU Programs

Have Poor Locality

reordering?
LLC-loads

(1e9)
LLC-load

misses (1e9)
LLC-stores

(1e9)
LLC-store
misses (1e9)

HIST
yes 359 165 152 38
no 37,290 26,656 2,999 62

GA
yes 133 13 80 11
no 492 148 636 446

Applying the memory access reordering can significantly speed up these CPU programs by

gaining high cache locality.

Table 7. The Software Dependency

projects dependency

DPC++ Intel oneAPI

HIP-CPU TBB, LLVM, pthreads, C++17

MCUDA Java, Intel ICC, Cetus

CuPBoP LLVM, pthreads

CuPBoP only relies on open-source projects.

5.4 Dependency

We present the software dependencies for different projects in Table 7. DPC++ relies on Intel de-
velopment toolkits, which include the src2src translator (DPCT) and the compiler (DPC++) for
compiling SYCL programs to CPU executable files. For CPU backend, Intel oneAPI can only be
executed on CPUs that are compatible with Intel 64 architecture [10].
HIP-CPU utilizes Clang to translate CUDA source code to HIP source code. The translated HIP

source code can be compiled with official GCC/Clang by setting the include path to HIP-CPU’s
provided directory. HIP-CPU runtime is based on TBB [8] and pthreads.
MCUDA [65] relies on Cetus [27], a source-to-source compiler, to convert CUDA programs to

C programs. As stated in the MCUDA documentation, the translated C programs can only be
compiled by the Intel ICC compiler to generate CPU executable files. The Java environment is
required to execute MCUDA, as Cetus is written in Java.
Regarding CuPBoP, the compilation part is based on LLVM, and the runtime relies on pthreads.

Users can utilize CuPBoP by downloading the pre-built LLVM binary and building CuPBoP from
the source code.

5.5 Debug

The CPU executable files generated by CuPBoP can be analyzed by CPU debug toolkits. For exam-
ple, users can use valдrind to find out-of-bound memory access (Listing 8).
However, compared to NVIDIA computer sanitizer [17], there are some limitations of CuP-

BoP. First, not all CUDA bugs are maintained in the transformed CPU programs. For example,
the GPU thread race condition will not exist in generated CPU programs, as all threads within
a block will be executed sequentially. Additionally, the output in valдrind does not contain the
block index and thread index information, so researchers cannot know which thread triggers the
bugs.
To get well-organized debug information, we have to also maintainDWARF information during

compilation transformations. Further work is needed to fully address this topic.
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1 // mem_error.cu
2 __device__ void out_of_bounds_function (void)
3 {
4 *(int*) 0x87654320 = 42;
5 }
6 // analyze the generated CPU programs with valgrind
7 valgrind --tool=memcheck ./ mem_error
8 // valgrind output
9 ==4105214== Invalid write of size 4
10 ==4105214== at 0x4010E9: out_of_bounds_function ()

Listing 8. CuPBoP can be used with valgrind to detect CUDA memory bugs.

6 CUPBOP FOR AMD GPU

We describe the CUDA to AMD GPU support in CuPBoP as a proof the hardware scalability. The
workflow for supporting CUDA on AMD GPUs is similar to CPUs: CuPBoP utilizes Clang to com-
pile CUDA source code into NVVM/LLVM IRs. Then, several compilation transformations are
applied to each of them. For the kernel programs, CuPBoP applies transformations to implement
local variable and parameter address space conversions, block and thread indexing replacements,
constant and shared memory attribute modifications, texture memory transformations, and vector,
atomic, and math function substitutions. After all these transformations, the kernel programs are
compiled into fat binaries. After that, CuPBoP applies transformations on host programs to replace
the embedded CUDA fat binary with the newly generated fat binaries.
The transformed programs are then compiled into object files and linked with CuPBoP-AMD

runtime libraries. The CuPBoP-AMD runtime libraries implement the same CUDA built-in func-
tions as CuPBoP-CPU, but the implementation is based on HIP instead of C/C++.
CuPBoP-AMD supports all the CUDA features that are supported on CuPBoP-CPU. Additionally,

CuPBoP-AMD supports texture memory and cooperative groups.

6.1 Comparison with HIPIFY

In this section, we compare CuPBoP-AMD with HIPIFY [7], a state-of-the-art source-to-source
translation tool developed by AMD that focuses on refactoring existing CUDA source code to use
one-to-one mapped HIP APIs.
As HIP is specifically designed to be similar to CUDA, in many cases, HIPIFY can successfully

translate CUDA to HIP. Compared with CuPBoP, HIPIFY is lightweight. However, there are some
cases where CuPBoP is preferred.
Syntactic sugar: HIPIFY is based on AST analysis or regular expressions, which cannot success-
fully translate some syntactic sugars that involves complicated code usage. For example, the code
shown in Listing 5 contains a syntactic sugar that invokes a CUDA kernel launch, which cannot
be translated by HIPIFY. As CuPBoP is based on LLVM IR, all syntactic sugars are compiled into
IR instructions and have no effect on the migration process.
Complicated file structures: Many heterogeneous applications prefer to split the kernel pro-
grams, storing them in multiple “.cuh” (CUDA) header files and including them from a central
“.cu” source file without explicitly specifying them all to the compiler. HIPIFY requires either man-
ual modifications to each source and header file or transformations on all source and header files.
However, CuPBoP utilizes Clang to compile the source code. In most cases, during the compila-
tion process, these header files will be extended into a single kernel program (NVVM IR), making
CuPBoP more convenient for projects with complicated file structures.
We evaluated CuPBoP and HIPIFY on the Rodinia benchmark to measure coverage and per-

formance. Out of the 23 applications, HIPIFY was able to support 18 of them. Three applications
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(hybridsort, kmeans, leukocyte) raised segfaults after translation. These applications use CUDA
texture memory. While CUDA’s cudaBindTexture function could accept a null pointer as an argu-
ment, this behavior is illegal in HIP’s corresponding function hipBindTexture . Thus, the trans-
lated HIP code raises segfault errors. On the contrary, CuPBoP correctly supports the transla-
tion by generating an auxiliary dummy variable and passing its address as the argument to the
hipBindTexture . Thus, CuPBoP can support these three functions. In total, CuPBoP supports 21
applications. Two applications (Huffman, srad) are not transformed correctly in either CuPBoP
or HIPIFY. We assume this is due to internal differences (e.g., floating-point calculation, memory
management) between NVIDIA GPUs and AMD GPUs.
Both HIPIFY and CuPBoP use the same HIP functions on the transformed AMD GPU programs.

We evaluated the performance of the translated programs on AMD MI210 GPUs and found that
the execution times are mostly within the margin of error. On average, the difference in runtime
between the two approaches is less than 1%.

7 RELATEDWORKS

7.1 CUDA-on-CPU Solutions

All projects that execute CUDA on CPUs can be categorized into two aspects: debugging and
performance.
Debugging: For debugging purposes, these projects focus on integrating with off-the-shelf CPU
debug toolkits to obtain detailed information from CUDA programs. Horus [32] and GPUGPU-
SIM [18] are PTX simulators that parse the PTX binaries and execute them on CPUs. Cumulus [21]
applies source code transformations to translate CUDA to C++. The transformed C++ programs
aim for debugging purposes, as they do not utilize multiple-thread execution. VGPU [58] directly
uses CPU threads to replace GPU threads. These projects always avoid or decrease the transfor-
mations applied to CUDA programs to make it easy for debugging.
Performance: In contrast to debugging projects, some projects focus on executing CUDA on
CPUs with high performance by utilizing CPU computational resources. MCUDA [65] proposes
compilation transformations to wrap the workload within a CUDA block into a single CPU func-
tion. This solution is called the loop solution in Section 3.2. Swan [37] and POCL [39] implement
the same algorithm to support executing OpenCL on CPUs. The authors in Reference [53] imple-
ment the transformation at the MLIR level, which allows the transformation to be co-executed
with other compiler optimizations. Ocelot [28] implements the transformation at the PTX level to
avoid recompilation of CUDA source code. COX [36] extends the loop solution to support CUDA
warp-level functions. Guo et al. [35] add additional static analysis to correctly translate the implicit
warp-level lock steps that widely exist in CUDA programs. The authors in References [44, 64] pro-
pose optimizations to better utilize SIMD instructions on the translated programs.
Instead of directly executing CUDA on CPUs, some solutions rely on portable languages. The

AMD team proposes HIPIFY [7] to translate CUDA to HIP. To date, two versions of HIPIFY have
been released: hipi f y − perl is a PERL script based on regular expressions that solely performs
text replacements from CUDA APIs to HIP APIs; hipi f y − clanд is a Clang-based translator that
performs source-to-source refactoring based on the abstract syntax tree analysis. Similarly, Intel
proposes DPCT [5] to translate CUDA to SYCL [38], which can be executed on Intel CPUs and
Intel GPUs. OpenCL [52, 60, 61] is also a popular target for CUDA transformation. The effective-
ness of these source-to-source solutions is highly dependent on the similarity between CUDA and
the target languages. The authors in Reference [23] summarize several challenges when migrating
CUDA to SYCL. ChipStar [1] is a framework that supports the execution of HIP/CUDA programs
on platforms that support SPIR-V. The key insight of ChipStar is that it implements HIP/CUDA
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Table 8. Summary of Projects for Executing CUDA on CPUs

Project(s) Translate from Translate host programs? active Runtime implementation output

MCUDA [65]

CUDA source

no no OpenMP C/C++ code
Cumulus [21] yes yes no multi-thread C/C++ code
Swan [37] no no OpenCL OpenCL code

CU2CL [52] and [60, 61] yes yes OpenCL OpenCL code
HIPIFY [7] yes yes HIP framework HIP code
DPCT [5] yes yes Intel oneAPI DPC++ code

Ocelot [28]
PTX Assembly

yes no Hydrazine threading library Executable files
Horus [32] simulator

GPGPU-Sim [18] simulator

COX [36] NVVM IR no yes not provided LLVM IR

CuPBoP NVVM/LLVM IR yes yes portable run-time system Executable files

functions using OpenCL instructions. Since both the input (HIP/CUDA) and output (OpenCL) are
SPMD models, this project does not involve SPMD-to-MPMD transformation. HIPCL [20] is an-
other project that implements HIP APIs with OpenCL functions, which can potentially be used to
support CUDA on CPUs. Similarly, HIPLZ [69] employs a similar solution to support HIP on Intel
GPUs by using Intel Level Zero [3].
We summarize the features of several related works and show in Table 8. We also provide a

summary of the two related works that are used for comparison in the evaluation section.
DPC++: DPC++ is based on OpenCL. POCL [39] is the only open-source OpenCL implementation
that offers CPU backend support. For the given OpenCL kernels, POCL applies the loop solutions.
Similar to CuPBoP, POCL maintains a thread pool and task queue to facilitate kernel launching
and execution. Additionally, POCL supports just-in-time (JIT) compilation. Instead of keeping
the block and grid sizes as runtime variables in the transformed kernels, POCL replaces these
variables with actual values during kernel launch. While this approach may introduce higher JIT
compilation latency, it enables the transformed kernels to be easily optimized by compilers.
HIP-CPU:HIP-CPU does not involve compiler-level transformations; instead, it provides libraries
for HIP kernel functions and HIP runtime functions. It implements the fiber solution, which
results in a higher overhead for context switching, compared with the loop solution. Additionally,
as HIP-CPU does not apply compilation-level transformations, its performance may be slower. For
instance, HIP-CPU conservatively synchronizes all threads before memory movement between
the host and devices, regardless of whether these threads read or write memory that has a race
condition.

7.2 CUDA-on-FPGA Solutions

FPGA is another popular target for CUDA migration. FCUDA [56] supports executing CUDA pro-
grams on FPGAs by providing a source-to-source translator to convert CUDA to parallel C pro-
grams that can be compiled using AutoPilot [68]. ML-GPS [57] automatically extracts multilevel
granularity parallelism from CUDA programs and maps it to FPGA accelerators. FlexGrip [19] is
a GPU architecture optimized for FPGA implementation, capable of directly executing compiled
CUDA binary programs. FlexGrip is configurable, allowing developers to easily adjust the number
of cores to strike a balance between performance and area cost.
In addition to directly executing CUDA on FPGAs, there are projects that support other portable

languages on FPGAs. For example, References [26, 43, 49] propose execute OpenCL programs on
FPGA. Reference [33] supports SYCL for Xilinx FPGA. Taking into account the existing source-to-
source translators from CUDA to OpenCL and SYCL, these solutions can potentially be used to
support CUDA on FPGAs.
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8 CONCLUSION

Most existing approaches for running CUDA on non-NVIDIA devices rely on src2src solutions
that translate CUDA code to other programming languages. However, these src2src solutions have
certain limitations. Building upon these observations, we propose a framework called CuPBoP. In-
stead of translating CUDA to portable languages, CuPBoP enables CUDA to become a portable
language itself. In our evaluation, we compare CuPBoP with two commercial src2src solutions
(DPC++ and HIP-CPU) for the CUDA-to-CPU migration and demonstrate that CuPBoP achieves
the highest coverage. Additionally, CuPBoP achieves the highest performance in 17 of the 24 appli-
cations. Furthermore, we compare CuPBoP with manually optimized CPU programs and analyze
the result. Additionally, we showcase the hardware scalability of CuPBoP by supporting CUDA on
AMD GPUs.

We believe that CuPBoP holds great promise for HPC developers and provides a unique
compilation-runtime co-design approach to explore the possibility of executing CUDA code on
non-NVIDIA devices.
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