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Forests are integral to the global land carbon sink, which has sequestered ~30% of
anthropogenic carbon emissions over recent decades. The persistence of this sink depends
on the balance of positive drivers that increase ecosystem carbon storage—e.g., CO, fer-
tilization—and negative drivers that decrease it—e.g., intensifying disturbances. The net
response of forest productivity to these drivers is uncertain due to the challenge of sepa-
rating their effects from background disturbance-regrowth dynamics. We fit non-linear
models to US forest inventory data (113,806 plot remeasurements in non-plantation
forests from ~1999 to 2020) to quantify productivity trends while accounting for stand
age, tree mortality, and harvest. Productivity trends were generally positive in the eastern
United States, where climate change has been mild, and negative in the western United
States, where climate change has been more severe. Productivity declines in the western
United States cannot be explained by increased mortality or harvest; these declines
likely reflect adverse climate-change impacts on tree growth. In the eastern United
States, where data were available to partition biomass change into age-dependent and
age-independent components, forest maturation and increasing productivity (likely due,
at least in part, to CO, fertilization) contributed roughly equally to biomass carbon
sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers
in the water-limited forests of the western United States, whereas forest maturation and
positive responses to age-independent drivers contribute to eastern US carbon sinks.
The future land carbon balance of forests will likely depend on the geographic extent
of drought and heat stress.

aboveground biomass | forest productivity | growth enhancement | stand maturation |
climate change

The land carbon sink has offset ~25 to 30% of global anthropogenic carbon emissions
over recent decades, providing an essential ecosystem service that slows climate change
(1, 2). However, there is considerable uncertainty in the future land—atmosphere carbon
balance (3, 4). Much of the land sink is thought to reside in forests (5, 6). Some empirical
studies suggest weakening forest carbon sinks due to warming, water stress, and intensi-
fying disturbance regimes (7, 8), whereas most Earth system models (ESMs) predict a
persistent land carbon sink due to the positive effects of rising atmospheric CO, concen-
trations on photosynthesis and ecosystem carbon storage (“CO, fertilization”) (4). The
strength and stability of forest carbon sinks depend on the net effect of multiple drivers
(8), including both positive drivers [e.g., CO, fertilization and nitrogen deposition (9,
10)] and negative drivers [e.g., intensifying disturbance regimes (11, 12)].

Some studies indicate an important role for CO, fertilization in the global forest carbon
sink (13-15), but other studies provide ambiguous or contradictory evidence (16). Leaf
photosynthesis responds strongly to increases in CO, at near-instantaneous timescales
(17, 18), but multiple factors may constrain how leaf-level responses translate to tree-level
biomass production and ecosystem carbon storage (16). These constraining factors include
CO,-induced changes in respiration rates and tree carbon allocation (16, 19-21), as well
as water and nutrient limitations (22, 23). For CO, fertilization to contribute to forest
carbon sinks, leaf-level responses must translate to increases in carbon storage in live trees
(biomass) or other ecosystem carbon pools (e.g., litter and soil) (16, 22). Free-air
CO,-enrichment experiments in young forests show a ~30% increase in the rate of tree
biomass production over the first decade (24), but this effect usually attenuates over time
(25, 26). Thus, the prevalence, strength, and persistence of CO, fertilization on forest
productivity (the rate of biomass production) and carbon storage remain uncertain (16).
CO, fertilization is expected to be strongest under conditions that support high produc-
tivity (moderate temperatures and sufficient water and nutrients) (25, 26), and changes
in these non-CO, factors may also directly contribute to forest carbon sinks (16, 21, 22).
However, the effects of CO, fertilization or other positive drivers of forest carbon storage
may be overwhelmed in some cases by negative drivers (8, 11).
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Increases in forest carbon
storage have slowed climate
change over recent decades, but
the future of this carbon sink is
uncertain. The net forest carbon
sink is determined by the balance
between positive drivers (e.g., the
enhancement of photosynthesis
due to rising concentrations of
atmospheric CO,) and negative
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States, where mild warming was
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much of the western United
States, where warming was more
severe, and precipitation
declined. These results highlight
the vulnerability of the global
forest carbon sink to climate
change.
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Negative drivers that can decrease forest productivity and car-
bon storage include increases in the frequency or intensity of dis-
turbance—e.g., fire, drought, insect outbreaks, and timber harvest
(11, 27-29). Intensifying disturbance regimes are impacting many
forested regions of the globe because of the coupled and often
compounding effects of multiple drivers and their interaction with
changing climates (11, 30). As a result, rates of tree mortality are
increasing (31, 32), which directly reduces carbon storage in live
trees and can also cause productivity declines by reducing the
growing stock (live biomass). Additionally, decreases in tree growth
rates due to climatic stress—especially in water-limited forest eco-
systems or where trees are near thermal thresholds—likely con-
tribute to forest biomass declines (29, 33-35). Thus, negative
drivers can reduce forest productivity both through increased tree
mortality and through decreased tree growth rates.

US forests provide a valuable test case for studying the balance
of positive and negative drivers of productivity trends because
there are standardized national forest inventories spanning mul-
tiple decades (36) and large geographic variations in historical
climate and recent climate change (37). An analysis of forest inven-
tory data from five eastern US states from the late-1970s to
mid-1990s revealed no significant productivity trends, leading to
the conclusion that the US forest sink was due solely to regrowth
from previous land use (38). In contrast, a more recent study of
eastern US forests (39) reported a CO, fertilization-attributable
increase in wood volume (0.35% yil) from 1970 to 2015. US
forests are currently a net carbon sink on average—offsetting
~13% of US annual greenhouse gas emissions—but there is wide
regional variation in the sign and magnitude of US forest carbon
fluxes (40). Beyond the uncertain effects of CO, fertilization,
ongoing recovery from industrial logging and agricultural aban-
donment are widely accepted as contributing to a carbon sink in
the eastern United States (27, 38, 41, 42), whereas intensifying
disturbance regimes likely contribute to negative carbon balances
in some western states (28, 40). The role of productivity trends—
alone, or in combination with mortality trends (29, 31)—in deter-
mining the carbon balance of US forests is unknown.

We used national-scale forest inventory data—comprising
113,806 remeasurements of 57,532 plot locations in non-plantation
forests across the coterminous United States from ~1999 to
2020—to estimate productivity trends (z; %y ") for different eco-
provinces (SI Appendix, Fig. S1) while controlling for biomass
losses due to mortality and harvest. We chose the ecoprovince scale
for our analyses because ecoprovinces represent areas with similar
climate, soil, and potential natural vegetation (43) that are big
enough to provide large sample sizes (>1,000 remeasured inventory
plots in most cases; Table 1). Analyses of broader geographic units
would increase noise (due to heterogeneity in environmental con-
ditions) and potential bias (differences in the timing of sampling
among US states that may differ in productivity), whereas analyses
of smaller geographic units are unlikely to provide sufficient sample
sizes to detect productivity trends.

To aid in identifying robust trends, we consider models of both
stand-level tree carbon storage (“biomass stock”: aboveground dry
wood biomass of live trees, Mg ha™!, where ~50% of wood dry
mass is carbon) and stand-level biomass production (“biomass
growth”: production rate of aboveground dry wood biomass, Mg
ha™! y’l), and we consider model forms both with and without
stand age (the mean age of trees in the dominant size class; 44) as
a predictor variable. Specifically, we considered three model forms,
all of which estimate the productivity trend (7) by including year
as a predictor variable (S Appendix, Fig. S2): 1) biomass stock as
a function of stand age and year, 2) biomass growth as a function
of stand age and year, and 3) biomass growth as a function of

https://doi.org/10.1073/pnas.2311132121

biomass stock and year. A positive (or negative) 7 indicates a pos-
itive (or negative) temporal trend in biomass stock or growth that
cannot be explained by other model terms (i.e., biomass losses
and either stand age or biomass stock, depending on the model
form). Positive 7 implies that positive drivers (e.g., CO, fertiliza-
tion) have stronger temporal effects than negative drivers, and
negative 7 implies the reverse. To evaluate the robustness of our
results, we analyze different data subsets to control for the number
of remeasurements per plot location or to exclude plot locations
with any reported harvest. (Although our analyses were restricted
to non-plantation forests, selective or clear-cut harvesting occurs
in many naturally regenerating forests in the United States).

We use our modeling framework to quantify how productivity
trends vary across ecoprovinces that have experienced variable signs
and magnitudes of climate change, ranging from increased precip-
itation and mild warming in parts of the eastern United States to
decreased precipitation and greater warming in parts of the western
United States. In addition, we leverage the large number of eastern
US plots that have been inventoried at least three times to partition
changes in biomass stocks into stand-age-dependent and age-
independent components, thereby providing insights into the
causes of the eastern US forest carbon sink.

1. Results

1.1. Productivity Trends in Non-Plantation Forests of the
Coterminous United States. Productivity trend () estimates were
mostly positive or non-significant in eastern US ecoprovinces but
negative or non—signiﬁcant in western US ecoprovinces (Fig. 14).
Mean productivity trends were significantly positive in the eastern
United States and significantly negative in the western United
States (S Appendix, Fig. S3). Within ecoprovinces, 7 estimates
were mostly consistent across the three model forms (Fig. 1B and
SI Appendix, Table S1). These results were robust to temporal
variation in the location of inventory plots and to the effects
of harvesting. Specifically, fitting the models to filtered datasets
with a temporally balanced design (which was restricted to plot
locations measured at least three times, and which represented
cach of these plots by two remeasurement intervals) or that
excluded plot locations with any reported harvest led to similar

results (S/ Appendix, Fig. S4 and Table S1).

1.2. Productivity Trends in Relation to Climate Change. Across
ecoprovinces, productivity trends (7) tended to be positive in
ecoprovinces that experienced increased water availability and mild
warming over recent decades (as in much of the eastern United
States) and tended to be negative in ecoprovinces that experienced
decreased water availability and more pronounced warming (as in
much of the western United States; Fig. 2 and S/ Appendix, Fig. S5).
Specifically, across ecoprovinces, 7 increased with increasing
ecosystem water balance (as measured by change-over-time in
the Palmer Drought Severity Index) and increasing precipitation
change; and 7 decreased with increasing climate warming (Fig. 2).
Productivity trends tended to be negative in ecoprovinces that have
warmed faster than ~0.02 C )f1 over recent decades (Fig. 2).

1.3. Age-Dependent and Age-Independent Components of
Biomass Change in the Eastern United States. Our modeling
framework, along with the large sample of eastern US plotlocations
inventoried three or more times (two or more remeasurements),
allowed us to partition observed changes in aboveground biomass
stocks (ABpeerved) in eastern US ecoprovinces into stand age-,
productivity trend-, and disturbance-related components. The
sum of the three modeled components closely matched the
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Plot remeasurements (n) Ecosystem water balance Precipitation Temperature
Region Code Ecoprovince name Pre-2010 Post-2010  Total PDSI APDSI (y’w) MAP (mm)  AMAP (mm y’w) MAT(°C) AMAT (°C y”)
Eastern 231  Southeastern Mixed Forest 5,042 7,802 12,844 0.95+<0.01 -0.002 +<0.001 1,341 +1 1.47 £0.01 16.32+0.01  0.0171 +0.0001
United 232 OQuter Coastal Plain Mixed 4,528 8639 13,167 0.64 +<0.01 -0.013+<0.001 1,349 +1 2.38+0.02 1839+0.02 0.0115+0.0001
States Forest
M221 Central Appalachian Broadleaf 2,863 5323 8,186 0.88 £ <0.01 0.003+<0.001 1,307+3 1.30 £ 0.02 11.30+£0.02  0.0179 £ 0.0001
Forest—Coniferous
Forest—Meadow
211 Northeastern Mixed Forest 2,371 4,513 6,884 1.44 +<0.01 0.028 +<0.001 1,154 +1 1.89+0.01 6.62 +0.01 0.0220 + 0.0001
M211  Adirondack-New England 1,887 4,891 6,778 1.37+<0.01 -0.003+<0.001 1,203+2 0.69 +0.02 4.75+0.02  0.0225+0.0001
Mixed forest—Coniferous
Forest—Alpine Meadow
M231 Ouachita Mixed Forest 182 827 1,009 1.21 +0.01 0.009 +<0.001 1,392+ 4 2.75+0.05 15.87 +0.01 0.0090 + 0.0001
212 Laurentian Mixed Forest 12,252 10,433 22,685 1.01 +<0.01 0.022 +<0.001 784 £1 1.45+0.01 4.69 +0.01 0.0138 + <0.0001
234 Lower Mississippi Riverine 233 1,111 1,344 1.13+0.01 0.008 + <0.001 1,427 +3 1.65+0.05 17.61+£0.04 0.0152 +0.0001
Forest
251  Temperate Prairie Parkland 1,170 1,120 2,290 1.21 +£<0.01 0.039 + <0.001 951+2 2.53+0.02 10.89 £0.04  0.0095 + 0.0001
222 Midwest Broadleaf Forest 2,970 2,876 5,846 1.46 + <0.01 0.056 + <0.001 880 +1 3.08 £0.01 7.66+0.02 0.0158 +0.0001
221  Eastern Broadleaf Forest 2,405 4,902 7,307 1.22 +<0.01 0.023 +<0.001 1,228 +2 2.27 £0.02 11.03+£0.02  0.0201 + 0.0001
223 Central Interior Broadleaf 4,948 5,058 10,006 1.27 +<0.01 0.032+<0.001 1,233+1 3.02+0.01 13.49 £ 0.01 0.0154 + 0.0001
Forest
M223  Ozark Broadleaf Forest 231 662 893 0.91 +<0.01 0.019+<0.001 1,321+3 2.59 £0.05 1451 +£0.02 0.0105+0.0001
Meadow
255 Subtropical Prairie Parkland 244 490 714 1.13+0.01 0.002 +<0.001 1,128 +3 2.83+£0.04 10.28 £+0.06  0.0171 £ 0.0003
Western M333  Northern Rocky Mountain 16 1,742 1,758 0.15+0.01 -0.038 + <0.001 927 +9 -1.36+0.04 521+0.04 0.0231+0.0002
United Steppe—Coniferous
States Forest—Alpine Meadow
M332  Southern Rocky Mountain 0 1,757 1,757 0.26 +0.01 0.058 + <0.001 719+5 -1.11+0.04 3.24+0.05 0.0311+0.0002
Steppe—Open Woodland—
Coniferous Forest—Alpine
Meadow
332 Great Plains Steppe 78 154 232 1.44+0.02 0.057 +0.001 619+7 2.36+0.06 9.27+0.21  0.0089 + 0.0004
M334  Black Hills Coniferous Forest 214 237 451 1.20+0.01 0.021 + 0.001 566 + 4 1.74+0.02 6.13+0.07 0.0210 + 0.0003
M331  Southern Rocky Mountain 0 1,757 1,757 0.46 +0.01 -0.042 +0.001 719+5 -1.11+0.04 3.24+0.05 0.0311+0.0002
Steppe—Open Woodland—
Coniferous Forest—Alpine
Meadow
313  Colorado Plateau Semi-Desert 0 218 218 0.13+0.02 -0.083 + 0.002 555+10 -2.59+0.10 7.68+0.13  0.0320 + 0.0007
331  Great Plains/Palouse Dry 61 270 331 0.89 +0.03 0.050 + 0.002 4727 1.10+0.07 7.79+0.07 0.0123 +0.0004
Steppe
M341  Nevada-Utah Mountains Semi- 0 220 220 0.34 +0.02 -0.023 + 0.001 611+10 -0.84+0.08 4.69+0.11  0.0271 +0.0007
Desert—Coniferous
Forest—Alpine Meadow
M313  Arizona-New Mexico 0 367 367 -0.04+0.02 -0.085 + 0.002 637+7 -3.27+0.07 8.57+0.09 0.0383 +0.0006
Mountains Semi-Desert—
Open Woodland—Conifer-
ous Forest—Alpine Meadow
M242 Cascade Mixed Forest 22 3,281 3,303 0.15+0.01 -0.041 +<0.001 1,590 £16 -1.28 +0.05 7.12+0.04 0.0190 +0.0002
M2671  Sierran Steppe—Mixed 202 1,791 1,993  -0.19+£0.01 -0.050 +<0.001 1,247 +12  -1.50+0.04 9.35+0.05 0.0307 +0.0003

Forest—Coniferous
Forest—Alpine Meadow

The number of plot remeasurements used in our analysis is given. Inventory records were assigned to the pre- or post-2010 period based on the remeasurement date. Climate variables
are ecosystem water balance (Palmer Drought Severity Index, PDSI; unitless; higher values indicate wetter conditions), mean annual precipitation (MAP), and mean annual temperature
(MAT). For each climate variable, we report its 50-y (1972 to 2022) mean (+SE) and its change (A; 50-y trend + SE). See S/ Appendix, Fig. S1 for a map of ecoprovince codes.

AB erved Values (ST Appendix, Fig. S6A), which were significantly
positive for 13 of 14 eastern US ecoprovinces (Fig. 34). Stand
age distributions shifted toward older ages in all 14 ecoprovinces
(Fig. 3B), and biomass change due to changes in stand age (ABage)
was significantly positive for 13 or 14 ecoprovinces (Fig. 34).

Biomass change due to productivity trends (AB,;oqyciivity trend)

was significantly positive for 8 of 14 ecoprovinces (Fig. 3A4).
In contrast, biomass change due to changes in mortality and
harvest losses (AB i ubance) Was significantly negative in 12 of
14 ecoprovinces (Fig. 34). As expected, AB,,. tended to be large in
ecoprovinces with large increases in mean stand age (S/ Appendix,
Fig. S6B), AB,  quciviywrend Was strongly determined by =
(SI Appendix, Fig. S6C), and AB g, rbance Was strongly determined
by mortality and harvest effects (SI Appendix, Fig. S6D). The
magnitudes of AB,. and AB, oqycrivieyrend Were roughly equal
to each other (means of 0.65 and 0.58 Mg ha™" y™', respectively,
across ecoprovinces) and larger than that of AB jigpance (mean of

PNAS 2024 Vol.121 No.4 e2311132121

-0.22 Mg ha™'y™). Across eastern US ecoprovinces, AB .rved Was
positively correlated with AB, qucivity trend 20 AB, g but was not

significantly correlated with AB i rpance (S Appendix, Fig. S7).

2. Discussion

2.1. Key Findings. Our results show that over the last two decades,
forest productivity has tended to increase in regions that have
experienced increased precipitation and mild warming (much of
the eastern United States), whereas forest productivity has tended
to decrease in regions that have experienced decreased precipitation
and more severe warming (much of the western United States).
These productivity trends are inferred from analyses that control
for either stand age or live biomass stock (depending on the model
form) as well as biomass losses from mortality and harvest. Thus,
the productivity trends we report likely reflect trends in individual
tree growth rates, rather than changes in biomass growing stocks

https://doi.org/10.1073/pnas.2311132121
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Fig. 1. Productivity trends (~1999 to 2020) for US forests by ecoprovince, estimated from three model forms: biomass = f(stand age), growth = f(stand age),
and growth = f(biomass). The Upper Right Inset shows forest cover across the coterminous United States. (A) Productivity trends () mapped by ecoprovince.
Ecoprovinces with z estimates not significantly different from zero (P> 0.05) are colored light gray. Ecoprovinces where no z estimate is available (due to model
non-convergence; see Materials and Methods Section 3.4.5.) are colored dark gray. (B) = estimates and 95% Cls by ecoprovince (see map of ecoprovince codes
in SI Appendix, Fig. S1). Significantly negative r estimates are colored purple, whereas significantly positive estimates are green. See S/ Appendix, Tables S2-S4

for details of model fits.

due to disturbance or regrowth. While observed and projected
future increases in tree mortality highlight the vulnerability of
US forests to climate change (12, 31, 45, 46), our results also
demonstrate the potential for non-lethal effects of climate change
to weaken or reverse forest carbon sinks.

The significantly positive productivity trends reported here for
the eastern United States (Fig. 1 and SI Appendix, Fig. S3) contrast
with the non-significant trends estimated from an older dataset
(38) but are consistent with a more recent study that inferred a
significant CO, response for eastern US forests (39). Contrasting
results from the newer and older studies could potentially reflect
methodological differences combined with a small signal-to-noise
ratio—i.e., the subtle growth enhancement expected from a
~0.5% y~" increase in atmospheric CO, (the mean trend since
1960) relative to the much stronger stand-level effects of distur-
bance—recovery dynamics. Finding such small signals is critical,
because constant (i.e., stationary) disturbance—recovery processes

https://doi.org/10.1073/pnas.2311132121

do not affect ecosystem carbon balance over broad spatial or tem-
poral scales (47), whereas even small shifts in mean carbon fluxes
(due to CO, fertilization or other effects of similar magnitude)
can have globally significant cumulative effects (48). The robust-
ness of our results to alternative model forms and data subsets (see
below) suggests that the productivity trends reported here reflect
real changes in the dynamics of US forests. However, important
questions remain, including the mechanisms leading to variation
in productivity trends within the eastern United States, some of
which are significantly negative (Fig. 1). Some of this variation
may be related to the degree of climate warming (Fig. 2 Fand 1),
effects of invasive insects and pathogens (49), and interactions
between climate change and insects or disease (11, 12).

The productivity trends reported here for non-plantation forests
are qualitatively similar to ecosystem carbon stock changes reported
by the US Forest Service for plantation and non-plantation forests
combined (positive in all eastern US states, but of varying sign in
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Fig.2. Relations between productivity trends () and changes in the Palmer Drought Severity Index (APDSI; positive values indicate increases in water balance),
mean annual precipitation (AMAP), and mean annual temperature (AMAT) for US ecoprovinces. Results were qualitatively consistent across the three model
forms: (A-C) biomass = f(stand age), (D-F) growth = f{stand age), and (G-/) growth = fibiomass). Productivity trends tend to be positive in ecoprovinces where
moisture has increased and warming has been mild and negative in ecoprovinces where moisture has decreased and warming has been more severe (S/ Appendix,
Fig. S5). Error bars are 95% Cls. Thick black lines show linear relations between productivity trends (r) and climate-change variables; linear model equations,
P-values for the slopes, and model coefficients of determination are shown at the Top of each panel.

western US states), with changes in aboveground biomass stocks
accounting for ~70% of total ecosystem carbon stock changes in
US forests since 1990 (40). Thus, although our analysis is restricted
to aboveground biomass, our findings have important implications
for ecosystem carbon balance. In the eastern United States, where
data availability permitted decomposing biomass change into dif-
ferent components, forest maturation and increasing productivity
contributed, on average, roughly equally to biomass change

PNAS 2024 Vol.121 No.4 e2311132121

(Fig. 3A), with both components explaining significant variation
in biomass change across ecoprovinces (SI Appendix, Fig. S7).
These findings are qualitatively consistent with reconstructions
from ecosystem process models, which indicate important contri-
butions of both age-dependent and environmental factors to global
and eastern US carbon sinks (50). In the western United States,
negative productivity trends (Fig. 1 and SI Appendix, Fig. S3) likely

contribute to declining ecosystem carbon stocks in some western
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Fig. 3. Components of forest biomass change in the eastern United States. (A) Partitioning observed change in aboveground forest biomass (ABgpseneq) iNtO
stand age (AB,g.), productivity trend (AByoquctivity trena)s @Nd disturbance (ABgigrmance) COMponents for 14 eastern US ecoprovinces shows that increases in eastern
US forest biomass are driven by both productivity increases (mean AB,,oq,ctivity trena @Cr0SS ecoprovinces: 0.65 Mg ha™'y") and forest maturation (mean AB,qe
across ecoprovinces: 0.58 Mg ha™' y™). Ecoprovinces are arranged from greatest to least AB,yeneq- Gray points show the observed and partitioned biomass
change for each FIA plot location from the first to the most recent plot remeasurement, truncated to AB of +2 Mg ha™' y™' (values beyond this range are not
shown but were included in the analysis). Bold points and error bars show ecoprovince means and 95% Cls. (B) Stand age distributions for the first and most
recent remeasurement of each inventory plot. Results in this figure are based on a temporally balanced sample of forest inventory plots (two remeasurements

per plot; S/ Appendix, Fig. S4 and Table S5).

states (40). The sensitivity of productivity trends in US forests to
climate change (particularly warming; Fig. 2) mirrors observed
and projected changes in tropical forests, where heat and water
stress have weakened—and could potentially reverse—biomass
carbon sinks (7).

2.2. Robustness of Results. The productivity trends we estimated
were mostly consistent across different model forms and different
data subsets used to evaluate the potential effects of harvest and

unbalanced sampling (87 Appendix, Fig. S4 and Table S1). Two of

https://doi.org/10.1073/pnas.2311132121

the three model forms we considered (SI Appendix, Fig. S2) use
stand age—defined in the US forest inventory as the estimated
mean age of trees in the dominant size class (44)—which provides
ambiguous information in uneven-aged stands and does not
always accurately reflect the time since the last major disturbance
(51). Nonetheless, we obtained qualitatively similar results from
an age-independent model of biomass production as a function
of biomass stock, which suggests that our main results are robust
to uncertainties or biases associated with stand age. All model
forms we considered account for biomass losses due to mortality
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and harvest during plot remeasurement intervals. Trends in
losses vary among ecoprovinces (SI Appendix, Table S5), but
these trends account for little of the variation in biomass stock
changes (87 Appendix, Fig. S7C). Estimated productivity trends
could, in principle, be confounded with trends in loss rates if our
models fail to adequately capture the effects of losses. However,
excluding harvested plots did not qualitatively change our results
(SI Appendix, Fig. S4 and Table S1), which suggests that our
analysis captures the effects of changing loss rates and that the
productivity trends we report are robust.

2.3. Drivers of Productivity Trends in US Forests. The positive
productivity trends we report in eastern US forests are likely
due to multiple drivers. There is broad empirical and theoretical
support for CO, fertilization of forest productivity (13-15),
although the strength of the effect is uncertain and likely sensitive
to environmental conditions (16, 22, 23, 52). The strongest CO,
response predicted by theory, a proportional increase in productivity
with atmospheric CO, (16), is ~0.5% y™' since 1960 or ~0.6%
y~' since 2000. A recent study of eastern US forests inferred a
~0.3% y ™' increase in wood volume due to CO, fertilization from
1970 to 2015 (39), which is well within the theoretical range. In
contrast, some trends we report are significantly greater than the
theoretical upper bound (Fig. 1 and S/ Appendix, Tables S2-S5),
suggesting a role for additional mechanisms, such as increases in
growing season length (53), increases in water balance (54), and
nitrogen deposition (9). An analysis of eastern US forests from
the 1980s to 2000s showed that changes in biomass were not
consistently related to changes in growing season length but were
positively correlated with changes in water balance (PDSI) (54). In
contrast, our results provide no evidence since ~2000 for increasing
productivity trends across eastern US ecoprovinces with increasing
PDSI or precipitation (Fig. 2). However, two of the three model
forms we considered indicate higher productivity trends in eastern
US ecoprovinces that experienced the least warming (Fig. 2).
Nitrogen-deposition effects on eastern US forests have been
inferred to be as strong or stronger than CO, fertilization effects
(10), although some studies have reported much weaker effects of
nitrogen deposition (9). Factorial experiments with a process-based
ecosystem model suggested weak climate effects but strong CO,
and nitrogen-deposition effects in the mid-Atlantic region of the
eastern United States during the 20th century (55). In summary,
CO, fertilization seems a plausible mechanism contributing to
productivity increases in eastern US forests, but other drivers likely
contribute as well. Evidence for a direct effect of climate change
on eastern US forest productivity trends is weak, although trends
within the eastern United States and across the entire coterminous
United States suggest that the effects of positive drivers are strongest
where warming is mild (Fig. 2).

Negative productivity trends were found for some western US
ecoprovinces, where effects of intensifying drought and climate
change on tree growth rates are well documented (28, 35, 56, 57).
Our results suggest that in the western United States, the effects
of these negative drivers on tree growth rates outweigh the effects
of CO, fertilization or other positive drivers. This finding adds to
a growing body of evidence from US forests showing the impor-
tance of negative drivers on tree growth. (56, 57). Thus, as ecosys-
tems warm, heat and drought-related plant stress may lead to less
realized biomass productivity (58), potentially shifting the domi-
nant driver of productivity trends from CO, to vapor pressure
deficit (VPD) (59, 60). Increasing temperature and drought stress
negatively affect tree carbon balance due to increased metabolic
rates (60, 61) and due to the opportunity cost of stomatal closure,
which limits the potential for CO,-stimulated increases of
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photosynthesis (17, 18). Thus, warming and drought is in effect
a twofold stressor on plant function, with increased tree carbon
costs affecting both carbon source-sink dynamics within trees and
whole-tree growth rates (52). In summary, climate change-induced
tree stress appears stronger than the combined effects of any pos-
itive drivers in many forests of the western United States. This
finding is consistent with regional differences in growth trends in
Europe, where climate change—driven tree growth declines in
southwestern Europe contrast with growth increases in northern
Europe where climate change has been relatively mild (62). Thus,
tree growth declines due to increased climate stress may be char-
acteristic of global change responses of precipitation-limited forests
across the globe.

2.4. Implications of Our Results for the Terrestrial Carbon
Balance. Our results suggest that global terrestrial ecosystem
models, including the land components of ESMs, are overly
optimistic in their projections of land carbon balance, potentially
because climate constraints on terrestrial biomass productivity
are not adequately represented. Ecosystem model reconstructions
for 2000 to 2019 (63) and ESM projections for the 21st century
(64) indicate stronger carbon sinks in the eastern compared to
western United States but fail to capture the negative carbon
balances observed in much of the western United States (40). In
addition to intensifying mortality and fire regimes—e.g., the large
increase in carbon emissions from US fires from the late 1990s
to the early 2000s (40)—our results suggest that productivity
declines have contributed to ecosystem carbon losses since ~1999
in the western United States. Conversely, our results demonstrate
how productivity increases are likely maximized in ecosystems
that are energy- rather than water-limited, and where drought
and heat stress are mild (8, 22, 65). At the global scale, ESMs
predict that the positive response of terrestrial carbon storage to
CO, fertilization is stronger than the negative response to climate
change (4). However, our results suggest that the climate response
has already overwhelmed the CO, response in much of the United
States, and that the future global balance of these opposing forces
may depend on the geographic extent of drought and heat stress.

3. Materials and Methods

3.1. US National Forest Inventory Data. The Forest Inventory and Analysis
(FIA) program of the US Department of Agriculture Forest Service monitors
permanent sample plots that are systematically distributed across all public
and private forest land in the United States. Starting in the late-1990s, FIA
began implementing a national standardized annual inventory (36), with 1
plot per ~2,428 ha; ~10% of western US plots and ~20% of eastern US plots
are remeasured each year (remeasurement intervals of ~10 and ~5y, respec-
tively). Due to complications arising from changes in plot designs and the
non-public plot identifiers required to link plot locations across current and
older designs, we restricted our analysis to plot measurements collected using
the current annual design (FIA 2.0). Our analysis is based on FIA database
version 9.0.1 (66). The FIA dataset is an unbiased sample of US forests but
has several limitations. These limitations limit the temporal resolution of our
analysis and our power to detect productivity trends but should not bias our
results (see Section 3.8. for details).

Underthe annual design, trees with a diameter =12.7 cm (typically measured
at 1.37 m height) are measured within four circular subplots (7.3 m radius; plot
sample area of 0.067 ha), and trees with a diameter between 2.54 and 12.7 cm
are measured within 2.1-m radius microplots (one per subplot). In some western
US states, the subplot radius is optionally expanded to 18.2 m to sample large
trees (e.g., diameter >53 cm). The status of each tree (live, dead, or cut) is reported
at the time of each plot measurement (66). FIA reports the aboveground bio-
mass of trees with diameter 2.54 to 12.7 cm based on national-scale allometries
(67) and of larger trees based on more detailed methodology that incorporates
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regional variation in allometry and field-based estimates of sound wood volume
(not rotten or missing) for individual trees (68).

Plot-level information reported by FIA includes the approximate latitude-
longitude; ecological subsection codes that identify areas of similar geology, soil,
and climate [we aggregated these codes to the ecoprovince level (43)]; and the
measurement dates, which we converted to decimal years as (measurement year)
+ (measurement month)/12. Each FIA plot has one or more mapped conditions,
which describe forest characteristics such as structure, composition, disturbance,
and ownership (44). FIA reports stand age for each condition, which is defined
as the mean age of trees in the dominant size class (44). Stand age is initially
estimated by coring two or three overstory trees and is then incremented over
time if no serious disturbance has occurred, or re-estimated as needed (44). We
used stand age in our analyses as a biomass-independent measure of stand
development (50, 69).

3.2. Plot Selection Criteria. We limited our analyses to plots that were meas-
ured at least twice under the current annual design. To avoid complications due
to within-plot heterogeneity in disturbance history or environmental conditions,
we restricted our analyses to plots that were dominated by a single condition at
every measurementtime (“condition proportion unadjusted” in the FIA Condition
table = 0.95),and we applied descriptors of the dominant condition (e.g., stand
age) to the entire plot. Based on these condition attributes, we further restricted
our analysis to plots classified as accessible forest land (current or previous can-
opy cover of at least 10% in an area of at least 0.4 ha and at least 36.6 m wide),
plots that lacked clear evidence of artificial regeneration (i.e., we excluded tree
plantations), and plots with an inherent capacity for wood volume growth of at
least 1.4 m*ha™"y™" (which excludes plots assigned to the lowest of FIA's seven
site productivity classes). Finally, plots with outlying biomass growth estimates
were excluded (0.2% of plots; see details in Section 3.3. below).

Unless stated otherwise, all our analyses used the same set of plot records,
which included all plot remeasurements that met our selection criteria described
above. For example, if a plot location was measured three times, then it contrib-
uted two observations to our analyses, with response variables in our models
(biomass stock and biomass growth; see details below) recorded at times 2 and
3(inthis example, growth would be calculated over the intervals between times
1to 2 and times 2 to 3). After applying all filters, the dataset used for our main
analyses had measurement years (at the time of each remeasurement) ranging
from 1998 to 2021. We report our study period as ~1999 to 2020, with these
years representing the firstand 99th percentiles of the remeasurement dates.

3.3. Estimating Aboveground Biomass Stocks and Growth. We calculated
the live aboveground biomass stock (B,; Mg ha™") for each plot at each measure-
ment (time t) by summing the product of individual tree aboveground biomass
(AGB) estimates (aboveground wood dry mass values reported by FIA) and their
expansion factors (TPHa: the number of trees per hectare that a tallied tree rep-
resents, which is the inverse of the area on which itis sampled) forall trees (i = 1
ton)aliveattime t:B, = Y ", (AGB; x TPHa; ). The TPHavalues used here are
a constant (2.47 acres per hectare) times the “trees per acre unadjusted” values
reported in the FIATree table.

We used two methods to estimate plot-level biomass growth rates (G, Mg ha ™" y™")
overa plotremeasurementinterval (fromt tot + At).The two methods are described
below and are analogous to the two “stand increment” approachesillustrated in Fig. 2
of Clarketal.(70). For many FIA plots, these two approaches yield different estimates of
G, dueto changes overtime in the expansion factors for individual trees. For example,
atree’s TPHavalue decreases when its diameter crosses the 12.7 cm threshold due to
the difference in sampling area between microplots and subplots, which can resultin
negative G estimates when employing the first method described below. Cases where
the two methods yield very different results may indicate database errors or situations
where one or both methods have high variance.

The first method, which we refer to as the “mass balance” method (and
which was used for all analyses of G that we report in this paper), uses the
full sample of trees at times t and t + At. The change in biomass stocks is
Biiar — B:= At-G— M, —C, where B, is defined as above, and M, and C,,
respectively, are the time-t biomass stocks of trees that died or were cut (har-
vested) between times t andt + At (71). Rearranging the above equation yields
the mass balance estimate of the biomass growth rate between time t and t + At:
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G = (Bi, ¢ — B + M, + C;) / At.This method is based only on biomass stocks,
and the relevant expansion factors (trees peracre unadjusted) are reported in the
FIATree table attimes t and t + At for all tallied trees.

The second method, which we refer to as the "increment sum” method, sums
the annualized biomass increments of individual trees fromtime t tot + At and
weights each tree by its time-t growth expansion factor (38, 72). A complication
with implementing this method with the data provided in the FIATree table is that
growth expansion factors ("growth trees per acre unadjusted”) are only reported
fortrees with diameter >12.7 cm. An additional complication involves “ingrowth
trees” in microplots, which enter the tallied diameter class between times t and
t + Atand thus have no reported expansion factorattime t. In contrast, the mass
balance method automatically accounts for ingrowth (71). Because our aim was
to use the increment sum method only as a rough check on the mass balance
method, we implemented the increment sum method using the FIATree table as
follows: We used biomass stock (rather than growth) expansion factors (because
these are reported for all trees with diameter >2.54 ¢cm), and we assigned the
standard microplot expansion factor (assuming four microplots per plot) to
ingrowth trees, which we assumed had AGB of 0 at time ¢. This implementation
should result in only small errors in most cases, and thus can serve as a rough
consistency check for the mass balance method.

To reduce noise in our main analyses, we excluded two types of outliers
from the G estimates (mass balance method). We excluded the extreme lower
and upper 0.05% tails (0.1% combined) of the distribution of G across all plot
remeasurements, and we excluded the extreme lower and upper 0.05% tails
(0.1% combined) of the distribution of differences between the mass balance and
increment sum estimates of G. For consistency, plot records that were excluded
from our analyses of G were also excluded from other analyses in our study.
Excluding these outliers improved model fits in some ecoprovinces but did not
qualitatively affect our main results or conclusions.

3.4. Fitting Biomass and Growth Models to Quantify Productivity Trends.
3.4.1. overview of model forms. For each ecoprovince, we fit non-linear regres-
sion models to quantify "productivity trends” (z; %y ™) associated with temporal
trends in biomass stocks (B) or growth (G) (SI Appendix, Figs. S2, S8, and S9). All
models share the same general form:

y = fy(disturbance) x f,(year) x f(x), 1]

where the response variable (y, either biomass stock or biomass growth) is the
product of three functions (each with fitted parameters) representing the effects
of disturbance (biomass losses during a remeasurement interval due to mortality
or harvest), year (measurement date), and x (either stand age or biomass stock).
Because the disturbance and year functions were used in all models, we label
the models according to y and £(x) as follows: biomass = #(stand age), growth
= f(stand age), and growth = #(biomass) (S Appendix, Fig. S2). For consistency,
and as explained in Section 3.2., both response variables (Band G) were recorded
atthe end of a given remeasurement interval (timet + At). For all model forms,
biomass loss (for the disturbance function) was measured over the interval from
ttot + At. For the biomass = f{stand age) models, stand age was recorded at
timet + At, as this age is most relevant to modeling biomass at timet + At; for
simplicity, we also recorded year (measurement date) for the biomass = f{stand
age) models attimet + At (although we recognize that in reality, biomass stock
reflects growing conditions over the entire history of a stand). In contrast, for the
growth models, stand age was recorded at time t (to capture the effects of ante-
cedent conditions on growth), and year was recorded at the midpoint between t
andt + At (i.e., the mean year during the growth interval).

3.4.2. f(x)—the age or biomass function. \We explored two functional forms for
fix)inEq. 1, which areillustrated in S/ Appendiix, Fig. S2. One set of forms is based on
the Michaelis-Menten function (sometimes called the Monod function), which has
previously been shown to provide a good fit to biomass vs. age relationships in US
forests (73). We modified the standard two-parameter Michaelis-Menten function
by including y-intercept and shape parameters (e.g., to allow for sigmoid curves):

(1=p) A-x

2
(ks +x9) 2]

f(x) = pA+
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where Ais the asymptote, k is the half-saturation constant, pA is the y-intercept,
and sis the shape parameter. If p=0and s = 1, then Eq. 2 reduces to the standard
two-parameter form: f(x) = Ax / (k + x). The second form is based on the log-
normal growth function of Uriarte etal. (74), modified here to include a y-intercept:

n(x/c 2
f(x)=a+b-e_(|_(f’/_>), (3]

where a is both the y-intercept and the limiting (large-x) value of y, a + bis the
peak height of the curve, ¢ is the x-value at the peak, and d'is a shape parameter.
Based on preliminary analyses, we considered Eqs. 2 and 3 for biomass =
flage), only Eq. 3 for growth = f(age), and only Eq. 2 for growth = f(biomass).
For Eq. 2, we considered the two-parameter Michaelis-Menten version, three-
parameter versions (with p or s alone), and the four-parameter version (with p
and s). In cases where multiple functional forms were considered (e.g., different
Michaelis-Menten versions), we report results for the form with the lowest AIC
(see model-fitting details below).

3.4.3. f,(disturbance)—the effect of biomass loss (a). The disturbance termin
Eq. 1 accounts for the effects of biomass losses during a remeasurement interval
due to morality or harvest, assuming that biomass stocks or growth are reduced
in proportion to the fraction of biomass lost: , (disturbance) = 1 — aL, where
a is a fitted parameter, and L is the fraction of biomass lost to mortality or har-
vest between times t and t + At; i.e., L = (M, + C,) / B,. The fitted value of «
can represent a range of disturbance responses, including (but not limited to)
complete compensation for biomass losses (a = 0), no compensation (& = 1), or
over-compensation (a < 0). Each ecoprovince model was fit with and without the
f{disturbance) term, and we report results for the version with the lower AIC (see
model-fitting details below). The f(disturbance) term (and thus the & parameter)
was included in nearly all cases (S| Appendix, Tables S2-S5).

3.4.4. f (year)—the effect of productivity trends (7). The year term in Eq. 1
represents trends in biomass stocks or growth (which we collectively refer
to as productivity trends) that cannot be explained by other model terms:
fy(year) =1+ (z/100)(year — 1990) where (%y")is the productivity trend,
year is the measurement date (expressed as year + month/12), and 1990 is a
reference year chosen to predate the earliest plot remeasurement in our dataset.
The f,(year) function can be interpreted as a multiplier that causes a linear trend
overtime in the height of the f(x) curve, with positive or negative z, respectively,
leading to upward or downward trends in f(x) (S/ Appendix, Fig. S2). All models
we reportinclude the fy(year)term (model selection was notapplied to this term).
3.4.5. Model fitting. Models were fit separately for each ecoprovince using
the "nis" function (75) in R (v4.2.0) (76). Observations were weighted in nls in
proportion to their inverse variance, with the weights determined as follows:
First, we fit unweighted models in nls. Second, we separated the observations
into x-bins of equal sample-size (typically 20 bins, but 10 bins in ecoprovinces
with insufficient data for 20 bins). Third, we calculated within each bin the mean
of y, the SD of the residuals (from the unweighted nls model), and the variance of
the residuals. For the biomass = flage) and growth = flage) analyses, the mean
was roughly proportional to the residual SD in most ecoprovinces, indicating
that the mean squared (y?) was roughly proportional to the residual variance.
Therefore, for these two model forms, we implemented inverse-variance weight-
ing of observations by assigning weights in bin i as1/¥; 2. In contrast, for the
growth = f(biomass) analysis, the mean was roughly proportional to the residual
variance in most ecoprovinces. Therefore, for this model form, we implemented
inverse-variance weighting of observations by assigning weights in bin i as
1/y;. Each model was fit to data from all bins simultaneously; thus, bins were
only used to assign weights and to visualize model predictions (S/ Appendix,
Figs. S8 and S9). We first attempted to fit models using the default Gauss-Newton
optimization method in nls; in cases where models failed to converge with the
Gauss-Newton method, we then used the "nl2sol" algorithm in n/s, constraining
model parameters to realistic ranges. Models were considered data-deficient (no
results reported) if the model failed to converge (with both nls methods described
above), if the model repeatedly converged on implausible parameter estimates
from different initial conditions, or if the estimated 95% Cl for 7 was wider than
10%y ™" (which we interpreted as a lack of useful information). We refer to these
cases as "data-deficient” because they were never observed in ecoprovinces with
n > 2,000 plot remeasurements. For conciseness in the Fig. 1 caption, we use
the phrase "model non-convergence” to refer to the broader set of data-deficient
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criteria described here. In some ecoprovinces with n < 2,000, models converged
with plausible and well-constrained parameter values for some model forms but
not others (Fig. 1). Thus, convergence is not a simple function of sample size and
likely depends on the signal-to-noise ratio, which may differ substantially among
the three model forms in each ecoprovince.
3.4.6. Alternative forms of analysis and data subsets. To evaluate the robust-
ness of the model results, we considered several alternative forms of analysis and
data subsets. Fitting models in n/s using unweighted observations led to similar
results as the inverse-variance weighting described above. We also considered two
approaches forimplementing plot-level random effects to account for covariance
across multiple remeasurements at a given plot location (on average 2.3 remeas-
urements, or 3.3 measurements, per plot in the East; and 1.1 remeasurements,
or 2.1 measurements, in the West). These methods included the nonlinear mixed
effects “nime” function in R (77) and a hierarchical Bayesian approach in JAGS
(78). However, both the nonlinear mixed effects models and plot-level random
effect parameters in the Bayesian models failed to converge, likely due to the
small, yet variable, number of remeasurements and weak plot-level covariance
of model residuals, suggesting that plot-level random effects were not necessary.
To evaluate effects of the unbalanced design (different numbers of remeasure-
ments at different plot locations), we analyzed a "temporally-balanced” dataset
(S1 Appendix, Fig. S4) that included two remeasurements per plot location, with
the first remeasurement date typically prior to 2010, and the second one typi-
cally after 2010. Plots that were only remeasured once were excluded from this
analysis. For plots with multiple remeasurements, we used only the first and
last remeasurements in this analysis, so that each plot was represented twice. To
evaluate the robustness of our results to harvest effects, we analyzed an "excluding
timber harvest" dataset (S Appendix, Fig. S4), in which we began with the full
dataset used in our main analyses, and then excluded plot locations where any
tree harvest was reported during any remeasurement interval.

3.5. Regional Productivity Trends: Weighted-Mean t Estimates. To quantify
regional productivity trends, we calculated weighted averages of the ecoprovince-
scale productivity trends (z; S/ Appendix, Tables S2-54) for the eastern and west-
ern United States (SI Appendix, Fig. S3). We used inverse-variance weighted
averaging because this method provides an unbiased and minimum-variance
estimate of the regional mean (79).The variance of each z estimate is the square
of its SE. We estimated the width of the 95% Cl for each regional mean as +1.96 x
O egiona Where oy, = 1/(X1/0%),and o?is the variance of the 7 estimate

in ecoprovince i (79).

3.6. Relating Productivity Trends to Changes in Climate. We quantified the
trend in the mean annual Palmer Drought Severity Index (PDSI) (80), mean annual
precipitation (MAP), and mean annual temperature (MAT) from 1972 to 2022
for each FIA plot location based on the approximate plot locations reported in
the public FIA database. These plot-level trends were then averaged within each
ecoprovince (Table 1). Precipitation and temperature data (4-km spatial resolu-
tion) were obtained from PRISM (81), and PDSI data (4-km spatial resolution)
were obtained from West Wide Drought Tracker (82). The mean rate of change
for PDSI, MAP, and MAT (APDSI: unitlessy ™', AMAP: mmy ™", and AMAT: °Cy~",
respectively) over the 50-y interval (1972 to 2022) for each FIA plot location was
estimated from ordinary least squares regressions of each climate variable vs.
year.To evaluate relationships between productivity trends () and climate change
variables, we first averaged APDSI, AMAP, and AMAT across all plot locations
within each ecoprovince, and we then regressed z vs. each climate change variable.
In these regressions, each z estimate was weighted by the inverse of its variance
(the square of the SE of the = estimate).

3.7. Partitioning Changes in Biomass Stocks. \We used the biomass = flage)
model to partition the annualized change in aboveground biomass stocks (AB,
Mg ha~'y™") into three components: change in B due to change in biomass
losses (AByigurbance ) Change in B due to productivity trends (AByqgyqiviy rend )
and change inB due to change in the stand age distribution (AB,, ). These three
components correspond, respectively, to the three components of Eq. 1, which,
for the biomass = flage) model, has the following form:

B = fy(disturbance) x f (year) x f (age). (4]
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Because thef, (disturbance)function requires fractional losses (L) calculated over
a remeasurement interval, quantifying change in f,(disturbance) requires three
or more measurements (two or more remeasurements). Therefore, we restricted
this analysis to the eastern United States, where two or more remeasurements
were available for a large sample of plots, and we used the temporally balanced
dataset (two remeasurements per plot location; SI Appendix, Fig. S4) to mini-
mize sampling effects. The parameter estimates used to partition AB (Eq. 4 fit
to the temporally balanced dataset for eastern US ecoprovinces) are reported in
Sl Appendix, Table S5.

We estimated the observed annualized change inB(AB,preq; Mg-ha "y ™)
as follows: We use "T" to denote a plot remeasurement date (previously
denoted as "t + At"), and we use the subscripts "first" and “last” to denote the
first and last remeasurements, respectively (i.e., the two remeasurements of
each plot in the temporally-balanced dataset). For a given plot, we calculated
ABobserved = (Blast - Bﬁrst)/(Tlast - Tfirst)' where Blast and Bfirst are the observed
biomass stocks at times Ty, and Ty, For each ecoprovince, we report the across-
plot mean of these AB .4 Values, and we estimate 95% Cls as =+ 1.96 times
the SEM (Fig. 3 and S/ Appendix, Figs. S6 and S7).

Our general approach to partitioning AB is to quantify the effect of each of
the three termsin Eq. 4 (using the parameter estimates in S/ Appendix, Table S5)
while holding the other two terms constant. Methods for estimating the ecoprov-
ince mean AB components and their uncertainties are explained in S/ Appendix,
Supplementary Information Text.

3.8. Limitations of FIA Data and Potential Biases. FIA provides an unbiased
sample of US forests on both publicand private land (36) but has several limita-
tions relevant to our study. First, although there is a large sample of plots, each
plotis relatively small, so that the plot-level data have high variance (noise). The
combination of noise and the limited sample size in some ecoprovinces likely
results in limited power to detect productivity trends. Thus, the non-significant
(or non-convergent) trends we report for some ecoprovinces do not provide
strong evidence for constant productivity over time. Second, the roughly 5- to
10-y plot remeasurement intervals preclude direct quantification of interannual
variability in carbon stocks and fluxes, which can be substantial (6); therefore,
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our analysis focuses on mean trends over ~1999 to 2020.Third, the limited tem-
poral resolution of remeasurements leads to underestimating rates of biomass
production (growth) because no direct measurements are available to quantify
the growth of individual trees that die or are harvested during remeasurement
intervals. While it is possible to estimate this unobserved growth component
using models, we restricted our analysis to growth that can be quantified directly
from the inventory data. This omission results in growth estimates that are too
low whenever mortality or harvest occur. However, this form of bias should
not qualitatively affect our estimated productivity trends, because our mod-
els account for mortality and harvest losses. Consistent with this expectation,
our productivity trend estimates were similar for data subsets that included or
excluded harvested plots (S/ Appendix, Fig. S4 and Table S1); i.e., harvest losses,
which would lead to greater underestimates of growth than natural mortality
alone, had little impact on our estimated productivity trends. Finally, FIAreports
biomass values that are estimated from allometries. Uncertainty or bias in the
allometries would lead to errors in the plot-level biomass stock and growth
values that we analyzed but are unlikely to systematically bias our main results.
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