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Abstract—Reducing control complexity is essential for achieving
large-scale quantum computing, particularly on platforms oper-
ating in cryogenic environments. Wiring each qubit to a room-
temperature control poses a challenge, as this approach would
surpass the thermal budget in the foreseeable future. An essential
tradeoff becomes evident: reducing control knobs compromises the
ability to independently address each qubit. Recent progress in
neutral atom-based platforms suggests that rectangular addressing
may strike a balance between control granularity and flexibility
for 2D qubit arrays. This scheme allows addressing qubits on
the intersections of a set of rows and columns each time.
While quadratically reducing controls, it may necessitate more
depth. We formulate the depth-optimal rectangular addressing
problem as exact binary matrix factorization, an NP-hard problem
also appearing in communication complexity and combinatorial
optimization. We introduce a satisfiability modulo theories-based
solver for this problem, and a heuristic, row packing, performing
close to the optimal solver on various benchmarks. Furthermore,
we discuss rectangular addressing in the context of fault-tolerant
quantum computing, leveraging a natural two-level structure.

Index Terms—quantum, binary, rank, biclique, partition

I. INTRODUCTION

Quantum computing demands a thermal environment with
significantly lower fluctuations than the energy level differ-
ences in qubits. Because of this, solid-state platforms, such as
superconducting circuits or semiconductor quantum dots, can
only operate in cryogenic environments. Controlling a quantum
processor entirely from room temperature becomes impractical
for large-scale quantum computing, where the requirement of
millions of physical qubits exceeds the capacity of dilution
refrigerators, supporting only hundreds of coaxial cables [1].
Given a certain degree of homogeneity in qubit fabrication, one
viable strategy is manipulating multiple qubits with one signal.
Hornibrook et al. [2] demonstrate a microarchitecture utilizing
‘switch matrices’ to selectively distribute analog signals. In this
work, we extend it to 2D and aim to reduce the control com-
plexity by exploring the idea of relaxing qubit addressability.

For a 2D array X x Y, a (combinatorial) rectangle is a set
of the form X’ x Y’, where X’ C X and Y’ C Y. Specifying
a rectangle requires |X| + |Y'| bits (one bit for each row and
each column), a significant reduction compared to |X| - |Y]
bits for all elements. In Figure la, we present a conceptual
architecture where qubits can be addressed using rectangles
formed by intersections of rows and columns. Compared to a
single address line, there are both row and column address lines,
and an additional switch for each row. This setting provides an
advantage: in each clock cycle, the row and column address
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Figure 1. Quantum architecture employing the rectangular addressing for a

2D qubit array. a) Conceptual image of the architecture. Analog lines provide
the signals to manipulate the qubits. They are first routed by the row switches
using the row address signal, and later routed by the qubit switches using the
column address signal. The row and column address signals transmit 6 bits per
clock cycle, in contrast to 9 bits that would be used for individual addressing.
In general, this is a quadratic difference. b) Addressed qubits at different stages
of an example quantum circuit. At each stage, only a rectangle of qubits are
addressed, which may necessitate more depth, e.g., t4 and t5 cannot be merged.

lines transmit only the square root of the total bits required in
a single address line configuration, at the expense of possible
layer execution time. This quadratic reduction is maintained
while preserving individual addressability, as a single element
can still be considered a rectangle. For example, in Figure 1b,
we illustrate qubits being addressed at different stages of a
quantum circuit. At to, the column and row addresses are
(0,1,0) and (0, 0, 1) respectively, ensuring only g5 is addressed.

Our motivation stems from recent successful large-scale
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Figure 2. Rectangular addressing in neutral atom arrays. a) The experimental
setup in Bluvstein et al. [3]: a 2D acousto-optic deflector (AOD, blue dashes)
modulates another laser to realize R, gates on qubits at the AOD crossing
points (colored dots). Different qubits (uncolored dots) are addressed by
changing the AOD signal. Qubits not in the pattern (dash circles) should not
be addressed. b) Rectangular partition of a). Different markers distinguish 5
rectangles to partition the matrix. The 5 filled markers indicate a fooling set.

experiments on the neutral atom arrays platform [3] that
highlights the effect of reducing control complexity by rect-
angular addressing. As depicted in Figure 2a, the acousto-optic
deflector (AOD) illuminates a product of rows and columns.
Quantum gates, induced by specific pulses modulated by the
AOD, address qubits at the row and column intersections.
AODs prove effective for implementing gates [3], [4] and qubit
movements [5]-[%]. Moreover, certain key applications, such as
the surface code [Y], inherently feature rectangular structures.
This code requires a 2D grid of data qubits, and another 2D
grid of ancilla qubits to conduct error checks. Exploiting this
structure, Versluis et al. [10] show that 8 sets of signals are
sufficient for the decoding sequence on superconducting qubits.
The qubits addressed by each set forms a rectangle, so, in
principle, the sequence can be realized by addressing 8 control
signals to all qubits within their respective rectangles.

The coarser granularity of rectangular addressing may reduce
control complexity at the cost of increasing depth. Although
ty and t5 in Figure 1b involve single-qubit gates on different
qubits, they cannot be combined into a single stage, because
merging them would result in a non-rectangular arrangement
of qubits to address. A more general problem is given by
the matrix in Figure 2b, where the qubits to address are
represented by the 1’s. This matrix can be partitioned into five
rectangles, each designated by distinct markers. Consecutively,
each rectangle receives a modulated R, pulse through specific
AOD configurations. Minimizing the number of rectangles to
partition arbitrary binary matrices becomes crucial.

In this paper, we consider the problem of achieving depth-
optimal rectangular addressing, which we formulate as exact
binary matrix factorization. We present a satisfiability modulo
theories (SMT, extension of SAT) formulation for this problem
and an effective heuristic dubbed row packing. The combined
algorithm, SAP (SMT and packing), finds high-quality heuristic
solutions quickly and then iteratively approaches to the optimal
solution. To assess our methods, we generate three benchmark
sets. The first set comprises random matrices, the second
includes matrices with known optimal solutions, despite the
problem generally being NP-hard. The third set is constructed
to accentuate the gap between the partition number and the
conventional matrix rank. We observe that for future fault-
tolerant quantum computing (FTQC), the problem may exhibit
a product structure. This implies that we can solve limited-size
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Figure 3. a) Interpreting the matrix as the adjacency matrix of a bipartite
graph, the rectangular partition problem becomes biclique partition where
the edges are partitioned to form complete bipartite subgraphs (different line
types). b) Binary matrix factorization finds low-rank approximations HW of
the original matrix where H and W are also required to be binary.

problems on multiple levels and then combine the solutions.
The paper is structured as follows. In Section 11, we provide
a review of mathematical concepts related to this problem
across various contexts and applications. In Section III, we
introduce our algorithms. The construction of benchmarks and
the evaluation results are presented in Section IV. We discuss
the problem in the context of FTQC in Section V. Finally, the
conclusions and future directions are provided in Section VL.

II. BACKGROUND

The term we have adopted, rectangle, is standard in commu-
nication complexity theory [! 1], where the matrix in Figure 2b
represents a binary function g of two variables. Alice has some
i, Bob has some 7, and our interest is determining the number of
bits the two need to communicate to compute g(i,7). If g=1
uniformly on a rectangle, it is a /-monochromatic rectangle.
The number of 1-monochromatic and 0-monochromatic rect-
angles to partition the whole matrix serves as a crucial lower
bound for the communication complexity. For an introduction
to this topic, readers are referred to Kushilevitz & Nisan [12].
Two results they cover are worth mentioning for later discus-
sions. First, there exists an alternative definition of a rectangle:

(i,7) € Rand (i,5') € R= (i,j') € R. (1)

In this paper, we only focus on 1-monochromatic rectangles and
we will refer to these as ‘rectangles’ from now on. The second
important fact is that the partition number is lower bounded by
the size of fooling sets. In our case, a fooling set S consists of
(i,7) such that g(i,7) = 1, and for any distinct pair (z,7) and
(#,7') in S, g(¢',7) = 0 or g(i,7’) = 0. Indeed, the shaded
markers in Figure 2b identify such a fooling set of size 5,
implying that our partition into 5 rectangles is optimal. Fooling
sets do not always guarantee a tight bound, e.g.,

3 rectangles are needed to partition

0
but the size of any fooling set is < 2 1

1
01
111

The problem has a graph-theoretic interpretation when con-
sidering the matrix as the adjacency matrix of a bipartite graph,
as illustrated in Figure 3a. The left vertices correspond to the
rows, while the right vertices correspond to the columns. An
edge exists between vertex ¢ on the left and vertex j on the
right if and only if element (4, 7) is 1 in the matrix. Viewed in
this way, a rectangle, seen as a set of edges, forms a biclique,
i.e., a complete bipartite graph. For instance, the addressed sites
in Figure 2a correspond to a complete (3,2)-bipartite subgraph

2)
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in Figure 3a, as denoted by the solid edges. Therefore, the
rectangular partition is equivalent to a biclique partition of a
bipartite graph. Reinterpreting the left vertices as sets and right
vertices as objects, the biclique partition is finding a normal
set basis to decompose each set. In our example, the basis
is {{0,2},{1},{3},{4},{5}}, with the first set on the left
decomposed into {0,2} LI {3}. The decision problem is proven
NP-complete [13]. Even approximating the problem is NP-
hard [14]-[16]. Amilhastre et al. [17] have characterized certain
graph families where the problem can be efficiently solved.

The third perspective regarding a rectangular partition is
through matrix factorization, as each rectangle precisely cor-
responds to a rank-1 submatrix. In Figure 3b, within a binary
matrix factorization (BMF), given a binary matrix M € B™*"
and an integer r, the objective is to minimize |[M — HW]||
where H € B™*" and W € B"*". Note that HW =>_|_, P,
where P; is the product of column ¢ in H and row ¢ in . Each
P; € B™*" is 1 on a combinatorial rectangle and O elsewhere,
so it has rank 1. The minimum 7 for which M —HW = 0 is the
binary rank, rg of M. In this case, Z:Zl P; is an exact binary
matrix factorization (EBMF) of M. In contrast to SVD, which
provides the rank in R, EBMF additionally requires H and W
to be binary. However, it is crucial to note that the additions in
the matrix multiplication in EBMF is in R, not in B, e.g.,

0 1 1] pemr [1 1
10 1| # |of[t 1 o+ |1t 0 1].
110 1 0

If the addition were in B, the equality holds. But in R, the top-
left element appears in both rectangles on the r.h.s., violating
the disjointedness requirement of rectangular partitioning. For
binary matrices, we have a straightforward lower bound [18]:

rankg(M) < rg(M) VM € B™*". 3)

Zhang et al. [19] develop a BMF optimizer which is integrated
into a well-known package NIMFA [20]. However, since it is
not designed for EBMF but to provide approximations given a
fixed r, it does not perform well for our specific purposes.

III. ALGORITHM

Given a matrix M € B™*", we are interested in its exact
binary matrix factorization (EBMF) M = Z;igl P; where
each P, € B™*™ is 1 on a rectangle and O elsewhere.

Our SMT formulation encodes the problem: given M and a
number b, determine if rg(M) < b. When rp is unknown, we
query an SMT solver with decreasing values of b to compute
it. Given the problem’s complexity, the worst-case runtime is
exponential to the size of M. Hence, the key lies in establishing
relatively tight bounds for b to minimize SMT invocations.

Our approach, SAP (SMT and packing), is presented in
Algorithm 1. First, our heuristic, row packing, provides a valid
EBMF, P. Since |P| is an upper bound of rg(M), the SMT
solving initiates with b = |P| — 1 and terminates when the
SMT formula is unsatisfiable or when b falls below rankg (M),
a lower bound as per Equation 3. P is updated each time the
SMT formula is satisfiable so that it retains to the best solution
found thus far even if the process is prematurely interrupted.

Algorithm 1: SAP (SMT and packing) EBMF

Data: M € B™*"
Result: P, an EBMF of M consisting of rectangles
1 P + row_packing_ EBMF(M); /* Algorithm 2 */
2 b+ |P|—1;
3 formula < construct_SMT_formula(M, b);
4 while b > real rank of M do

5 if formula is satisfiable then

6 P < readout_solution( formula);

7 b«—b-—1;

8 formula < narrow_down_depth( formula, b);
9 else

10 | break;

A. SMT Formulation

Fundamentally, we want to compute a function f : £ — P,
where £ comprises the 1’s in the matrix, and P contains the
rectangles. This definition offers the convenience of inherently
ensuring the disjointedness of the rectangles. Furthermore, the
constraints needed to enforce the validity of f in specifying
rectangles can be expressed using first-order logic and equality
between function values. This closely aligns with the uninter-
preted function, a major addition in SMT compared to SAT
[21], [22]. Concretely, the only set of constraints follows from
Equation 1: for every pair of distinct 1’s at (¢, ) and (¢, j),

{ fig # foj it M; ;= 0, @
(fig = firg) = (fij = fiy) if Mz =1
Another SMT feature we leverage are bit-vectors. In fact, both
the domain and range of f are bit-vectors: f; ; above means
f(e(i,j)) where e is an index function of the 1’s in M, and
the value of f is the index of a rectangle. To narrow down the
solution space as in line 8 of Algorithm 1, we just add new
constraints f; ; # b for every M; ; =1 to the SMT formula.

B. Heuristics

A trivial upper bound of rg(M) is the width or height of M,
whichever smaller, after removing empty and duplicated rows
and columns. This corresponds to partitioning the matrix into
single rows or columns and consolidating duplicated ones.

The normal set basis viewpoint inspires our second heuristic.
We process matrix M row by row, with the goal of forming
a basis — each basis vector corresponds to one rectangle, as
outlined in Algorithm 2. For each row r;, as in lines 4-7, if an
existing basis vector v; is found within this row, we append  to
the rectangle P; associated with v;. Subsequently, we remove
the 1’s in v; from 7; and continue this process. The outcome
is the decomposition of 7; into a disjoint union of existing
basis vectors, potentially leaving a residue of 1’s. An example
is displayed in Figure 4a where the first 4 rows cannot be
decomposed, so the residues are just the rows themselves, and
they are added to the basis, i.e., v; =1, i € {0,1,2,3}. When
it comes to r4, we note it contains vg (circles) and v; (triangles),
so the residue is (0,0,0,0,1) denoted by the pentagon. Based
on this decomposition, the rectangles F, and P;, corresponding
to vg and vy, vertically grow to include row 4.
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Algorithm 2: Row-Packing EBMF
Data: M € B™*"
Result: P, an EBMF of M consisting of rectangles
1 M’ < shuffle_rows(M);
2 basis <+ []; P+« [];
sforr;e M i=0,1,...,m—1do

4 for v; € basis do

5 if {I’sinv;} C {I’sinr;} then

6 P; < vertical_grow(P;, 1);

7 Ty < Ti — Uj;

8 if ; # 0 then

9 ¢ < one_hot_column_vec(7);

10 for vy € basis do

11 if {I'sinr;} C{I’s in vy} then
12 Py, < horizontal_shrink( Py, 7;);
13 Vi < Vi — Ty

14 cp +— 1;

15 basis.append(r;);

16 P.append(c X r;);

17 P < undo_shuffle(P, M, M’);

Since we adhere to the order of basis vectors, the decom-
position can be suboptimal. For instance, we overlook the
possibility of r4 = vy + v3, and the residue could have been 0.
To mitigate this, we run the heuristic multiple times, shuffling
the rows in each trial, e.g., another trial with a different row
ordering is exhibited in Figure 4b. This is a compromise to the
complexity of the problem. Formally, we are trying to find a
packing or exact cover of r; by the basis vectors, and it is an
NP-complete problem [23] to decide whether one exists.

In the presence of a residue, we perform an update to the
basis in lines 9-16. The intuition behind this is that smaller basis
vectors enhance the likelihood of a successful row packing. If
an existing basis vector vy, contains the residue, we remove the
residue from the corresponding rectangle Py and update vy.
In step 2 of Figure 4b, r; itself (triangles) is the residue. We
find existing basis vector vy = rg (circles) containing r1, so
v is updated to g — 71, and then r; is added to the basis as
v1. Because of the updates, some existing rectangles shrink to
remove the columns of 1’s in the new basis vector, which we
record with a column vector c. In step 3 of the example, ¢ notes
that vy gets updated and v; gets added, so the new rectangle
Py = c¢- vy spans rows 0 and 1, and columns 0 and 1. And
the existing rectangle Py shrinks by removing columns 0 and
1, which leads to the successful packing of r5 in step 4.

Finally, in line 17, we reverse the initial shuffling to de-
rive the correct EBMF. It is worth noting that the algorithm
introduces at most one rectangle for each non-repeating row,
ensuring that the result is no worse than the trivial heuristic.
The overall time complexity is O(n3k), where k represents the
number of trials, and n denotes the larger of matrix width and
height. This complexity is due to nested loops in lines (3,10)
and (3,4), with the innermost loop involving vector operations.
Additionally, note that we run the heuristic on both the original
matrix and its transpose, retaining the better result.

In scenarios with limited time budgets, two further compro-
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Figure 4. Two trials of running the row packing heuristic. Rectangles found
are represented by different markers. a) needs 5 rectangles but b) needs 4.

mises can be considered. The first one is removing the basis
update in lines 10-14. The second one is arranging rows with
a smaller number of 1’s at the beginning instead of random
shuffling, and invoking fewer runs. Based on our experience,
both of these tend to result in more suboptimal ‘local minima’
compared to the current setting, so we have not adopted them.

IV. EVALUATION

We implement the above approach which is open-source
under the MIT License'. The software relies on numpy 1.26.3
and z3-solver 4.12.1.0 [21]. The evaluation is conducted on a
server with an AMD EPYC 7V13 CPU and 512 GB RAM.

A. Benchmark Construction

We provide benchmarks in two sizes: 1) limiting the number
of rows by 10 so that we can reliably prove the optimality of
the solutions using SMT, and 2) 100x 100, which is considered
to be the current limit of atom array technology [3].

The first benchmark set consists of random matrices. We
generate 10 matrices with varying occupancies of 1’s (10%,
20%, ..., 90%) for sizes 10x10, 10x20, and 10x30. For the
100x 100 size, we choose occupancies of 1%, 2%, 5%, 10%,
and 20%, because higher occupancies almost always result in
full rank, which is trivial for our evaluation.

The second benchmark set is comprised of matrices with
known optimal solutions. According to Equation 3, if a matrix
has a k-rectangle partition and the real rank is also k, the parti-
tion is optimal. We create pairs of disjoint rows r; and linearly
independent columns c;, leading to matrices M = Zle CiTi.
We enforce disjointedness among the rows to ensure that the
outcome matrices only contain 0’s and 1’s, and the rectangles
cannot merge. For each rank k = 1,2,..., 10, we generate 10
benchmarks of size 10x10 with known optimal solutions.

The third benchmark set is designed to create a gap between
the real rank and the binary rank. We begin by sampling a
random row r and then randomly decompose it into disjoint row
pairs = 7’ + 7", The parameter for this family of benchmarks
is the number of row pairs, k, which is limited to [m/2]. The
real rank of these 2k rows should be k41 because any pair can
recover the original row, r = rg + r1. Each pair then should
provide an independent basis vector, e.g., o; fori =0, ..., k—1.
Note that decompositions like r3 = r¢ + r; — ro require the
use of negative numbers, which are not allowed in an EBMF.

Thttps://github.com/UCLA-VAST/EBMF
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Table T
PERCENTAGE OF CASES FINDING AN OPTIMAL SOLUTION

row packing, number of trials

benchmark rank? trivial 1 10 100 1000
10x 10, rand 98% 80% 91% 99% 100% | 100%
10x20, rand 100% 100% 100% 100% 100% 100%
10x30, rand 100% 100% 100% | 100% | 100% | 100%
100x 100, rand | 100%*% 62% 92% 96% 98% 100%
10x 10, opt 100% 100% 100% | 100% | 100% | 100%
10x 10, gap, 2 74% 29% 88% 100% | 100% | 100%
10x 10, gap, 3 63% 16% 91% 100% | 100% | 100%
10x 10, gap, 4 47% 40% 94% 98% 99% 99%
10x 10, gap, 5 42% 84% 90% 94% 96% 96%

TPercentage of cases where real and binary ranks are the same.
fSince the heuristics managed to find optimal solutions, the real and binary
ranks are the same for this set. The SMT for these cases are too large to solve.

Consequently, the binary rank of the matrix should be larger
than k£ + 1. The remaining m — 2k rows are completed with
random rows having a 50% occupancy, resulting in a total real
rank equal to or slightly lower than m — k + 1. We generate
100 benchmarks of size 10x10 with 2, 3, 4, and 5 row pairs.

B. Results

The SMT solver allows us to compute optimal solutions.
The percentage of cases achieving optimal solutions with the
heuristics is presented in Table I. The ‘rank’ column indicates
the percentage of cases where the binary rank equals the real
rank. Although the 100x100 benchmarks are too large for
SMT to find solutions, the heuristics find solutions with the
number of rectangles equal to the real rank. Consequently, these
solutions are known to be optimal, and the real and binary ranks
are in agreement. Several observations can be made.

Observation 1: the real and binary ranks are equal with
high probability for random matrices. This can be attributed in
part to the near-full real rank of random matrices. We observe
that almost all 10x20 matrices with an occupancy of 20% and
higher, all 10x30 matrices, and 100x100 matrices with an
occupancy of 5% and higher are full rank, necessitating full
binary rank, resulting in equality between the two.

Observation 2: the constructed benchmarks with known
optimal are easy. Due to the mechanism of row packing, it
can always find the optimal solutions for these benchmarks.
Surprisingly, the trivial heuristic also manages to find the
optimal solutions on all cases, because even though the row
space cannot be reduced by construction, e.g.,

1 0 110
1 1 0+ (1[0 0 1]=]1 1 1},
0 1 001

the columns may be reduced by recognizing duplication.
Observation 3: row packing is an effective heuristic. On
benchmarks with gaps and the large random benchmarks, there
is a big gap between the trivial heuristic and even one trial of
row packing, indicating row packing is highly non-trivial. As
expected, the performance of row packing improves with more
trials. On most of the benchmarks, it saturates at 100 trials and
finds optimal solutions on a remarkable percentage of cases.
Observation 4: edge cases for row packing needs more
general search. We look into the cases where row packing

runtime 10 500

— et

g 400
(5]
real rank 6 300 ;‘f
4 200 g
® smr 5 100 2
. 0 0
* pack.lng g4 g3 g2 @ g5 r g r
heuristic most time-consuming cases

Figure 5. The most time-consuming cases. ‘r’ means it is a random benchmark,
‘g2’ means it comes from benchmarks with gap using 2 row pairs, etc.

fails to find the optimal solution. Going through Algorithm 2,
we find these cases necessitates introducing more than one
basis at some rows, whereas the row packing heuristic at most
introduces one new basis per row in order for efficiency.

Observation 5: the most time consuming cases are proving
UNSAT. We collect the most time-consuming cases in Figure 5.
In the majority of these cases, the SMT solver can only find
solutions with the same number of rectangles as row packing.
Then, the solver goes on decreasing the bound by 1 and proves
the formula to be UNSAT. This is the most time consuming
task. Note that in Algorithm 1, when we terminate at any time,
we can return P, the best solution found so far.

V. FAULT-TOLERANT QUANTUM COMPUTING

Fault-tolerant quantum computing performs on top of quan-
tum error correction codes that encode each logical qubit using
quantum states distributed across multiple physical qubits. A
promising approach is exemplified by the surface code [Y],
where a logical qubit manifests as a patch of physical qubits, as
depicted in Figure 6a. For simplicity, only the data qubits are
illustrated, and check qubits are not shown. A single-logical-
qubit operation, designated as U, corresponds to a 2D pattern
(M) of physical gates, as highlighted in the callout. On the
logical level, the quantum circuit may necessitate another 2D
pattern (M) of logical operations. Consequently, the overall
physical operation is expressed as the tensor product M ® M.
This two-level structure allows for the independent computation
of the rectangular partition of M and M. Subsequently, taking
the tensor product of the partitions produces the solution.

However, is this solution optimal? The real rank is multi-
plicative under a tensor product, as elementary row operations
can be employed to make both M and M upper triangular,
resulting in an upper-triangular tensor product. In contrast,
whether the binary rank is multiplicative under a tensor product
remains an open question. Our aforementioned solution (tensor
product of partitions) provides an upper bound: T]B(M QM) <
rg(M) - r5(M). For lower bounds, Watson [18] notes that

max (TB(M) - (M), (M) .¢(M)) <rg(M&M) (5

where ¢ denotes the maximum fooling set size. However, as
per Equation 2, ¢ is not always equal to rg. In practice, the
majority of M is simple, such as applying X, Z, or H to all
the physical qubits in one patch. In this case, all the elements
of M are 1, and indeed we have ¢p(M) = rg(M) = 1, so the
rectangular partition of M leads to an optimal solution.
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Figure 6. Rectangular addressing in fault-tolerant quantum computing. a) An
operation U on 2D patterns of logical qubits can be realized by the tensor
product of partitions on the logical and physical levels. b) For logical blocks
in 1D layout and with different operations, addressing by row is usually enough.

Another family of quantum error correction codes gaining
popularity is quantum low-density parity-check codes, which
can take advantage of the mobility of atom arrays [24]. In this
code, logical qubits are more globalized, with multiple logical
qubits stored in one logical block instead of one qubit per block.
These blocks are usually arranged in a 1D fashion, as shown
in Figure 6b, because they only serve as memory, and logical
qubits need to be read out to a computing zone. Considering
logical operations that can be realized with single-qubit gates
in this setting, the pattern on each block can be quite different,
depending on the offset of logical qubits inside the blocks.
We conjecture that addressing qubits row by row is usually
sufficient in this case, as in our evaluation, we find that given
the same occupancy, the 10x20 and 10x30 random matrices
are much easier to be full rank than the 10x10 matrices.

VI. CONCLUSION AND DISCUSSION

In this paper, we consider the depth-optimal rectangular
addressing for 2D qubit arrays, which turns out to be equivalent
to the exact binary matrix factorization problem that has ap-
plications in various fields. We introduce an SMT-based solver
for it along with an effective heuristic, row packing, which
scales to the current limits of atom array technology. Several
future directions can be explored. The packing procedure in
our implementation might benefit from ideas in existing works
such as Knuth’s Algorithm X for exact cover [25] instead of
purely relying on shuffling. Another avenue is the introduction
of vacancies in the atom arrays. Since there are no qubits, it is
irrelevant how many times we address these sites. They can be
represented as don’t cares in a matrix, which may be leveraged
to reduce rectangles. This task is binary matrix completion [26],
[27] instead of factorization. Additionally, the SMT tool could
aid in investigating the behavior of binary rank under a tensor
product. Furthermore, optimal rectangular partitions generated
by this tool can provide insight for designing cryogenic control
architecture of qubit arrays for various applications.
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