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This paper presents the first sound speed and Grüneisen parameter data for fluid iron compressed
to 3 TPa (30 million atmospheres) and 20 g/cm3 on the Hugoniot. Both the sound speed and
Grüneisen parameter are derivatives of the equation of state (EOS), and thus tightly constrain the
contours of the EOS surface. The sound speed data are systematically lower than expected from
a simple extrapolation of previous data. The Grüneisen parameter shows a 30% drop at pressures
and temperatures above the melt transition. Furthermore, while some models compare well with
either the sound speed or Grüneisen parameter, none of today’s state-of-the-art models can explain
both sets of data. Thus these new data will provide pivotal benchmarks for both future theoretical
EOSs of warm dense iron and modeling planetary states and processes.

I. INTRODUCTION

Iron is an abundant element, widely studied in astro-
physics [1–3], in planetary physics [4–7], and for indus-
trial purposes. Prompted by the discovery of numerous
large rocky exoplanets with expected iron cores [8], and
measurements of Jupiter’s gravitational field suggesting
iron might be spread throughout a diffuse core [9], sig-
nificant effort is underway to understand the equation of
state (EOS) of iron in the terapascal range [10, 11].

While the pressure-density relationship for iron has
been well studied both on the Hugoniot and the isentrope
[12–22], modeling planetary processes (i.e. giant impacts
or core formation) often relies on little studied derivative
quantities such as Grüneisen parameter and sound speed
to determine subtle contour changes in the EOS surface
as well as the entropy and thermal pressure [2, 23]. This
study provides benchmark data for theoretical calcula-
tions [24–26] and simulations [27, 28] for the iron EOS
in the warm dense matter (WDM) regime, where typi-
cal approximations for the hot plasma phase or the lower
temperature solid state are not appropriate. The warm
dense matter regime is where several energy scales are
comparable, including the coulomb interaction energy,
Ec, thermal energy, kBT (where kB is Boltzmann’s con-
stant and T is the temperature), and the Fermi energy,
EF. For the data presented here, the electron-electron
coulomb coupling ratio (Γee = Ec

kBT ) spans 1.6 to 4.7,
revealing the importance of coulomb interactions. The
degeneracy parameter, Θ = kBT

EF
, spans 0.5 to 0.2, sug-

gesting iron studied here is also moderately degenerate.

The fluid bulk sound speed, cs =
√

dP
dρ |S , with P =

pressure, ρ = density, and S = entropy, can be related to

the bulk modulus, BS , as cs =
√

BS

ρ and thus cs is related

to a materials resistance to compression. The Grüneisen

parameter, γ = V dP
dE |V = − ∂ lnT

∂ lnV |S , where E = energy
and V = volume, describes how pressure changes with
thermal energy [11, 23, 29, 30].

High pressure cs data have been collected through a
variety of experimental techniques including velocimetry
[31–35], pyrometry [16], and radiography [36], and are
used in the interpretation of seismological events [37], in
giant impact simulations [38, 39], and in compositional
studies of Earth’s core [4, 40, 41]. Grüneisen param-
eter can be determined from both seismological studies
[42, 43] and laboratory experiments such as x-ray diffrac-
tion [30], measurements of heat capacity and elastic con-
stants [4], Hugoniot measurements on different density
samples [44, 45], and sound speed measurements from
dynamic compression experiments [11, 16, 31]. Previous
iron cs and γ data are limited to ∼800 GPa on the Hugo-
niot [17, 36] and 1.2 TPa on a quasi-isentropic path [11].
The work presented here extends the database for these
derivative quantities in the fluid regime by nearly 4 times
in pressure.

The iron shock Hugoniot, together with the sound
speed and Grüneisen parameter data, are presented to
3 TPa, where the current state of the art models [24–
26] are disparate. Based on estimates from these mod-
els, the pressure range of 500-3700 GPa corresponds to a
temperature range of 6,000-80,000 K. Of particular inter-
est is the Grüneisen parameter, which has a significant
dependence on temperature, especially in the vicinity of
the melting transition, and the sound speed in the TPa
regime is significantly lower than expected from previous
lower pressure measurements [36].
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II. EXPERIMENTAL TECHNIQUE

This work utilizes a method to create a nearly-steady
shock wave with imposed acoustic perturbations [Figure
1 (b)] which is uniquely equipped to study the sound
velocity on the primary Hugoniot because the perturba-
tions can be tracked from their origins and correlated in
time. The target, depicted in Fig. 1 (a), was uniformly
irradiated on one side by the high-power OMEGA EP
laser, launching a 0.5-3 TPa shock wave. The OMEGA
EP [46] facility’s capability to precisely control the laser
power allows the user to superimpose pickets onto the
pulse shape which launch acoustic perturbations with an
accuracy of 0.03 ns in time. The acoustic perturbations
travel at the sound speed of the warm dense iron until
they catch up to the initial leading shock wave. VISAR
[47] (Velocity Interferometer System for Any Reflector)
is used to measure the arrival times of the perturbations,
which determine the sound speed of the material on the
primary Hugoniot. α Quartz serves as a reference mate-
rial because it has a well known EOS and is reflective un-
der shock compression [48–52]. Because iron is opaque to
the 532 nm VISAR probe laser, the shock front velocity
cannot be tracked directly inside the sample, as in pre-
vious works [32, 33]. The shock front, however, is visible
and tracked after it breaks out of the iron and into the
quartz anvil [Figure 1 (c)]. The nonsteady waves correc-
tion [53] is applied to the shock velocity history in opaque
iron [Figure 1 (d)] to determine the time-dependent devi-
ations from the average shock velocity, using shock tran-
sit times measured with VISAR and the iron thicknesses
(nominally 50 µm). The nominal quartz pusher thickness
is 50 µm and the quartz anvil and witness are typically
thicker than 150 µm.

III. ANALYSIS AND RESULTS

A. Nonsteady Waves Correction

The nonsteady waves correction [53] is a method to
reconstruct the shock velocity history in the iron sam-
ple using the simultaneous shock velocity history in the
quartz. The shock velocity in the iron is defined as

U I
s (t) = ⟨U I

s ⟩+ δU I
s (t) (1)

where ⟨U I
s ⟩ is the measured average shock velocity in iron,

and δU I
s (t) is the time dependent deviation from that

average. The deviations are determined using

δU I
s (t) = GIδUW

s ((t− te,P)/F
I) (2)

where F I and GI are linear scaling parameters relating
the time dilation and amplitude, respectively, between
the deviations from the average shock velocities in iron
(I) and the quartz witness (W ). A more physical inter-
pretation of F I is provided by considering Equation 2
with Figure 1 (d). F I describes the relative stretching or
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FIG. 1. (a) Schematic of the shock wave (red) and pertur-
bations (blue) propagating through the target (inset). (b) An
example of the laser pulse shape having four pickets separated
by 200 ps that drive perturbations through the target. (c)
VISAR interferometer fringes streaked in time where the up-
per and lower halves of the image show fringe movement due
to changes in the shock velocity in the pusher and witness
stack, and in the anvil, respectively. (d) Shock velocity his-
tories extracted using Fourier analysis of the fringe displace-
ments. The perturbation arrival times in the anvil compared
to those in the witness provide a relative measure of sound
speed between the iron and the quartz.
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compression of the time axis to map the events in the iron
sample to the same events in the quartz witness. For the
experiment shown, the sound speed in quartz is higher
than that of iron, so the acoustic perturbations spend
more time in iron (te,I− te,P) than in quartz (te,W− te,P)
and F I > 1. The scaling parameter F I is determined
using Equations 3, 4, and 5 below:

F I =
te,I − te,P
te,W − te,P

, (3)

where te,I and te,P are the times that the shock wave exits
the iron and the quartz pusher, respectively. te,W is an
unknown that can be determined using the perturbation
arrival times in the witness and the anvil (A). It is defined
as

te,W = −FA(t1,A − te,I) + t1,W, (4)

where FA is the linear scaling factor between the tem-
poral perturbations in the witness and the anvil, and
t1,W and t1,A are the times that the first perturbation
(stemming from the laser pickets) catch up to the initial
shock wave in the quartz witness and the quartz anvil,
respectively. See Figure 1 (d) and S 2 of the Supplemen-
tal Material [54] for an illustration. FA, GA, and C are
scaled using:

δUA
s (t− te,I) = GA ∗ δUW

s ((t− te,W)/FA) + C (5)

until the witness perturbations to the shock velocity are
best fit to those in the anvil using a least squares min-
imization routine. GA is the scaling parameter that ac-
counts for amplitude variations in the velocity history.
C is a free parameter which allows for a small (∼2%)
vertical shift to remove any systematic offset between
the anvil and witness perturbations. The least squares
minimization returns an optimized FA, which along with
Equations 3 and 4, yields F I. See Table I for values of
F I, along with other measured and extracted quantities.

TheGI parameter can be defined following the analysis
in Ref. 53 as

GI =
δuI

δuW
, (6)

where δuI is the amplitude scaling factor for the side of
the target with the iron sample, and δuW is the ampli-
tude scaling factor for the side of the target with only
quartz (the witness side). For the amplitude scaling
parameters, it is helpful to define the Mach number:
MShock =

uf

cs
, which is associated with a wave front (e.g.,

shock); uf is the wave front velocity. It is also useful to
define a quantity for compression: η = ρ

ρ0
. Following the

analysis in Ref. 53, the equations for δuI and δuW can

be written:

δuI =

MSP,d

(MRP,u + 1)(1 +M−1
RP,u − (ηSP,d − 1)M2

SP,dγSP,d)

(MRP,d + 1)(1 +MSP,u − (ηSP,d − 1)M2
SP,dγSP,d)

−2ηSI,d(MSI,d − 1)

(ηSI,d − 1)(1 +MSI,d − (ηSI,d − 1)M2
SI,dγSI,d)

2ρRP,dcRP,d

ρSI,dcSI,d + ρRP,dcRP,d
(7)

and

δuW =

−2ηSW,d(MSW,d − 1)

(ηSW,d − 1)(1 +MSW,d − (ηSW,d − 1)M2
SW,dγSW,d)

,

(8)

where the Mach numbers can be identified by the wave
front they are associated with (S for shock, R for reshock
or counter-propagating shock), and the region that event
is in (P for pusher, W for witness, and I for iron), as well
as whether the region is upstream or downstream of the
shock event (u or d) [53]. In Eqns. 7 and 8, γ is the
Grüneisen parameter for the region, identified the same
way as the Mach number. For quartz, a constant value
of 0.66 was used for γ, following the convention in Ref.
[55].
To calculate the time-dependent shock velocity to be

used in the Hugoniot determination, the witness and
anvil scaling parameters (FA and GA) are first calcu-
lated using a least-squares minimization (Eqn. 5). This
determines F I , and then GI can be calculated. Be-
cause the GI can be seen to depend on the Grüneisen
parameter and Mach number for shocked iron, which
are calculated using the sound speed, it is evident that
this process will need an a priori assumption for sound
speed and Grüneisen parameter, and then will iterate
to achieve convergence. The initial sound speed and
Grüneisen parameter are taken from LEOS 260 (LEOS
stands for Livermore Equation of State, see Ref. 24) at
the measured shock velocity. Section III B describes how
to calculate sound speed (also using FI), so the calculated
sound speed value will inform the next iteration of the
calculation for the time dependent shock velocity. This
time dependent shock velocity in iron is used to obtain
the Hugoniot state via impedance matching [56] to the
quartz standard (see Supplemental Material [54] Figure
S 4). The process of obtaining the time-dependent shock
velocity and calculating sound speed is repeated until GI

converges. The difference between the time-dependent
shock velocity at the impedance match point between
the initial guess and the iterated upon amplitude scaling
factor is usually ∼ 1%, and the parameters typically con-
verge in approximately 3 iterations. The Hugoniot data
obtained in this work (see Table II) can then be fit along
with previous experimental Hugoniot data and the fit is
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FIG. 2. Iron Hugoniot data from this work and references [12–
18, 22, 58–70], the bilinear Us − Up Hugoniot fit, and Hugo-
niots from the EOS tables [24–26] are shown in the shock
pressure - density plane. Each dataset from the references
uses a unique color and marker shape combination. The am-
bient pressure and density (7.875 g/cm3) of iron is shown as
a filled black circle.

used in the calculation of sound speed and Grüneisen pa-
rameter, described in Section III B. A piecewise orthogo-
nal basis linear fit was performed in Us − Up as outlined
in Ref. 57. The fit takes the form Us = c0 + SUp. The
breakpoint in the Hugoniot fit was found to be Up ≃
6.0 km/s. For the fit to the data below Up ≃ 6.0 km/s
(but above the liquid transition around Up ≃ 3.8 km/s),
c0 = 4.54 ± 0.05 and S = 1.46 ± 0.03. For the fit above
Up ≃ 6.0 km/s, c0 = 5.82 ± 0.06 and S = 1.26 ± 0.02.
The data and fit are shown in Figures 2 and 3.

B. Lagrangian Sound Speed Calculation

Using the scaling parameter F I , determined above,
and the formalism described in Ref. 53, an expression
is assembled for the sound speed (cs) in iron on the pri-
mary Hugoniot, which depends on the scaling parame-
ter F I , pressure (P ), density (ρ), particle velocity (Up),
and Mach numbers for the shocked quartz and reshocked
quartz:

cSI,d
s =

PSI,d

USI,d
p ρSI,d

[
1− 1−MSW,d

F I

1 +MRP,u

1 +MRP,d

]−1

, (9)

where the Mach numbers and subscripts follow the same
convention used in Eqns. 7 and 8. Because the laser-
induced perturbations are affected by the time-dependent
pressure fluctuations caused by the nonsteady shock wave
as they transit the entirety of the iron, the sound speed
determination happens over a locus of pressure states
rather than one single state. Therefore, the Hugoniot
state associated with the sound speed measurement is
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FIG. 3. Hugoniot data from this work and references [12–18,
22, 58–70], the bilinear Us − Up Hugoniot fit, and Hugoniots
from the EOS tables [24–26] are shown in the shock velocity-
particle velocity plane. The breakpoint for the bilinear fit is
at Up = 6.0 km/s. The lower plot shows the residuals for the
bilinear fit compared to the tabular EOS. The legend for this
figure is the same as shown in Figure 2.

averaged over the time dependent velocity, rather than
using the Hugoniot state at the impedance matching
boundary for that specific shot. The density used to
calculate the sound speed was inferred from the bilin-
ear fit to all existing Hugoniot data, rather than an in-
dividual impedance matching measurement. In this way,
the sound speed can be accurately determined despite
a nonsteady shock wave transiting the iron region. For
the data in this work, iron was fully melted, and there-
fore its strength can be neglected [72]. The assumption
is made that the first pressure perturbation reaches the
shock front at a point in time very close to the when the
shock front exits the iron, which ensures that perturba-
tion will have only traveled through a small amount (<30
%) of released iron.

C. Grüneisen Parameter Calculation

Using the sound speed measurement for iron, the iron
Grüneisen parameter on the Hugoniot is calculated using
the equation introduced in Ref. [73]:

γ =
−c2s +

dP
dρ

∣∣∣
H

− 1
2
P
ρ + ρ

2
dP
dρ

∣∣∣
H

(
1
ρ0

− 1
ρ

) , (10)

where ρ0 is the ambient density of iron and the subscript
“H” denotes that a quantity lies on the Hugoniot.
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Shot No. ∆xiron (µm) ttransit (ns) ∆xglue (µm) Us,glue (km/s) Us,Qz (km/s) < Us,Fe > (km/s) F
80114 50.6 (0.7)* 4.33 (0.08) 2.3 (1.9) 16.0 14.4 (0.2) 11.5 (0.3) 0.9214 (0.0015)
80116 61.0 (1.7)* 4.66 (0.11) 2.3 (1.9) 16.1 14.5 (0.3) 13.0 (0.5) 1.0122 (0.0003)
31383 50.6 (1.3) 3.65 (0.01) 4.8 (2.1) 20.7 19.1 (0.2) 14.8 (0.6) 1.0629 (0.0014)
27722 50.1 (0.4) 3.21 (0.01) 0.4 (1.0) 20.6 18.5 (0.3) 15.7 (0.3) 1.0055 (0.0017)
26633 52.7 (1.2) 2.94 (0.03) 2.3 (1.9) 27.2 24.0 (0.2) 18.4 (0.4) 1.0 (N/A)
29766 54.4 (1.2) 2.67 (0.01) 1.1 (3.4) 27.3 24.1 (0.3) 20.7 (1.1) 0.9752 (0.0007)
27180 45.7 (0.7) 2.24 (0.06) 1.7 (1.9) 31.3 27.3 (0.2) 20.9 (0.9) 1.0 (N/A)
27443 45.2 (0.5) 2.01 (0.04) 2.2 (3.9) 35.2 30.4 (0.3) 23.2 (1.4) 0.9744 (0.0007)
33718 50.0 (2.0) 2.13 (0.01) 0.7 (2.3) 35.6 31.6 (0.3) 23.8 (1.2) 0.9415 (0.0010)
31381 50.1 (1.3) 2.17 (0.05) 5.1 (1.4) 40.2 34.7 (0.4) 24.5 (0.8) 0.8982 (0.0018)

TABLE I. Measured and extracted quantities for the eight shots in this work, with uncertainties in parentheses. The average
shock velocity in iron is calculated from the sample thickness, shock transit time, and glue thicknesses using < Us,Fe >=

∆xiron
ttransit−∆xglue/Us,glue

, where Us,glue was estimated from SESAME 7603 for epoxy [71]. Shot numbers 26633 and 27180 were

only used for Hugoniot measurements, as they did not have unambiguous perturbations in the shock velocity to reference. A
value of 1.0 was used for F in these shots, which is described as the “zeroth order” correction in Reference 53. Glue thicknesses
for shots 80114, 80116, and 26633 were not available; the average shock velocity was calculated assuming a glue thickness of
2.3 ± 1.9 µm (the nominal value being the average of the glue thickness measurements for shot numbers 31383, 27722, 29766,
27180, 27443, 33718, and 31381, and the uncertainty being the standard deviation of those measurements). *Shots 80114 and
80116 report a combination iron and glue thickness (see Ref. [54]).

Shot No. P (GPa) ρ (g/cc) Us,Fe (km/s) Up,Fe (km/s)
80114 498 (12) 15.28 (0.50) 11.43 (0.21) 5.54 (0.13)
80116 530 (14) 13.75 (0.48) 12.55 (0.35) 5.36 (0.14)
31383 952 (17) 16.63 (0.78) 15.15 (0.42) 7.98 (0.13)
27722 927 (17) 14.72 (0.33) 15.91 (0.21) 7.40 (0.13)
26633 1614 (29) 18.89 (0.93) 18.75 (0.42) 10.93 (0.18)
29766 1694 (42) 16.70 (1.10) 20.20 (0.78) 10.65 (0.23)
27180 2283 (43) 16.90 (0.79) 23.30 (0.64) 12.44 (0.21)
27443 2773 (76) 21.20 (2.20) 23.65 (0.99) 14.89 (0.34)
33718 3116 (72) 18.60 (1.20) 26.20 (0.85) 15.11 (0.31)
31381 3708 (77) 22.20 (1.40) 27.00 (0.57) 17.44 (0.33)

TABLE II. Hugoniot data for iron obtained from the impedance-matching technique, which was determined at the time of
breakout from the quartz pusher into the iron sample.

D. Uncertainty analysis

Systematic uncertainty analysis for this work incor-
porates measurements of target component thickness,
glue thickness, and determination of transit times time
(te,I, te,P) in the impedance matching calculation. As
these data were collected over a long period of time, in-
dividual shots with larger error bars in this data can be
attributed to difference in experimental setup and ini-
tial metrology. An uncertainty of 3% of the sound speed
value was also added in quadrature to the other sources
of error, as this was how closely the analysis method de-
scribed in this work reproduced values from simulations
(see Ref. [54] for more information). Uncertainties in the
Grüneisen parameter are calculated from the Hugoniot fit
to Us − Up (Figure 3) and the uncertainty on the indi-
vidual sound speed measurements (Table III). Notably,
the uncertainty on the Grüneisen parameter is lowered
with increased pressure. This is because the expression
used for the Grüneisen parameter convolves the slope of

the Hugoniot, the Us −Up fit, and the reference EOS for
alpha-quartz [74], which produces a systematic decrease
in the uncertainty on Grüneisen parameter at high pres-
sures and densities. A Monte Carlo approach was used
to propagate uncertainties through the calculations.

IV. RESULTS

The sound speed measurements of iron to 20 g/cm3

and 3 TPa obtained in this work are presented in
Fig. 4 with those from previous experimental works
[12, 16, 17, 36] and tabular equations of state [24, 25].
These data demonstrate that the sound speed of iron on
the Hugoniot is very close to the sound speed of iron on a
quasi-isentropic compression path at the same densities
[11], despite the increased temperature produced during
shock compression. The data in this work are systemati-
cally lower than an extrapolation to the previous highest
density sound speed measurement on the Hugoniot by
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Shot No. < P > (GPa) < ρ > (g/cc) Cs (km/s) γ
80114 432 (31) 13.5 (0.3) 10.9 (0.4) 1.33 (0.16)
80116 594 (59) 14.2 (0.3) 12.4 (0.5) 1.19 (0.14)
31383 833 (91) 15.2 (0.4) 12.7 (0.5) 0.93 (0.14)
27722 972 (51) 15.8 (0.3) 13.4 (0.5) 0.86 (0.11)
29766 1930 (250) 18.4 (0.6) 15.3 (0.6) 0.91 (0.06)
27443 2530 (360) 19.5 (0.7) 17.0 (0.7) 0.84 (0.06)
33718 2680 (320) 19.8 (0.7) 16.8 (0.7) 0.87 (0.05)
31381 2870 (220) 20.0 (0.6) 16.7 (0.7) 0.89 (0.05)

TABLE III. Sound speed and Grüneisen parameter in shocked iron, with uncertainties in parentheses. The pressure and
density are calculated using the measured average shock speed in Table I and the iron Hugoniot fit described in the text. The
average values here differ from the corresponding Hugoniot measurements for the same shots reported in Table II due to the
variation in the strength as the shock transits the iron layer.
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fit to the Hugoniot data. Tabular EOS predictions [24–26] are shown as blue (isentropic) and orange (Hugoniot) lines.

Sakaiya, et al. [36].
Eight discreet Grüneisen parameter values were de-

termined from Eq. 10 using the Hugoniot and sound
speed data from this work (Fig. 5) at pressures between
∼450 and 3000 GPa and densities between ∼13.5 and 20
g/cm3 along the Hugoniot. Using LEOS 260 [24] to esti-
mate temperatures from our measured pressures suggests
these Grüneisen parameter values range from approxi-
mately 6,000 to 80,000 K. These data compare well to
values on the Hugoniot calculated here in the same man-
ner from the sound speeds reported in references 17 and
16 at pressures of ∼250-400 GPa and densities of ∼12.2-
13.2 g/cm3, as well as measurements of the vibrational
Grüneisen parameter in solid HCP iron at 300 K [29, 30]
(Fig. 5). These data sets for different thermodynamic
paths suggest a strong dependence of the Grüneisen pa-
rameter on temperature and phase. The Grüneisen pa-
rameter for the isentrope and Hugoniot from the EOS ta-
bles diverge at densities (and temperatures) above where

the Hugoniot crosses the melt. That is, the Hugoniot
temperature increases more rapidly with pressure than
the isentrope, and crosses the melt curve at 220-260 GPa,
and 12.1-12.3 g/cm3, while iron on the isentrope (start-
ing from STP conditions) remains solid. Commonly used
models for the Grüneisen parameter [75, 76] assume tem-
perature independence and a linear or exponential de-
pendence on volume, so these models do not capture
the behavior exhibited in Figure 5. A similar change
in Grüneisen parameter in the vicinity of melt is also ob-
served in Mg2SiO4 [77]. Other materials in the literature
(aluminum [40] and periclase [78]) show possible signs of
melt and temperature dependence in Grüneisen param-
eter, but cannot be investigated further without more
data.
Three tabular equations of state were selected to com-

pare to this letter’s measurements of sound speed and
Grüneisen parameter. SESAME 2140 (SESAME is the
library of the Los Alamos National Laboratory equations
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FIG. 5. Iron Grüneisen parameter extracted using Equation
10 (red closed circles). Black open points denote fluid mea-
surements and grey open points denote solid measurements
[16, 17, 29, 30, 36, 61]. The Grüneisen parameter data for
References 16, 17, 36, 61 were calculated using Equation 10.
The measurement of ambient pressure, fluid Grüneisen pa-
rameter by Anderson [4] is liquid at 1811 K. The blue and
orange curves are the SESAME and LEOS tabular equations
of state, which follow the same legend as Fig. 4.

of state, see Ref. 79) calculates the cold curve, ionic con-
tribution, and electronic contribution separately. The
fluid, high pressure and temperature phase is calculated
using the Cowan model for ions and Thomas-Fermi-Dirac
(TFD) for the electron contribution. LEOS 260 [24] uses
a quotidian equation of state, also based on the Thomas-
Fermi theory for the electrons and a Cowan model con-
necting the solid state and fluid state for the ions, albeit
adjusting for experimental data [80]. SESAME 2141 [26]
is a five-phase EOS table based on quantum molecular
dynamics calculations and experimental data.

The new data presented here are at warm dense mat-
ter conditions, which are particularly difficult to model.
The experimentally determined Hugoniot (Figs. 2 and
3) agrees best with SESAME 2141. At TPa pressures,
both LEOS 260 and SESAME 2140 over-predict com-
pression (at P = 2000 GPa, (ρdata − ρmodel)/ρdata ∼ 3%
and 6%, respectively). The sound speed as a function
of pressure is not well represented by any of the tabular
equations of state, stemming in part from this systematic
difference between the experimental Hugoniot fit and the
tabular models. In density space, the sound speed best
matches the prediction by LEOS 260, but the Grüneisen
parameter is best represented by SESAME 2141. The
inability of a single theoretical method (quantum molec-
ular dynamics or classical TFD) to match both deriva-
tives of the equation of state highlights a breakdown in
our theoretical understanding for iron in the warm dense
matter regime. While the specific construction methods
of compression, sound speed, and Grüneisen parameter
vary across tabular equations of state, the complex re-

lationship of ion and electron structures can often lead
to compensating errors and systematic offsets. The mea-
surements of the derivatives of the equation of state in
this work provide theorists with a more sensitive con-
straint in the terapascal pressure range.
In summary, the iron principal Hugoniot, sound speed,

and Grüneisen parameter were measured to 3 TPa.
These measurements extend the experimental dataset for
the sound speed and Grüneisen parameter on the Hugo-
niot by a factor of ∼6. Investigating these key deriva-
tives reveals relationships that cannot be extracted from
the pressure-density equation of state alone. The sound
speed changes relatively little as the temperature dif-
ference between the Hugoniot and the isentrope grows,
which implies a smaller resistance to shock compression
than previously predicted. The Grüneisen parameter’s
slow decline with increasing density and sudden drop af-
ter the melt transition on the Hugoniot demonstrates the
dependence of pressure on thermal energy from shock
heating and on restructuring of atoms upon melt. While
there are theoretical equations of state that can roughly
predict either the sound speed or the Grüneisen data in
iron, none of the current models can self-consistently ex-
plain the two. This work and previous works are just
starting to investigate what the Grüneisen parameter can
tell us about high energy density matter, and follow-up
studies on other materials are necessary to probe the be-
havior in this regime.
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