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1 Introduction

Symmetries have played a fundamental role in advancing particle physics. Gauge symmetries,
for example, have governed the interaction structure of the strong, weak, and electromagnetic
forces. Even in the pursuit of extending the Standard Model (SM), symmetries continue
to serve as a guiding principle. For instance, the U(1)pg symmetry has been employed to
address the strong CP problem, and it is known that supersymmetry (SUSY) elegantly
resolves the gauge hierarchy problem, and so on. In recent years, modular symmetry,
inspired by string theory, has been used to address the flavor puzzle of SM [1]. This can
be understood as the nonlinear realization of flavor symmetries [2]. In SUSY theories



featuring modular invariance, the Yukawa couplings in the superpotential are constrained
to be modular forms, which are highly symmetric holomorphic functions of the complex
modulus 7.

The modular symmetry approach has been extensively explored from the bottom-
up perspective. The model building in this context typically relies on the choice of
finite modular groups as well as the representation and modular weight assignments
of matter fields. The family of the finite modular groups has been generalized from
the original inhomogeneous finite modular groups I'y = I'/T(N) [1] to homogeneous
finite modular groups I'y, = I'/T(N) [3], further extended to metaplectic finite modular
groups I'y = I/T(N) [4, 5] and eventually to generalized finite modular groups [6]. Based
on these finite modular groups such as I'y, I’g), I‘g), f‘4, Fé/),f5, Fg), I'; etc, many modular
invariant fermion mass models have been constructed in the literature [1, 3-5, 7-21],
and phenomenological implication has been discussed. See recent review [22] for more
references therein. Moreover the modular symmetry SL(2, Z) for single modulus has been
generalized to the Sp(2g,Z) symplectic modular symmetry, which encompasses multiple
moduli [23]. The generalized CP symmetry can be consistently combined with (symplectic)
modular symmetries [24-27], the coupling constants would be enforced to be real so that the
predictive power would be improved further. The modular symmetry framework can also
be incorporated into various Grand Unified Theories (GUT) [28-37]. Modular symmetry
can not only explain the fermion masses and flavor mixing but also address the strong CP
problem [38]. Other applications of modular symmetry to new physics beyond SM were
discussed in refs. [39-43].

It is remarkable that the modular invariant models exhibit a remarkable universal
scaling behavior near the fixed points [44, 45|, and the fermion mass hierarchies could arise
from the proximity of the modulus 7 to a fixed point [46-50]. Although the superpotential is
highly restricted by modular symmetry, the Kéhler potential is not under control by modular
symmetry [51]. On the other hand, the origin of these modular symmetries have also been
explored within top-down approach such as string theory [25, 52-58]. In particular, the
eclectic flavor symmetry has been identified in heterotic strings on a T2/Z;, orbifold [26, 59—
63]. The eclectic flavor group combines traditional flavor symmetry with modular symmetry
in a nontrivial manner, allowing for controllability of the Kéhler potential. Relevant model
building examples can be found in refs. [64-67]. Moreover, the issue of modulus stabilization
has been revisited to dynamically explain the vacuum expectation value (VEV) of the
modulus in these modular invariant mass models [68-73].

Although modular symmetry is increasingly used in particle physics theory, its potential
for unraveling the flavor puzzle remains particularly intriguing. Therefore, one of the
primary objectives is to explore different finite modular symmetries and identify realistic
models for lepton/quark masses with the fewest free parameters. At present, it has been
found that the minimal lepton model can describe all the lepton masses and mixing angles in
terms of only six real free parameters [74]. In this paper, we explore a novel finite modular
group, the binary octahedral group denoted as 20, which is a double cover group of I'y = S,
but distinct from Iy = S).1 We then provide all necessary modular form multiplets for

!The group 20 is the Schur cover of Sy of “—” type, and Sj is a double cover of Sy in a broader sense of
Sy = Sﬁ/Z?



model building. We systematically construct all possible models for lepton masses and quark
masses based on this group, successfully identifying a similar lepton mass model with six
real input parameters. Our minimal quark model can nicely explain ten flavor observables
with nine real parameters. In addition, certain quark model with eight parameters can
accommodate the quark data except that ms/m; and 675 deviate a bit from their measured
values. Furthermore, we present a realistic unified model of leptons and quarks with only 14
input parameters, explaining the masses and mixing parameters of both quark and lepton
sectors with a common modulus 7. Finally, we also explore the mass hierarchy patterns
that arise naturally in the vicinity of modular fixed points for this group.

The rest of this paper is organized as follows: in section 2, we review the modular
invariant SUSY theory and vector-valued modular forms (VVMFs). Section 3 presents a
systematic classification of fermion mass models based on binary octahedral group 20. A
complete numerical analysis of these lepton and quark models is presented in section 4. In
section 5.1 and 5.2 we showcase some typical minimal lepton models and quark models,
respectively. Furthermore, a minimal unified model of leptons and quarks is presented
in section 5.3. Finally, we summarize our results and draw the conclusions in section 6.
The appendix A.1 gives the general results for n-dimensional (n-d) VVMF with n = 1,2, 3.
The detailed construction of the 4-d VVMF for 20 can be found in appendix A.2. The
group theory of binary octahedral group 20 is presented in appendix B. Finally, we give in
appendix C all possible mass hierarchy patterns near critical points for 20.

2 Modular invariance and vector-valued modular forms

We consider the A/ = 1 global supersymmetry theory, which includes the matter supermulti-
plets denoted by ®; and the modulus superfield represented by 7. The most general action
can be written as

S— / Az d?0d20 K(®1, &3 7, 7) + / Az d?0 W (Pr,7) + hec. | (2.1)

where KC(®7, ®7;7,7) is the Kihler potential and W(®;,7) is the superpotential. In order
to maintain modular invariance within the theory, it is required that the action S remains
invariant under the following modular transformations of superfields:

at+b
er+d with 7 = (a b) €T, (2.2)
C

®; — (cr+d) M pr(v)®r,

T—= (1) =

where the infinite discrete group T is the full modular group SL(2, Z), which can be generated
by two specific generators, namely S and T"
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s (00, - (). o

They obeying the following multiplication rule:

St = (ST =1, S°T=T15*. (2.4)



The parameter —k; € Z in eq. (2.2) represents the modular weight of the matter field ®;.
Moreover, pr denotes the unitary irreducible representation (irrep) of SL(2,Z) with finite
image. In other words, p; corresponds to the unitary irrep of a finite modular group Gy,
which arises as the quotient between I' and a certain normal subgroup [6].

The minimal Kéahler potential that satisfies the requirement of modular invariance can
be expressed in the following form:

K(®r, ®p;7,7) = —hlog(—it +i7) + > (=it +i7) " |®/]?, (2.5)
I

where the constant A~ > 0. On the other hand, the modular invariant superpotential
W(®y,7) can be expanded in power series of the supermultiplets ®;:

W(®r,7)=> Yp.1,(1) @1, ... 9y, , (2.6)

where Yukawa couplings Y7, 1, (7) are the modular form multiplets of weight ky in rep-
resentation py, in accordance with modular invariance. Hence, they satisfy the following
equation:

Yi,.0,(7) = Yi..,(y7) = (e + )™ py (1)Y,..1,,(7) | (2.7)

with
k?y:k:[1+...+k[n, Py @pn ®...0p1, DO 1. (2.8)

In a bottom-up model, the modular weights —k; and representations p; are freely assigned,
uniquely determining all possible Yukawa couplings Y7, 1, (7) in the model. It is important
to note that since modular form spaces are typically finite-dimensional, the model contains
only a finite number of possible Yukawa couplings. As a result, the model exhibits
significant predictive power. For this reason, we apply modular symmetry to a specific
minimal supersymmetric standard model (MSSM) to gain insights into fermion masses and
flavor mixing.

Furthermore, it is worth emphasizing that the scalar component of the modulus field 7
corresponds geometrically to the complex structure modulus of a two-dimensional torus
T2, which characterizes the torus shape. Consequently, the moduli space spanned by the
modulus is known as the upper-half plane H = {7 € C | Im7 > 0}. Additionally, due to
the modular symmetry, the inequivalent moduli vacua are described by the fundamental
domain F = H/I":

F={ren|ir|>1, —~12<Rer<0}u{ren||r|>1, 0<Rer <1/2} . (29)

As the key role of the modular invariant theory, the modular form multiplets (also
known as the VVMFs in modern mathematics) possess an elegant mathematical theory,
which we will briefly introduce below.

A vector-valued holomorphic function in d dimension is considered as a VVMF if it
satisfies eq. (2.7). All VVMFs in the irrep p constitute a free module denoted by M(p)



over the ring M(1) = C[Ey, Eg].? The rank of this module is equal to the dimension of
the irrep p which is denoted as d = dim p. Typically, a basis for this module M (p) can be
obtained by applying modular differential operators D} to the VVMFs of minimal weight.
The modular differential operators D}’ are defined as follows:

Dy = Dyya(n—1) © Digom-2)© -0 Dy, (2.10)

where L4 KEs( )
D= —— _E22T) e Nt 2.11
k= oridr 12 < ’ ( )

and Eo(7) is the well-known quasi-modular Eisenstein series [75]
(e o]
Ey(t)=1-24) o1(n)q". (2.12)
n=1

The action of D! on a VVMF Y (7) of weight k yields a VVMF D}Y (7) in the same
representation but of higher weight k 4 2n. If the module M(p) is cyclic, the basis vectors
of M(p) could be chosen as {Y (ko) D, y ko) Dgo_lY(kO)}, where Y (%0) is the VVMF of
minimal weight ky. The modular form multiplets D,‘fOY(kO) of higher weight kg + 2d can
always be expressed as linear combinations of these bases over the ring M(1) = C[E}y, Eg):

(Djty + MuD{ 2 + -+ 4 Mygg_1) Dy + Mag)Y ) = 0, (2.13)

where My, € C[Ey, Fg] is the scalar modular form of weight k. From another point of view,
the above equation is actually the modular linear differential equation (MLDE) satisfied by
the VVMF of minimal weight, and its solution provides us with the specific form of Y (%)
Notably, M(p) is fully determined by the irrep p. If p is a 1-d, 2-d, or 3-d irrep of SL(2, Z),
the solutions Y *0) can be expressed either as eta products or generalized hypergeometric
series. A comprehensive overview of VVMFs theory and related results can be found in
ref. [6].

The finite modular groups can generally be expressed as the quotient of SL(2,Z) over
its normal subgroup with finite index, and they include other intriguing groups besides the
known I'y and I')y. All the finite modular group up to order 72 have been listed in [6]. The
homogeneous finite modular groups 7" and Af are the binary tetrahedral group and the
binary icosahedral group respectively, they have been investigated in the context of modular
flavor symmetry [3, 5, 19, 66, 76-78]. This paper will focus on the binary octahedral group
20. In the subsequent sections, we construct all the VVMFs in irreps of binary octahedral
group 20. The detailed group theory for 20 is provided in appendix B.

2The VVMFs of SL(2,Z) in one-dimensional irreps include Eisenstein series E4(7), F¢(7) and eta
products [75]:

Ey(r) =1+240) os(n)g", Bs(r)=1-504) os(n)q", n*(r)=¢"*[[(1—a"™,
n=1 n=1 n=1

— 2miT

where ¢ = €“™'", ox(n) = Zdln d” is the sum of the k-th power of the divisors of n, p € N* and 7(r) is the
Dedekind-eta function.



2.1 VVMFs in representations of binary octahedral group

Since all the VVMFs (denoted by M(20)) in the representations of the binary octahedral
group 20 are simply the set of each irreducible VVMF module, the whole module M (20)
can be organized as the direct sum of eight irreducible VVMF modules:

M(20) = M(1) & M) & M(2) d M(2) @ M(2) & M(3) © M(3) & M(4). (2.14)

From the general theory of VVMFs [6], we can determine the basis of each module and identify
the VVMF of minimal weight within them. Specifically, each irreducible VVMF module
can be generated by the following modular multiplets over the ring M(1) = C[E4, Eg]:

M(1) = (1),
M) = vy,

M(2) = (Y3?, Day”),

M2) = (v, D5,

M) = (v, D5y,

M(3) = (vs”, Dyvy”, D3V),

M@3) = i), Dy DSy,

M@ =", Dy, D3y, Divy?), (2.15)

where all the 1-d, 2-d and 3-d VVMFs of minimum weight can be obtained relatively directly
from the corresponding MLDEs. These solutions are consistently expressed in the form of
eta products or generalized hypergeometric functions, as demonstrated in appendix A.1.
However, in the 4-d case, the solution of MLDE does not possess a compact analytic
expression. Instead, we can solve for the g-expansion of the corresponding VVMF through
a recursive method. The detailed procedure is described in appendix A.2. The VVMFs of
minimal weight in each irreps of 20 are determined to be

6
P e) =),

_1
- () (552) " oFi(— kb 5 K ()
Y2 (T) - K( ) % )
8\/3774(7—) 1728) 2F1(%a%7%7K(T))
_ 1
) nO(r) (KON 2 R (— 4, L =3, K (7))

3
K
20°() (58) ™ 2135 5 5 K ()
7

10 K(r)\ 24 7 1.1,
no (T o1 (=57, 55 7 K(7
YA(5)(7_) _ ( )(1728 v 1( 240241 4 (7))

K(t)\ 38
567'0(7) (452) ™ 2F1(33, 13, 48, K (7))

1
Kot
n(7) (55g) © sFa(=4,4. 43 L K (1))
(2) = K(r -
70 = | —avant) (FR) " aR(iy e §ia K0 |

K
—16v2n* (1) (17(252) P 3F({5 130 3 1 53 K(7))



1
K(t)\6
2V2(7) (T1R) " 3F(3: 3. 851 1K)
(4) — K(t 5
Y= | at(r) (5R) " sBa( 13353, 1K) |

8
K
_778(7—)(1728) ? P13, 1195 30 3 K (7))
438 (1 —q— 4 + 3¢+ ¢* +3¢° + 13¢5 +...)
2v3¢%/8 (1 +q—7¢* — 6¢° + 16¢* + 9¢° — 6¢°...)
~8¢7/8 (1 -3¢ +3¢*> —4¢> +3¢* +6¢° —3¢5+...) |’
q'/8 (1+3q — 6¢% — 23¢> + 12¢* + 66¢° — 15¢° +...)

v (r) = (2.16)

where oF and 3F5 are the generalized hypergeometric series. The g-expansions for above
VVMFs are given as follows

Vi) = q"/? (1 12 + 54¢> — 88¢° — 99¢* + 540¢° — 418¢° + ... ) ,
Y (r) = 1+ 24q + 24¢* + 96¢° + 24¢* + 144¢° + 96¢5 + . ..
2 8v/3¢"/? (1 +4q + 6¢% +8¢> +13¢* +12¢° +14¢5+...) )’
(r) = /% (1= 7q +9¢> + 42¢° — 112¢* — 63¢° + 378¢5 + ...
245/ (1 — 9 + 28¢> — 21¢° — 63¢* + 123¢° —35¢° +...) )
v (r) = q"/® (14 123q + 378¢% — 191¢° — 1428¢* — 1134¢° — 735¢° + ...
8q™/8 (7 + 51q — 27¢2 — 28¢3 — 459¢* + 378¢> — 357¢5 +...) )~
1 —8q + 24¢® — 32¢° + 24¢* — 48¢° + 96¢5 + . ..
Vi () = | —4v/2¢H* (1 + 6 + 132 + 1463 + 18¢* + 32¢° + 31¢5 +...) | ,
—16v/2¢%/* (1+ 29+ 3¢> + 6¢° + 5¢* + 6¢° + 10¢° + ...
2v/2"/% (1 — 4q — 2¢° + 24¢° — 11¢* — 44¢° + 225 + ..
Yi(r) = | 4¢3 (1—6q+11¢2 — 2¢° — 11¢* + 14¢° — 38¢° +...) | . (2.17)
g4 (=14 2¢ + 11¢2 — 22¢% — 50¢* + 96¢° + 121¢° + ...)

The linearly independent modular multiplets of 20 at each permissible weight can be
straightforwardly obtained by multiplying the polynomial of E,4, Eg basis vectors of modules
in eq. (2.15):

k=2: v3P, v,

k=3: v©,
4

k=4: YV=E;, vaV=6Dvy?, viV=—6Dyyy", Y3,

k=5 v, v v®=_gp,v®
2 2/ 4 4

k=6: V\9=E;, vV, v}9=ry?, v{9=py?, v{¥=-18v2D3 v,
Y¥ =12D,vY,

24
k=7: Y\"=2up,v®, v"=_Zpy® yO=py® vD=_19p2y¥

2 2 2/ 7 2/ 4 411 4
k=8: Y\=E2, vY¥=Ev, v =6E,D,vy", Y =pgv?,

Y =—6EDyvY, Y =Ey, Y& =48E,02v"



Modular weight & Modular form Yr(k)
k=2 Yy, va?)
k=3 vy
4
k=4 i v v v
k=5 v y ) y©)
2 ’Tor '"4
6 6 6 6 6 6
= R aRr R R
E—=7 (7) Y(7),Y( ),YAW)
2 0 TAr T AIq
8 8 8 8 8 8
k=38 Yl( )v Y2(1)7 Y2(1}7Y3(I)7Y3(I)’ Ys(/l)a Y3(/I)I
k=9 v vy yO vy y )
2 ot 'TAr T 4rr’ " A4yir
10 10 10 10 10 10 10 10
k=10 Yl(’ )7Y2(1 )7Y2(11)>Y3(1 )ays(n)ayzz(n}ayza(/l)7Y3('11)

Table 1. Summary of modular form multiplets of finite modular group 20 up to weight 10,
the subscript r denotes the transformation property under 20. Here Y(I )1 LI stand for linearly
independent weight-k modular form multiplets transforming in the representation r of 20.

k=9: vV = E4Y£5> , YO=py® vO=gy® v9=_8g,D v,
2 2/ 2/ 4] 4 41 4

Yo =—4608D3Y,”,
a1 — 3

k=10: VJV=EYY, vV=v?, v V=6E:D.yy", v V=EV?,
Y9 = 6B D.YSY, Y =-18v2E, DYDY, Y = EYyY,

Y0 =12E,D,vY. (2.18)

Notice that there is no VVMFs of weight & = 1 for 20. Additionally, all the modular form
multiplets mentioned above of weights greater than 3, can also be directly obtained by
tensor product from the modular form multiplets of weights 2 and 3.

3 Fermion models based on 20 modular symmetry

In the following, we shall present a systematic analysis of fermions (leptons and quarks)
mass models based on the 20 modular symmetry. First of all, we will clarify the assignments
of representations and modular weights of both matter fields and Higgs fields under 20
modular group.

Regarding the representation assignments, the matter fields can transform as either
reducible or irreducible representations of 20. As can be seen from appendix B, the 20 group
possesses two one-dimensional representations 1, 1/, three two-dimensional representations 2,
§, 2/ , two three-dimensional representations 3, 3’ and one four-dimensional representations
4. Thus the three generations of fermions can transform as a triplet or a direct sum of one-
dimensional and two-dimensional representations or a direct sum of three one-dimensional



representations of 20, i.e.,

Y1

Y=o |~3/3, or ¢Dz<zl>~2/§/§’, P3~1/1") or Pra3~1/1",  (3.1)
3 ?
vi s -

Y= |5 | ~3/8, or ¢EE<¢§>~2/2/2’7 vs~1/1", or Piy3~1/1.  (3.2)

(G

Here 1 represents the left-handed (LH) fermions which can be the lepton SU(2) doublet
L = (Ly, Lo, L3)T or the quark SU(2) doublet @ = (Q1,Q2,@3)". ¥° represents the right-
handed (RH) fermions which can be the SU(2) singlet E¢ = (e, u¢, 7¢)" or U¢ = (u®, c¢, )T
or D¢ = (d¢ s¢,b°)T. The subscript i of 1)/1)¢ with i = 1,2, 3 indicates the i-th generation
of 1/1¢. We denote the modular weights of ¥, ¥p, 1123, ¥°, Y5 and Y5 as ky, kyp,
Ky 555 Fpes kzwg and k’l’iz,g respectively. Note that one can permute the three generations
of fermions for the above representation assignments. This amounts to multiplying the
corresponding fermion mass matrix on the left and/or right by permutation matrices.
However, this does not affect the fermion masses and flavor mixing. In this work, we will not
consider the case in which all fermion fields are all singlets of 20, since a large number of
free parameters would have to be introduced to explain the experimental results of fermion
masses and mixing. Without loss of generality, the Higgs doublets H, and Hy are assumed
to transform trivially under 20 with vanishing modular weight kg, = kg, = 0.

To carry out a full analysis of fermion models in the frame of 20 modular symmetry, we
will discuss all possible assignments of fermion fields as well as the resulting fermion mass
matrices. The neutrinos are assumed to be Majorana particles. In the following, we will
first focus on the Dirac fermions and then turn to consider the case of Majorana neutrinos.

3.1 Dirac fermions

We start with the analysis of the Dirac fermions. The most general form of the Yukawa

superpotential for the Dirac fermion masses can be written as
Wy =g (Ve thlgpH, ) (3.3)

where all independent 20 contractions should be considered and different 20 invariant
contractions are associated with distinct Yukawa coupling constants. Modular invariance
allows us to fix the modular form multiplets Y *v+5v) once the weight and representation
assignments of the fields ¢, ¥ and H,, /4 are specified. In table 1, we summarize the possible
modular form multiplets of 20 up to weight 10. However, we will only consider the modular
forms involved in fermion models up to weight 6 in this work. Since the higher weight
modular forms generally lead to more free parameters which will weaken the predictive
power of models.

In order to obtain all possible fermion mass matrices, we first consider the independent
representation assignments for the LH and RH fermions as well as the resulting sub-matrix
of fermion mass matrix. In table 2, we list all independent pairs of the representations



of fermions (pye, py) and the corresponding sub-matrix of fermion mass matrix which are
obtained using the Kronecker products and Clebsch-Gordan (CG) coefficients of 20 given
in table 5 of appendix B. The obtained sub-matrices are ng x ny matrices, with ng and
ny, are the number of generations of the involved RH and LH fermions respectively. Note
that in table 2, we do not discuss explicitly the cases where the assignments of the LH
fermions and the RH fermions under 20 are switched, since in this case we only need to
transpose the original sub-matrix to obtain the new sub-matrix. In concrete models, once
the assignments of representations and modular weights of matter fields are fixed, we can
easily read out the explicit form of fermion mass matrices from table 2. We now consider
distinct assignments of Dirac fermion fields as well as the resulting mass matrices.

o = (1, P, 03)" ~ B/8, Y= (90, ¢0) T ~ 3/
In the case that both the LH fermions ¥ and RH fermions ¢¢ transform as three-

dimensional representations of 20, the general effective Yukawa terms for the Dirac
fermions in the superpotential are given by

Wy =3 g [Yea” M uep] Hopa, (34)

r,a

where gffa are coupling constants, with a possibly labelling linearly independent

multiplets of the same type and r labelling distinct 20 contractions into the 20
invariant singlet. From table 2, we can find the corresponding Dirac fermion mass
matrix is given as

My, = M3y, (3.5)

where M35 is presented in table 2. The superscript oo = 1 corresponds to py = pye =
3/3, and o = 2 if py # pye and py, pye € {3,3'}.

o« U=t Us)" ~3/38, Uh =W us)T ~2/2/2, w5~ 1/1
If the LH fermions transform as a triplet of 20, and the RH fermions transform as
a direct sum of one- and two-dimensional representations of 20, the superpotential
terms relevant for Dirac fermion mass generation are
(k’w-f—k:wc ) (k’w-l—kwc)
Wo= 3 b [Yeu ™ P 00| Huatab [V V00| Huao o 0)

r,a,b

where gqu, ggrb are coupling constants. In this case, the 3 x 3 fermion mass matrix
can be divided into a 2 x 3 and a 1 x 3 sub-matrices. Using the convention presented
in table 2, we can write down the explicit form of the Dirac fermion mass matrix as

Mg,
My, = , 3.7
W <M153> (3.7)

where the values of o and 3 depend on the choices of the representations of 1, 97,
and 5.

~10 -



o = (Y1, 93)" ~3/8, Yf~1/1
With all RH fermions transforming as singlets of 20, and LH fermions forming a
triplet of 20, the Yukawa terms for fermion masses are

3
(kythye)
Wy =33 gk [Ym : w;w] Huja, (3.8)
i=1 a
where g;-ia are coupling constants. The i-th row of the corresponding mass matrix

can be read out from table 2 as

(pye, py) = (1,8")/(1',3), i-th row of My = M,
(p¢fva) = (1/, 3/)/(1, 3) s i-th row of Mw = M123 . (39)

o Pp = (1, 02)T ~2/2/2, Py~ 1)1, U5 = (US,05)T ~2/2/2, 5 ~1/1
In the case that both the LH and RH fermions transform as direct sums of one- and
two-dimensional representations of 20, the superpotential W, is given as

(kyp+hye ) (kg +hye )
Ww = Z g’ﬁ'a [Y}a K P ¢%¢D:| ) Hu/d +gg}rb |:Y;'b ’ P w0D¢3:|1 Hu/d

r,a,b,c,d

(k‘w +k C) c (kd’ +k c) c
+ gé/;rc |:Yrc D Thyg ¢3¢D]1 Hu/d +g}frd |:}/rd 3T Mg ¢3¢3:| ) Hu/d' (3.10)

The corresponding Dirac fermion mass matrix can be divided into four blocks which
correspond to 2 x 2, 2 x 1, 1 x 2 and 1 x 1 sub-matrices,

Mg, MP
My = | 2720, (3.11)
M7, M,

where M3, MQBl, M7, and MY, are given in table 2 and the values of a, 3, v and §
can be fixed by the representations of the LH and RH fermions.

o ¥p = (Y1,92)" ~2/2/2, 3~ 1/1, Y5~ 1/1

In this case, the modular invariant superpotential ¥V, is now given by

3
(ky pFkype) (ko +hye)
Wo=3 S gt Voo ™ utin| Huaralty Vo™ uin| Hua. (312)
i=1r,a,b 1 1
The i-th row of My, can be expressed as
(M M7, (3.13)

and the values of a and j can be read out from table 2 once py,,, py, and pye are fixed.
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(pyes po) Case Mass matrix/sub-matrix
k k k k k) 1 (k
v o o v 0 0 0 Yi -vgh) (RS S A
(3,3)/(3.3) | My |g1a| 0 0V |+gm| o0 fyz(g‘z Yo | +gse | -Yah 0 vt | Fasa | vy o
0 Yl(i‘) 0 0 21;1 \fyz(zfz k) L) 0 Y:,f,k(',)s 0 Ys(lii)l
Yo o 2w o 7Y3’;5/3’;> 0 Vi, —va,
(3.3) M3 | g 0 0V |49 | 0 vBYR v | +gse —Y32 Y3"1) 0 |+osa|-Ye), 0 vt
k k) k k)
0 Y1(f) 0 0 Yz(z \[Y21 ) Y3(’d)2 Y?ffm 0
k k 3) (k
(2 3) ]\[1 2Y?fa)l Y3(a)3 Y3 2 +g Y3<’b2 fYS’b)d
’ 25 0 vayars,) TR y® o y®
3a 30,3 ’bl Yaib3 3'b,2
( (1\ A (k) (k)
@ 3) M2, ( 24,2 IY 0 451 Y4b2 fY4bd
’ : (k) (k) (k) (k)
Eu 0 sz(I 2 Y4b 4 YZb.l
y. (o) (k) k) (k)
(3, 3) M, Eaz Yzf 1 ¢ \[Y4b de4bl YZM
) b
Vi fY“x 0 v van VA
(k) (k) (k) (k)
(2,3 M, ( 0 \[YS 5 V3Y35 + g5 —2¥31 Y3 Y3’b2
’ & (k) (k) (k) (k)
2Y3a1 Y303  Yaa2 0 V3Ygy: sz3'h3
® ® 0 ®
(3,3 Mj, 2/ 1 ‘fy 0 Yo fY4b4 Y4l73 \/7Y4b2
' 2 B <k <k> @ (k) ®) _y k)
Y 0 ‘/7YA ‘[Y4b3 \[Yzlbl 4b4
k) (k) v ®
2,3 MS 2a1 0 fYZaZ P \[qu;z \[Y4b4 ab,1
’ z Y<k 0 4b \[Y k) (k) \/gy(k
2a2 2a 4b1 4b2 b3
(1.3)/(1.3) | M}, 950 (Vs Yala Yoo
2 (k) k) (k)
(1,38)/(1,8) | My 93b <Y3b1 Y3<b3 Ysb,z)
(k) (k) (k)y(F)
Yy, 0 0 Y, -Y.
(2,2) M3, 91a ( 1 (k)> + 91 ( ) ! b) +92¢ ( 3\1 2,3)
0 Yy, —Yyy 0 Y22 2,1
(’2 2) ]\/[2 YZ(:,)fYZ(:A
) 22 Y4a y®) 3 %)
Z(LZ Za.S
vy )
5 13 4a,3  4a,2
(2,2) My, Y4a Y(l/lv) Y(kl;
4a,4 4a,l
k k) Ak
5 o 14 0 Yl(a) fyi;b? YS(b,)l
22) | My Nl _yw o )T pw *)
Y. 0 3h1 VY,
5 5 Y o 8 VIV,
(2',2) M3, 91'a ( e (| 93 b(i) (3;;%
0 Yy, fyssz Y3’bl
(k)
S . 0 Yy —V2Yy, b b
(2,2) MS, Y1a o .| 980 (k)?’ 0 (lk)
7Y1r1, 0 Y3b.l \/§Y3b 2,
(1,2) My 92a (Yz(a)l Yz(k)z)
5 2 (v (k) (k)
1.2) Mz 924 < Y2u2 Y§u,1>
5/ 3 (k) (k)
(1,2) M Y514 ( eraz Yg,“)
(1,2) My 92a ( Y. a) Y2U1)
. - ® k)
(1,2) M, 924 (YA'a,l Yi'a.‘z)
Y] 6 " (k) (k)
<1 72 ) ]\[12 qza (Yim Ygu,2>
(1,1)/(,1) | M}, g1aYsy)
a1y | M gvaYin

Table 2. Textures for the submatrix of fermion mass matrix, where py, and py. are the representations

of the involved LH and RH fermions under the modular symmetry 20 respectively. The Yr(f) denotes

the modular form multiplet of weight k¥ and representation r with a possibly labelling linearly
independent multiplets of the same type. The g, are coupling constants and the repeated indices
are implicitly summed over. Here we drop the VEVs v, = (H,,) and vqg = (H,) of the Higgs fields
H, and H; in the mass matrices. The fermion mass matrices are read out in the RL basis.
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3.2 Majorana neutrinos

We now turn to analyze the assignments and the resulting mass matrices of Majorana
neutrinos. We consider two distinct neutrino mass generation mechanisms: the effective
Weinberg operator and the type-I seesaw mechanism. If neutrino masses are generated via
the Weinberg operator, the modular-invariant Weinberg operator of neutrino masses can be
written as
g
Wy =" (Y(%L)LLHuHu)l : (3.14)

where A denotes the lepton number breaking scale. In this case, the effective neutrino
mass matrix M, only depends on the 20 representation assignments and modular weights
of the LH lepton fields L. Similar to what we have done in section 3.1, we can discuss
all possible assignments of L and the corresponding M,,. For different assignments of the
LH leptons, the resulting matrices/sub-matrices of M,, can be obtained from table 2 with
py = pye = pr. Besides, the anti-symmetric terms of the neutrino mass matrix M, should
be removed, since the Majorana neutrino mass matrix is symmetric.

For the case that neutrino masses are generated through the type-I seesaw mechanism,
the general form of the superpotential in neutrino sector is

W, = g” (YENINCLH, ) 4+ gVA (YPRINeN©) (3.15)

where N¢ = (Nf, N5, N§) denotes three generations of RH neutrinos, and the first and
second terms in the RH part of eq. (3.15) correspond to the Dirac and Majorana neutrino
mass terms respectively. The relevant analysis of Dirac neutrino mass matrix Mp which
involves N¢ and L is similar to the analysis of Dirac fermions presented in section 3.1.
The Majorana neutrino mass term for the RH neutrinos only depends on N¢. We can
also use table 2 to read out the explicit form of the RH neutrino mass matrix My with
Py = pye = pne. Similarly, we need to drop the anti-symmetric terms in My. After
integrating out the heavy neutrinos N€, the effective neutrino mass matrix M, can be given
by the seesaw formula

M, = —MEMy Mp . (3.16)

3.3 Fermion models

In section 3.1 and section 3.2, we have discussed the assignments and the resulting mass
matrices of Dirac fermions and Majorana neutrinos. All independent pairs of the represen-
tations of Dirac fermions (pye, py) and the corresponding sub-matrices of Dirac fermion
mass matrix are presented in table 2. The Majorana neutrinos mass matrix can also be
obtained from table 2 by demanding p, = pyec and dropping the anti-symmetric terms. In
concrete fermion models, once the assignments of representations and modular weights of
fermions are fixed, we can easily read out the explicit form of fermion mass matrices from
table 2. Generally, the modular weights of the LH and RH fermions are arbitrary integers.
As mentioned in section 3.1, we will be concerned with the modular forms up to weight 6.
As a result, for Dirac fermions, the modular weights £, and kye should satisfy ky + kye < 6
and for Majorana neutrinos 2k;, < 6 or 2kyc < 6. The higher weight modular forms can be
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discussed in a similar way, and the higher weight modular forms generally contain more
modular multiplets which lead to more Yukawa coupling constants.

In the following, we are interested in those fermion models which are, in some sense,
predictive. In lepton and quark sectors, there are 9 and 10 experimentally-measured
observables respectively,

Lepton sector : me, my, mr,, Amd, Am3;, 6%, 045, Ohs, Shp, (3.17)

Quark sector : my, me, me, ma, mg, My, 01y, 015, 045, 6dp (3.18)

where m, ,, » are three charged-lepton masses, Am3, = m3 —m?, Am#, = m3 —m? are two

neutrino mass-squared differences, 9l12, 0l13, 9123 are three lepton mixing angles and (%P is
the Dirac CP-violation phase in the lepton sector, my, ¢, mqsp are six quark masses, 675,
615, 035 are three quark mixing angles and 0¢p is quark CP-violation phase. The fermion
model will not be attractive if too many free parameters are required to fit the measured
observables. Hence we only focus on the lepton models and quark models which contain no
more than 9 and 10 free real parameters respectively.

It can be observed from table 2 that the fermion mass matrices consist of the Yukawa
coupling constants and modular forms. The Yukawa coupling constants within the fermion
model are generally complex numbers and the modular forms are holomorphic functions
of a complex modulus 7. However, there are some unphysical complex phases in Yukawa
coupling constants which can be removed by rephasing fermion fields. In the process of
counting the number of real input parameters, the unphysical complex phases should be
omitted. A common approach to further constrain the number of input parameters is to
include the generalized CP symmetry (gCP) in fermion models.

It has been established that the action of gCP on the complex modulus is 7 cr, —7*, up
to modular transformations [24, 25, 79-81]. Under the action of gCP, the VVMF transforms
in the same way as the matter field. The coupling constants in models would be enforced
to be real by gCP if both modular generators S and T are represented by symmetric and
unitary matrices in all irreps and the CG coefficients are real. We are indeed working in the
symmetric basis of the 20 group with real CG coefficients, as shown in appendix B. In this
paper, we consider all fermion models with modular symmetry 20 and gCP. Consequently,
all Yukawa coupling constants become real and modular flavor symmetry breaking as well
as CP violation solely originate from the VEV of 7.

Considering the previous convention of assignments of representations and modular
weights of lepton fields, and demanding the lepton model to contain no more than 9 real
free input parameters, we can realize over two thousands kinds of lepton models in the case
of neutrino masses generated via the Weinberg operator. If neutrino masses are generated
via the see-saw mechanism, we can obtain nearly four thousands lepton models. For quark
models, we find approximate thirty thousands kinds of quark models with 10 or less real free
input parameters. With these constructed fermion models at our disposal, we will perform
numerical analysis of these lepton models and the quark models in the next section.
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4 Numerical analysis

We have systematically constructed the lepton and quark models based on 20 modular
symmetry. In this section, we will perform numerical analysis of these fermion models and
give predictions of fermion observables. For each fermion model, we need to check if it can
reproduce the input data within experimental errors. In order to do it, we perform a y?
analysis of all fermion models. The x? function is taken as usual form

X222<Pi(52i_“i)2 : (4.1)

n
=1

where the vector x contains the model parameters, P;(z) are the model predictions for the
observables, i; and o; denote the central values and standard deviations of the corresponding
quantities obtained from experimental data — see table 3. For lepton models, we fit seven
dimensionless physical observables: 612, 613, 623, dcp, me/my, my/m, and Am3, /AmZ,.
The mass of tau m, and the solar neutrino mass squared difference Am3, can be fixed by the
overall mass scale parameters of the charged lepton and neutrino mass matrices respectively.
For quark models, physical observables are chosen as 6{y, 015, 035, 6lp, my/me, me/my,
mq/ms and mg/my. Similarly, we can use the overall parameters of up- and down-type
quark mass matrices to fix m; and my,.

The experimental results of lepton and quark observables are summarized in table 3,
where the charged fermion masses and the quark mixing parameters have been extrapolated
to the GUT scale [82]. The neutrino masses and mixings are taken from NuFIT 5.2 [83].
Since the normal ordering neutrino masses are favored at 2.7¢ level if the atmospheric
neutrino data of Super-Kamiokande is taken into account [83]. We only focus on the normal
ordering spectrum of neutrino masses, m; < meo < mg in this work. The renormalization
group effects of the neutrino mass ratios and the mixing angles are known to be negligible
to a good approximation for the normal hierarchical spectrum [9]. Therefore, for neutrino
oscillation parameters, we ignore the effects of the evolution from the low energy scale to
the GUT scale. Note that the present statistical significance of the leptonic CP phase 6613
measurement is rather weak [83]. For normal ordering neutrino mass spectrum, the 3o
region of 65p is [144°, 350°], taken from NuFIT 5.2 [83] with Super-Kamiokande atmospheric
data. In this paper, we impose gCP symmetry on the fermion mass models, consequently
all CP violation phases arise from Re (), which represents the real part of (7) the VEV of
the modulus 7. As a result, it is worth to include 5lCP in x? analysis of lepton sector to
constrain the allowed region of 7.

We use the minimization package TMinuit to find the minima of y? function, the
best fit values of the input parameters as well as the predictions for fermion observables.
The 2 function is highly non-linear and possesses many local minima. It is possible that
the minima found by TMinuit is a local minimum but not global minimum. To increase
the quality of the minima, we start the minimization algorithm many times with different
initial parameters and choose the lowest out of the many local minima. The parameter
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Parameters w; £1lo Parameters Wi £ 1o 30 region
my/GeV 89.213 + 2.219 m,/GeV 1.293 +0.007 -
My/me | 0.00193 4 0.00060 me/my, 0.00474 =+ 0.00004 -
me/me | 0.00280 + 0.00012 my/m, 0.0588 + 0.0005 -
my/GeV 0.965+0.011 | Am3,/(10~%eV?) 7.41%5:21 6.82,8.03]
ma/ms 0.0505 4 0.0062 | r = Am3,/Am3, | 0.02956 4 0.00084 | [0.02704, 0.03207]
ms/mp 0.0182 4 0.0010 sin? 6!, 0.303 £ 0.012 [0.270,0.341]
0, 0.2274 4 0.0007 sin? 0h 0.45170012 [0.408, 0.603]
01, 0.00349 4 0.00013 sin? 0} 0.0222575-00058 | [0.02052, 0.02398]
04, 0.0400 + 0.0006 Sbp/° 232136 144, 350]
6lp/° 69.21 + 3.11

Table 3. The best fit values u; and 1o uncertainties of the quark and lepton parameters when
evolved to the GUT scale as calculated in [82], with the SUSY breaking scale Mgysy = 10 TeV and
tan 3 = 5, where the error widths represent 1o intervals. The parameter r = Am3,/Am3, is the
ratio of neutrino mass-squared differences. The values of lepton mixing angles, leptonic Dirac CP
violation phases d-p and the neutrino mass squared difference are taken from NuFIT 5.2 [83] for
normal ordering with neutrino masses with Super-Kamiokande atmospheric data.

space of the inputs are restricted in the following regions:

couplings: g; € [~10°,10°%], (4.2)

modulus: 7€ F: |[Rer| <=, Im7 >0, |7|>1, (4.3)

N =

where F is the fundamental domain of I'. A fermion model is said to be compatible with
experimental data if the predictions of neutrino masses and mixing parameters are within
their experimental 30 regions given in table 3. For the charged-fermion masses and quark
mixing angles and CP phase, we require that their best-fit values should not deviate from
the experimental central values by more than 3 times of the corresponding 1o region — see
table 3. As a result of the analysis we obtain:

Lepton models: for lepton models, we have considered two scenarios that the neutrino
masses are generated by the Weinberg operator or the type-I seesaw mechanism. If light
neutrino masses are described by the Weinberg operator, by performing y? analysis, we find
that there are hundreds of lepton models which are compatible with experimental data. The
minimal model contains 7 free real input parameters. For the case that neutrino masses are
generated through the type-I seesaw mechanism, we find a minimal model which can only
use 6 free parameters to explain all 9 measured lepton observables. In addition, we obtain
a lot of phenomenologically viable lepton models with the number of input parameters

varying from 7 to 9.

Quark models: for quark models, we scan the parameter space of quark models containing
no more than 10 input parameters one by one. In order to explain the experimental data
given in table 3, the quark models are found to contain at least 9 parameters. In the following,

we will give a representative quark model with 9 parameters. There is no quark model
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with 8 or less parameters that can accommodate the experimental at 30 confidence level.
However, some models with 8 parameters can achieve a relatively small x?, and only the
quark mass ratio ms/my, and 675 slightly lie outside the 30 region. It is reasonable to regard
these models as a good leading order approximation, we will give such an example below.

Unified models: in the above, we have searched the phenomenologically viable models
in lepton sector and quark sector separately. Now we want to combine the viable lepton
models with the viable quark models to give a unified description of both leptons and
quarks with a common modulus 7. By performing x? analysis of unified fermion models,
we find the minimal viable unified fermion model can use 14 real parameters to describe
the 22 masses and mixing parameters of quarks and leptons. The detail of the model will
be present in following.

5 Benchmark models

By performing x? analysis to the constructed fermions models, we have obtained thousands
of phenomenologically viable models. It is impossible to show all viable models in detail,
consequently we will provide some benchmark models where the quality of the results can
be appropriate for leptons and quarks. The benchmark models are chosen from viable
models which contain minimum number of free real input parameters.

5.1 Lepton models

For lepton models, we present one representative lepton model for the case of Majorana
neutrino masses generated via the type-I seesaw mechanism and one for the case of the
Weinberg operator.

5.1.1 Lepton model with 6 parameters for seesaw mechanism

Among all phenomenologically viable lepton models for the case of Majorana neutrino
masses generated via the type-I seesaw mechanism, the minimal lepton model contains
only 6 real input parameters. We have identified a single viable lepton model with six
parameters that is highly predictive, as it employs these parameters to account for nine
measured lepton observables. Moreover this model predicts absolute neutrino masses and
Majorana CP violation phases. For the sake of clarity, we list the details of the model in the
following. The representation assignments and the modular weights of the lepton fields are,

L~3, Ef = (e, u) ~ 2/, 1, N°~3,
kr =—1, kpe =6, kre =15, kye=1. (5.1)

The corresponding modular invariant lepton superpotentials are given by

Wi = gF (B L)z, VA7 Hy + g (B L); VIV Hy + of (°L)y Y3 Hy,
W, = gPH,(NL); + A (N°N¢), Y3?) . (5.2)
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Notice that there are 6 free real input parameters including 3 coupling constants 952,3 in
the charged lepton sector, 1 effective coupling constant (¢”)2/A in the neutrino sector and a
complex modulus 7. The corresponding charged lepton and neutrino mass matrices read as

—gf Y5(5)2 —V2g¥ Yf; V3g¥ YZ(i) V2gf Y§(5 )+ gf YZ(Z)
Mg = | —gf Yf )+ V2gF YZ(Z) —V2gf Y§(5 )+ oF YZ(,S?,) — V3% YZ(Z) vd
aFYy F Yy 9F Yy
100 —2v,7 0 0
Mp=g" {001 |va, My=| 0 V3v33 Yi2 |A. (5.3)
010 0 yéff x/§Y2(,22)

Using the seesaw formula given in eq. (3.16), we can obtain the effective light neutrino
mass matrix

1
2Y2(?1) 0 0
M (QDUu)Q 0 ‘/3Y2‘(22) _ Y'z(?l)
=T VI vy | (54)
. v Vave)

(@2 2)2 2)2 2)2
Vi eyt eyl
and the three light neutrino masses are given as

. 1 (gPv)? . 1 (gPvu)? . 1 (gPvu)?

1= — 2 = 9 3=

2vyy| A Yy —V3Yay A Va1 +V3Yay| A
(5.5)

One can find that the neutrino masses only depend on the VEV of the modulus 7 and
(gPvu)?
A

an overall parameter , thus we can use the experimental result of the masses ratio
Am3, /Am3, to constrain the allowed region of (7). The corresponding result is shown in red
region of figure 1. To find out if or not that the model can explain the experimental results
of leptons, we perform a global fit to the lepton experimental data for normally-ordered

neutrino masses. The values of the 6 input parameters at the best-fit point are

(1) = —0.19205 + 1.08536i,  ¢¥/gF = 0.71588, g% JgF = 87.44709,
2
E (gDU“)
91 vg = 0.02881 MeV , N = 71.88877 meV , (5.6)
being the corresponding lepton observables
sin® 0, = 0.3261, sin? 03 =0.02182, sin? @b, = 0.5063, Obp =241.2°,
g1 = 1.32687, as; = 0.5401r, me/m,, =0.004737,  my/m,=0.05876,
Am3,
5-=10.03009, m1 =14.27 meV mo =16.67 meV ms =51.64 meV
Amg,
mgg=9.17 meV, (5.7)
with x2,, = 13.17. Here ag; and ag; are two Majorana CP-violation phases in the

standard parametrization and mgg is the effective Majorana mass of neutrinoless double
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Figure 1. The region of modulus (7) compatible with experimental data. The gray region is the
fundamental domain of 7, and the red area represents the viable range of () compatible with the
experimental region of Am3,/Am3; of the ratio of neutrino mass squared difference taken from [83].
The black star represents the best fitting point.

beta (0v3/3) decay experiment. The predictions of all measured lepton observables lie in the
corresponding 3o experimental regions as given in table 3. It is notable that only normal
ordering neutrino mass spectrum can accommodate the experimental data and inverted
ordering is disfavored in this model. Moreover, we use the sampler MultiNest [84, 85]
to scan the parameter space of the model, while all measured lepton observables are
demanded to lie in the experimentally allowed 3o regions. The correlations among the
input free parameters, neutrino mixing angles, CP violation phases and neutrino masses
are shown in figure 2. We can find both the free parameters and the lepton observables
are limited in narrow ranges. The atmospherical neutrino mixing angle sin® #} is located
in the second octant as sin? 645 € [0.504,0.508]. Besides, there are sin? 8!, € [0.308,0.341],
Shp € [1.3167,1.3607], o € [1.3097,1.3477] and ag; € [0.5097,0.5697]. The mass of
the lightest neutrino m; is predicted to be in [13.47meV, 15.05meV] and >, m; is lies in
[79.41meV, 86.69meV]. Cosmological data shows that the most stringent bound on the
sum of neutrino masses is y_; m; < 120 meV at 95% C.L. from the Planck Collaboration
results [86]. Thus, the present model is compatible with the Planck data as well.

In terms of light neutrino masses and the lepton mixing parameters, the effective
Majorana mass mgg which is defined in the amplitude of the 0v33-decay can be expressed as

. 1 . ; _osl
mas = |my cos® By cos? 05 + mg sin? 05 cos? 0},€21 + my sin® f13¢7 (@31~ 2cp) || (5.8)
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Figure 2. The predictions for the correlations among the input free parameters, neutrino mixing
angles, CP violation phases and neutrino masses in the lepton model with 6 real input parameters.

In this model, mgg is predicted to be limited in [8.55meV,9.86meV| which respects the
current experimental bound. According to the latest result of the KamLAND-Zen experi-
ment, the upper limit of mgg is (36 — 156) meV at 90% C.L. [87]. The future large-scale
OvfB-decay experiments expect to further improve the bound on mgg. For instance, the
SNO+ Phase II is expected to reach a sensitivity of (19 — 46) meV [88], the optimistic
bound of LEGEND experiment is about (15 — 50) meV [89], and the nEXO will be able to
probe mgg down to (5.7 — 17.7) meV [90] which can check the prediction of this model.
As mentioned in section 3, all couplings are real because of the gCP, and the VEV of 7
is the unique source of CP violation. To find the correlations between (7) and CP-violation
phases, we plot the contour regions of CP-violation phases in the plane Im () versus Re (1)
in figure 3. The coupling constants are fixed at their best fit values as given in eq. (5.6).

5.1.2 Lepton model with 7 parameters for Weinberg operator

In the case of neutrino masses generated via the Weinberg operator, we find that at least
7 real parameters are need to explain the measured values of lepton observables. In this
section, we give such a representative lepton model with 7 input parameters. The details of
the model are given as

L~3,
kL:la

Ef = (ef,uf) ~ 2,
kge, =5,

!/
T¢~ 1",

ke = 3.
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Figure 3. The contour plots of the CP-violation phases on the Re (7) — Im (7) plane. The black
star refers to the best fitting point.

The corresponding modular invariant lepton superpotentials are given by
6 6 6 4
We = gf (EpL)s Yap Ha+ 95 (EpL)s YagHa+ 9F (B L)y Yy Ha + gf (r°L)y Yy Ha
1
W]/ - X

where A is the new physical scale where lepton number is violated by two units. The
corresponding charged lepton and neutrino mass matrices read as

(LL)2Y;" H,H,, (5.10)

~205Yy71 207 Y5 08 Vart 5~ V3GE Yy b tar Yy 08 Yalr o V305 Yyt Yyl
Mg = —299{3Y3(/6,)1 \/§Q2EY3(2,2 +9??Y3(%+\/§Q{EY:§??2\/§92EY3(?},3+9?])EY3('6,)2+\/§QFY3(?,)3 Vd
ey 98 Y50y 95 Yy
, (—2Ya 00
M= 0 VA v | (5.11)
0 YY) V3Y,Y
The agreement between the model predictions and the experimental data is optimized for
the following values of the input parameters

(1) = —0.03966 + 2.21810i, g5 /g1 = 1.01858, 9% /9t = 11.04561,
2
g¥ [g¥ = —0.01128, gf'va=1.02083 MeV, = 28.74885 meV .

(5.12)

The values of the masses and mixing parameters of leptons at the above best fit point are
determined to be

sin?0}, =0.3263, sin? 0!, = 0.02242, sin? 0, = 0.4296, Sbp =187.5°,
g1 = 1.0287, sy =0.0567, me/m,, =0.004800,  m,/m, =0.05988,
A 2
mgl =0.02945, my =28.11 meV, mo =29.39 meV, ms =57.50 meV,
Amz,
mpp = 10.49 meV, (5.13)
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Figure 4. The predictions for the correlations among the input free parameters, neutrino mixing
angles, CP violation phases and neutrino masses in the lepton model with 7 real input parameters.

with X2, = 8.79. The predictions are compatible with the experimental data at 3o level
— see table 3. We display the allowed values of input parameters and the corresponding
observables in figure 4. Unlike the predictions of the model in section 5.1.1, the prediction of
sin? @, in this model is located in the first octant as sin® 6, € [0.408,0.448]. The 30 region
of sin? §!5 can be achieved, while sin? 6!, € [0.313,0.341]. For the CP violation phases, 6kp
and ag; are located around 7 as d-p € [0.8157, 1.1717] and a9y € [0.873,1.1147], the
a3y varies around 0 as asz; € [0,0.2327] U [1.7487, 27]. The lightest neutrino mass is m; €
[26.86meV, 29.40meV] and the sum of neutrino masses Y ; m; € [110.13meV, 120.00meV]|
which is close to the upper bound of the Planck Collaboration results [86], >-; m; < 120 meV.
The allowed region of mgg is [9.82 meV, 11.74 meV] which agrees with the current bound [87]
and can be checked by the future large-scale Ov((-decay experiments [90].

5.2 Quark models

We turn to the representative models of quarks in this section. The minimal phenomeno-
logically viable quark model is found to contain 9 real input parameters. As mentioned in
section 4, some quark models with 8 parameters can be regarded as leading order approx-
imation. For these reasons, in the following, we present one representative quark model
with 8 parameters and another viable quark model with 9 parameters.
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5.2.1 Quark model with 8 input parameters

The first benchmark quark model contains 8 input parameters and it can not completely
explain the experimental result of quarks. The 20 representation and modular-weight
assignments of quark fields are given as

Qr~3, UH)=(u,c)~2, t°~1, D= (dsb°) ~ 3,
kg, =3—kue =6 —kie =4 —kpe. (5.14)
Then the Yukawa superpotentials for the quark masses are
Wa = g1 (UBQL); YV Hu+ g8 (£°Qu)g Yy Hu + g5 (1°Q1)3 Y1 Hor
Wi = g1 (D°QL)y Y3 Ha+ g8 (D°Qr)s Y3 Hat 6§ (D°Qr)y Yy 'Ha,  (5.15)

where gi'5 5 and gim are real coupling constants. We find the quark mass matrices take
the following form

Ve Ve i)
_ uy(3) uy(3) uy/(3)
e (\/)§le24() ()leZ3 (6) _()\/§le22() "
93Y31 1193 Y3H 192Y3rs +93Y5r1 395 Y35 + 9§LY3H 2
4
de( 2) —92Y3( 2) + 93Y3('() Y3( 3) dY?,(' )
Mq = —92Y3( 2) - 93Y3/ 3 \[giiyz 1~ 92Y3 1) - 91Y2( 2) + 93Y3(/ )1 vd - (5.16)

4 4) 4
2Y3(73) + gsy( ) —91Y2( 2) - 93Y( \fgilyz(,l) + 92Y3( 1)

We perform a global fit to the quark experimental data, the values of the input parameters
at the best-fit point are

(1) =—0.30703+2.88560i,  ¢%/g"=T77.66929,  g¥/g% =551.39462, (5.17)
gd/gl=—1.75444,  ¢%/¢0=4.23434,  ¢Vv,=1.67475 GeV,  g¢{vg=0.27672 GeV,

being the corresponding quark observables

01, = 0.227, 6%, = 0.00270, 05 = 0.0399, (5%13 =69.31°,
my/me = 0.00196, m./m; = 0.00276, mg/ms=0.0610, ms/my =0.0292. (5.18)
Almost all observables lie in the 30 experimental intervals, except ms/my, and 675 which

are close to the upper and lower bounds respectively. The model can be regarded as a good
leading order approximation.

5.2.2 Quark model with 9 input parameters

In this section, we give an example of the minimal viable quark models with 9 input
parameters. The quark fields transform under the 20 modular symmetry as follow,

QDE(Q17Q2)TN27 Q3N17 UCE(uC7CC)N27
t¢~1, D% =(ds)~2, b°~1,
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Then the Yukawa superpotentials for the quark masses are

W = g4 (UQp)1 ViV Hy + g5 (UpQD)g Yo Hy + g4 (UpQs)g Yo Hy + g4 (t°Q3), H
Wi = g1 (DHQ1); Y( VHy + g3 (0°Qp)y ViV Hy + g2 (b°Qs), YiV H, (5.20)

It can be found that this model depends only 9 real free parameters including 7 real coupling
constants g’y 3 4, gil’273 and a complex 7. The corresponding up- and down-type quark mass
matrices take the following form

4 4 4 4
g — vy vy guvd

_ 4 4 4 4
M, = 9§LY2(,2) 93Y2(,1) +9?Y1( )9§Y2(,2) Vu
0 0 94
3 3
gilyé 3)_ dy( ) 0
= | ¢dv. (3) d ( )
M, = gl 43 91Y441 0 ) vq - (5.21)
gng( 1) ggYZ,( 2) ng( )

We perform a global fit to the quark experimental data, the values of the input parameters
at the best-fit point are

7) = 0.06845 + 2.20708i,  ¢¥%/g" = 1.00535, g4/g¥ = 0.02844
2 1 3 1
g4 /g% = —1.09856 x 1077, g%/g¢ = —1.08833, g4 /g% = —0.00707,
glv, = 44.47283 GeV , gvg = 0.87481 GeV . (5.22)

The corresponding predictions of quark observables are

69, = 0.227, 69, = 0.00348 , 04, = 0.0403, 8L = 69.482°
Mmy/me = 0.00196,  me/my = 0.00273,  mg/ms =0.0542,  m,/my = 0.0181,
(5.23)

with 2 = 0.770. Obviously the above best-fit values are in very good agreement with the
data, being all observables in the experimentally allowed 1o intervals. By scanning the
parameter space of this model, we find all the quark observables can take any values within
the experimental 30 regions.

5.3 Unified models of leptons and quarks

In the above two sections, we have discussed the phenomenologically viable models in lepton
sector and quark sector separately. Now we shall investigate whether the 20 modular
symmetry can describe the flavor structures of quark and lepton simultaneously. In this
section, we give an example of the unified model with 6 parameters in the lepton sector
and 10 parameters in the quark sector. The complex modulus 7 in the quark and lepton
sectors is the same one, so the total number of real free parameters is 6 + 10 — 2 = 14. This
model is very predictive, since it uses 14 real free parameters to describe the 22 masses and
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mixing parameters of quarks and leptons. In the lepton sector, the model is chosen as same
as the one which has been described in section 5.1. The assignments of quarks are

Qp=(Q1,Q2)" ~2, Q3~1, UH=(uc)~2,
t~1, Df=(ds)~2, b°~1,
Koy = 3 — ks = kg = 6 — ke = 6 — kpe = e (5.24)

Then the Yukawa superpotentials for the quark masses are

Wa = g} (UpQp)3 YAV Hu + g5 (1°Qp)y Yo Hu + g5 (°Q3)y Y1 Hay,
Wi = ¢4 (DHQp), Y} >Hd + 93 (D5Qp)y ViV Hy + 9§ (D$Qp), YoV Hy
+ g4 (D5Q3)5 Ya¥ Hy + g& (0°Q3), Hy . (5.25)

After symmetry breaking, the quark mass matrices take following forms

91Y(73) Q%YZ(’:;) 0
3 uv (3
My =| gty giyy) 0 |,
uv(6) uy (6
oY apr®
giVL® — g4V lod i) + 94735 gfsz(Sz)
My = | gy — g8y Oavi® + gv{® g% | va. (5.26)
0 0 98

By performing a x? analysis of the lepton sector and quark sector simultaneously, we find
the best fit values of the input parameters are

(r) = —0.19991 + 1.07381i,  ¢¥/gF = 0.69822, g¥ /g¥ = 86.19360,
2
E. _ (g v“) _
g1 vg = 0.06689 MeV , A = 30.27760 meV .
g4 /g% = 122.34700 g%/g% = 0.49606 , gd/g¢ = 45.08310,
g3/g% =1.15319, gd/g% = 0.01338, g8/g¢ = 0.00362,
g1vy, = 0.58474 GeV gdvg = 0.29190 GeV . (5.27)

With the above given values of input parameters, the predictions of fermion observables are

sin? 0}, = 0.3409, sin?6y = 0.02271, sin?6hy = 0.5079, dhp = 244.3°,
a9 = 1.34657, a3 = 0.56947, me/m, = 0.00474, m,/m; = 0.0588,

2
Ams,

=0.02909, mq =15.00 meV, mo =17.30 meV, mg=52.69 meV,
Amz,
mgp =9.73 meV, 601, =0.227, 603 =0.00350, 64, =0.0389, 5%]? = 71.08°,

my/me = 0.00212, m./m; = 0.00281, my/ms=0.0503, ms/my =0.0212, (5.28)
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Figure 5. The predictions for the correlations among the input parameters and the quark observables
in the unified model.

with x? = 20.0, xé = 12.6 and X2, = X? + xg = 32.6, being all observables in the
experimentally allowed 3¢ intervals.

In section 5.1, we have scanned the parameter space of lepton sector. Similarly, we scan
the parameter space of the quark sector independently, and all the quark observables are
constrained in the experimentally preferred 3o regions. We find that all quark observables
can approximately take any values within their allowed 30 ranges. The phenomenologically
viable regions of 7 obtained from quark and lepton sectors have an overlap, which is shown
in figure 5. If we include the experimental constraints of both quarks and leptons, the
allowed values of some lepton and quark observables can be constrained in narrower ranges
as follow,

sin? 0}, € [0.3353,0.3410], sin% 6}, € [0.02120,0.02398], sin’ by € [0.5071,0.5084] ,
Obp € [1.3517,1.3617], o1 € [1.3287,1.3507], as; € [0.5517,0.5747]
my € [14.66meV,15.04meV], > m; € [81.98meV, 86.83meV]
mgs € [9.47TmeV,9.90meV], 6%, € [0.0381,0.0398], &Ly € [63.31°,78.55°]

Ma/me € [0.00184,0.00240],  my/my € [0.0203,0.0212] . (5.29)

The correlation among the fermion observables and the allowed region of 7 are plotted in
figure 5.
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6 Conclusion

The origin of the flavor structure of quarks and leptons is a big puzzle in particle physics, and
modular symmetry is a promising approach to address this flavor puzzle. The inhomogeneous
and homogeneous finite modular groups I'y and Iy with N < 7 have been intensively
studied in the flavor models for quarks and leptons. It is intriguing that I's & Ay, T'y &£ Sy
and I's &2 A5 are the symmetry groups of the platonic solids tetrahedron, octahedron
(hexahedron), icosahedron (dodecahedron) respectively. Moreover, the homogeneous finite
modular groups I'y; = 7" and I'} are isomorphic to the binary tetrahedral group and the
binary icosahedral group respectively. It turns out that the binary octahedral group 20
is also a finite modular symmetry group [6], while it hasn’t been studied in the literature
so far.

In the present work, we have performed a systematic analysis of how the flavor structure
of quarks and leptons can be explained in the framework of 20 modular symmetry with
gCP. The representation matrices of both generators S and T" are unitary and symmetric in
our working basis, consequently the gCP symmetry reduces to the traditional CP symmetry
and all the coupling constants are constrained to be real. We have considered all possible
representation assignments of the matter fields under 20, and the Higgs doublets H,, and
H, are assumed to be trivial singlets with vanishing modular weight. For each independent
representation assignment (pye,py) of Dirac fermions, the resulting sub-matrices of the
fermion mass matrices are summarized in table 2. Hence the explicit form of the fermion
mass matrix can be straightforwardly read out from table 2 once the modular weights and the
transformations of quark/lepton fields under 20 are specified. We assume that the neutrinos
are Majorana particles and two distinct neutrino mass generation mechanisms including
the effective Weinberg operator and the type-I seesaw mechanism are investigated. The
Majorana neutrino mass matrix can also be obtained from table 2 with py = pye = pr/Ne.

In bottom-up approach of modular symmetry, one can freely assign both modular weights
and representation of matter fields, therefore many possible models can be constructed. We
intend to understand how the modular symmetry 20 can help to understand the flavor
structure of quarks and leptons, and we aim to find out the phenomenologically viable
models with the minimum number of free parameters. Requiring the number of the free real
parameters in lepton sector is less than 10, we have obtained thousands of lepton models for
both cases of neutrino masses generated by the Weinberg operator and the type-I see-saw
mechanism. In quark sector, we demand the number of the free real parameters less than
11 and over thirty thousands quark models with the modular symmetry 20 are found. In
order to quantitatively estimate which models can accommodate experimental data, we
have performed a thorough numerical analysis of them. We find hundreds of lepton models
can explain the experimental data of lepton masses and the lepton mixing parameters. In
the case of neutrino masses generated via the Weinberg operator, the phenomenologically
viable lepton models contain at least 7 free real parameters including the complex modulus
7. For the type-I see-saw case, we find a minimal lepton model which can use only 6
real parameters to explain all measured lepton observables. To illustrate our findings, we
presented two benchmark lepton models in section 5.1. The minimal phenomenologically
viable lepton model with 6 real parameters is given in section 5.1.1, the best fit values of

_97 —



the input parameters and the corresponding predictions for neutrino masses and mixing
parameters are give in eq. (5.6) and eq. (5.7) respectively. In section 5.1.2, we give a viable
lepton model in the case of neutrino masses generated via the Weinberg operator, the
best fit results and the interesting graphical correlations between lepton observables are
provided. In quark sector, the results of x? analysis shows that thousands of quark models
can accommodate the experimental data of quark masses, mixing angles and CP violation
phase at 30 confidence level. The minimal viable quark models contain 9 free parameters,
and one representative quark model with 9 parameters is provided in section 5.2.2 in detail.
We have also presented a quark model with 8 parameters in section 5.2.1 as a good leading
order approximation. This model can accommodate all the quark data except that mg/my
and 6, are slightly out of the experimental ranges. Furthermore, we have investigated
whether the flavor structures of quark and lepton can be simultaneously described by
the 20 modular symmetry with a common modulus. We give one predictive example of
lepton-quark unification models in which the 22 masses and mixing parameters of quarks
and leptons are described in terms of 12 free real coupling constants and a common complex
modulus, see section 5.3. This is the minimal modular invariant model for quarks and
leptons with the smallest number of free parameters in the literature, as far as we know.

In the present work, we have analyzed quark and lepton models with the modular
symmetry 20 in the limit of exact supersymmetry. The effects of supersymmetry break-
ing could lead to dependence of our results on other additional parameters such as the
supersymmetry breaking scale mgysy, the messenger scale M, the cutoff scale A and tan 5.
Dimensional analysis shows that supersymmetry breaking contributions to Yukawa couplings
and neutrino masses scale are mgusy/M [9]. Hence the corrections induced by the SUSY
breaking terms are negligible if the separation between mgygy and M is sufficiently large.
This mild requirement can be satisfied for a very wide range of the effective SUSY breaking
scale mgusy.

In the top-down approach of modular symmetry, it is found that the modular symmetry
is always accompanied by a traditional flavor group. The nontrivial product of modular and
traditional flavor symmetries gives rise to the eclectic flavor group [59, 60]. The eclectic
flavor group is more predictive than the consideration of modular symmetry or traditional
flavor symmetry alone. Terms allowed by the modular symmetry could be forbidden by the
traditional flavor symmetry. In particular, the interplay of traditional flavor symmetry and
modular symmetry can restrict the Kahler potential so that the minimal Kéhler potential
could be leading order term [64-66]. The eclectic extension of the traditional flavor group
is limited to the finite modular groups I'y and I'y in the present scheme of eclectic flavor
symmetry. It is known that the eclectic flavor group €2(1) is a nontrivial combination of the
traditional flavor group A(54) (or A(27)) and the finite modular group I'y = 77 [59], the
modular binary octahedral group 20 potentially gives rise to new candidate of eclectic flavor
group by combining with certain traditional flavor symmetry. This is left for future work.

In conclusion, the modular binary octahedral group 20 provides a simple and economical
framework to understand the flavor structures of the quarks and leptons. The minimal
models identified in above are very predictive and they are expected to be tested at future
neutrino oscillation facilities and OvB[3-decay experiments. The modular symmetry 20 also
opens up new possibility for the eclectic flavor group.
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A Some results of VVMFs

A.1 VVMFs of minimal weight in d < 3 dimension

In this section, we briefly describe the general results about 1-d, 2-d, and 3-d VVMFs of
SL(2,7) [6]. They can immediately be used to construct VVMFs in the 1 to 3 dimensional
irreps of group 20.

The MLDE of eq. (2.13) satisfied by 1-d VVMFs can be solved by an even power of
the eta function. Consequently, all the one-dimensional VVMFs of minimal weight kg can
be expressed as the following eta products

L, Y(r)=n"(r), (A1)

where p = 0,1,...,11 denotes the twelve 1-d irreps of SL(2,7Z), and the minimal weight
ko =p = i log pa, (7).

The MLDE of eq. (2.13) satisfied by 2-d or 3-d VVMFs can be always transformed
into the generalized hypergeometric equation. Thus, all the 2-d or 3-d VVMFs of minimal
weight ko can be expressed as the generalized hypergeometric series:

Y(7r) = (Yi(7),...,Yu(r)T, (A.2)
where the component is?

K

1-8;
1728) nFn1(l1+a1—Bi,..., 1+ a,— 814 61— B4, .7, 1+ 68— Bi; K)

(A.3)
where “ denotes omission of 1 + 3; — 3;, and the generalized hypergeometric series , Fj,_1 is
defined by

Yi(r) = n** (

o] n (m) m

Loar
. Co) — 2: J=1"y
nanl(ala-'wanvbla"'vbn*laz)_ n—1 (m) m' )
m>0 Hk:1 bk; ’

with m € N, a,b € C and notation a(™ represents the rising factorial (also known

(A.4)

as Pochhammer symbol). The function K is the inverse of Klein j-invariant: K(7) =
1728/4(r).4

3Tt is important to note that in order to align with the corresponding modular transformation matrix
p(S), each component here needs to be accompanied by an appropriate constant factor.

“Pochhammer symbol (™ is defined as (™ = a(a+1)...(a +m —1) for m > 1, and a'® = 1. The
Klein j-invariant can be expressed by Eisenstein series as j(7) = 17283 (7)/(E3 (1) — FEa(r)).
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For the two-dimensional case, n = 2,7 = 1,2, the parameters (2, a1,2 and minimal
weight kg solely rely on the eigenvalues e>™"1.2 of the corresponding 2-d irrep matrix p(7T):
_7‘2—7“1 11 r1—"re 11 1

B1 5 t1 I 5 T “ 0, o 3 ko =6(r1+r2) (A.5)

For the three-dimensional case, n = 3,7 = 1,2, 3, the parameter 123, o123 and minimal
weight kg also depend only on the eigenvalues e2771:2:3 of the corresponding 3-d irrep matrix
p(T):

5 1 5 1 5 1
=2 (4 —2ry—2 =2 (4ry—2ry—2 =2 2 (4rg—2r -2
b1 G 6(7"1 ro—2r3), [2 G 6(?"2 r3—2r1), 3 G 6("”3 r1—2r7),
1 2
a1 =0, a2:§’ Cm:g, k0=4<7"1+7“2+7’3)—2. (AG)

A.2 4-d VVMF of minimal weight for 20

In this section, we provide a brief description of the construction of the 4-d VVMEF in the
irrep 4 of binary octahedral group 20. From the 4-d irrep matrix pZ(T ) as depicted in

eq. (B.3), we can determine the exponent r; associated with its eigenvalues e?™:
(7"1,7'2,7“3,7’4) = (5/8, 3/8, 7/8, 1/8) . (A7)
Because p(S?) = —1 = —(—1)3(ntratrstra) mod 2 “thig 4 d irrep is the cyclic type [6].

Specifically, the VVMF module M (4) has the following basis
M(4) = (F, Dy,F, D} F, D} F). (A.8)

Here, F' is the 4-d VVMF of minimal weight ko where kg = 3(r1 +ro +r3+14) — 3 = 3.
Consequently, we can express the VVMF DﬁOF of weight kg + 8 as a linear combination of
these bases over the ring C[Ey4, Eg):

(DL, + aBaDE, + bEgDy, + cE) F = 0. (A.9)

For convenience, we simplify the above weight-ky MLDE by transforming it into a weight-zero
MLDE through the rescaling of F to F' = n~ 2k [

(DG + aBsDf + bEsDo + cE}) F =0, (A.10)

As shown in ref. [91], by introducing new variable K(7) and notation 0x:

d

(A.11)

the weight-zero MLDE mentioned above can be transformed into the following form

8K2—(12a+36b+4) K —6a+36b—1
36(1—K)2

c ~

O+ )F—O.

2
-k K 36(1—K)2 O+

oA 2K +1 93 44K? —(36a+28) K +36a+11
K (1-K)?
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Frozn the g-expansion of K(7): K = 1728¢(1 —744q+ ...), we can deduce the K-expansion
of F": o
K"~ 30 sgar(n)K"
Krz_% > ons0a2(n) K"
(n)
(

F=n2kp= (A.13)

._ ko
K™ 12 7 ~pas(n)K"
kg
ri— ko
K™~ 1 ano as(n)K

By substituting it into equation (A.12) mentioned earlier, and considering only the leading-
order terms of the series K, we can derive the indicial equation near K = 0:

4

rt =% 4+ (a+11/36)r* — (a/6 — b+ 1/36)r +c= [[(r — 7)) =0, (A.14)
j=1
with
ko 3 ko 1 ko _ 5 ko 1
MEn-p =g TRENRTpTE BEmo =g a4

8
(A.15)

Consequently, we can determine the values of the unknown parameters a, b, ¢ as follows:
a=—25/283, b=25/864, c=—15/4096. (A.16)

So eq. (A.12) becomes

dt d3 135 5095 128 d?
K*—92K% + K¢ K3 —13K* +8K%) — ER? SRS O RY
{( +K°) o dKd T (5 3K* +8K°) ars T\ 32 258 T g dK?
15 365 40 d 15 1~
K- K?P4 R — - [ F=0. A7
+ (64 96 T ) dK 4096} ( )

Regrettably, it is not possible to translate it into the generalized hypergeometric equation.
Therefore, we can only solve it by the power series method and get the K-series for F.
More specifically, we plug the eq. (A.13) into the aforementioned differential equation, and
proceed to compare the terms of each order of K. This process yields the following recursive
formulas for the coefficient a;(n):

135 15 15
0= [(r§+m)4+5(r§+m)3+32(1",'L»+m)2+64 (7} +m)14096} a;(m)

5096 365
- {2(T§+m—1)4+13(r;+m—1)3+ 533 (ri+m— 1)2—1—%(7“ +m—1) ]ai(m—l)

128 40
+ [(r§+m—2)4+8(r§+m—2)3+(7’£+m—2)2+(7’§+m—2)1] a;(m—2)

9 9
(A.18)
for m > 2, and
_ / / @ / E / _ 15} )
0= |:(Ti+1)4+5(ri+1)3+ 32 (’I“Z-+1)2—|— 64(’/°Z—|-1)1 74096 al(l)
5096 365
— 12 1 —_— i Al
12090+ 130D + g (e + 5 11 as0) (A1)
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for m =1, and

135 15 15

0= |(r)a+5(r)s+ o5 (ri)2 + (Tg)l—m

39 674 a; (0) (A.QO)

for m = 0. Here 7} can be found in eq. (A.15), and the falling factorial (z) is defined by
(x)s=z(x—1)...(r—s+1) for s > 1 and (z)p = 1.

Notice that the first recursion eq. (A.20) is automatically satisfied as we expected, so
we can take a;(0) = (1/1728)" for convenience, then from second recursion eq. (A.19) we
can obtain a;(1). Subsequently, by employing eq. (A.18), we can iteratively obtain all the
values of a;(m) for m > 2.

2miT

Finally, we change the variable of the K-series solution of F' from K to ¢ = e“™", and

subsequently revert F back to F. The g-expansions of F; are given by

Fi(r) = ¢"® (1 - q— 46" +3¢* + ¢" + 3¢" + 13¢° = 13¢" — 12¢° — 4¢° + ... ) ,
Fo(r) = 3/8(1+qf7q — 6¢° + 16" + 9¢° 6q6+9q7—23q8—23q9+...),
Fs(1) = q7/8 (1—3q+3q2—4q3+3q4+6q5—3q6+3q7—15q8+2q9+...> ,
Fy(r) = q'/% (14 3¢ — 6% — 23¢° + 12¢" + 66¢° — 15¢° — 84¢7 + 48¢° +58¢° + ... ) .

(A.21)

From the representation matrix pZ(S) as shown in eq. (B.3), we can organize these compo-
nents into a VVMF with respect to irrep 4 of 20:

vi(r) = (1WBR(7), 2BR(r), —8Fi(r), Fir) . (A.22)

1
B Binary octahedral group 20

The binary octahedral group 20 is the preimage of the octahedral group O = S4 under the
2 : 1 covering homomorphism SU(2) — SO(3). Alternatively, it can be understood as the
Schur cover of the permutation group Sy of “—” type. The group 20 can be generated by
the modular generators S and T satisfying the relations [6]:

S?=T*=R, RT=TR, R*=(ST)}=1, (B.1)

or equivalently
St = (ST)? =8%T' =1, S*T =T8>, (B.2)

It has 48 elements and the group ID is [48,28] in GAP [92]. The cyclic group Z& = {1, R}
is the center. Notice that 20 is not a semidirect product of Z£ by S;, and there is no
subgroup of 20 isomorphic to Sy. Interestingly, however, it contains the binary tetrahedral
group 27" and the quaternion group (Jg as its normal subgroups.

In addition to the representations of Sy: 1, 1/, 2, 3 and 3/, 20 possesses two doublet rep-
resentations 2,2’ and one quartet representation 4. The explicit forms of the representation
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matrices p(S) and p(7T') in each of the irreps are given in the following,

1: S=1, T=1,

1(1 3 1 0
2 == T =
’ Jﬁ—J Q—J
. i (1 1 0
2 —_ = T:
=l ) ( )
. (1 1
5/ -t T:
=0 ) ‘)
. 0 vV2v2 100
3 S:5 vV2-11 |, : (B.3)
V21 -1 0056
) 0 V2v2 100
3 52—5 vV2-11 |, T=-10&0],
V2 1 -1 00 ¢S
1 1 V3 -V3 £000
i 1 -1 —/3-V3 0300

)
N
|

— T =
22|l VvV3—-v3 1 1 |’ 00&70|”

-V3—/3 1 -1 000¢

with & = ¢i™/*, Notice that the two 1-d irreps 1 and 1’ correspond to 1o and 1g of SL(2,2),

these three 2-d irreps 2, 2 and 2’ are the doublet representations 2( 1y, ( 3 5y and 2( 17)0 of
’2 8’8 8’8
SL(2,7), and the two 3-d irreps 3 and 3’ correspond to 30,23y and 31 s 1) of SL(2,Z). We
'4°4 27474
see the representation matrix p(R) = 1 in the unhatted irreps 1, 1/, 2, 3,3’ and p(R) = —

in the hatted irreps 2, 2/, 4. Therefore, it is impossible to differentiate between the group
20 and S; when considering the irreps 1, 1/, 2, 3, and 3’. The 48 elements of 20 can be
divided into 8 conjugacy classes, and their character table is shown in table 4, which is
obtained by taking the trace of the explicit representation matrices.

We present the decompositions of tensor products of different 20 irreps and the
corresponding Clebsch-Gordan coefficients in our basis. We use «; to indicate the elements
of the first representation of the product and 5; to indicate those of the second representation.
The results are summarized in table 5.

122=2 122=2 122 =2 1®%4=4
Ba

2~ B2 . B2 5 a B2 i~a —Ps3
—p1 —p1 —B1 B2

-5

Table 5. Multiplication rules of different irreps of 20 and the corresponding Clebsch-Gordan
coefficients. Note that 1 @ r =r ~ af (continues. . .)
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193=1%3 =3 193 =1"3=3
B1 B1
3~ai | By 3 ~ai| B
B3 B3
202=1,01, 2 202=4 202 =4
1s ~ a1 + a2 —a1 52 azf1
1, ~ azfi — 1P dn aif 1~ a2 B2
2, ~ (%ﬁz - a151> azf —a12
azB1 + a1 B2 a2 a1
202=1,® 3 202 =13 292 =1, 3,
1o ~ agB — a1 1 ~ o181 + e la ~ aofl — 182
azf1 + a1z a1 — a3 azf1 + o132
3s ~ V2ass ) 3~ V2as8 ) s~ | —V2au1/
—V2a1 6 V2a1 B, V22,
203=303 203 =303 2p3=204
—2a1 34 ) —2a281 ) 5 <a151 + \/§a2ﬂs>
3~ | a1f2 +V3azpBs 3~ | afs — V3a1Bs V20185 — a2y
V3azfa + o B3 23 — V3o B —V2a381 — a1
—2az 1 —2a1 1 23 — V201 B
3~ | agfy — \/§041ﬂ3> 3~ | aafe+ \/§O¢2ﬂ3) V308,
283 — V3182 V3B + o1 B3 V3183
203 =264 293=2¢4 293 =244
5 <042ﬁ1 - \/5061@) §, - (\/50252 - alﬁl) 5 - <0é251 - fmb%)
o181 + V2as 33 o1 + V2013 o1 B1 + V223
\/361153 \/511251 —a183 azfle — \/511151
d~ —V3as2 7 V323 N V20281 + o1 B
23 — V2015 V20181 + azfa V3o Bs
V20281 + o1 Ba V3o Bs —V/3aaf33

204=202 a4
35 (OélﬂQ + 04253)
azfs — a1
5 _ (azﬁl + C¥154>
azfe — a1 83
a1f1 + agfy
A~ a1fle — agf3

—apf — 1 B3

042ﬁ1 - 0154

)

204=20303

2 a1 + azf3s
azf3 — a1f

V20282 — V201 81

3~ | B+ V3afs
o182 — V3B
—V2a283 — V20154

3~ V3ai B + azfy

\/301251 — a1

2%4=20303

2~ 133+ oy
01251 - Oélﬁz

V20285 — V201 B3

3~ | By —V3azps
V3ai B + azfs
V20281 + V201 8

8~ | aifi—V3azB;

—rpf3p — \/304154

Table 5. Multiplication rules of different irreps of 20 and the corresponding Clebsch-Gordan

coefficients. Note that 1 ® r = r ~ a3 (continues. . .)
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33=333=102,53,D 3, 33 =13020303

1s ~ 181 + azfle + a3 1 ~ a1+ azfa + azf3
2. ~ (Otaﬁz + a3 — 211151) 2 < V3as B + V3as 83 >
V3az s + V33 20181 — a3fa — aaf3
azfy — aafis azfls — azf2
3a ~ | aeff — a1 3~ | azf+aifs
a1 83 — azfh —azf1 — a1/
azfs — a3 azfe — a3
3o~ | ashr+oafs 3~ | af —aifs
—azf1 — a1 a183 — azf
304=202 04 04 304=20204 04,
3 <\/§a264 —azf — \/504152> 5. (\/501251 +a3fBy — ﬁmﬁ:s)
22 + V3asBs — V218, V201 B4 + 23 — V3as B2
5 (\/304352 —aof3 — \/5041,34) 5 (0@52 + V3asBs — \/504151)
V31 + asfs — V2a1 3 31 + V2a1 82 — V3o
o181 + V6asBs — 2v200 B o184 — V2a233
i~ —2v2a38, — a1 B2 — V6o By i~ o1 + V20384
V6o B + 3o B3 V2as3B1 — a1 B
—V6as B2 — 31 By —a1fB1 — V2a25,
—a1 81 — V2as V6as B + 3a1 84
i~ o1 B2 — V23 i~ V6as B + 3a1 85
o1 B3 + V2384 2v2a381 + a1 + V6o By
V20283 — o1 B4 o181 + V6asfs — 2v2020,

404=1,01, 02, D315 325 D3, D3,
la ~ Bl —a1fe + aufls — azfy
1, ~ as3fi + a1 f3 + asfla +
9, ~ a1 B — e + ayffz — 04354>
azf — a1fls + ayfla — a2y
ayf3 + azfy — azfft — 1P
315~ V20181 + V20 B
—V2a28 — V20305
2v2a381 + 2v201 B2
825 ~ | VBasB + V3azfBs — a1 1 — 3aufs
Q22 + 3 B3 + V3auBr + V3a1Ba
agfe — ey + a183 — azf
3/1,a ~ \/501154 - \/5&451
\/504253 - ﬂas@
V20uBs + V2281 — V2038 — V204 B
355~ V3asBa + aufi + a1Bs — V3azB;
V3auBs + asBs + azfs — V3 By

Table 5. Multiplication rules of different irreps of 20 and the corresponding Clebsch-Gordan
coefficients. Note that 1 @ r =r ~ af.
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Classes 1C1 | 10y | 6Cy 6C% 60y 8Cs 8C4 120
Representative 1 S2 T ST? | (8T?)? | S?TS | S*(ST)*1? | S3T%ST
1 1 1 1 1 1 1 1 1
1’ 1 1 —1 —1 1 1 1 -1
2 2 2 0 0 2 -1 -1 0
2 2 | =2 | V2| V2 0 1 ~1 0
2/ 2 | -2 | V2 | V2 0 1 ~1 0
3 3 3 1 1 —1 0 0 -1
3’ 3 3 —1 —1 -1 0 0 1
4 4 | —4 0 0 0 ~1 1 0

Table 4. The character table of the binary octahedral group 20.

C Fermion mass hierarchy from deviation of 7 from the fixed points

It is known that there are three inequivalent modular symmetry fixed points 79 = 100, i, w =
e2™i/3 in the fundamental domain of SL(2,7) [13, 18, 93]. At these special values of T,
modular symmetry is only partially broken and certain residual symmetry is preserved.
Modulo a possible Z% factor with R = S2, the three fixed points 79 = 00, 79 = i and
T = w are invariant under the action of 7', S and ST respectively, and therefore the residual
symmetries Zﬁ, Zf and ZgT are preserved respectively where N refers to the level satisfying
TN =1 [13, 18, 93]. Exactly at the fixed points, the residual symmetries would enforce the
presence of multiple zeros in the fermion mass matrices. When the modulus 7 deviates
from any fixed point 7y given above, the zero entries in the fermion mass matrix would
become non-zero. It turns out that their magnitudes would be determined by the size of the
departure € from 7y and by the field transformation properties under the residual symmetry
group. As a consequence, the fermion mass hierarchies could be naturally produced in the
vicinity of 7y [44-48]. The hierarchical structures in the vicinity of symmetric points have
been systematically analyzed for the finite modular groups I'y and I')y [48]. In the following,
we will follow ref. [48] and investigate the possible mass hierarchies arising solely due to the
proximity of the modulus 7 to the fixed points 79 in the context of modular symmetry 20.
Firstly we recapitulate method and results of this approach. After electroweak symmetry
breaking, the fermion mass terms in modular invariant theory can be generally written as

where 7, j = 1,2, 3 are flavor indices, and each matrix element M;;(7) is a modular form.
The modular symmetry transformations of the superfields ¢ and ¢ are given by

5 (er+d)Fp(y)p, ¢ D (e +d) T (), (C.2)

where —k and —k¢ denote the modular weights of ¥ and ¥° respectively, both p(v) and
p°(7y) are unitary representations of the finite modular groups. Modular invariance requires
the fermion mass matrix M (7) transforms as

M (r) = M(y7) = (er + d)* [p°(7)]" M()p' (7)., (C.3)
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where kot = k + k¢ denotes the total modular weight. Taking ~ to the residual symmetry
generator and 7 in the vicinity of modular fixed points, one can use the transformation rule
of eq. (C.3) to constrain the form of the mass matrix M (7) as well as the fermion mass
hierarchies. It is remarkable that the magnitude of each matrix element can be estimated
as some power of the small deviation € from fixed points, and the power exponent only
depends on how the representations of ¥ and ¢ decompose under the residual symmetry
group. We list the order of magnitude of the matrix elements in the vicinity of the three
fixed points in the following.

. T():iOO

In the T-diagonal basis p()(T) = diag(p(c)), for (p§p;)* = (P9 with 0 < p;; < N and

%

¢ = e2™/N  the entry M;;(T) can be expanded as

M;; = aoqﬁﬂ + alqi,] + agqgﬂ +..., gN = ™I (C.4)
in the vicinity of the fixed point, where the expansion coefficients ag, a1, as, ... are

expected to be order one. Therefore the magnitude of the entry M;; is

My; ~ O(Pid), e = |qn| = e 2™m7/N (C.5)

L] Toz’i

In this case, it is convenient to switch to the basis in which the generator S is
represented by a diagonal matrix with p(¢)(S) = diag(pz(c)). For (ikwtp¢p.)* = (—1)Pis
with p;; = 0,1, we have

T—1
T+i

Mij ~ O(e?), e=|s|, s= (C.6)
Hence the mass matrix entry M;; is expected to be O(1) or O(e), and this is insufficient
to reproduce the observed mass hierarchies of charged leptons and quarks.

[ ) T():OJ

Analogous to previous cases, it is convenient to adopt a basis where ST is represented
by a diagonal matrix with p{©) (ST = diag(pgc)). For whtet pf p; = wPis with p;; = 0, 1,2,
the magnitude of the matrix entry M;; is

T — W

M;j ~ O(P7), e=|ul, u= (C.7)

T

In short, the mass matrix entries M;; are expected to be of order O(eP%) in the
vicinity of the modular fixed point 7y, where € parametrizes deviation of 7 from 79. The
power exponent p;; depends on how the representations of ¢ and 1 decompose under the
residual symmetry group and on their respective weights k and k¢, and the value of p;;
can be extracted from products of factors corresponding to representations of the residual
symmetry group.

Since the complex modulus 7 is invariant under the action of modular transformation
R = S? with R?>r = 7, the full residual symmetry groups of the fixed points 79 = ioo,
70 =14 and 79 = w are Z% x Z§ 75 and 757 x 7L respectively. Notice that Z£ is hidden

— 37 —



P 75 (r=1) 75T x 78 (1 =w) 7E x 78 (1 =ic0)
1 1; 1f 1F

1 Tpyo 1f 15

2 1 ® 1ypo 15, ®1F, 15 @17

2 1pp1 @ Lpys 17,017, 17 @ 1F

2 1pp1 @ Lpys 1,017, 17 @1F

3 1p @ Lpyo @ Lpgo 1feli, e1f, 1Fo1fe1d

3 1p @1 @ 1po Lfeli, a1, 1Fo17e1f

4 | 1,1 @11 ®1pys ® lgs 1Felfelf,, 17, 1fe1fe1io1]

Table 6. Decomposition of the 20 multiplets of modular weight k in the representation p under the
residual symmetry groups. The irrep subscripts should be understood modulo 4 and 3 in the second
and third columns respectively. The upper (lower) signs in the superscript correspond to even (odd)
values of k.

in the residual group Zf . A generic field multiplet, whose modular transformation is
characterized by the modular weight k£ and the representation p of the finite modular group,
would decompose into one-dimensional representations of the residual symmetry group. As
explained in above, one can straightforwardly find the residual symmetry representations
for any multiplet of a finite modular group. We give the decompositions of different 20
multiplets under the residual groups in table 6.

After identifying the decompositions of fields under residual symmetry groups, one can
apply the above general results to construct the hierarchical mass matrix in the vicinity
of a fixed point in terms of powers of ¢, in the appropriate basis. Subsequently one can
extract the hierarchical pattern of the fermion masses which is the singular values of the
mass matrix M (7). In table 7, we list the hierarchical patterns which can arise from the
proximity of 7 to the fixed points 79 = icc and 79 = w. We find that hierarchical mass
patterns can be obtained from some representation assignments, the promising cases are
summarized in table 8. If the large lepton mixing angles are taken into account further,
only the cases in which lepton fields are singlets of 20 or the lepton masses are vanishing

in the limit € — 0, can survive.

TXW

p p° T ™~ 400
kot = 0(mod3) kiot =1 (mod3) kot = 2 (mod 3)

]‘EB]‘EB]' (62767 1) (62767 1) (62567 1) (6676271)

3 1@1@1/ (627671) (6276,1) (6276,1) (62762,1)

3 16101 | (&6 (@,6,1) (61 | (e

Table 7. The mass spectrum patterns (mj, mg, mg) of the bilinear ¢4 in the vicinity of the
fixed points 7 = w and 79 = i0c0. Here 1 and ¢ transform in the representations p and p¢ of the
finite modular group 20 respectively, and their modular weights are denoted by k and k¢ with
kiot = k + k€. The mass spectrums are invariant if the modular transformations of ¥ and ¥°¢ are
interchanged. (continues).
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T>XW

P p ktot = 0(mod 3)  kiot = 1(mod3) kior = 2 (mod 3) T

3 11 ol (€2,6,1) (2,¢,1) (2,6,1) (€5, €*, €%)

3 2091 (1,1,1) (1,1,1) (1,1,1) (€2,€%,1)

3 201 (1,1,1) (1,1,1) (1,1,1) (€%, €%,1)

3 3 (1,1,1) (1,1,1) (1,1,1) (1,1,1)

3 3 (1,1,1) (1,1,1) (1,1,1) (e*,1,1)

3 10191 (%,¢,1) (,¢,1) (,¢,1) (€%, ¢* %)

3 1e191’ (e,¢,1) (e,¢,1) (e%,¢,1) (€%, €%,1)

3’ 1l el (%,¢,1) (%,¢,1) (€2,6,1) (€2, €%,1)

3 el a1 (2,6,1) (,¢,1) (€%,¢,1) (€%,€%,1)

3 291 (1,1,1) (1,1,1) (1,1,1) (€%, ¢%,1)

3 201 (1,1,1) (1,1,1) (1,1,1) (€%,€%,1)

3/ 3’ (1,1,1) (1,1,1) (1,1,1) (1,1,1)
2¢1 2¢1 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
2@¢1 241 (1,1,1) (1,1,1) (1,1,1) (e*,1,1)
2¢1 261 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
201 10191 (€,¢,1) (,¢,1) (€,¢,1) (e*,1,1)
201 10191 (%,¢,1) (%,¢,1) (%,¢,1) (1,1,1)
201 10101 (,¢,1) (e,¢,1) (e, ¢,1) (€*,1,1)
231 11l (2,¢,1) (2,¢,1) (2,6,1) (e, 1)
201’ 19191 (2,6,1) (%,¢,1) (€%,¢,1) (e*, 1)
201 10191 (,¢,1) (,¢,1) (,¢,1) (e*,1,1)
201 10101 (e,¢,1) (€%,¢,1) (€%,¢,1) (1,1,1)
2¢1’ 19101 (2,¢,1) (2,6,1) (2,6,1) (e*,1,1)
101®1 191d1 (1,1,1) (62,62, €?) (€, €,€) (1,1,1)
10101 19191 (1,1,1) (€%, €%, ¢%) (€, ¢,€) (e*,1,1)
19191 | 10101 (1,1,1) (€%, €%, €%) (€, ¢, €) (e, e, 1)
1101 |11 a1 (1,1,1) (2, €%, €%) (e,€,¢€) (e*,e* )
10101 | 10101 (1,1,1) (€%, €%, €%) (€, ¢,€) (1,1,1)
1101 | 10101 (1,1,1) (€%, €%, €%) (€, ¢,€) (€*,1,1)
110l ('l ol (1,1,1) (€, €%, €%) (€, €,¢€) (e, e 1)
11l | 10101 (1,1,1) (€2,é%,€%) (€,¢€,¢€) (1,1,1)
10101 |01 01 (1,1,1) (€%,é%,€%) (€, ¢,€) (e*,1,1)
11l |10l ol (1,1,1) (€%, €%, ¢%) (€, ¢,¢€) (1,1,1)
231 (1,1,1) (1,1,1) (1,1,1) (€7,6,1)

3 201 (1,1,1) (1,1,1) (1,1,1) (€",¢% )

3 2 @1 (1,1,1) (1,1,1) (1,1,1) (€, ¢, 1)

3 2 e1 (1,1,1) (1,1,1) (1,1,1) (2,¢,¢)

3’ 201 (1,1,1) (1,1,1) (1,1,1) (2, ¢,¢)

3/ 201 (1,1,1) (1,1,1) (1,1,1) (¢",6,1)

fixed points 79 = w and g

interchanged. (continues).
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Table 7. The mass spectrum patterns (mj, mg, mg) of the bilinear ¢4 in the vicinity of the
= 4oo. Here 9 and ¢ transform in the representations p and p¢ of the
finite modular group 20 respectively, and their modular weights are denoted by k and k¢ with
kiot = k + k€. The mass spectrums are invariant if the modular transformations of ¢ and ¥°¢ are




p p° TEw T ™~ 700
ktot = 0(mod 3)  kiot = 1(mod3) kior = 2 (mod 3)

3/ 2 @1 (1,1,1) (1,1,1) (1,1,1) (€7, €% ¢)

3 2 a1 (1,1,1) (1,1,1) (1,1,1) (€,e,1)
201 201 (1,1,1) (1,1,1) (1,1,1) (€%,6,1)
2¢1 201 (1,1,1) (1,1,1) (1,1,1) (3,6,1)
201 261 (1,1,1) (1,1,1) (1,1,1) (€,6,1)
231 19191 (%,¢,1) (,¢,1) (,¢,1) (€®,€%,1)
291 1e191’ (e,¢,1) (e,¢,1) (e%,¢,1) (e,¢6,1)
231 111’ (2,¢,1) (2,¢,1) (€2,6,1) (€7,¢,1)
201 el a1 (2,6,1) (,¢,1) (€%,¢,1) (€7, €*,€)
291 1101 (%,¢,1) (%,¢,1) (,¢,1) (GRS
201 1e191’ (e,¢,1) (e%,¢,1) (e%,¢,1) (€®,e%,1)
201 111’ (2,6,1) (2,6,1) (2,6,1) (%,¢,1)
2¢1 el ol (€%,¢,1) (%,¢,1) (€%,¢,1) (€7,¢,1)
21 201 (1,1,1) (1,1,1) (1,1,1) (e%,¢,1)
2 a1 201 (1,1,1) (1,1,1) (1,1,1) (€°,¢%,1)
201 201 (1,1,1) (1,1,1) (1,1,1) (é%,6,1)
231 111 (%,¢,1) (%,¢,1) (%,¢,1) (€",¢,1)
2 a1 1e191’ (,¢,1) (e,¢,1) (e, ¢,1) (€®,¢,1)
2 o1 111’ (2,¢,1) (2,¢,1) (2,6,1) (€®,€%,1)
2 @1 19l (€%,¢,1) (%,¢,1) (€%,¢,1) (€, ¢ %)
2 @1 19101 (,¢,1) (,¢,1) (,¢,1) (€7, ¢, )
21 1e191’ (e,¢,1) (€%,¢,1) (€%,¢,1) (€7,¢,1)
2 o1 111’ (2,¢,1) (2,6,1) (2,6,1) (%,6,1)
2 @1 el ol (€%,¢,1) (%,¢,1) (€%,¢,1) (€®,€%,1)
201 201 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
2¢1 261 (1,1,1) (1,1,1) (1,1,1) (e*,1,1)
201 201/ (1,1,1) (1,1,1) (1,1,1) (1,1,1)
201 2 @1 (1,1,1) (1,1,1) (1,1,1) (€%,¢%,1)
201 2 o1 (1,1,1) (1,1,1) (1,1,1) (€2,¢,€)
291 2 @1 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
2 @1 2 a1 (1,1,1) (1,1,1) (1,1,1) (e*,1,1)
2 @1 2 @1 (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table 7. The mass spectrum patterns (my, mg, mg) of the bilinear ¢4 in the vicinity of the
fixed points 79 = w and 79 = ico. Here ¢ and ¥° transform in the representations p and p° of the
finite modular group 20 respectively, and their modular weights are denoted by k and k¢ with
kiot = k + k€. The mass spectrums are invariant if the modular transformations of v and ¥°¢ are
interchanged.
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Fixed point | Pattern Viable p¢ ® p

Few (2,¢,1) 10610 51010 30 or 2” ¢ 10 or 2610

T~dco | (D)€t %) TetlelloRael,1olele261]

T~ico | (e8,€t €) Nolelles3 1eo101®3

a2 23, 2 a1 3,

T ™~ 400 (€7, €4, ¢) R .

Nelel]leR2ael],1eolel]e2 @1/
lel1elorlal’a®l or 261 ®3,
T ™~ 400 (€5,€2,1) N R
lel1eolol’elel o201 3,201 261]

2ale2”e1], 20192610 or 2 © 1/

T ~ 00 (€3,6,1)

netetrep’eo1,1ore1]eB” o1

Table 8. The promising hierarchical mass patterns which could be realized due to the proximity of
the modulus 7 to the fixed points in the modular symmetry 20. These patterns are unchanged if
one permute the modular transformations p and p°.

C.1 Model realization

Inspired by the general analysis in above, we shall present an example model in which the
mass hierarchies of charged lepton arise from small departure of modulus 7 from the fixed
point 7y = i00. The representation assignment is p = 2’ ®1 and p¢ = 3', and the fermion
mass pattern is predicted to be (my, ma, m3) ~ (€7, €, €), as can be seen from table 8. Hence
the three charged lepton masses are vanishing and lepton mixing matrix can not be fixed
in the symmetric limit of 7 = 79. In this model, the light neutrino masses are generated
through the type-1 seesaw mechanism with only two RH neutrinos. The Higgs fields H,
and Hy are trivial singlets of modular symmetry group 20 and their modular weights are

vanishing. To be more specific, the modular transformations of the lepton fields are

Lp~2, L3~1, E¢~ 3, N¢~ 2,

kr, =0, kp,=3, kge=5,  kye=3. (C.8)

D
Thus the superpotential for the lepton masses read as

Wi =a1 (E°Lp)g Vs Ha+0s (E°Lp)z VA" Ha+os (E°Ly)g Yai) Hat+oa (E°Ly)y Ve Ha,

W, = B1Hy(N°Lp) 4V 4 By Hy (N°Ls)2 V3% + A (N°N©), YO + B3 A (NCN€), V3¥
(C.9)
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which yield the following charged lepton and neutrino mass matrices

\EQQYZ(Z) + OqYa(S) \/§a2YA(5) — Oz1YA(5) 043Y3(/8[)71 + 044Y3(,81)I,1

) 1 4,1 2.2
ME = _‘/§O‘2YZ(,54) \/ialyﬁ(i) — OQYZ(Z) 043}/3(/8])73 + Ck4Y3(§I)[73 vq ,
OéQY:éi) + \/EOHYQ(Z) — \/gagyz(g) 043Y3(§I)72 + 044Y3(,81)I,2
B Y® gy® 52Y2(61)
Mp=|_ 2% 5 ) 5@ v
_BIYZ,Q /BIYZ71 /82Y272

6) _ 5,y.© (6)
MN:<Y1 PaYar  Fa¥as )A. (C.10)

6 6 6

BsYay ViV + ByYyY
We impose gCP symmetry on this model so that all couplings are real.
For the complex modulus 7 with large imaginary part, the small expansion parameter

is g = €™7/4. Using the g-expansion of the modular forms given in section 2, we find that
the charged lepton and neutrino mass matrices are approximately given by
(oq — 2\/6612) qg’ — (2041 + 12\/6042) qg’ 2\/§a3q§
Mg ~ —V/3aags (ﬂal + 2\/5612) @ —(3+aa)@ |va,
<2\@a1 — 12\/§a2) a — 40\/§a2q§ (4arg + 200) ¢8

My ~ —8pB1q% B1qs B2 ;
—2v36143 4V3P1q3 8vV3PBaqs)

[ 1—-Bs 8V3Psqg
My = (8\/5536]%1 1433 ) A (C.11)

Then we can read off the approximate expressions of the charged lepton mass ratios
as follow
Me 24/6 ’a2a4 (a% — 2/6aran — 480[%)’
my o (a3 + ) — 2v60a2 (2a3 + ay))?

my  lai (az + ag) — 2v/603 (203 + o)
mr 3‘052’2

lgs|?,

[ sf? (C.12)

This is in agreement with the results of the general analysis summarized in table 8. The
light neutrino mass matrix is given by the seesaw formula

128748 3282q§ 8B1B82(1183—T)qy
U fi-1 V2
_ _AfT a1 ~ 3267¢ Bzq B18 Yy
M, =-MpMy Mp ~ e e e A (C.13)
86182(1185—7)a%  B1Bags B3
B2—1 B3—1 B3—1
It follows that the neutrino masses are
12 2 3 ,,2 2 2
my =0, = MUJ My = |52| Yy . (C.14)

T+ps A 2 1—[Bs| A

Obviously the neutrino mass spectrum is normal ordering.
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We perform a numerical analysis, and the best fit values of the free parameters are
determined to be

(1) =0.2924742.31919i, o/o; =—0.18349, a3/ =—1.29357, /oy =4.18393,

2
Ba/Br=0.24374, B3=—1.00101, ajvg=13.21417 MeV, (ﬁlji“) =0.21443 V.

(C.15)

We see that the coupling constants are of the same order of magnitudes and the imaginary
part of the modulus 7 is approximately 2.319 which is large and the departure parameter

€ = e ™Im7/4 ~ 0.161. The lepton masses and mixing parameters at the best-fit point are
given by
sin? 0!, = 0.3030, sin?0l; =0.02225,  sin?6l; = 0.4509, obp = 189.6°,
a9y = 0.12257, az; = 0.66997,  me/m, = 0.004800,  m,/m; = 0.05900,
m1 = 0 meV, mo = 8.61 meV m3 = 50.06 meV , (C.16)
with y? = 5.1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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