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Abstract

Ecosystems around the globe are experiencing changes in both the magnitude

and fluctuations of environmental conditions due to land use and climate

change. In response, ecologists are increasingly using near-term, iterative

ecological forecasts to predict how ecosystems will change in the future. To date,

many near-term, iterative forecasting systems have been developed using high

temporal frequency (minute to hourly resolution) data streams for assimilation.

However, this approach may be cost-prohibitive or impossible for forecasting

ecological variables that lack high-frequency sensors or have high data latency

(i.e., a delay before data are available for modeling after collection). To explore

the effects of data assimilation frequency on forecast skill, we developed water

temperature forecasts for a eutrophic drinking water reservoir and conducted

data assimilation experiments by selectively withholding observations to exam-

ine the effect of data availability on forecast accuracy. We used in situ sensors,

manually collected data, and a calibrated water quality ecosystem model driven

by forecasted weather data to generate future water temperature forecasts using

Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water

quality forecasting system. We tested the effect of daily, weekly, fortnightly, and

monthly data assimilation on the skill of 1- to 35-day-ahead water temperature

forecasts. We found that forecast skill varied depending on the season, forecast

horizon, depth, and data assimilation frequency, but overall forecast perfor-

mance was high, with a mean 1-day-ahead forecast root mean square error

(RMSE) of 0.81!C, mean 7-day RMSE of 1.15!C, and mean 35-day RMSE of

1.94!C. Aggregated across the year, daily data assimilation yielded the most

skillful forecasts at 1- to 7-day-ahead horizons, but weekly data assimilation

resulted in the most skillful forecasts at 8- to 35-day-ahead horizons. Within a

year, forecasts with weekly data assimilation consistently outperformed forecasts

with daily data assimilation after the 8-day forecast horizon during mixed

spring/autumn periods and 5- to 14-day-ahead horizons during the

summer-stratified period, depending on depth. Our results suggest that lower
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frequency data (i.e., weekly) may be adequate for developing accurate fore-

casts in some applications, further enabling the development of forecasts

broadly across ecosystems and ecological variables without high-frequency

sensor data.

KEYWORD S
data collection frequency, FLARE, high-frequency sensors, initial conditions, observations,
uncertainty, water temperature

INTRODUCTION

In the face of increasing ecological variability due to cli-
mate and land use change, in which ecosystems are
experiencing changes in the magnitude and fluctuations of
environmental variables (e.g., Gilarranz et al., 2022; Malhi
et al., 2020), ecological forecasting is increasingly being
used for understanding and predicting future ecological
change (Carey, Woelmer, et al., 2022; Lewis et al., 2022).
Here, we define ecological forecasts as predictions of
future environmental conditions with quantified uncer-
tainty (see Carey, Woelmer, et al., 2022; Lewis et al., 2022).
Because of their broad utility, forecasts are increasingly
being developed by the research community to predict
population, community, and ecosystem dynamics (Lewis
et al., 2022). For example, an ongoing, community-based
forecasting challenge organized by the Ecological
Forecasting Initiative’s Research Coordination Network
has received thousands of ecological forecast submissions
of National Ecological Observatory Network (NEON) data
(e.g., lake water temperature, tick abundances, forest net
ecosystem production, beetle communities) before the data
have been collected (Thomas, Boettiger, et al., 2023).

Many near-term (daily to decadal) ecological forecasts
are produced using the iterative, near-term forecasting
cycle, in which models are updated as new observational
data become available to generate forecasts into the future
with quantified uncertainty (Dietze et al., 2018). The pro-
cess of updating forecast models with newly available data,
termed data assimilation (DA), is a critical component of
the iterative, near-term forecast cycle (Dietze et al., 2018;
Luo et al., 2011). DA allows for iterative updating of eco-
logical hypotheses and models as forecasts are continu-
ously assessed and updated with the most recent
ecosystem observations (Dietze et al., 2018; White
et al., 2019). DA can also improve forecast accuracy by
updating forecast model initial conditions (i.e., starting
values given to the model), states, and/or parameters at
the time step that the new observations become available
(Cho et al., 2020; Gottwald & Reich, 2021; Luo et al., 2011;
Niu et al., 2014). Despite the usefulness of DA for improv-
ing forecasts, however, the optimal frequency of

observations for updating ecological models to produce
skillful forecasts is not well characterized.

While there are a number of best practices proposed
for applying the near-term, iterative forecast cycle in ecol-
ogy (e.g., Clark et al., 2001; Harris et al., 2018; Lewis
et al., 2022; White et al., 2019), few recommendations
exist for choosing the optimal frequency of DA to pro-
duce accurate forecasts. Specifically, determining the
appropriate frequency of observations for DA across a
range of ecological variables is needed to improve the
scalability of ecological forecasting, particularly if accu-
rate forecasts can be developed using lower frequency
observations. For example, if weekly or fortnightly DA
yielded similarly accurate lake-dissolved oxygen forecasts
as daily DA, then water quality forecasting systems could
be developed for lakes that have weekly or fortnightly
routine monitoring program data without needing expen-
sive high-frequency sensors, thereby enabling forecasts to
be generated for many waterbodies globally. The benefits
of lower frequency DA are also evident for remote sens-
ing applications, as the frequency at which different sat-
ellites acquire data is often greater than two days
(Herrick et al., 2023).

Currently, many automated ecological forecasting sys-
tems rely on high-frequency sensors to assimilate data at
each time step and generate accurate forecasts
(e.g., Baracchini, Wüest, et al., 2020; Corbari et al., 2019;
Marj & Meijerink, 2011; Page et al., 2018; Tanut
et al., 2021), but it is possible that high-frequency sensor
data collection may not be needed for DA. Moreover,
deployment of high-frequency sensors is not always feasi-
ble for all ecological variables (e.g., zooplankton abun-
dance, biogeochemical concentrations; Marcé et al., 2016)
and some remote locations have additional logistical con-
straints for maintaining autonomous sensor operation
(Steere et al., 2000). Furthermore, some remotely sensed
variables may only be available as satellite orbits and
weather conditions (e.g., cloud cover) allow (e.g., Herrick
et al., 2023). Thus, identifying how best to integrate obser-
vational data collected at different temporal frequencies
into forecast models has emerged as a critical need for eco-
logical forecasters (LaDeau et al., 2017).
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Studies on the frequency of DA for environmental
forecasts have generally shown that more temporally fre-
quent DA improves forecast accuracy, but not always, which
may be related to the sensitivity of forecasts to model initial
conditions. For example, DA occurring every 24 h using in
situ snow data (e.g., snow depth, density, snow water equiva-
lent) resulted in better predictions of these snow variables
in an alpine snowpack model compared with DA occur-
ring every 3 h (Piazzi et al., 2018). Conversely, DA “experi-
ments” performed for National Oceanic and Atmospheric
Administration’s (NOAA) Global Ensemble Forecasting
System using meteorological observations collected at dif-
ferent frequencies showed that DA occurring every 2 h
resulted in more accurate air temperature and wind speed
forecasts than DA occurring every 6 h (He et al., 2020).
These differences are likely because uncertainty in meteoro-
logical forecasts is primarily driven by the forecast model’s
initial conditions. Thus, more frequent DA, which con-
strains the model’s initial conditions, will almost always
improve the skill of meteorological forecasts (e.g., Clark
et al., 2016; He et al., 2020; Simonin et al., 2017). In contrast,
for forecasts of environmental systems in which model ini-
tial conditions are less important sources of uncertainty,
and model process uncertainty and model driver data uncer-
tainty dominate total uncertainty (e.g., Dietze, 2017a;
Heilman et al., 2022; Lofton et al., 2022; Thomas
et al., 2020), it is unknown whether more frequent DA can
improve forecast skill by generating initial conditions that
are more consistent with observations.

To the best of our knowledge, there have been only a
few ecological DA experiments that have tested the effects
of different observation frequencies on forecast skill
(e.g., Massoud et al., 2018; Piazzi et al., 2018; Weng &
Luo, 2011; Ziliani et al., 2019), and none that have consid-
ered how the frequency of data used for assimilation
affects forecast skill across both spatial and temporal
scales. Weng and Luo (2011) assimilated eight different
carbon datasets (e.g., root biomass, litter fall, soil respira-
tion), each with different collection frequencies, to identify
the relative importance of these data sources in
constraining long-term carbon dynamics, but did not con-
sider how different frequencies of the same dataset could
affect forecast skill. Piazzi et al. (2018) assimilated multiple
snow observations at two different frequencies (3 and 24 h)
for predicting different snow-related variables (e.g., depth,
density, and snow water equivalent), and Ziliani et al.
(2019) performed DA tests using 1- to 20-s assimilation of
water depth data to assess water level forecast skill, but
neither considered the effect of less frequent assimilation
(e.g., >24 h). Massoud et al. (2018) performed DA tests
using a wider range of temporal frequencies (e.g., ~3- to
34-day abundance data) to predict plankton community
dynamics, but did not consider the effects of DA across

spatial scales (i.e., how DA affects forecast skill across
multiple sites or depths in an aquatic ecosystem). As a
result, further work is needed to quantify the utility of
increased observation and DA frequency over both time
and space to forecast performance in ecological systems
with varying sensitivities to initial conditions.

Among ecosystems, freshwater lakes and reservoirs
are particularly important systems for developing
near-term forecasts because they provide essential ecosys-
tem services, including drinking water, food, irrigation,
and recreation (Carpenter et al., 2011; Meyer et al., 1999;
Williamson et al., 2016). Because freshwaters are
experiencing greater variability and adverse water quality
issues in response to land use and climate change
(e.g., O’Reilly et al., 2015; Paerl & Paul, 2012; Woolway
et al., 2021), some water managers have used forecasts to
preemptively address poor water quality events (reviewed
by Lofton et al., 2023). To date, iterative, near-term fresh-
water forecasts have been developed for a number of
water quality variables, including water temperature
(e.g., Carey, Woelmer, et al., 2022; Thomas, McClure,
et al., 2023), dissolved oxygen (e.g., Wang et al., 2016),
and phytoplankton (e.g., Page et al., 2017; Woelmer
et al., 2022). These forecasts have been developed using
DA with observations collected by high-frequency sen-
sors at intervals ranging from 4 min to 24 h. However,
most manual-sampling water quality monitoring pro-
grams collect observations on weekly to fortnightly scales
(e.g., Francy et al., 2015; Kirchner & Neal, 2013; Romero
et al., 2002), currently precluding the scaling of existing
forecasting systems broadly and underscoring the need to
determine whether less frequent observations can be
used to produce accurate forecasts.

To quantify how DA at different frequencies affects
forecast skill up to 35 days into the future, we performed
DA experiments in which we separately assimilated daily,
weekly, fortnightly, and monthly data into reservoir
water temperature forecasts. Water temperature forecasts
are used to inform management decisions on water
extraction depth and preemptive water quality interven-
tions (Georgakakos et al., 2005; Kehoe et al., 2015;
Mi et al., 2020), and thus our study has much utility for
both informing how best to forecast complex ecosystem
dynamics and manage drinking water supplies. Our
research questions were: (1) Which frequency of DA gen-
erates the most skillful water temperature forecasts?
(2) How does forecast skill vary across time (specifically
focusing on the mixed vs. stratified seasons within a year)
and space (i.e., reservoir depth)? (3) How does DA fre-
quency influence total forecast uncertainty and what is
the relative contribution of initial condition uncertainty
to total forecast uncertainty? We expected that less fre-
quent DA would result in decreased forecast skill and

ECOSPHERE 3 of 23

 21508925, 2024, 2, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4752 by V

irginia Tech, W
iley O

nline Library on [28/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



increased total uncertainty. In addition, we expected that
forecast skill would be better at deeper depths, especially
during thermally stratified periods (e.g., Mercado-Bettín
et al., 2021; Thomas et al., 2020).

METHODS

Forecasting system overview

We applied the Forecasting Lake And Reservoir
Ecosystems (FLARE) forecasting system (Thomas
et al., 2020) to Beaverdam Reservoir (BVR), Virginia,
USA, to produce daily water temperature forecasts for
1–35 days into the future (hereafter referred to as forecast
horizon) during 1 January 2021–31 December 2021.
FLARE is an open source forecasting system that incor-
porates real-time water quality sensor data, DA,
ensemble-based forecasts, and uncertainty quantification
to predict near-term water quality conditions (Thomas
et al., 2020).

Forecast generation via FLARE can be summarized
in four steps (Figure 1). First, 10-min resolution water
temperature data were collected by sensors deployed in
the reservoir (Figure 1, step 1). Second, these data were
transferred to the cloud and stored in a GitHub reposi-
tory, where they were downloaded daily and made avail-
able for DA (Figure 1, step 2). Simultaneously, 1- to
35-day-ahead NOAA meteorological forecasts were
downloaded daily as driver data for the reservoir hydro-
dynamic model to generate the water temperature fore-
casts. Third, during the forecast generation step, DA was
used to update initial conditions and parameters with the
most recent observations using an ensemble Kalman
filter, a numerical approach that allows for the updating
of model states and parameters using data (Evensen, 2003)
(Figure 1, step 3a). Following DA, the reservoir hydrody-
namic model was initialized with the updated model
states and parameters to produce 1- to 35-day-ahead
forecasts for each 0.5-m depth interval across the water
column (Figure 1, step 3b). Finally, forecast skill was
assessed by comparing observed versus predicted water
temperatures for each daily forecast at each depth
(Figure 1, step 4). We repeated steps 3a–4 for daily,
weekly, fortnightly, and monthly intervals of DA
throughout the year as part of the DA experiments to
compare forecast skill over time.

Study site and monitoring

BVR is a small (0.28 km2), shallow (Zmax = 11 m),
dimictic, eutrophic reservoir in southwestern Virginia,

USA (37.31! N, 79.82! W; Figure 2). BVR is managed by
the Western Virginia Water Authority as a secondary
drinking water supply and is located in a deciduous forest
catchment (Doubek et al., 2019). During a typical year,
BVR is stratified from mid-March to late October and
mixed from November to early March (Hounshell
et al., 2021). BVR experiences summer hypolimnetic
anoxia and cyanobacterial blooms, both of which are
controlled by water temperature and thermal stratifica-
tion (Doubek et al., 2019; Hamre et al., 2018), making
forecasts of water temperature important for water qual-
ity management.

Water quality monitoring of BVR includes both man-
ual sampling and high-frequency sensors. From 2014 to
present, manual water quality sampling occurred weekly
to fortnightly during the summer-stratified period and
fortnightly to monthly during the remainder of the year
(Carey, Lewis, McClure, et al., 2022). Starting in June
2020, high-frequency sensors were deployed in the reser-
voir, enabling a range of DA frequencies to be compared
in this study. We deployed NexSens T-Node FR
Temperature Sensors (NexSens Technology, Fairborn,
OH, USA) at 1-m intervals from the surface to sediments
and a YSI EXO2 sonde (YSI Incorporated, Yellow
Springs, OH, USA) that monitored water temperature at
1.5 m at the deepest site in BVR (Figure 1; see Carey
et al., 2023, for sensor information). These sensors col-
lected data every 10 min, which were transmitted every
3–9 h via secure sensor gateways to a Git repository in
the cloud (Carey et al., 2023; Daneshmand et al., 2021).
We removed observations collected during periods of sen-
sor maintenance, as well as depth-adjusted the data using
an offset calculated from CS451 Stainless Steel Pressure
Transducer (Campbell Scientific, Logan, UT, USA) to
account for water level changes (Wander et al., 2023b).
Because of this range in latency, or the time that it takes
for data to become available for modeling after they are
initially collected, we used the daily mean water tempera-
ture in our forecasting application. Following quality
checks, these data were integrated into the FLARE fore-
casting system to produce depth-specific daily water tem-
perature forecasts.

Hydrodynamic model configuration

For modeling reservoir hydrodynamics, we used the
General Lake Model (GLM) v.3.3.0 (Hipsey et al., 2022)
to forecast water temperature in BVR. GLM is an open
source, 1-D process-based hydrodynamic model com-
monly used within the freshwater research community to
simulate water quality in lakes and reservoirs (Hipsey
et al., 2019). GLM uses a Lagrangian approach for
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simulating different water layers and has been applied to
a variety of lakes worldwide for modeling (e.g., Bruce
et al., 2018; Read et al., 2014) and forecasting hydrody-
namics (e.g., Thomas et al., 2020; Thomas, McClure,
et al., 2023).

We configured GLM for BVR using historical bathy-
metric data (Carey, Lewis, Howard, et al., 2022) and water
temperature observations for initial conditions (Carey
et al., 2023). We configured GLM with two sediment zones
to simulate epilimnetic (surface) and hypolimnetic
(bottom) sediment temperature dynamics following Carey,
Hanson, et al. (2022). GLM requires meteorological and
reservoir inflow observations as driver data to run the
model. Because we were applying GLM for forecasting,
meteorological forecasts, not observed meteorology, were
used as driver data in the model, as described below.
Additionally, we set the inflow to equal outflow in this
study given limited inflow data for validation and the rela-
tively short forecast horizons (≤35 days). We therefore
kept water level constant throughout the study period in

the model. We initiated the model using its default param-
eter set (Hipsey et al., 2019; Wander et al., 2023b) and
performed calibration via a 35-day spin-up period with DA
to tune parameters before the start of our focal forecasting
period (described below).

FLARE configuration for DA and
uncertainty

We configured FLARE for BVR following its application
to other lakes and reservoirs (Thomas et al., 2020;
Thomas, McClure, et al., 2023). We initialized the ensem-
ble Kalman filter with 256 ensemble members, each with
a vector of modeled water temperatures for different
depths in the reservoir and parameter values (Thomas
et al., 2020). We set the number of forecast ensemble
members to 256 to ensure an adequate representation of
uncertainty and prevent the ensemble Kalman filter from
developing erroneous correlations among ensemble

F I GURE 2 Map of Beaverdam Reservoir, Vinton, VA, USA (37.31! N, 79.82! W). The map shows the surrounding forested watershed;
the point represents the reservoir monitoring site where high-frequency sensor data were collected.
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members that can occur with low ensemble sizes (Duc
et al., 2021; Machete & Smith, 2016).

We chose three parameters (a longwave radiation
scaling parameter, and epilimnetic and hypolimnetic sed-
iment temperature parameters) to assimilate following a
global sensitivity analysis of all model parameters, as
described in Thomas et al. (2020). These parameters were
identified as important for water temperature simulations
using GLM in a similar, nearby reservoir (Carey, Hanson,
et al., 2022; Thomas et al., 2020): (1) the longwave radia-
tion scaling factor (hereafter, longwave); (2) epilimnetic
sediment temperature parameter (hereafter, epi_sed_temp);
and (3) hypolimnetic sediment temperature parameter
(hereafter, hypo_sed_temp).

The ensemble Kalman filter adds normally distrib-
uted random noise to both the predictions (vector of
water temperature at each depth) and observations.
Based on prior FLARE applications (Thomas et al., 2020),
we set the SD of the predictions (process error) to 0.75!C
and the SD of the observations to 0.1!C. The fact that the
observation SD is lower than the modeled SD reflects
greater confidence in the measurements than the predic-
tions. As a result, model predictions should match obser-
vations when observations are available for assimilation.
These perturbed predictions and observations were used
in the Kalman gain to update the predictions using the
difference between observed versus modeled water tem-
perature, and parameters using the correlation with the
updated water temperature predictions. In addition,
the correlations between the parameter values and the
model states with observations (i.e., water temperatures
at the depths with sensor observations) were used to
adjust parameters to be consistent with the most recent
data used in DA. We used model default values provided
in Hipsey et al. (2019) for the remaining GLM parame-
ters, which were set to constant values that did not vary
across depth and time.

We used state augmentation to tune the three param-
eters in the ensemble Kalman filter (Thomas et al., 2020).
The three tuned parameters were initially calibrated dur-
ing a spin-up period from 27 November to 31 December
2020 and were subsequently updated via DA throughout
the forecasting period. To avoid the common issue of arti-
ficially low parameter uncertainty in sequential DA
(Dietze, 2017a), we specified the SD of a normal distribu-
tion for each parameter (1.0!C for the sediment tempera-
ture parameters and 0.02 for the longwave radiation
scaling factor). Initial exploration of parameter fitting in
this study indicated that the application of FLARE over
the full year resulted in low parameter uncertainty,
necessitating us to specify the SD a priori rather than esti-
mating it using DA. The distributions we chose were
adapted from a prior application of FLARE that

estimated the SD of parameter distributions across six
small, dimictic lakes (Thomas, McClure, et al., 2023).
Although BVR was not one of the lakes forecasted in
Thomas, McClure, et al. (2023), BVR is similarly small
and dimictic and, therefore, likely has similar parameter
distributions using the same forecasting framework.

FLARE uses a numerical ensemble-based approach to
simulate and propagate forecast uncertainty (Thomas
et al., 2020). We represented the contribution of uncer-
tainty from meteorological driver data, initial conditions,
model process, and model parameters using the
256-member ensemble, following Thomas et al. (2020).
First, to represent the contribution of meteorological
driver data uncertainty, we assigned each of the
256 FLARE ensemble members one of the 30 ensemble
members from the 1- to 35-day-ahead meteorological
forecasts (NOAA’s Global Ensemble Forecasting System)
to drive GLM for forecasting. Second, we represented the
contribution of uncertainty in the initial conditions of
the forecasts using the spread in model states among the
256 ensemble members on the first day of each forecast.
This spread was determined by either using the prior
day’s forecast as a starting point for the next day’s fore-
cast (when no data were available for DA) or the updated
states following DA (when data were available for DA).
We set the observation uncertainty SD to 0.1!C, deter-
mined from the SD of temperature observations and fol-
lowing prior applications of FLARE (Thomas
et al., 2020). Third, we represented the contribution of
model process uncertainty by adding random noise
to the water temperature predictions from each of
the 256 FLARE ensemble members at each daily time
step in a 1- to 35-day-ahead forecast horizon. The random
noise for each modeled depth within an ensemble mem-
ber was drawn from a normal distribution with a SD of
0.75!C, as used in a previous application of FLARE that
reported well-calibrated forecast uncertainty (Thomas
et al., 2020). The random noise was spatially correlated
so that it was most similar for nearby depths and most
different for further-apart depths. The strength of the spa-
tial correlation was determined by the exponential decay
of the correlation strength with distance (Thomas,
McClure, et al., 2023). Fourth, we represented parameter
uncertainty using the SD of the distributions for the three
tuned GLM parameters described above. A unique
parameter value drawn from each of the three distribu-
tions was assigned to each of the 256 FLARE ensemble
members. The parameter value assigned to an
ensemble member was only updated when DA occurred.
Parameters not tuned by the ensemble Kalman filter
(i.e., those that were not identified from the global sensi-
tivity analysis) had fixed values and uncertainty in these
parameters was not calculated.
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To determine whether there was a relationship
between the magnitude of initial conditions uncertainty
and the sensitivity of forecast skill to more frequent DA
(following Clark et al., 2016; He et al., 2020; Simonin
et al., 2017), we quantified the contribution of initial con-
ditions uncertainty to total forecast uncertainty in our
DA forecasts for all DA frequencies. For this analysis, we
isolated the magnitude of initial conditions uncertainty
by generating the water temperature forecasts for all
365 days with and without initial conditions uncertainty
and compared the variance among all 256 ensemble
members. We also calculated the proportion of initial
conditions uncertainty within total forecast uncertainty
for all depths, horizons, and stratified versus mixed
periods.

DA experiments

To quantify the effect of DA at different frequencies on
forecast skill, we conducted DA experiments in BVR from
1 January to 31 December 2021 (n = 365 days). As noted
above, we used a spin-up period from 27 November to
31 December 2020 (n = 35 days) during which water
temperature observations were used to update model
parameters and initial conditions (i.e., DA occurred), but
no forecasts were generated. During the one-year forecast
period in 2021, we forecasted daily water temperature at
23 depths in the reservoir (spanning 0.1- to 11-m depth
at 0.5-m intervals) and assessed forecast performance rel-
ative to observations across each forecast’s daily predic-
tions for 1- to 35-day-ahead horizons and depth intervals.
We focused on three focal layers (surface, middle, and
bottom) when reporting results to account for small
changes in water level over the year. The surface layer
encompassed 0–2.5 m and represented the epilimnion,
the middle layer encompassed 2.6–8.4 m, which
represented the metalimnion, and the bottom layer
encompassed 8.5–11.0 m, which represented the
hypolimnion.

We performed DA experiments using four different
DA frequencies, daily, weekly, fortnightly, and monthly
(see data assimilation experiments box in Figure 1 and
Appendix S1: Figure S1 for visualization of DA frequen-
cies), to represent different data collection latencies that
are commonly used by water quality monitoring pro-
grams (e.g., Engelhardt & Kirillin, 2014; Francy
et al., 2015; Kirchner & Neal, 2013; Liu et al., 2019;
Romero et al., 2002). We assimilated water temperature
data across different temporal frequencies by down-
sampling from the high-frequency observations collected
by our sensors. For example, for the weekly DA fre-
quency, observations were selected every seven days

starting on 4 January 2021 and ending on 31 December
2021. In this example, DA only occurred once per week;
the forecasts that were generated on the six other days in
the same week did not include DA (i.e., no DA occurred
during 5 January–10 January 2021 even though forecasts
were still generated daily during this interval; Figure 1).
Fortnightly and monthly DA occurred every 14 and
30 days, respectively, throughout the year.

We generated 365 daily forecasts starting on
1 January 2021 for each of the four DA frequencies.
While we recognize that we are producing hindcasts for a
historical period, because the model was forced with only
forecasted drivers and out-of-sample forecast evaluation
occurred, we refer to these retrospective forecasts or
hindcasts as forecasts throughout for consistency (follow-
ing Jolliffe & Stephenson, 2012).

Analysis

Question 1

For all n = 1460 forecasts produced (365 forecasts gener-
ated daily over a year for four different DA frequencies),
we used root mean square error (RMSE) and continuous
ranked probability score (CRPS; Gneiting et al., 2005) to
quantify forecast skill. We defined skillful water tempera-
ture forecasts as those with an RMSE < 2!C, a commonly
used threshold for lake and reservoir hydrodynamic
modeling following Bruce et al. (2018), Read et al. (2014),
and many others. We note that there are many ways to
quantify skill beyond the 2!C RMSE threshold used here,
such as the correlation coefficient, Nash–Sutcliffe model
efficiency coefficient, percent relative error, normalized
mean absolute error, or others (Bennett et al., 2013). We
focused on RMSE for results reporting because it is a
commonly used metric by lake modelers to determine
the deviation between observed versus modeled values
(Bruce et al., 2018; Read et al., 2014), and all CRPS results
are reported in Appendix S1. Mean full water column
RMSE was calculated for each of the 35 days across all
forecast horizons for each DA frequency regardless of
whether data were assimilated the day the forecast was
generated. We calculated RMSE by taking the square root
of the mean difference between predicted and observed
water temperature values for each depth and day. To
determine how parameter updating affected overall fore-
cast skill, we also ran FLARE with constant, untuned
parameters throughout the forecasting period, rather
than updating them with DA. In the constant parameter
forecasts, initial conditions were still updated at the daily
time step to isolate the effect of parameter tuning on fore-
cast skill.
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Question 2

Using RMSE and CRPS, we compared forecast skill
across depths and seasons to identify how the frequency
of DA affected forecast accuracy over space and time. To
quantify spatial forecast performance, we calculated
RMSE and CRPS for each depth (1–11 m) at each forecast
horizon (1–35 days ahead) and DA frequency in BVR. To
quantify temporal forecast performance, we compared
forecast skill at each horizon aggregated within thermally
stratified versus mixed periods in BVR. The stratified
period began on the first day that the water density differ-
ence between the reservoir surface (0.1 m) and the maxi-
mum depth observed for the reservoir on each day
(e.g., between 9 and 11 m) was ≥0.1 kg/m3 for at least
three consecutive days (following Ladwig et al., 2021).
Conversely, the mixed period began on the first day when
surface and bottom-water density differences were
<0.1 kg/m3 for at least three consecutive days.
Altogether, we compared forecast skill between stratified
versus mixed periods; among layers (surface, middle, and
bottom); and among forecast horizons (focusing in on
1, 7, and 35-day-ahead forecasts) for each of the four DA
frequencies.

Question 3

We quantified total forecast uncertainty for each day in
the 1- to 35-day forecast horizon using the variance of the
256-member FLARE ensemble. The relative contribution
of initial condition uncertainty to total forecast uncer-
tainty was calculated for each forecasted day by compar-
ing the variance in the 256-member FLARE ensemble
between the set of forecasts with initial condition uncer-
tainty included and the set without initial condition
uncertainty.

All statistical analyses were conducted in R v.4.2.0
(R Core Team, 2022). All R code and data files used to
run these analyses are archived and available in the
Zenodo repository (Wander et al., 2023a, 2023b).

RESULTS

BVR water temperature dynamics

BVR exhibited typical annual water temperature dynam-
ics during the forecasting period in 2021. Water tempera-
ture throughout the water column ranged from 1.4 to
29.9!C during the year. The summer-stratified period
began on 12 March and ended on 7 November 2021, and
the reservoir was mixed from 1 January to 11 March

and 8 November to 31 December (Figure 3). Thermocline
deepening occurred throughout the summer-stratified
period, starting at 1.5 m in March with stratification
onset and deepening to 9.5 m in November before fall
turnover (Figure 3). During the winter, there were three
brief periods of ice cover of one to three days in duration
in January and February when inverse stratification
occurred (Figure 3; Carey & Breef-Pilz, 2022). We
removed these few ice-cover days from the analysis and
grouped mixed (n = 118 days) versus summer-stratified
data (n = 241 days) for analysis.

DA frequency altered forecast output and
parameters over time

We were able to successfully forecast water temperature
throughout the water column over the year using DA to
update model states and parameters (Figures 4 and 5).
Across all depths, DA constrained uncertainty by
updating initial conditions with the most recent water
temperature observations. Forecast uncertainty for the
lower DA frequencies was strongly dependent on
the time since last assimilation (Figure 4). Mean forecast
variance at the one-day horizon across 2021 for forecasts
with daily DA was 0.60!C, while mean forecast variance
at the one-day horizon for forecasts with monthly DA
was 2.38!C.

We observed that DA frequency altered the parameter
evolution of the forecasts (Figure 5). The daily DA fre-
quency resulted in more variable parameter estimates
through time for all three tuned parameters, reflecting
the more frequent adjustment that occurred each time
data were assimilated. Importantly, parameter evolution
for forecasts with daily DA yielded very different mean
estimates than the weekly, fortnightly, and monthly DA
forecast frequencies (Figure 5). For example, the evolu-
tion of the longwave radiation scaling parameter
(longwave) over the 365-day forecast period showed that
forecasts with weekly, fortnightly, and monthly DA fre-
quencies converged at a mean of ~0.91 by December
2021, whereas the mean longwave parameter for fore-
casts with daily DA was at ~0.85 by the end of the year
(Figure 5a). Similarly, the parameter controlling the sur-
face layer sediment temperature (epi_sed_temp) in daily
DA forecasts began to diverge from the other DA fre-
quencies in April (Figure 5c). The nondaily DA frequen-
cies (i.e., weekly, fortnightly, monthly DA) surface
sediment layer temperature parameter (epi_sed_temp)
values ranged from 13.29 to 17.0!C, whereas the daily
DA frequency epi_sed_temp values ranged from 13.73
to 20.0!C during April–December. For the parameter
controlling the bottom-layer sediment temperature
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(hypo_sed_temp), daily DA forecasts exhibited much
more variable values (ranging from 8.20 to 10.98!C) than
forecasts for any other DA frequency (range
10.24–11.21!C; Figure 5b) from April to December.

Question 1: Which frequency of DA
generates the most skillful water
temperature forecasts?

Aggregated among depths and time periods, weekly DA
resulted in the most skillful water temperature forecasts
of the four DA frequencies for the greatest number of
1- to 35-day-ahead horizons (Figure 6). Among horizons,
we observed that the frequency of DA needed to produce
skillful forecasts varied (Figure 6). At shorter horizons
(1–7 days ahead), daily DA resulted in the most skilled
forecasts, but at longer horizons (8–35 days ahead),
weekly DA resulted in the most skilled forecasts
(Figure 6).

The skill of all forecasts degraded as the forecast horizon
increased, but the decrease in performance was greatest for
daily DA forecasts, such that forecasts generated using
monthly, fortnightly, and weekly DA all outperformed daily
DA forecasts by the 19-day forecast horizon (Figure 6),
when aggregating across all depths and time periods. The
daily DA forecasts exceeded the 2!C RMSE metric of skill

on the 28-day-ahead horizon, whereas the weekly, fort-
nightly, and monthly forecasts never exceeded that metric
for any of the 1- to 35-day-ahead horizons. These results
were consistent across forecast evaluation metrics, including
the CRPS metric that evaluates the full ensemble forecast
(Appendix S1: Figure S2).

Question 2: How does forecast skill vary
across time and space?

Aggregated across depths, horizons, and DA frequencies
over the year, forecast skill overall was high
(i.e., RMSE < 2!C), with a mean water temperature fore-
cast RMSE of 1.50 ± 1.86!C (1 SD). Forecast skill was gen-
erally best at bottom depths regardless of horizon or DA
frequency. Aggregated bottom-water forecast skill was
1.13 ± 1.76!C, followed by aggregated mid-water column
forecast skill (1.58 ± 1.94!C), and aggregated surface fore-
cast skill (1.78 ± 1.88!C). As expected, forecast skill gener-
ally decreased with horizon, with a mean 1-day-ahead
forecast RMSE of 0.81 ± 1.20!C, mean 7-day RMSE of
1.15 ± 1.59!C, and mean 35-day RMSE of 1.94 ± 2.19!C.

On average, forecast skill was slightly better
(as indicated by smaller RMSE) during the stratified period
than during the mixed period, aggregated among all
depths and horizon regardless of DA frequency

F I GURE 3 Observed water temperature for all depths with high-frequency sensors during the forecasting period of 1 January–31
December 2021 in Beaverdam Reservoir. The gray background indicates the mixed period (1 January–11 March, 8 November–31 December
2021), while the white background indicates the thermally stratified period (12 March–7 November 2021), defined by a >0.1 kg/m3 density
differential between surface and bottom layers.
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(aggregated mixed RMSE = 1.56 ± 1.58!C, stratified
RMSE = 1.43 ± 2.14!C; Figure 7). Forecast skill was more
variable among forecast horizons than depths in the mixed
period, whereas forecast skill was variable across both
depths and horizons in the stratified period (Figure 7). In
the stratified period, forecast skill was best at bottom
depths, with relatively similar skill across all forecast hori-
zons (Figure 7f). In the mixed period, forecast skill varied
very little among depths aggregated across horizons
(Figure 7a,c,e), with consistently greater decreases in skill
with increasing horizon than in the stratified period.

While daily DA always resulted in the best forecast
skill for 1-day-ahead horizons, lower frequency DA

typically outperformed daily DA as the forecast horizon
increased. The horizon at which weekly DA forecasts
outperformed daily DA forecasts varied with depth, where
weekly DA forecasts outperformed daily DA forecasts at
the surface at horizons >5 days ahead, on average. In con-
trast, weekly DA for mid- and bottom-water depths
resulted in more skillful forecasts on average than daily
DA only at horizons >8 days ahead (Figure 7). Across all
depths and stratified/mixed periods, monthly DA forecasts
outperformed daily DA forecasts by 12- to 31-day-ahead
horizons (Figure 7). Bottom-water stratified forecasts were
the only forecasts for which skillful (RMSE < 2!C) fore-
casts were produced for all DA frequencies and horizons,

F I GURE 4 Example of water temperature forecasts at the surface (a), middle (b), and bottom depths (c) generated for 1–35 days into the
future in Beaverdam Reservoir. Data assimilation (DA) frequencies are depicted by colors; shading shows 95% CIs around the mean predicted
temperature for each day. Black points represent water temperature observations. Colored points represent the most recent day that data were
assimilated for each DA frequency. In this example, data were most recently assimilated on the day that the forecasts were generated: 25 June
for the monthly DA scenario, 9 July for the fortnightly DA scenario, 16 July for the weekly DA scenario, and 22 July for the daily DA scenario.
For this figure, the surface was represented by 1 m; middle was represented by 5 m; and bottom was represented by 9-m individual forecasts.
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as skill never exceeded 1.01!C RMSE for the duration of
the 35-day forecast horizon (Figure 7f).

Question 3. How does DA frequency
influence total forecast uncertainty and
what is the relative contribution of initial
condition uncertainty to total forecast
uncertainty?

Lower frequency DA forecasts consistently had more
total uncertainty (Figure 8). We found that the differ-
ences between uncertainty for daily and monthly DA
were largest at 1-day-ahead horizons and largely con-
verged by the end of the 35-day horizon (Figure 8). For

surface depths, total uncertainty was similar between the
mixed and stratified periods across the 35-day horizon,
but total uncertainty was on average higher in the strati-
fied than mixed period for mid- and bottom-water depths.
Both RMSE and total variance were similar for forecasts
run with and without initial conditions uncertainty
included (Appendix S1: Figures S3 and S4).

Forecasts with less frequent DA had a greater contribu-
tion of initial condition uncertainty to total forecast uncer-
tainty during the first few days of the forecast horizon.
However, overall, initial conditions uncertainty contributed
a minimal proportion of the total uncertainty for forecasts
generated with daily DA (Figure 9). At the 1-day-ahead
forecast horizon, daily DA initial conditions uncertainty
contributed 0.01% of total uncertainty, whereas initial

F I GURE 5 Parameter evolution during the forecast period (1 January–31 December 2021) for daily, weekly, fortnightly, and monthly data
assimilation (DA) frequencies at 1-day-ahead forecast horizons. Longwave (a) is the longwave radiation scaling parameter, hypo_sed_temp
(b) is the hypolimnetic sediment temperature parameter, and epi_sed_temp (c) is the epilimnetic sediment temperature parameter.
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conditions uncertainty contributed a mean of 54%–71% of
total forecast uncertainty in forecasts across all other DA
frequencies (Figure 9). The role of initial conditions uncer-
tainty was minimal (<1%) across all DA frequencies after
the 10-day horizon throughout the entire water column in
the mixed period and surface depths only in the stratified
period (Figure 9a–c,e). Conversely, initial conditions uncer-
tainty made up a larger proportion of total forecast
uncertainty for stratified mid- and bottom-water forecasts
for forecast horizons between 10 and 20 days (~11%;
Figure 9d,f).

Finally, we found that forecasts generated with daily
parameter tuning had substantially greater skill than fore-
casts generated with constant parameters (but updated ini-
tial conditions) throughout the forecast period. Across all
horizons, depths, and periods, forecasts generated with
daily DA had a mean RMSE of 1.95 ± 1.81!C, versus a
mean RMSE of 3.12 ± 2.03!C for forecasts generated with
constant parameters (Appendix S1: Figure S5).

DISCUSSION

Across a year of water temperature forecasts in our focal
reservoir, we found that weekly DA generally resulted in
the most skillful water temperature forecasts. However,
skill varied among depths, forecast horizons, and time of

year, suggesting that DA frequency should be chosen
based on the specific forecast application. For example, if
water temperature forecasts are specifically needed to
guide decision-making that involves short time horizons
(e.g., <8 days ahead), daily DA might be most advanta-
geous (Figures 6 and 7). Conversely, if water temperature
forecasts are needed for the surface or mid-water column
depths at 20- to 35-day-ahead horizons, then weekly to
monthly DA may be sufficient (Figure 7). Despite the
usefulness of DA for improving forecast skill, more
frequent DA did not always lead to more skillful water
temperature forecasts, in part because initial conditions
uncertainty only comprised a significant proportion of
total forecast uncertainty within the first few days of the
forecast horizon (Figure 9). Below, we interpret our
results for each research question and make recommen-
dations for considering which DA frequency might be
appropriate for different ecological forecast applications.

Question 1: Which frequency of DA
generates the most skillful water
temperature forecasts?

In this study, we found that less frequent DA
(e.g., weekly, fortnightly, and monthly DA) sometimes
led to more skillful water temperature forecasts than

F I GURE 6 Root mean square error (RMSE) of mean forecasted water temperature compared with observations for 1- to 35-day-ahead
forecast horizons in Beaverdam Reservoir, aggregated for all depths in the water column and days within the 365-day forecast period. RMSE
for each forecast horizon was averaged from forecasts generated during 1 January–31 December 2021. Colored lines represent different data
assimilation (DA) frequencies. The dotted line depicts the 2!C threshold for skillful water temperature forecasts.
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daily DA for all depths during the mixed period. This pat-
tern of weekly DA outperforming daily DA forecast skill
during the mixed period is likely because daily DA led to
parameter overfitting, as indicated by the greater
short-term variability in parameter estimates over time
(Figure 5). Because water temperatures are fairly stable
at deeper depths, and thus daily observations can consis-
tently predict tomorrow’s water temperature accurately,
parameter overfitting was less problematic for daily DA
at hypolimnetic depths (Figure 7f). As a result,
hypolimnetic forecast skill was best with daily DA during
stratified conditions, but this pattern did not extend to
other depths or the mixed period (Figure 7).

At the surface, monthly DA produced forecasts that
did not capture all observations within the SD of the

forecast mean (Figure 4). This was likely because obser-
vations were assimilated only once a month and there-
fore did not provide enough information to accurately
forecast water temperature patterns >7 days into the
future. Additionally, given the greater sensitivity of the
surface waters to meteorological forcing, changes in
day-to-day water temperature were greater in magnitude
at the surface compared with the mid-water column and
bottom layers, necessitating more frequent DA to accu-
rately capture these temperature dynamics. In compari-
son, daily DA forecasts generally captured observations
skillfully at the surface until the last eight days of the
35-day forecast horizon (Figures 4 and 6). This decline in
forecast skill using daily DA was likely a result of
overfitting of the longwave scaling parameter and

F I GURE 7 Root mean square error (RMSE) of mean forecasted water temperature compared with observations for 1- to 35-day-ahead
forecast horizons in Beaverdam Reservoir during the mixed (a, c, e) versus stratified (b, d, f ) periods for aggregated surface (0–2.5 m; a, b),
middle (2.6–8.4 m; c, d), and bottom (8.5–11.0 m; e, f) depths. RMSE for each forecast horizon was averaged across the 365-day forecast
period (1 January–31 December 2021). Colored lines correspond to different data assimilation (DA) frequencies; dotted horizontal lines
depict the 2!C threshold for skillful forecasts.
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sediment temperature parameters (Figure 5). Because the
values of these parameters varied following daily DA
compared with those obtained using weekly, fortnightly,
and monthly DA (Figure 5), parameter overfitting may
have led to observations falling outside the predicted
range of uncertainty around the mean forecasted water
temperature at longer horizons (Figure 4). Finally, the
range of uncertainty for surface forecasts within the first
seven days of the forecast horizon was substantially
smaller than that observed for mid-water column and
bottom layers (Figure 4), further supporting that DA was
more useful for <7-day-ahead surface water temperature
forecasts.

Our work is consistent with studies that have found
that the optimal DA frequency often matches that of the
forecast model time step (e.g., Derot et al., 2020; Woelmer

et al., 2022). For example, during both the mixed and strat-
ified periods, daily DA was always better for 1-day-ahead
forecasts, but was often outperformed by weekly DA at
8-day-ahead forecast horizons (Figures 6 and 7). Because
water temperatures were homogenous among all depths
during the mixed period, water temperature variability
among all depths was likely driven by air temperature var-
iability, ultimately making it more challenging to predict
water temperature across depths as the forecast horizon
increased. During the stratified period, however, less fre-
quent DA could still generate accurate surface and
mid-depth water temperature forecasts (Figure 7). This
pattern is in contrast with other water temperature fore-
casting studies that have found daily DA necessary for
improving the skill of forecasts in the middle of the water
column around the thermocline (Baracchini, Chu,

F I GURE 8 Mean water temperature forecast variance across horizons (1–35 days ahead) in Beaverdam Reservoir during the mixed
(a, c, e) versus stratified (b, d, f) periods for aggregated surface (0–2.5 m; a, b), middle (2.6–8.4 m; c, d), and bottom (8.5–11.0 m; e, f) depths.
Variance for each forecast horizon was averaged from all 365 forecasts generated during the forecast period (1 January–31 December 2021).
Colored lines correspond to different data assimilation (DA) frequencies.
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et al., 2020), but is likely explained by the overfitting of
both the daily longwave radiation and the epilimnetic sed-
iment temperature parameters (Figure 5). The decreased
importance of daily DA at bottom depths during the strati-
fied period is likely because of the fairly consistent temper-
atures exhibited at bottom depths associated with thermal
stratification (Figures 3 and 7).

We note two considerations for future work. First,
many high-frequency sensors provide observations at
subdaily timescales, providing the opportunity to test the
effects of more frequent DA on forecast skill than
the timescales tested in this study (e.g., Piazzi et al., 2018;
Ziliani et al., 2019). Surface water temperature dynamics,
in particular, can exhibit cyclical patterns within a day
that may be better simulated with subdaily DA (Hollan &
Simons, 1978; Tasnim et al., 2021). However, FLARE is

configured to generate forecasts and assimilate data at a
daily time step because the underlying process model is
ideally designed to run simulations for one day or longer
(Hipsey et al., 2019), so more frequent DA would require
a different forecasting framework.

Second, we recognize that RMSE is a deterministic
metric that uses the ensemble mean to evaluate forecast
skill. Alternative forecast skill metrics that incorporate
uncertainty across all ensemble members include CRPS
and the ignorance score (Simonis et al., 2021; Smith
et al., 2015). These metrics are useful for probabilistic
forecast assessment because forecast skill is determined
using all ensemble members rather than just the ensem-
ble mean, which may provide useful information for
management (McSharry et al., 2005). However, given that
the CRPS results followed similar patterns as RMSE

F I GURE 9 Proportion of total forecast uncertainty that is contributed by initial conditions uncertainty, averaged across all forecasts
generated with each data assimilation (DA) frequency across 1 January–31 December 2021. Colored lines depict DA frequencies. Panels a, c,
and e represent mixed period forecasts, and panels b, d, and f represent stratified period forecasts. Aggregated surface (0–2.5 m), middle
(2.6–8.4 m), and bottom (8.5–11.0 m) depths are indicated by gray facet labels to the right of each panel.
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(Appendix S1: Figure S2), evaluating the full distribution
of forecasts does not change the overall interpretation of
forecast skill across depths and horizons.

Question 2: How does forecast skill vary
across time and space?

Overall, we observed generally high forecast skill across
all depths and times of year for most forecast horizons.
Across DA frequencies, depths, and times of year, RMSE
was only consistently above the 2!C skill threshold for
daily DA at 28- to 35-day horizons (Figure 6). By the
end of the 35-day forecast horizon, daily DA forecast
skill for most depths and times of the year was >2!C,
except for 9-m stratified forecasts, which had a mean
RMSE of 1.29 ± 1.8!C across DA frequencies (Figure 7).
As noted above, the higher forecast skill at
bottom-water depths is likely because fluctuations in
bottom-water temperatures were minimal during strati-
fication (Figure 3).

Our findings are similar to other water temperature
lake and reservoir forecasting studies that used
one-dimensional hydrodynamic models to simulate
thermal dynamics. First, the pattern of increased fore-
cast skill in the bottom waters is consistent with
Mercado-Bettín et al. (2021) and Thomas et al. (2020),
who both found that the bottom-water forecasts were
more skillful than surface water forecasts. This is likely
because bottom waters are not changing as much as
surface waters throughout the year due to less atmo-
spheric exchange. However, Clayer et al. (2023) found
that surface water temperatures were more accurately
simulated than bottom-water temperatures, suggesting
that the complex lake characteristics that control
bottom-water temperatures were not captured as well
as the air temperature dynamics controlling surface
water temperatures. Second, our finding that forecast
skill was greater in the stratified period rather than
mixed period is similar to the results of Thomas et al.
(2020), likely due to the fact that water temperature
dynamics were changing less day-to-day in stratified
than mixed periods (Figure 3). Because of the variabil-
ity in water temperature dynamics among seasons and
depths, determining the conditions in which we can
most accurately forecast water temperature can
improve our understanding of ecosystem processes and
functioning. Moreover, accurately forecasting water
temperature is critical for forecasting additional lake
and reservoir variables that are strongly driven by water
temperature, such as phytoplankton biomass, dissolved
oxygen concentrations, and greenhouse gas emissions
(e.g., McClure et al., 2021).

Question 3: How does DA frequency
influence forecast uncertainty?

We found that initial conditions uncertainty contrib-
uted a substantial proportion of total uncertainty for
weekly, fortnightly, and monthly DA, but only during
the first few days of the forecast horizon. After
14–16 days into the future, the contribution of initial
conditions uncertainty to total uncertainty decreased to
<1% for all depths during the mixed period and surface
depths in the stratified period across all DA frequencies
(Figure 9). The contribution of initial conditions
uncertainty to total uncertainty for mid-water column
and bottom-layer forecasts using weekly, fortnightly,
and monthly DA exhibited a more gradual decline
with increasing forecast horizon than forecasts for the
surface layer in the stratified period (Figure 9). This
result suggests that there may be a greater benefit of
using more frequent observations for DA for forecasts
of the mid-water column and deeper depths than the
surface during the stratified period. However, more fre-
quent DA may not always improve forecast perfor-
mance, especially when initial conditions uncertainty
is not the dominant source of uncertainty, as seen at
longer horizons. Given that the contribution of
initial conditions uncertainty to total uncertainty is
very low at longer forecast horizons, one or more of
the remaining quantified sources of uncertainty
(e.g., process, parameter, and/or driver data) must
dominate total forecast uncertainty at these horizons
(Figure 9). Conversely, the dominant source of uncer-
tainty for weather forecasting is typically initial condi-
tions uncertainty given the inherent instability of
atmospheric processes (Dietze, 2017b), which is why
more frequent DA often substantially improves meteo-
rological forecast skill.

Other lake and reservoir water quality forecasting
studies have found that model driver data and process
uncertainty were the dominant sources of total forecast
uncertainty (Lofton et al., 2022; McClure et al., 2021;
Thomas et al., 2020). Therefore, constraining other
sources of uncertainty using an ensemble approach or
different forecasting models would likely further improve
water temperature forecast skill. Additionally, using a dif-
ferent DA technique that uses a Bayesian approach to
estimate a posterior distribution, rather than assuming
that the parameters and model states are normally dis-
tributed, may also reduce uncertainty (e.g., particle filter;
Wang et al., 2023). Because the dominant source of
uncertainty in ecological forecasts will likely differ
depending on the variable being forecasted, different DA
techniques may not improve forecast skill equally among
all ecological variables.
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Recommendations for setting up DA for
other forecasting systems

Determining whether an ecological forecasting applica-
tion requires high-frequency sensors is necessary for
increasing the scalability of ecological forecasting across
ecosystems and variables. While high-frequency sensor
data may improve forecast skill in some cases,
sensor deployment is often costly, which limits the appli-
cation of high-frequency data in some forecasting
systems. Moreover, even if high-frequency sensors are
deployed, identifying the minimum frequency of data
required to make skillful ecological forecasts can be a
useful exercise because high-frequency sensors mal-
function and require maintenance, which can result in data
gaps (e.g., Herrick et al., 2023). Many water quality fore-
casting applications to date have relied on high-frequency
sensor data for assimilation to produce skillful fore-
casts of different variables (e.g., Cho & Park, 2019;
Derot et al., 2020; Page et al., 2018). We note that
despite its limitations, daily parameter tuning through
DA did improve forecast skill by 1.17 ± 0.22!C com-
pared with forecasts generated using constant parame-
ters (Appendix S1: Figure S5).

In this study, we found that daily and weekly DA
exhibited a trade-off in terms of which DA frequency pro-
duced the most skillful water temperature forecasts
(Figure 6), where the horizon at which daily DA was
outperformed by weekly DA differed among depths and
times of year (Figure 7). Our findings indicate that
high-frequency sensors may not be needed for accurate
water temperature forecasts for the middle and bottom
layers, as weekly DA forecasts remained skillful (<2!C
RMSE) through the full 1- to 35-day-ahead horizon at
these depths and periods (Figure 7).

The minimum frequency of DA needed to set up fully
operational forecasting systems is likely to vary based on
the ecosystem and forecast variable of interest.
Depending on the water quality forecast application, dif-
ferent frequencies of data collection may be necessary to
fully understand and predict water quality dynamics over
time. For example, we do not know how more frequent
DA (e.g., hourly DA) may affect forecast skill, given that
some waterbodies exhibit fluctuations in surface water
temperature over 24 h (e.g., Hollan & Simons, 1978;
Serruya, 1975). Alternatively, George and Hurley (2004)
found that fortnightly observations were required to dis-
cern gradual trends in phytoplankton productivity, but
monthly data were adequate for capturing declines
in phytoplankton biomass over a 30-year period.
Despite many successful applications of high-frequency
DA in the literature for forecasting (e.g., Cho et al., 2020;
Gottwald & Reich, 2021; Luo et al., 2011; Niu et al., 2014),

not all ecological variables benefit from frequent DA, as
not all variables are similarly forecastable. For example,
Massoud et al. (2018) found that dynamic application of
DA to plankton forecasts improved forecasting system effi-
ciency only when observations were highly variable
(i.e., when large fluctuations in abundance were observed),
but did not consistently improve forecasts when DA was
applied at every model time step.

In addition to the frequency of data collection, data
latency can also affect the frequency of
DA. High-frequency data are not always available, partic-
ularly in remote sensing applications when satellite orbit
schedules and cloud coverage limit access to
high-frequency observations (Herrick et al., 2023). Even
for forecasting systems with high-frequency sensor data,
data latency may reduce forecast skill if data are not
immediately transmitted to forecasting workflows
(e.g., they require a manual download; Dietze
et al., 2018). In cases with high data latency of the fore-
cast variable (e.g., microscope counts of phytoplankton
requiring laboratory analysis), data fusion approaches
that assimilate multiple data sources may improve fore-
cast skill (e.g., Baracchini, Wüest, et al., 2020; Chen
et al., 2021). For example, some studies have assimilated
both in situ measurements and remote sensing data to
forecast reservoir water quality variables, including chlo-
rophyll a and conductivity (Abdul Wahid &
Arunbabu, 2022; Chen et al., 2021).

Finally, understanding the contributions of different
sources of uncertainty can be useful for determining the
DA frequency that generates the most skillful forecasts.
Specifically, knowing the relative contribution of initial
conditions uncertainty can inform the sampling fre-
quency needed to improve ecological forecast skill. For
forecasts with total uncertainty dominated by process,
parameter, or driver uncertainty, improving forecast skill
may require modifying processes used for forecasting the
ecological variable of interest, further constraining
parameters by collecting more data, or improving
weather forecast driver data (e.g., Grönquist et al., 2021).

Study limitations

Our results suggest that weekly DA may suffice for some
lake and reservoir water temperature forecasting applica-
tions, with the caveat that more frequent DA often
improved water temperature forecast performance at
short forecast horizons. However, we only assessed fore-
cast skill for a single reservoir and ecological variable for
only one year, and therefore note the limitations of
extending these results to other systems and variables.
For example, parameter overfitting due to daily updating
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of model parameters reduced overall forecast skill, which
helps explain why weekly rather than daily DA resulted in
more skillful water temperature forecasts in the mixed
period (see Lin et al., 2021), but it is unknown how general-
izable this parameter overfitting may be at other sites.
Finally, because we did not partition the contribution of the
other sources of uncertainty that were summed to quantify
total forecast uncertainty, we can only identify the relative
role that DA has on reducing initial conditions uncertainty.

Conclusions

This study emphasizes the importance of DA for
improving ecological forecast skill and has implications
for forecasting efforts among a wide range of ecosystems
and ecological variables. We argue that weekly observa-
tions of water temperature are likely “good enough” to
set up a skillful forecasting system for many reservoir
management applications, while daily DA would be most
useful for applications requiring high forecast accuracy in
the bottom waters or at short (<5–7 days) forecast
horizons. Because water temperature dynamics control
many biological, chemical, and physical lake processes
(Magnuson et al., 1979; Read et al., 2019; Yvon-Durocher
et al., 2012), water temperature must be accurately
forecasted before we can forecast other water quality var-
iables. Therefore, determining ways to improve water
temperature forecasts will have broad utility for advanc-
ing the development of many additional water quality
forecasting systems.

Because near-term, iterative forecasts are particularly
well suited to address ecological questions (Carey,
Woelmer, et al., 2022; Dietze et al., 2018; White
et al., 2019), determining how best to design and deploy
ecological near-term, iterative forecasting systems is a
pressing need (Diez et al., 2012; Ib!añez et al., 2013;
Moustahfid et al., 2021). With the increasing deployment
of high-frequency sensor networks (e.g., NEON and
Global Lake Ecological Observatory Network (GLEON);
Mantovani et al., 2020; Marcé et al., 2016; Park
et al., 2020) comes a growing need to understand how best
to use these sensor data for forecasting. In response, we
advocate for using DA experiments across ecosystems and
ecological variables to determine how best to integrate
observational data into iterative forecasting systems.
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