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Abstract—Supervisory control of fuzzy discrete event systems
under partial observation is investigated in the paper. Without
loss of generality, we consider fuzzy discrete event systems with
constraints where a fuzzy discrete event system is modeled by
a fuzzy automaton. Sequences of events that can be generated
by the system are regarded as constraints and are modeled by
a crisp automaton. A supervisor is designed to control the fuzzy
discrete event system so that the supervised system is prevented
from entering a pre-specified set of illegal/unsafe fuzzy states. A
necessary and sufficient condition for the existence of a supervisor
is obtained. When the condition is satisfied, an online supervisor
can be designed. Fuzzy state estimation problem is first solved,
as the supervisor is fuzzy-state-estimate-based. A method is
developed to estimate fuzzy state iteratively after observation
of each new event. We show that the supervisor so developed
ensures the safety of the system and is least restrictive among
all possible safe supervisors. Potential of the theoretical results
for real-world application is illustrated through an example of
HIV/AIDS treatment decision-making.

Index Terms—Discrete event systems; fuzzy systems; fuzzy
discrete event systems; supervisory control; state estimates;
partial observation

I. INTRODUCTION

Discrete event systems (DES) are systems whose states are
discrete and whose dynamics are event driven. Many real
systems can be modeled as discrete event systems at some
level of abstraction. The development of DES theory started
in the 1980’s [1], [2]. Since then, researchers have investigated
supervisory control of DES [3], [4], diagnosability of DES [5],
[6], opacity of DES [7], [8], and other topics in DES.

While discrete event systems are most suitable to describe
engineering systems, where states are crisp, they are not
suitable to describe biomedical systems , where states are
vague. In [9], we propose to combine discrete event systems
with fuzzy logic and introduce fuzzy discrete event systems
(FDES). While in a DES, the system is in one and only
one state at any time (e.g., a computer is either on or
off), in an FDES, the system can be in several states with
different memberships (e.g., a patient’s health is excellent with
membership 0.2 and good with membership 0.7 at the same
time). We use fuzzy automata to model fuzzy discrete event
systems and investigate observability of DES in [9]. Since
the publication of [9], papers have been published by other
researchers in FDES. Control of FDES is investigated in [10],
[11], [12], [13], [14]. Observability of FDES is investigated
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in [15], [16], [17]. Diagnosability of FDES is investigated
in [18], [19], [20]. Theoretical results in FDES have been
applied to mobile robotics [21], where controllability and
observability are investigated, information service system [22],
and HIV/AIDS treatments [23], [24]. A recent survey of FDES
can be found in [25].

In this paper, we investigate control of FDES under partial
observation, which has never been studied in the literature
before. Without loss of generality, we consider fuzzy discrete
event systems with constraints (FDESwC) [26]. An FDESwC
can be described by one fuzzy automaton and one crisp
automaton. While the fuzzy automaton describes the fuzzy
discrete event system, the crisp automaton constraints the
sequences of events that can be generated by the system. An
FDES without constraints is a special cases of FDESwC when
the crisp automaton allows all possible sequences of events.

We use a controller called supervisor to control an FDESwC
in a way similar to supervisory control of DES. We assume that
some events are controllable and some events are observable.
A supervisor can only observe observable events. Based on
the sequence of observable events observed, the supervisor
disables some controllable events. The goal of the supervisor is
to ensure that the supervised system (the closed-loop system)
never enters a pre-specified set of illegal/unsafe fuzzy states

Since the system is under partial observation, in order to
design a supervisor, we first need to know how to estimate
the current fuzzy state of the fuzzy automaton and the crisp
state of the crisp automaton. This state estimation problem in
FDES turns out to be much more difficult to solve than the
corresponding state estimation problem in DES. The reason
for this difficulty is that while the number of the elements in
state space of a discrete event system is finite, the number of
the elements in state space of a fuzzy discrete event system
is infinite. As a result, in DES, the state estimate defined as
the set of states the system may be in can be calculated off-
line by constructing an observer (see, for example [4]); but
in FDESwC, the state estimate cannot be calculated off-line,
because, in the worst case, even if an observer exists, it may
have infinitely many states.

Furthermore, to estimate states in DES, the history of past
observations is irrelevant and can be forgotten. In other words,
for DES, if the current state estimate is known and a new
observable event is observed, then the new state estimate can
be calculated based on the current state estimate and the new
event without the need of knowing the past observations.
However, this is not the case for FDESwC. In FDESwC,
the new state estimate depends on not only the current state
estimate and the new event, but also on the past observations.



Because of these differences in state estimates of DES and
FDESwC, a new method is proposed in this paper to do state
estimation for FDESwC. The new method is an online method
that calculates state estimate iteratively. After observing a new
(observable) event, the state estimate is updated by taking
into consideration of the past observations. An algorithm is
proposed to implement the new method. The correctness of
the algorithm is formally proved.

Given a control specification, which is a set of illegal
or unsafe fuzzy states, a supervisor can be designed based
on state estimates. The supervisor is an online supervisor
that updates its control action (a set of enabled events) after
observing an observable event. A necessary and sufficient
condition is obtained for a supervisor that achieves the control
specification to exist.

If the necessary and sufficient condition is satisfied, an
algorithm is proposed to calculate the control action online.
Furthermore, we show that the control calculated by the
algorithm is least restrictive (or most permissive) in the sense
that it disables an event only when it is absolutely necessary.
To show possible applications of the theoretical results, we
use HIV/AIDS treatment decision making as an illustrative
example.

There are significant differences between state estimation
and supervisory control of crisp DES and those of fuzzy DES,
including but not limited to the following. (1) In crisp DES, the
number of illegal/unsafe states are finite, while in fuzzy DES,
the number of illegal/unsafe states are infinite. (2) In crisp
DES, the cardinality (number of elements) of state estimate
is bounded as more events are observed, while in fuzzy DES
the cardinality of state estimate is not bounded as more events
are observed. (3) In crisp DES, a supervisor can be designed
off-line, because the number of states in a supervisor is finite,
while in fuzzy DES, a supervisor cannot be designed off-line,
because the number of states in a supervisor may be infinite.
(4) In crisp DES, state estimation does not require the history
of events that occurred in the past, while in fuzzy DES, state
estimation does require the history of events that occurred
in the past. (5) In crisp DES, supervisory control does not
require the history of events that occurred in the past, while
in fuzzy DES, supervisory control does require the history of
events that occurred in the past. Because of these differences,
both state estimation and supervisory control are much more
difficult in fuzzy DES than in crisp DES.

The paper is organized as follows. In Section II, fuzzy
discrete event systems with constraints and other necessary
definitions and notations are reviewed. In Section III, fuzzy
state estimates are defined and the method to estimate fuzzy
states is developed. In Section IV, supervisory control of fuzzy
discrete event systems under partial observation is investigated.
An existence condition for a supervisor is obtained. An
algorithm is developed to calculate control if the existence
condition is satisfied. In Section V, an illustrative example of
HIV/AIDS treatment decision making is presented.

II. FUZZY DISCRETE EVENT SYSTEMS WITH CONSTRAINTS

In [9], fuzzy discrete event systems are introduced and
modeled by fuzzy automata of the form

G̃ = (Q̃, Σ̃, δ̃, θ̃o). (1)

The elements of a fuzzy automaton G̃ are defined as follows.
Q̃ = {q̃1, q̃2, ..., q̃n} is the set of n individual states. G̃ can
be in a set of individual states with different memberships
at the same time. The membership of G̃ in q̃i is denoted by
ei. We call the vector θ̃ = [e1 e2 ... en] the fuzzy state
(vector). In other words, a fuzzy state is an n-dimensional
(row) vector representing the memberships of G̃ in individual
states. The initial fuzzy state is denoted by θ̃o. The system
moves from one fuzzy state to another when an event occurs.
An event σ̃ is represented by an n× n matrix with elements
in the interval [0, 1]. The set of events are denoted by Σ̃. The
movement of the system from one fuzzy state to another after
the occurrence of an event is defined by the transition function
δ̃ as follows. If at the current fuzzy state θ̃, event σ̃ occurs, then
the next fuzzy state is δ̃(θ̃, σ̃). We define δ̃(θ̃, σ̃) as δ̃(θ̃, σ̃) =
θ̃◦σ̃, where ◦ denotes a fuzzy reasoning operator. Examples of
fuzzy reasoning operators include the max-product and max-
min operators. The theoretical results in this paper, including
all the theorems, are valid for any fuzzy reasoning operator.
The transition function δ̃ is extended to sequences of events
by δ̃(θ̃, s̃σ̃) = δ̃(δ̃(θ̃, s̃), σ̃).

Most fuzzy discrete event systems investigated in the litera-
ture are systems without constraints. Any sequences of events
can occur in an unconstrained system. In practical applications,
not all sequences of events can occur in a system. Hence, some
constraints must be added to fuzzy discrete event systems.
Therefore, we recently propose fuzzy discrete event systems
with constraints in [26]. A crisp automaton [1], [2], [4] is used
to specify constraints:

G = (Q,Σ, δ, qo, Qm), (2)

where Q is the set of (crisp) states; Σ is the set of events
corresponding to Σ̃; δ : Q×Σ→ Q is the transition function;
qo ∈ Q is the initial state; and Qm is the set of marked states.
The transition function δ is extended to sequences δ : Q ×
Σ∗ → Q in the usual way [4], where Σ∗ is the set of all
sequences of events in Σ, including the empty sequence ε.

The transition function δ(q, s) is a partial function (not
defined for all q and s). We use δ(q, s)! to denote the fact that
δ(q, s) is defined. The language generated by G is defined as

L(G) = {s ∈ Σ∗ : δ(qo, s)!}.

The language marked by G is defined as

Lm(G) = {s ∈ L(G) : δ(qo, s) ∈ Qm}.

If Q = Qm, then L(G) = Lm(G).
A sequence s ∈ L(G) represents a trajectory of the system.

A fuzzy discrete event system with constraints, introduced in
[26], is then given by

FDESwC = (G̃,G). (3)

FDESwC is constrained because only sequences of events
in L(G) can occur in FDESwC. Let us illustrate FDESwC
by the following example.



Example 1: Let us consider the following fuzzy discrete
event system with constraints FDESwC = (G̃,G). For the
fuzzy automaton G̃, the state space is Q̃ = {q̃1, q̃2, q̃3} with
n = 3; the events are Σ̃ = {α̃, β̃, γ̃, λ̃} with

α̃ =

 0.8 0.9 0.2
0.9 0.6 0.5
0.1 0.0 0.9


β̃ =

 0.9 0.2 0.1
0.1 0.4 0.4
0.9 0.8 0.9


γ̃ =

 0.7 0.0 0.6
0.9 0.8 0.7
0.6 0.9 0.7


λ̃ =

 0.4 0.0 0.2
0.3 0.4 0.1
0.1 0.3 0.1

 .
the initial state is θ̃o = [0.3 0.7 0.5]; and the transition
function δ̃(θ̃, σ̃) = θ̃ ◦ σ̃, where ◦ is the max-min fuzzy
reasoning operator in fuzzy logic theory.

Fig. 1. Automaton G of the system in Example 1. The initial state is q1,
denoted by →.

The constraint automaton G = (Q,Σ, δ, qo, Q) is shown in
Figure 1. The states are Q = {q1, q2, q3, q4}. The events are
Σ = {α, β, γ, λ}. The initial state is qo = q1. The transition
function is given in Figure 1 by showing the connections
between the states.

If the sequence αβ occurs in the system, the subsequent
states in the constraint system G is given by

δ(q1, α) = q2

δ(q1, αβ) = q4.

The corresponding fuzzy states in G̃ can be calculated as
follows:

δ̃(θ̃o, α̃) = θ̃o ◦ α̃

= [0.3 0.7 0.5] ◦

 0.8 0.9 0.2
0.9 0.6 0.5
0.1 0.0 0.9


= [0.7 0.6 0.5]

δ̃(θ̃o, α̃β̃) = θ̃o ◦ α̃ ◦ β̃

= [0.7 0.6 0.5] ◦

 0.9 0.2 0.1
0.1 0.4 0.4
0.9 0.8 0.9


= [0.7 0.5 0.5].

In the rest of the paper, we investigate fuzzy state estimation
and supervisory control of FDESwC under partial observa-
tion, which have never been investigated before.

III. FUZZY STATE ESTIMATES UNDER PARTIAL
OBSERVATION

If all events are observable, then the current fuzzy state is
unique and can be calculated iteratively as follows. (1) The
initial fuzzy state θ̃o is given and known. (2) If the current
fuzzy state is θ̃, then after the occurrence of a new event σ̃,
the new fuzzy state is θ̃ ◦ σ̃.

If not all events are observable, then the current fuzzy state
cannot be uniquely determined. The best we can do is to find
the current (fuzzy) state estimate, which is defined as the set of
all possible fuzzy states that the system may be in. We develop
a method to calculate state estimates iteratively in this section.

Let Σo ⊆ Σ be the set of all observable events and Σuo =
Σ − Σo be the set of all unobservable events. We make the
following assumption:

(A1) There exists no loop of unobservable events in G, that
is,

(∀q ∈ Q)(∀s ∈ Σ∗)δ(q, s) = q ⇒ s 6∈ Σ∗uo − {ε}. (A1)

Let P : Σ∗ → Σ∗o be the natural projection defined as

P (ε) = ε

P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo.

So, if a sequence of events s ∈ L(G) occurs in the system,
a supervisor will observe w = P (s). The set of all possible
observations is given by the language

P (L(G)) = {w ∈ Σ∗ : (∃s ∈ L(G))w = P (s)}.

If the current observation is w ∈ P (L(G)), then the set of
all possible sequences that may have occurred in the system
is given by

ρ(w) = P−1(w) ∩ L(G), (4)

where the inverse projection P−1 : Σ∗o → 2Σ∗ is defined as

P−1(w) = {s ∈ Σ∗ : P (s) = w}.

The fuzzy state estimate after observing w ∈ P (L(G)) is
formally defined as

Ẽ(w) = {θ̃o ◦ s̃ : s ∈ ρ(w)}. (5)

In order to calculate ρ(w) and Ẽ(w) iteratively, for each
sequence s ∈ ρ(w), let us remember its corresponding discrete
state qs = δ(qo, s) and fuzzy state θ̃s = δ̃(θ̃o, s̃) = θ̃o ◦ s̃ as
follows:

π(s) = (s, qs, θ̃s) = (s, δ(qo, s), θ̃o ◦ s̃).

Algorithm 1 calculates ρ(w), Ẽ(w), and π(s), for all s ∈
ρ(w) iteratively by first calculating ρ(w), Ẽ(w), and π(s), for
all s ∈ ρ(w) for w = ε, that is, before any event is observed,



and then updating ρ(w), Ẽ(w), and π(s), for all s ∈ ρ(w)
whenever a new event is observed.

Algorithm 1: State Estimation for FDESwC under Partial
Observation
Input: G = (Q,Σ, δ, qo), G̃ = (Q̃, Σ̃, δ̃, θ̃o), and observation

w ∈ P (L(G))
Output: State estimate Ẽ(w);

1: Initialization:
2: w = ε;
3: ρ(ε) = {s ∈ Σ∗ : s ∈ Σ∗uo ∧ δ(qo, s)!};
4: Ẽ(ε) = ∅;
5: for all s ∈ ρ(ε) do
6: qs = δ(qo, s);
7: θ̃s = θ̃o ◦ s̃;
8: π(s) = (s, qs, θ̃s);
9: Ẽ(ε) = Ẽ(ε) ∪ {θ̃s};

10: end for
11: wait for the next observable event σ to be observed
12: Iteration:
13: ρ(wσ) = ∅;
14: for all s ∈ ρ(w) do
15: µ(qs, σ) = {σu ∈ Σ∗ : u ∈ Σ∗uo ∧ δ(qs, σu)!};
16: ρ(wσ) = ρ(wσ) ∪ sµ(qs, σ);
17: end for
18: Ẽ((wσ) = ∅;
19: for all sσu ∈ ρ(wσ) do
20: qsσu = δ(qs, σu);
21: θ̃sσu = θ̃s ◦ σ̃ ◦ ũ;
22: π(sσu) = (sσu, qsσu, θ̃sσu);
23: Ẽ(wσ) = Ẽ(wσ) ∪ {θ̃sσu};
24: end for
25: w = wσ;
26: Go to Line 11.

The complexity of Algorithm 1 is given in the following
proposition, whose proof can be found in Appendix.

Proposition 1: The complexity of Algorithm 1 is linear
with respect to the length of w.

The correctness of Algorithm 1 is given in the following
theorem, whose proof can be found in Appendix.

Theorem 1: Under Assumption (A1), Algorithm 1 termi-
nates finitely. Furthermore, Ẽ(w) calculated in Algorithm
1 is the state estimate after observing w, that is, for all
w ∈ P (L(G)),

ρ(w) = P−1(w) ∩ L(G)

Ẽ(w) = {θ̃o ◦ s̃ : s ∈ ρ(w)}.

Let us illustrate the results by the following example.
Example 2: Let us consider the same fuzzy discrete event

system with constraints FDESwC = (G̃,G) as in Example
1. Let the observable events be Σo = {α, γ, λ}. Hence, Σuo =
{β}. Let us calculate some state estimates using Algorithm 1.

Initially, qo = q1, θ̃o = [0.3 0.7 0.5], and w = ε. We have,

ρ(ε) = {u ∈ Σ∗ : u ∈ Σ∗uo ∧ δ(qo, u)!} = {ε}
π(ε) = (ε, qε, θ̃ε) = (ε, qo, θ̃o)

= (ε, q1, [0.3 0.7 0.5])

Ẽ(ε) = {θ̃u : u ∈ ρ(ε)} = {θ̃ε}

= {[0.3 0.7 0.5]}.

If event α is first observed, then w = ε, σ = α, and ρ(w) =
ρ(ε) = {ε}. For s ∈ ρ(ε), that is, s = ε, calculate µ(qs, α) as

µ(qs, α) = µ(qε, α)

= {αu ∈ Σ∗ : u ∈ Σ∗uo ∧ δ(qs, αu)!}
= {α, αβ}.

Hence,

ρ(α) = ∪s∈ρ(w)sµ(qs, α)

= µ(qε, α)

= {α, αβ}.

For s ∈ ρ(α), calculate π(s) as

π(α) = (α, δ(qo, α), θ̃o ◦ α̃)

= (α, δ(q1, α), [0.3 0.7 0.5] ◦ α̃)

= (α, q2, [0.7 0.6 0.5])

π(αβ) = (αβ, δ(qo, αβ), θ̃o ◦ α̃ ◦ β̃)

= (αβ, δ(q1, αβ), [0.3 0.7 0.5] ◦ α̃ ◦ β̃)

= (αβ, q4, [0.7 0.5 0.5]).

Therefore,

Ẽ(α) = {θ̃s : s ∈ ρ(α)}
= {[0.7 0.6 0.5], [0.7 0.5 0.5]}.

If another α is observed next, then w = α, σ = α, and
ρ(w) = ρ(α) = {α, αβ}. Using Algorithm 1, we can find

Ẽ(αα) = {θ̃s : s ∈ ρ(αα)}
= {[0.7 0.7 0.5]}.

IV. CONTROL OF FUZZY DISCRETE EVENT SYSTEMS
UNDER PARTIAL OBSERVATION

In this section, we investigate control problem in fuzzy dis-
crete event systems under partial observation. The supervisory
control framework [1], [2], [4], [3] is used to ensure that the
controlled FDESwC will never enter a set of illegal/unsafe
fuzzy states.

The controller used in supervisory control is called super-
visor and denoted by S . A supervisor can observe events in
the observable event set Σo. Based on its observation, the
supervisor can disable some controllable events. Denote the set
of all controllable events by Σc. The set of all uncontrollable
events is denoted by Σuc = Σ− Σc.

When a sequence of events s ∈ L(G) occurred in the
system, the supervisor observes w = P (s). Based on this
observation, the supervisor S decides which events are enabled
and which events are disabled. Hence, the supervisor issues
a control commend S(w), which is a subset of events, that
is, S(w) ⊆ Σ. All events that are not in S(w) are disabled.
Among the events in S(w), which event will actually occur is
determined by the system FDESwC (not by the supervisor
S). After a new event occurs, the supervisor may update its



Fig. 2. Architecture of supervisory control. Projection P describes partial
observation and S(P (s)) is the control after observing P (s).

control (if the event is observable) or do nothing (if the event is
unobservable). This supervisory control architecture is shown
in Figure 2.

Therefore, a supervisor S can be formally defined as a
mapping

S : P (L(G))→ 2Σ, (6)

where it is required that for all w ∈ P (L(G)), Σuc ⊆ S(w),
that is, all uncontrollable events are always enabled.

The supervised system is denoted by S/G. The language
generated by the supervised system, denoted by L(S/G), is
defined recursively as

(1) ε ∈ L(S/G),

(2) (∀s ∈ L(S/G))(∀σ ∈ Σ)sσ ∈ L(S/G)

⇔ (sσ ∈ L(G) ∧ σ ∈ S(P (s))).

(7)

Initially, no event has occurred and hence ε ∈ L(S/G).
After the occurrence of sequence s ∈ L(S/G), the next event
σ can occur in the supervised system if and only if σ is feasible
in G (that is, sσ ∈ L(G)), and σ is allowed by S (that is,
σ ∈ S(P (s))).

The fuzzy discrete event systems under the supervisory
control is denoted by

S/FDESwC = (G̃,S/G).

In other words, for S/FDESwC, the new constraint is
S/G. The control objective is to ensure that the supervised
system S/FDESwC never enters any illegal/unsafe fuzzy
states. Denote the set of all illegal/unsafe fuzzy states by
Θb ⊆ [0, 1]n. Then the control objective can be formally
specified as

(∀s ∈ L(S/G))δ̃(θ̃o, s̃) 6∈ Θb. (8)

If a supervisor S satisfies Equation (8), then we say that S
is valid. To design a valid supervisor, we make the following
assumption.

(A2) There exists no loop of uncontrollable events in G,
that is,

(∀q ∈ Q)(∀s ∈ Σ∗)δ(q, s) = q ⇒ s 6∈ Σ∗uc − {ε}. (A2)

(A3) All controllable events are observable, that is,

(∀σ ∈ Σ)σ ∈ Σc ⇒ σ ∈ Σo. (A3)

Under Assumptions (A1), (A2), and (A3), a valid supervisor
S◦ can be designed as follows. After observing w ∈ P (L(G)),
ρ(w) and π(s), for all s ∈ ρ(w), can be calculated using
Algorithm 1. We then use Algorithm 2 to calculates control
S◦(w) iteratively by first calculating S◦(w) for w = ε, that
is, before any event is observed, and then updating S◦(w)
whenever a new event is observed.

Algorithm 2: Supervisory Control Design for FDESwC un-
der Partial Observation
Input: G = (Q,Σ, δ, qo), G̃ = (Q̃, Σ̃, δ̃, θ̃o), Θb, Σuc, w ∈

P (L(G)), ρ(w) and π(s) = (s, qs, θ̃s), for all s ∈ ρ(w)
Output: S◦(w);

1: S◦(w) = Σuc;
2: for all σ ∈ Σc do
3: for all s ∈ ρ(w) do
4: η(qs, σ) = {σu ∈ Σ∗ : u ∈ Σ∗uc ∧ δ(qs, σu)!} ;
5: end for
6: if (∀s ∈ ρ(w))(∀σu ∈ η(qs, σ))δ̃(θ̃s, σ̃ũ) 6∈ Θb then
7: S◦(w) = S◦(w) ∪ {σ};
8: end if
9: end for

10: End.
The complexity of Algorithm 2 is given in the following

proposition, whose proof can be found in Appendix.
Proposition 2: The complexity of Algorithm 2 is linear

with respect to the length of w.
The correctness of Algorithm 2 is given in the following

theorem, whose proof can be found in Appendix.
Theorem 2: Under Assumptions (A1), (A2), and (A3), Al-

gorithm 2 terminates finitely. Furthermore, a valid supervisor
exists if and only if

(∀u ∈ Σ∗uc ∩ L(G))δ̃(θ̃o, ũ) 6∈ Θb.

If the above condition is satisfied, then supervisor S◦ obtained
in Algorithm 2 is a valid supervisor, that is,

(∀s ∈ L(S◦/G))δ̃(θ̃o, s̃) 6∈ Θb.

Let us now investigate how to design a valid supervisor
that is least restrictive (or most permissive). Formally, we say
that supervisor S is less restrictive than supervisor S ′ [4], [3],
denoted by S ′ ≤ S , if

(∀w ∈ P (L(G)))S ′(w) ⊆ S(w).

The proof of the following proposition can be found in
Appendix.

Proposition 3: If supervisor S is less restrictive than super-
visor S ′, that is, S ′ ≤ S , then the language generated by S ′
is equal to or contained in the language generated by S , that
is,

L(S ′/G) ⊆ L(S/G).

Proposition 3 implies that if a supervisor S is valid, then
a more restrictive supervisor S ′ ≤ S is also valid. We want
to find the least restrictive valid supervisor if possible. To this
end, denote the set of all valid supervisors with respect to Θb

as

V S(Θb) = {S : (∀s ∈ L(S/G))δ̃(θ̃o, s̃) 6∈ Θb}.



We say that a valid supervisor S� ∈ V S(Θb) is least
restrictive if

(∀S ∈ V S(Θb))L(S/G) ⊆ L(S�/G).

We can now have the following theorem, whose proof can
be found in Appendix.

Theorem 3: Under Assumptions (A1), (A2), and (A3), if
(∀u ∈ Σ∗uc∩L(G))δ̃(θ̃o, ũ) 6∈ Θb, then supervisor S◦ obtained
in Algorithm 2 is the least restrictive valid supervisor.

Note that Assumptions (A2) and (A3) together imply As-
sumption (A1).

Let us illustrate the results of this section using the follow-
ing example.

Example 3: Let us consider again the same FDESwC =
(G̃,G) as in Examples 1 and 2. Let the controllable events be
Σc = {α, γ}. Hence, Σuc = {β, λ}. Define the unsafe/illegal
(fuzzy) states as

Θb = {θ̃ = [e1 e2 e3] : ei < 0.45, i = 1, 2, 3}.

We design supervisor online using Algorithm 2 as follows.
Initially, w = ε and ρ(w) = {ε}. Let us determine if σ =

α ∈ Σc shall be enabled or disabled. For s = ε ∈ ρ(w) (the
only string in ρ(w)), qs = q1 and θ̃s = [0.3 0.7 0.5]. Using
Algorithm 2,

η(qs, α) = {αu ∈ Σ∗ : u ∈ Σ∗uc ∧ δ(qs, αu)!}
= {α, αβ}

δ̃(θ̃s, α̃) = [0.7 0.6 0.5] 6∈ Θb

δ̃(θ̃s, α̃β̃) = [0.7 0.7 0.5] 6∈ Θb.

Since (∀s ∈ ρ(w))(∀αu ∈ η(qs, α))δ̃(θ̃s, α̃ũ) 6∈ Θb is true, α
is enabled.

Similarly, we can determine γ shall be enabled because
η(qs, γ) = ∅ and hence (∀s ∈ ρ(w))(∀γu ∈ η(qs, γ))
δ̃(θ̃s, γ̃ũ) 6∈ Θb is true. Note that since γ is not defined in q1,
its enablement or disablement will not make any difference.

Since α is the only event that can occur in S◦/G initially, it
will occur and be observed. Then w = α and ρ(w) = {α, αβ}.

For s = α ∈ ρ(w), qs = q2 and θ̃s = [0.7 0.6 0.5]. Using
Algorithm 2,

η(qs, α) = {α}
δ̃(θ̃s, α̃) = [0.7 0.7 0.5] 6∈ Θb

η(qs, γ) = {γ, γλ}
δ̃(θ̃s, γ̃) = [0.7 0.6 0.6] 6∈ Θb

δ̃(θ̃s, γ̃λ̃) = [0.4 0.4 0.2] ∈ Θb.

For s = αβ ∈ ρ(w), qs = q4 and θ̃s = [0.7 0.5 0.5].
Using Algorithm 2,

η(qs, α) = {α}
δ̃(θ̃s, α̃) = [0.7 0.7 0.5] 6∈ Θb

η(qs, γ) = ∅.

Since (∀s ∈ ρ(w))(∀αu ∈ η(qs, α))δ̃(θ̃s, α̃ũ) 6∈ Θb is true,
α is enabled.

Since (∀s ∈ ρ(w))(∀γu ∈ η(qs, γ))δ̃(θ̃s, γ̃ũ) 6∈ Θb is false,
γ is disabled.

V. ILLUSTRATIVE EXAMPLE OF HIV/AIDS TREATMENT
DECISION MAKING

In this section, we present an illustrative example from
HIV/AIDS treatment decision making [27], [28], [29] to
demonstrate the theoretical results obtained in the previous
sections. The background on using fuzzy discrete event sys-
tems for HIV/AIDS treatment decision making can be found
in [23], [24], [30]. While most medicine-related aspects of
this example reflect a real-world situation (e.g., patient states
and drugs used), it is still only an illustrative example because
the event matrices used in this section are not obtained from
patient data. Indeed, finding event matrices from patient data
is a big job, involving collecting patient data and deriving
the event matrices, probably using some self-learning methods
such as those discussed in [31], [32], [33], [34], [35]. This is
beyond the scope of this paper.

For HIV/AIDS treatment decision making, the fuzzy au-
tomaton G̃ = (Q̃, Σ̃, δ̃, θ̃o) is given as follows. The individual
states are

Q̃ = {q̃1, q̃2, q̃3},

where
q̃1 denotes “CD4 cell counts is low”
q̃2 denotes “HIV RNA level is high”
q̃3 denotes “side effects are low”

and “low” and “high” are characterized by fuzzy sets.
Initially, an HIV/AIDS patient’s CD4 cell counts is some-

what low (say, less than 200), HIV RNA level is somewhat
high (say, more than 100,000), and there are no side effects of
drug (drug is yet to be taken). Hence, the initial fuzzy state is

θ̃o = [1 1 1].

The goal of HIV/AIDS treatment is to increase CD4 cell
counts (to raise body’s defense against the virus) and decrease
HIV RNA level (to kill the virus) with as little side effects as
possible. Thus, the target fuzzy state is

θ̃target = [0 0 1].

The treatment by a doctor consists of selecting one of the
following four oral medication regimens [30]:

Regimen 1: efavirenz + zidovudine/lamivudine
Regimen 2: nelfinavir + zidovudine/lamivudine
Regimen 3: nevirapine + zidovudine/lamivudine
Regimen 4: abacavir/zidovudine/lamivudine

A patient receiving the drugs prescribed by the doctor may
fully adhere to the treatment (i.e., taking the drugs as instructed
by the doctor). For various reasons (e.g., homeless, side effects
of the drugs), some patients may fail to take the drugs
sometimes or all the times, which is clinically referred as
the adherence problem. In HIV/AIDS treatment, adherence is
very important. If the patient adheres to the regimen, then
his/her CD4 cell counts will increase and HIV RNA level will
decrease. If the patient does not adhere to the regimen, then not
only his/her CD4 cell counts and HIV RNA level will not reach
the desired levels, but also the virus will develop resistance
to the regimen. This will lead to the regimen to become
ineffective. When that happens, the doctor may prescribe a
different regimen. Since the number of regimens are limited



(4 in this example), if the patient does not adhere to the
prescribed regimen, he/she will eventually run out of treatment
options and suffers declined health.

To model the treatment, we define the following events:

Σ̃ = {α̃i, β̃i, γ̃i : i = 1, 2, 3, 4},

where
α̃i denotes “Regimen i is prescribed by the doctor”
β̃i denotes “the patient adheres to Regimen i, leading to

higher regiment potency”
γ̃i denotes “the patient does not adhere to Regimen i,

leading to lower regiment potency”
Let us now define fuzzy event matrices as follows. Since

α̃i denotes “Regimen i is prescribed by the doctor” and the
patient has not taken the regimen yet, the event matrices of
α̃i are all 3× 3 identity matrix, that is,

α̃1 = α̃2 = α̃3 = α̃4 =

 1 0 0
0 1 0
0 0 1

 .
Among the four regimens, Regimen 1 is most potent and

Regimen 4 is least potent. On the other hand, Regimen 4
has the least side effects and Regimen 2 has the most side
effects [30]. Accordingly, the event matrices of β̃i are given
as follows:

β̃1 =

 0.1 0.1 0
0 0.1 0
0 0 0.8

 β̃2 =

 0.15 0.1 0
0.1 0.15 0
0 0 0.7


β̃3 =

 0.15 0 0
0.1 0.15 0
0 0 0.8

 β̃4 =

 0.2 0.1 0
0.1 0.2 0
0 0 0.9

 .
If the patient does not adhere to the regimen, then the

potency of the regimen will be significantly reduced. Accord-
ingly, the event matrices of γ̃i are given as follows:

γ̃1 =

 0.5 0.1 0
0 0.5 0
0 0 0.8

 γ̃2 =

 0.6 0.1 0
0.1 0.6 0
0 0 0.7


γ̃3 =

 0.6 0 0
0.1 0.6 0
0 0 0.8

 γ̃4 =

 0.7 0.1 0
0.1 0.7 0
0 0 0.9

 .
Let us now consider the crisp automaton G = (Q,Σ, δ,

qo, Q) describing the constrains. Clearly, the patient can take
a regimen only after it is prescribed by the doctor. Hence,
constraint automaton Gi for Regimen i is as shown in Fig. 3.

Fig. 3. Automaton Gi for Regimen i.

Since a treatment sequence consists of using four different
regimens one by one, there are 4! = 24 possible treatment
sequences. For example, the treatment sequence of using
Regimen 1, then Regimen 2, Regimen 3, and finally Regimen 4
is shown in Fig. 4, which is a part of the constraint automaton.
The entire constraint automaton G contains all the 24 treatment
sequences and is too big to be shown here.

Fig. 4. Part of automaton G for the treatment sequence of using Regimen
1, Regimen 2, Regimen 3, and Regimen 4 .

In G = (Q,Σ, δ, qo, Q), the corresponding event set is
denoted by Σ = {αi, βi, γi : i = 1, 2, 3, 4}. Clearly, events
βi and γi are uncontrollable and unobservable (from doctor’s
point of view), that is, Σo = Σc = {αi : i = 1, 2, 3, 4}. It
can be checked that Assumptions (A1), (A2), and (A3) are all
satisfied.

Let us now design a supervisor S such that the supervised
system S/FDESwC will never enter illegal/unsafe fuzzy
states Θb. Depending on patient’s condition, Θb may be
different. Let us consider two cases.

Case 1: If a patient condition is very bad, then it is important
to increase patient’s CD4 cell counts and decrease HIV RNA
level. In this case, side effects are of a lesser concern. Hence,
the illegal/unsafe fuzzy states are given by

Θb = {θ̃ = [θ̃1 θ̃2 θ̃3] : θ̃ 6= θ̃o ∧ θ̃1 > 0.65 ∧ θ̃2 > 0.65}.

Before the start of treatment, the supervisor observes noth-
ing: w = ε. Thus,

ρ(w) = P−1(w) ∩ L(G) = {ε}
π(ε) = (ε, qε, θ̃ε) = (ε, qo, θ̃o).

Let us calculate S◦(ε) using Algorithm 2 as follows. Ini-
tially,

S◦(ε) = Σuc = {βi, γi, : i = 1, 2, 3, 4}.

For σ = α1 ∈ Σc,

η(qε, α1) = {α1, α1β1, α1γ1}
δ̃(θ̃ε, α1) = [1 1 1]

δ̃(θ̃ε, α1β1) = [0.1 0.1 0.8]

δ̃(θ̃ε, α1γ1) = [0.5 0.5 0.8].

Since (∀s ∈ ρ(ε))(∀σu ∈ η(qs, σ))δ̃(θ̃s, σ̃ũ) 6∈ Θb is true,

S◦(ε) = S◦(ε) ∪ {α1}.

In other words, prescribing Regimen 1 is allowed (enabled)
by the supervisor.



Similarly, for σ = α2 and σ = α3, we have α2 ∈ S◦(ε)
and α3 ∈ S◦(ε). Hence, prescribing Regimens 2 and 3 are
also allowed by the supervisor.

On the other hand, for α4, we have

η(qε, α4) = {α4, α4β4, α4γ4}
δ̃(θ̃ε, α4) = [1 1 1]

δ̃(θ̃ε, α4β4) = [0.2 0.2 0.7]

δ̃(θ̃ε, α4γ4) = [0.7 0.7 0.9].

Since (∀s ∈ ρ(ε))(∀σu ∈ η(qs, σ))δ̃(θ̃s, σ̃ũ) 6∈ Θb is not true,
α4 6∈ S◦(ε). In other words, for patients whose conditions are
very bad, Regimen 4 shall not be used. Hence,

S◦(ε) = {α1, α2, α3}.

Now, suppose that Regimen 1 is prescribed by the doctor,
that is, w = α1. Then,

ρ(α1) = P−1(α1) ∩ L(G) = {α1, α1β1, α1γ1}
π(α1) = (α1, qα1

, [1 1 1])

π(α1β1) = (α1β1, qα1β1
, [0.1 0.1 0.8])

π(α1γ1) = (α1γ1, qα1γ1 , [0.5 0.5 0.8]).

Let us calculate S◦(α1) using Algorithm 2 as follows.
Initially,

S◦(α1) = Σuc = {βi, γi, : i = 1, 2, 3, 4}.

Because of the constraint automaton G, α1 is no longer
possible (η(qs, α1) = ∅). For σ = α2 ∈ Σc and s = α1β1, we
have

η(qα1β1 , α2) = {α2, α2β2, α2γ2}
δ̃(θ̃α1β1 , α2) = [0.1 0.1 0.8]

δ̃(θ̃α1β1
, α2β2) = [0.1 0.1 0.7]

δ̃(θ̃α1β1
, α2γ2) = [0.1 0.1 0.7].

Since (∀s ∈ ρ(ε))(∀σu ∈ η(qs, σ))δ̃(θ̃s, σ̃ũ) 6∈ Θb is true,

S◦(ε) = S◦(ε) ∪ {α2}.

In other words, prescribing Regimen 2 is allowed by the
supervisor. Similarly, prescribing Regimens 3 and 4 are also
allowed by the supervisor. Therefore,

S◦(α1) = {α2, α3, α4}.

This process will continue until all the four regimens are used.

Case 2: If a patient can hardly tolerate side effects (say,
because of another illness), then it is important to keep the
side effects of a regimen to be prescribed low. In this case,
the illegal/unsafe fuzzy states are given by

Θb = {θ̃ = [θ̃1 θ̃2 θ̃3] : θ̃ 6= θ̃o ∧ θ̃3 > 0.75}.

Using Algorithm 2, the control is calculated as follows.
Initially

S◦(ε) = {α1, α3, α4}.

In other words, Regimen 2 shall not be prescribed. If Regimen
3 is prescribed by the doctor, then the next control is calculated
as

S◦(α3) = {α1, α2, α4}.

VI. CONCLUSIONS

We investigate supervisory control of fuzzy discrete event
systems with constraints under partial observation in this
paper, which is a much more difficult problem than the prob-
lem of supervisory control under full observation. The main
contributions of the paper are summarized as follows. (1) We
propose supervisory control of fuzzy discrete event systems
by using a supervisor to control the constraint automaton so
that the supervised system will never enter illegal or unsafe
fuzzy states. (2) An algorithm is developed to estimate fuzzy
states iteratively online after each and every observation of
observable event. (3) A necessary and sufficient condition is
derived for the existence of a supervisor that achieves the
control objective. (4) Another algorithm is developed to calcu-
late control online if the necessary and sufficient is satisfied.
(5) We show that the control calculated by the algorithm is
least restrictive. (6) The application of the theoretical results
to HIV/AIDS treatment decision making is illustrated.

Nowadays, more and more systems are networked systems
in the sense that systems and controllers are connected via
shared communication networks. In such networked systems,
communication delays and losses are unavoidable. In the
future, we plan to investigate supervisory control of networked
fuzzy discrete event systems, where there are delays and losses
in both observation channels and control channels.

VII. APPENDIX

Proof of Theorem 1:
Because of Assumption (A1), for all w ∈ P (L(G)), ρ(w) is

a finite set. Hence, Algorithm 1 terminates finitely. We prove
that

ρ(w) = P−1(w) ∩ L(G)

Ẽ(w) = {θ̃o ◦ s̃ : s ∈ ρ(w)}

by induction on the length |w| of w.

Base: For |w| = 0, that is, w = ε, we have, by Line 3 of
Algorithm 1,

ρ(ε) = {s ∈ Σ∗ : s ∈ Σ∗uo ∧ δ(qo, s)!}
= P−1(ε) ∩ L(G).

By Lines 4-10 of Algorithm 1, for all s ∈ ρ(ε),

π(s) = (s, qs, θ̃s)

= (s, δ(qo, s), θ̃o ◦ s̃).

Also,

Ẽ(ε) = ∪s∈ρ(ε){θ̃s}
= {θ̃s : s ∈ ρ(ε)}
= {θ̃o ◦ s̃ : s ∈ ρ(ε)}.



Induction Hypothesis: Assume that for all w ∈ P (L(G)) such
that |w| ≤ n,

ρ(w) = P−1(w) ∩ L(G)

Ẽ(w) = {θ̃o ◦ s̃ : s ∈ ρ(w)}.

Induction Step: We prove that for all wσ ∈ P (L(G)) such
that σ ∈ Σo and |wσ| = n+ 1,

ρ(wσ) = P−1(wσ) ∩ L(G)

Ẽ(wσ) = {θ̃o ◦ s̃ : s ∈ ρ(wσ)}.

By Lines 13-17 of Algorithm 1, we have

ρ(wσ) = ∪s∈ρ(w) sµ(qs, σ)

={sσu ∈ Σ∗ : s ∈ ρ(w) ∧ σu ∈ µ(qs, σ)}
={sσu ∈ Σ∗ : s ∈ ρ(w) ∧ u ∈ Σ∗uo

∧ δ(qs, σu)!}
={sσu ∈ Σ∗ : s ∈ ρ(w) ∧ P (σu) = σ

∧ δ(qs, σu)!}
={sσu ∈ Σ∗ : s ∈ P−1(w) ∩ L(G)

∧ P (σu) = σ ∧ δ(qs, σu)!}
(by Induction Hypothesis)

={sσu ∈ Σ∗ : P (s) = w ∧ s ∈ L(G)

∧ P (σu) = σ ∧ δ(qs, σu)!}
={sσu ∈ Σ∗ : P (s) = w ∧ P (σu) = σ

∧ sσu ∈ L(G)}
={sσu ∈ Σ∗ : P (sσu) = wσ ∧ sσu ∈ L(G)}
={sσu ∈ Σ∗ : P (sσu) = wσ} ∩ L(G)

=P−1(wσ) ∩ L(G).

By Lines 18-24 of Algorithm 1, we have, for all sσu ∈
ρ(wσ),

π(sσu) = (sσu, qsσu, θ̃sσu)

= (sσu, δ(qs, σu), θ̃s ◦ σ̃ ◦ ũ)

= (sσu, δ(qo, sσu), θ̃o ◦ s̃ ◦ σ̃ ◦ ũ).

Also,

Ẽ(wσ) = ∪sσu∈ρ(wσ) {θ̃sσu}
={θ̃sσu : sσu ∈ ρ(wσ)}
={θ̃o ◦ s̃ ◦ σ̃ ◦ ũ : sσu ∈ ρ(wσ)}
={θ̃o ◦ s̃′ : s′ ∈ ρ(wσ)}

(let s′ = sσu).

Proof of Theorem 2:
Because of Assumptions (A1) and (A2), for all w ∈

P (L(G)) and s ∈ ρ(w), ρ(w) and η(qs, σ) are finite sets.
Hence, Algorithm 2 terminates finitely. We now prove the rest
of the theorem.

(“IF” Part) We prove that if (∀u ∈ Σ∗uc ∩ L(G))δ̃(θ̃o, ũ) 6∈
Θb is true, then the supervisor S◦ obtained in Algorithm 2 is
a valid supervisor by contradiction as follows.

Suppose that S◦ is not a valid supervisor, then

¬(∀s ∈ L(S◦/G))δ̃(θ̃o, s̃) 6∈ Θb

⇔(∃s ∈ L(S◦/G))δ̃(θ̃o, s̃) ∈ Θb.

Let s ∈ L(S◦/G) be the shortest sequence such that
δ̃(θ̃o, s̃) ∈ Θb. In other words, (∀s′ ≤ s)s′ 6= s⇒ δ̃(θ̃o, s̃′) 6∈
Θb, where s′ ≤ s denotes that s′ is a prefix of s. We consider
two possible cases for s.
Case 1: All events in s are uncontrollable, that is, s ∈ Σ∗uc. In
this case, s ∈ Σ∗uc ∩ L(G) ∧ δ̃(θ̃o, s̃) ∈ Θb, which contradicts
the assumption

(∀u ∈ Σ∗uc ∩ L(G))δ̃(θ̃o, ũ) 6∈ Θb.

Case 2: There exists at least one controllable event in s, that
is, s 6∈ Σ∗uc. Let σ ∈ Σc be the last controllable event in s. By
Assumption (A3), σ ∈ Σo. Hence, Algorithm 2 can make the
decision on enabling or disabling σ just before its occurrence.

We can write s as s = s′σu, where u ∈ Σ∗uc. Let w = P (s′).
Then s′ ∈ ρ(w) = P−1(w) ∩ L(G). Thus, we have

(∃s′ ∈ ρ(w))(∃σu ∈ η(qs′ , σ))δ̃(θ̃s′ , σ̃ũ) ∈ Θb

(because δ̃(θ̃o, s̃) ∈ Θb)

⇔¬(∀s′ ∈ ρ(w))(∀σu ∈ η(qs′ , σ))δ̃(θ̃s′ , σ̃ũ) 6∈ Θb.

Hence, the condition in the “if” statement of Line 6 in
Algorithm 2 is not satisfied. Therefore, by the definition of
L(S◦/G),

σ 6∈ S◦(w)⇒ s 6∈ L(S◦/G),

which is a contradiction.

(“ONLY IF” Part) We need to prove that if (∀u ∈ Σ∗uc ∩
L(G))δ̃(θ̃o, ũ) 6∈ Θb is false, then no valid supervisor exists.
Indeed,

¬(∀u ∈ Σ∗uc ∩ L(G))δ̃(θ̃o, ũ) 6∈ Θb

⇔(∃u ∈ Σ∗uc ∩ L(G))δ̃(θ̃o, ũ) ∈ Θb.

Because any supervisor S must enable all uncontrollable
events, u ∈ Σ∗uc implies u ∈ L(S/G). Hence, for any
supervisor S ,

(∃u ∈ L(S/G))δ̃(θ̃o, ũ) ∈ Θb,

that is, S is not valid. Therefore, no valid supervisor exists.

Proof of Proposition 1:
Clearly, the complexity of Algorithm 1 is determined (that

is, bounded) by the cardinality of ρ(w) = P−1(w) ∩ L(G),
denoted by |ρ(w)|. To find |ρ(w)|, let us denote the automaton
marking w by H(w). H(w) can be constructed as follows.
Denote w = σ1σ2...σ|w|, where |w| is the length of w. Then

H(w) = (X,Σo, ξ, xo, Xm).



The state set of H(w) is X = {0, 1, 2, ..., |w|}. The transition
function ξ is defined as, for x ∈ X and σ ∈ Σo,

ξ(x, σ) =

{
x+ 1 if σ = σx+1

undefined otherwise.

The initial state is xo = 0. The marked state set is Xm =
{|w|}. Clearly Lm(H(w)) = {w}. Using H(w), we have

ρ(w) = P−1(w) ∩ L(G)

= P−1(Lm(H(w))) ∩ L(G)

= Lm(SL(Hm(w))×G),

where SL(.) denotes the operator of adding self-loops of
unobservable events at all states, and × denotes the product
of automata. It is well-known [4] that the number of states in
SL(Hm(w))×G is bounded by |X| × |Q|.

By Assumption (A1), ρ(w) is finite. Thus, there are no loops
in the automaton SL(Hm(w))×G. Hence, the cardinality of
ρ(w) is bounded by the number of states in SL(Hm(w))×G.
Therefore,

|ρ(w)| ≤ |X| × |Q| = (|w|+ 1)× |Q|.

In other words, the cardinality of ρ(w) increases linearly as
the length of w increases, which implies that the complexity
of Algorithm 1 is linear with respect to the length of w.

Proof of Proposition 2:
The proof of Proposition 2 is similar to that of Proof of

Proposition 1.

Proof of Proposition 3: Assume S ′ ≤ S . We prove that, for
all s ∈ L(G),

s ∈ L(S ′/G)⇒ s ∈ L(S/G)

by induction on the length |s| of s.
Base: By definition, ε ∈ L(S ′/G) and ε ∈ L(S/G).

Therefore, for |s| = 0, that is, s = ε, we have

s ∈ L(S ′/G)⇒ s ∈ L(S/G).

Induction Hypothesis: Assume that for all s ∈ L(G), |s| ≤
m,

s ∈ L(S ′/G)⇒ s ∈ L(S/G).

Induction Step: We show that for all sσ ∈ L(G), σ ∈ Σ,
|sσ| = m+ 1,

sσ ∈ L(S ′/G)⇒ sσ ∈ L(S/G).

Indeed, by the definition of large language, Equation (7),
we have,

sσ ∈ L(S ′/G)

⇒s ∈ L(S ′/G) ∧ sσ ∈ L(G) ∧ (σ ∈ Σuc ∨ σ ∈ S(P (s′)))

⇒s ∈ L(S/G) ∧ sσ ∈ L(G) ∧ (σ ∈ Σuc ∨ σ ∈ S(P (s′)))

(by Induction Hypothesis )

⇒s ∈ L(S/G) ∧ sσ ∈ L(G) ∧ (σ ∈ Σuc ∨ σ ∈ S(P (s)))

(because S ′ ≤ S)

⇒sσ ∈ L(S/G).

Proof of Theorem 3:
Let us prove the result by contradiction. Suppose that

the supervisor S◦ obtained in Algorithm 2 is not the least
restrictive valid supervisor. Then

(∃S ∈ V S(Θb))L(S/G) 6⊆ L(S◦/G)

⇒(∃S ∈ V S(Θb))(∃s′′ ∈ L(G))

s′′ ∈ L(S/G) ∧ s′′ 6∈ L(S◦/G)

⇒(∃S ∈ V S(Θb))(∃sσ ∈ L(G))σ ∈ Σ

∧ sσ ∈ L(S/G) ∧ s ∈ L(S◦/G) ∧ sσ 6∈ L(S◦/G)

(let sσ be the shortest s′′).

For such sσ, we have

s ∈ L(S◦/G) ∧ sσ 6∈ L(S◦/G)

⇒¬(σ ∈ Σuc ∨ σ ∈ S◦(P (s)))

⇒σ ∈ Σc ∧ σ 6∈ S◦(P (s))

⇒σ ∈ Σc ∧ ¬(∀s′ ∈ ρ(P (s)))(∀σu ∈ η(qs′ , σ))

δ̃(θ̃s′ , σ̃ũ) 6∈ Θb

(by Line 6 of Algorithm 2)

⇒σ ∈ Σc ∧ (∃s′ ∈ ρ(P (s)))(∃σu ∈ η(qs′ , σ))

δ̃(θ̃s′ , σ̃ũ) ∈ Θb.

Since sσ ∈ L(S/G), all events in sσ are enabled by S .
In particular, all observable events in sσ, that is, events in
w = P (sσ), are enabled by S .

(1) Since s′ ∈ ρ(P (s)) = P−1(P (s)) ∩ L(G), we have
P (s′σ) = P (sσ) = w, that is, s′σ and sσ have the same
sequence w of observable events. Hence, all observable events
in s′σ are enabled by S .

(2) By Assumption (A3), all controllable events are observ-
able. Hence, all unobservable events are uncontrollable and
must be enables. Therefore, all unobservable events in s′σ are
enabled by S .

By (1) and (2), all events in s′σ are enabled by S . Thus,
s′σ ∈ L(S/G). Since σu ∈ η(qs′ , σ) = {σu ∈ Σ∗ : u ∈
Σ∗uc ∧ δ(qs′ , σu)!} implies u are uncontrollable, v = s′σu ∈
L(S/G). Therefore,

v = s′σu ∈ L(S/G) ∧ δ̃(θ̃o, ṽ) = δ̃(θ̃s′ , σ̃ũ) ∈ Θb

⇒(∃v ∈ L(S/G))δ̃(θ̃o, ṽ) ∈ Θb

⇒¬(∀v ∈ L(S/G))δ̃(θ̃o, ṽ) 6∈ Θb,

which contradicts S ∈ V S(Θb) is a valid supervisor.
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