

1 Impacts of projected Arctic sea ice loss on daily weather patterns over North
2 America

3 Melissa Gervais^a, Lantao Sun^b, Clara Deser^c

4 ^a*Department of Meteorology and Atmospheric Science and The Institute for Computational and*
5 *Data Science*

6 ^b*Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado*

7 ^c*National Center for Atmospheric Research, Boulder, Colorado*

8 *Corresponding author:* Melissa Gervais, mmg62@psu.edu

9 ABSTRACT: Future Arctic sea ice loss has a known impact on Arctic Amplification (AA) and
10 mean atmospheric circulation. Furthermore, several studies have shown it leads to a decreased
11 variance in temperature over North America. In this study, we analyze results from two fully-
12 coupled Community Earth System Model (CESM) Whole Atmosphere Community Climate Model
13 (WACCM4) simulations with sea ice nudged to either the ensemble mean of WACCM historical
14 runs averaged over the 1980-1999 period for the control (CTL) or projected RCP8.5 values over
15 the 2080-2099 period for the experiment (EXP). Dominant large-scale meteorological patterns
16 (LSMPs) are then identified using self-organizing maps applied to winter daily 500 hPa geopotential
17 height anomalies (Z'_{500}) over North America. We investigate how sea ice loss (EXP-CTL) impacts
18 the frequency of these LSMPs and, through composite analysis, the sensible weather associated
19 with them. We find differences in LSMP frequency but no change in residency time indicating
20 there is no stagnation of the flow with sea ice loss. Sea ice loss also acts to de-amplify and/or shift
21 the Z'_{500} that characterize these LSMPs and their associated anomalies in potential temperature
22 at 850hPa. Impacts on precipitation anomalies are more localized and consistent with changes in
23 anomalous sea level pressure. With this LSMP framework we provide new mechanistic insights,
24 demonstrating a role for thermodynamic, dynamic and diabatic processes in sea ice impacts on
25 atmospheric variability. Understanding these processes from a synoptic perspective is critical as
26 some LSMPs play an outsized role in producing the mean response to Arctic sea ice loss.

27 **SIGNIFICANCE STATEMENT:** The goal of this study is to understand how future Arctic sea
28 ice loss might impact daily weather patterns over North America. We use a global climate model
29 to produce on set of simulations one where sea ice is similar to present conditions and another
30 that represents conditions at the end of the 21st century. Daily patterns in large-scale circulation
31 at roughly 5.5km in altitude are then identified using a machine learning method. We find that
32 sea ice loss tends to de-amplify these patterns and their associated impacts on temperature nearer
33 the surface. Our methodology allows us to probe more deeply into the mechanisms responsible
34 for these changes, which provides a new way to understand how sea ice loss can impact the daily
35 weather we experience.

36 **1. Introduction**

37 The Arctic Sea has experienced a significant decline in sea ice extent with trends of
38 $-4.36\%/\text{decade}$ and greatest losses in the Barents/Kara Seas and Beaufort Sea (Comiso et al.
39 2017). Climate models project that the Arctic will become seasonally ice free by the mid 21st
40 century (Wang and Overland 2012), albeit with large uncertainty due to internal variability (Jahn
41 et al. 2016). This sea ice loss is greatest in September; however, the impact on the atmosphere is
42 largest in winter when turbulent heat fluxes from the ocean to the atmosphere are greatest (Deser
43 et al. 2010; Singarayer et al. 2006).

44 One robust impact of sea ice loss on the atmosphere is Arctic amplification (AA), where the
45 Arctic warms faster than the global mean (Screen and Simmonds 2010; Barnes and Screen 2015;
46 Dai et al. 2019). The AA signal can be seen in observations (e.g. Serreze et al. 2009; Screen
47 and Simmonds 2010) and modeling studies (e.g. Holland and Bitz 2003; Deser et al. 2010). The
48 increased atmospheric temperatures associated with AA are largest near the surface and during the
49 winter months (e.g. Serreze et al. 2009; Holland and Bitz 2003; Deser et al. 2010). Although the
50 causes of AA and their relative importance remain an active area of research (Smith et al. 2019),
51 several feedback mechanisms operating at low and high latitudes have been shown to contribute,
52 including: the surface albedo feedback, the lapse rate feedback, and the Planck feedback (Pithan
53 and Mauritsen 2014). Additional processes such as increased atmospheric transport of heat and
54 moisture associated with remote SSTs have also been shown to play an important role in producing

55 the AA signal and in particular its extension to higher altitudes (Screen et al. 2012; Perlwitz et al.
56 2015).

57 The increased turbulent heat fluxes associated with Arctic sea ice loss result in the development
58 of localized thermal low pressure anomalies over the region of sea ice loss (Alexander et al.
59 2004; Gervais et al. 2016; Smith et al. 2017). The remote circulation response; however, is more
60 uncertain (Smith et al. 2019). AA is associated with a general reduction in meridional temperature
61 gradient and increase in mean column thickness over the Arctic which, through thermal wind
62 arguments, is expected to weaken the midlatitude westerlies (Vihma 2014). This leads to the
63 tug-of-war paradigm, where sea ice loss is expected to shift the midlatitude jets equatorward,
64 while greenhouse gas forcing separate of sea ice loss acts to shift them poleward (e.g. Deser et al.
65 2015; Oudar et al. 2017; McCusker et al. 2017; Blackport and Kushner 2017). Fully coupled and
66 atmosphere-only simulations with imposed future sea ice loss show broadly consistent impacts on
67 the atmospheric circulation including a weakened Icelandic Low, an intensified Aleutian Low and
68 Siberian High, and an equatorward shifted and often weakened zonal mean mid-latitude jet (Screen
69 et al. 2018). However, Peings et al. (2021) showed that even with the large imposed future sea ice
70 loss internal variability can play an important role in determining the atmospheric response.

71 The further impact of Arctic sea ice loss on atmospheric variability has become an important
72 topic of discussion and disagreement. Francis and Vavrus (2012) hypothesized that AA leads to
73 a reduction in the midlatitude westerlies and consequently more meanders in the jet. Although
74 issues with the methodology they used were highlighted in subsequent papers (Barnes 2013; Screen
75 et al. 2013), the topic of Arctic midlatitude linkages has been the subject of considerable research
76 and has been summarized in numerous review articles (Cohen et al. 2014; Vihma 2014; Barnes
77 and Screen 2015; Screen et al. 2018). More recently, Blackport and Screen (2020) extended the
78 observational analysis to present day and found that the observed trends in waviness are no longer
79 significant, although the AA signal has continued to increase. They conclude that the causal link
80 is likely that periods of increased waviness leads to periods of increased AA due to enhanced
81 meridional temperature and moisture fluxes. Much of this previous work on Arctic sea ice loss and
82 atmospheric variability has focused on the historical period; however, in the future we expect sea
83 ice loss to be much greater and the mechanisms through which it impacts atmospheric variability
84 may differ from those discussed above.

Atmospheric variability can be characterized in a variety of ways that may capture different aspects and come with their own advantages or disadvantages. Many studies have utilized variance or standard deviation and found a reduction in the standard deviation of surface temperature with Arctic sea ice loss that they attribute to a reduction of the meridional temperature gradient (Screen 2014; Screen et al. 2015; Collow et al. 2019; Dai and Deng 2021). This metric is straightforward and provides useful general information about changes in temperature distribution at each location. A variety of metrics have been employed to examine changes in the waviness or sinuosity of the mid-latitude flow (e.g. Francis and Vavrus 2012, 2015; Cattiaux et al. 2016), in particular in the observations, often departures of a single geopotential height contour from its zonal mean value are used. However, early applications of such methods (Francis and Vavrus 2012) have been shown to be sensitive to analysis parameters chosen (Barnes 2013; Screen et al. 2013) thus careful attention must be paid in their application to ensure robustness across seasons and with mean warming (Cattiaux et al. 2016). These metrics provide useful information about the amplitude of spatial patterns across the Northern Hemisphere. However, neither standard deviation nor sinuosity provide information about spatial patterns, and both are limited in terms of the ability to probe more deeply into the physical mechanisms responsible.

Alternatively, the identification of large-scale meteorological patterns (LSMPs) and their changes can provide key information about regional atmospheric variability. LSMPs can be manually identified through synoptic typing; however for large datasets objective classification methods such as k-means or self-organizing maps (SOM) can be employed (Grotjahn et al. 2016). SOM is a machine learning method that can effectively identify archetypal patterns and classify data into these categories. A benefit of the SOM method is that it does not require patterns to be orthogonal, unlike the more traditional method of empirical orthogonal functions (EOFs). As a result, the SOM method can produce LSMPs (SOM nodes) that are more realistic (Grotjahn et al. 2016). Much like classic synoptic typing analysis, composite analysis of diagnostic fields can be applied to identified LSMPs. This provides a framework through which physical understanding of these patterns and their sensible weather impacts can be ascertained, which is not possible using measures of variability such as standard deviations or sinuosity.

This study will examine the impact of future Arctic sea ice loss on LSMPs of mid-tropospheric circulation over North America. We will employ two fully coupled climate model simulations with

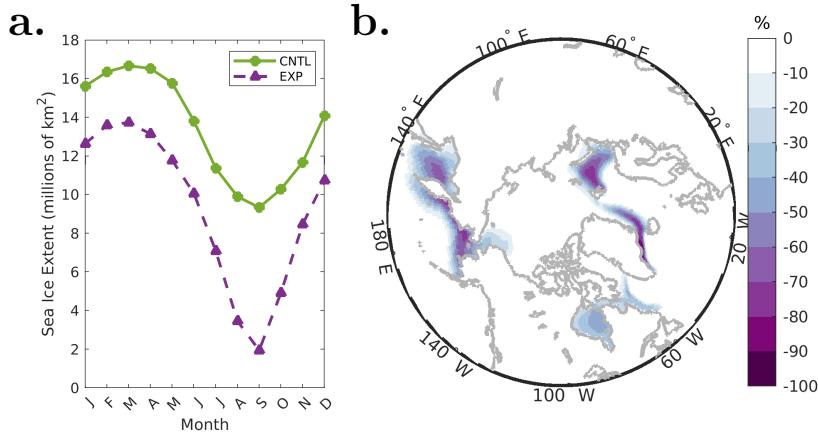
115 nudged sea ice to historical or projected end of 21st century conditions, thus changes are much
116 larger than the observed trend. Self-organizing maps will be used to identify LSMPs of 500hPa
117 geopotential height anomalies and examine their changes in frequency and pattern with sea ice loss.
118 Composite analysis of these LSMPs will be used to investigate the sensible weather conditions
119 associated with these LSMPs including low-level potential temperature and precipitation. Finally,
120 the impact of sea ice loss will be viewed through the lens of these LSMPs to better understand
121 processes tied to atmospheric variability.

122 **2. Data and Methods**

123 *a. Model Simulations*

124 To investigate the contribution of sea ice loss to atmospheric variability, we employed a pair of
125 two Community Earth System Model (CESM) (Hurrell et al. 2013) simulations with constrained
126 sea ice. The model setup utilizes the Whole Atmosphere Community Climate Model (WACCM4),
127 the Parallel Ocean Program Version 2 (POP2), the Community Land Model Version 4 (CLM4), and
128 the Los Alamos Sea Ice Model (CICE4) component models. The atmosphere and land components
129 both have horizontal resolutions of $1.9^\circ \times 2.5^\circ$, and the ocean and sea ice components have roughly
130 1° resolutions. The Whole Atmosphere Community Climate Model (WACCM4) is a high-top
131 model with 66 vertical pressure levels reaching 5.96×10^{-6} hPa (approximately 140 km). The
132 added vertical resolution and extension to higher heights leads to a better representation of the
133 stratosphere. This is important for studying the impact of sea ice loss as troposphere-stratosphere
134 interactions are known to be an important mechanism through which sea ice loss impacts the
135 atmosphere (Sun et al. 2015). The model also includes a sophisticated stratospheric chemistry
136 package which provides more realistic conditions in the upper-atmosphere (Marsh et al. 2013).
137 The CICE4 model includes a thermodynamic component that calculates growth rates of snow and
138 ice, an ice dynamics component that utilizes realistic ice physics based on ice mass and velocity,
139 a thickness parameterization that quantifies ice strain and thickness, and a transport model that
140 simulates ice advection (Hunke et al. 2015).

141 Both experiments are fully-coupled with radiative forcing held constant at the year 2000. The
142 control simulation (CTL) sea ice is nudged to the ensemble mean of the WACCM historical runs
143 averaged over 1980-1999 and the experiment simulation (EXP) is nudged to projected RCP 8.5



160 FIG. 1. a) Monthly mean sea ice extent (millions of km^2) defined as the total area of grid boxes having at least
 161 15% sea ice concentration for the CTL (green) and EXP (purple) experiments. b) Mean difference in winter sea
 162 ice (December-February) concentration (%) between the EXP and CTL experiments.

144 values over 2080-2099. The nudging method is described in Deser et al. (2015) and utilizes
 145 spatially and seasonally varying long wave radiative fluxes (LRF) in each grid cell of the sea ice
 146 model to force the sea ice to mimic historical and projected sea ice conditions. The LRF is applied
 147 only to the sea ice model where there is sea ice. The magnitude of the downward LRF is larger for
 148 months of greater ice thickness and coverage, and vice versa. Although energy is not conserved
 149 using this method, water is conserved between the sea ice and ocean model components. The
 150 experiments are both 300 years in duration, but we disregard the first 100 years for spin-up time
 151 and retain only the last 200 years for the analysis.

152 One advantage of this coupled model configuration is that SSTs are free to vary. This allows
 153 for more realistic SSTs that are free to increase as the sea ice edge retreats and maintains dynamic
 154 atmosphere-ocean variability. Ocean-atmosphere coupling has been shown to be important for
 155 generating a more realistic response to sea ice loss that extends to lower latitudes and higher
 156 altitudes (Deser et al. 2015) and in producing a reduced summer storminess in the mid-to-late
 157 21st century due to Arctic sea ice (Kang et al. 2023). Although the SSTs will differ between the
 158 simulations, they are still a direct bi-product of changes in sea ice as this is the only difference
 159 between the two model set-ups.

163 *b. Self-Organizing Maps Algorithm*

164 The SOM methodology works by repeatedly introducing input data vectors and adjusting a set
165 of nodes to better match these input data. Each SOM node is the same size as an input data vector
166 and is initialized prior to training, in this case with random data. These nodes are then updated
167 throughout the training. To accomplish this, the SOM algorithm determines a best matched unit
168 (BMU) for a specific training step (t) by finding the map node (m_c) with the smallest Euclidean
169 distance to the input data vector ($x(t)$). The SOM is then updated using the following relation:

$$m_i(t+1) = m_i(t) + \alpha(t) \cdot h_{ci}(t) \cdot (x(t) - m_i(t)), \quad (1)$$

170 where $h_{ci}(t)$ is the neighborhood function that defines the relative influence on different map nodes,
171 and $\alpha(t)$ is the learning rate parameter that defines how much the map nodes are updated (Vesanto
172 et al. 2000; Kohonen 2001). For the neighborhood function we use the Epanechnikov function
173 defined as:

$$h_{ci} = \max(0, 1 - \frac{d_{ci}^2}{\sigma(t)^2}), \quad (2)$$

174 where d is the distance between a given node (i) and the BMU (c). For the Epanechnikov function,
175 the BMU is modified the most and this decreases with distance away from the BMU. Nodes outside
176 of the radius of influence ($\sigma(t)$) are left unchanged. We use the diameter of the SOM as the
177 initial radius of influence and decrease the value with each training iteration to eventually reach 1.
178 Here we conduct two trainings with different initial $\sigma(t)$. The first training is important for broad
179 organization and in this case has an initial $\sigma(t)$ value of 5. The second training is utilized for fine
180 tuning and has an initial $\sigma(t)$ of 2. For the learning rate parameter we use an inverse function of
181 training time defined as:

$$\alpha(t) = \alpha_0 / (1 + 100 \frac{t}{L}), \quad (3)$$

182 where α_0 is the initial learning rate for each training and L is the total number of training steps (t)
183 in each training. Here we use $\alpha_0 = 0.1$ for the first training and $\alpha_0 = 0.01$ for the second training.

184 There are three measures used to assess SOM map quality: topological error, quantization error,
185 and the Sammon map. Quantization error is the average Euclidean distance between the input
186 data and their associated BMU, thus describing how similar the map nodes are to the input data
187 vectors. The topological error is defined as the percentage of input data vectors for whom the
188 next best match unit is not a neighbor to the BMU and thus quantifies how well-ordered the
189 SOM is. The Sammon map is a nonlinear mapping that visually represents the relative locations
190 of the SOM map nodes. Over-training a SOM can result in a quantization error that continues
191 to decrease at the expense of a twisted Sammon map and higher topological error. The SOM
192 shown here is well constructed, meaning that it has a balance of low quantization error and low
193 topological error (<15%) and a flat Sammon map (not shown). More information about the SOM
194 method is available in Kohonen (2001). The SOM Program Package is publicly accessible at
195 <http://www.cis.hut.fi/research/som-research/>.

196 *c. Creation of Final SOM*

197 In this study, SOM is used to identify large-scale patterns of daily winter 500 hPa geopotential
198 height anomalies (Z'_{500}) over North America. Analysis is conducted over the winter (December to
199 February) season when the impact of sea ice loss on atmospheric circulation is greatest. The data
200 is also confined the region of 25°N to 75°N and 180°E to 20°E to focus on the North American
201 mid-latitude response to sea ice loss and identify patterns of variability on synoptic spatial scales.
202 We are interested in identifying changes in large-scale patterns separately from the mean response
203 to sea ice loss. As such, anomalies are computed for each simulation (CTL and EXP) separately.
204 A daily climatology is computed for each simulation by averaging each calendar day over all
205 200 model years. Anomaly fields are then created by subtracting the daily climatology, for the
206 corresponding simulation and calendar day, from each day of the simulation. This procedure takes
207 into account the seasonal cycle of Z_{500} so that anomalies are identified across all months and
208 effectively removes the seasonally varying mean response to sea ice loss. For subsequent analysis,
209 the term “anomalies” will refer to the difference in any field relative to its seasonally varying
210 climatology and these will be denoted with a prime, for example Z'_{500} .

211 There are several options for pre-processing input data depending on the research question. In
212 this study, the Z'_{500} fields are normalized by removing the mean of the time series and dividing

213 by the standard deviation at each grid point prior to training. This ensures that locations that
214 experience greater variability do not have a larger impact on the SOM classification. The data are
215 then multiplied by the cosine of the latitude to account for grid box area changes with latitude.
216 Input data for the SOM consists of model output from both the CTL and EXP simulations to ensure
217 all patterns of variability present in each simulation are represented in the final SOM.

218 The SOM algorithm includes several user defined parameters, the most notable being the number
219 of map nodes (archetypal patterns). Here the number of map nodes is determined through testing
220 a variety of different SOM sizes. A final SOM size is chosen that is the smallest size that is able
221 to identify all patterns that are physically relevant to the research question. After testing different
222 SOM sizes, a 5×3 grid of map nodes for a total of 15 nodes was chosen for this study. For well
223 constructed SOMs, such as that presented here, Gervais et al. (2016) found that changes in user
224 defined parameters (e.g. neighborhood function and learning rate parameter) made little difference
225 in the final SOM.

226 *d. SOM Analysis*

227 Once a SOM is trained, the final nodes or LSMPs are no longer modified and each day input
228 data vector (or day of data in this case) is compared to the final SOM and assigned a BMU. This
229 enables a multitude of additional analyses to explore the LSMPs. The frequency of occurrence
230 of each LSMP is computed as the total number of BMUs for a given node divided by the total
231 number of input days for the entire SOM. This can provide information about which LSMPs are
232 most common. We can also obtain a more complete understanding of the physical processes
233 associated with each node through compositing of any variable of interest. These composites (S)
234 are computed for a given node by averaging all days that are assigned as a BMU for that node. For
235 both the frequency (f) and composite, calculations can include all of the input data or only the
236 BMUs associated with either the CTL (f_{CTL} or S_{CTL}) or EXP (f_{EXP} or S_{EXP}).

237 Differences in atmospheric variability between experiments can arise from either differences in
238 the frequency of SOM nodes ($\Delta f = f_{EXP} - f_{CTL}$) or differences in their pattern ($\Delta S = S_{EXP} - S_{CTL}$).
239 The relative importance of changes in frequency versus change in pattern will depend on the SOM
240 size. With a smaller SOM we would expect changes in pattern to be greater and for a larger SOM
241 we would expect to see more changes in frequency. Examining both metrics together provides a

242 complete view of changes in the variability (Gervais et al. 2020). Throughout the paper, these
 243 differences will be described as the impact of sea ice loss on the either the frequency or pattern.

244 Significant differences in frequency are evaluated using a permutation test. Here BMUs from
 245 both simulations are randomly assigned to new “CTL” and “EXP” labels and a new Δf is computed.
 246 This process is repeated 1000 times in order to create a null distribution of Δf values. If the true Δf
 247 lies outside the 2.5th or 97.5th percentiles, the frequency differences are deemed significant. This
 248 process is repeated for each node. Statistical significance for ΔS at each grid point is determined
 249 using a student’s t-test at a 95% confidence level with a null hypothesis of zero.

250 The SOM categorizes each day into different LSMPs with a given f and S . Thus, the seasonal
 251 mean field of a given experiment can be approximated as the sum of the frequencies of each
 252 node times their composite. As discussed in Gervais et al. (2020), the total difference between
 253 simulations ($\Delta(fS)$) for all nodes can then be approximately decomposed into contributions from
 254 changes in frequency and pattern as follows:

$$\Delta(fS) = \Delta f S_{avg} + f_{avg} \Delta S \quad (4)$$

255 where,

$$\Delta(fS) = \sum_{i=1}^n f_{ei} S_{ei} - \sum_{i=1}^n f_{ci} S_{ci} \quad (5)$$

$$\Delta f S_{avg} = \sum_{i=1}^n (f_{ei} - f_{ci}) \frac{S_{ei} + S_{ci}}{2} \quad (6)$$

$$f_{avg} \Delta S = \sum_{i=1}^n \frac{f_{ei} + f_{ci}}{2} (S_{ei} - S_{ci}) \quad (7)$$

258 In these equations, n is the number of SOM nodes (which in the case of our SOM is 15), and
 259 the indices c and e indicate the CTL and EXP simulations respectively. This decomposition can
 260 be conducted for any variable of choice to understand the impact of frequency versus pattern
 261 associated with these LSMPs.

262 **3. Results and Discussion**

263 *a. Winter Atmospheric Response to Sea Ice Loss*

264 The atmospheric response to future sea ice loss will be defined in this study as the difference
265 between the CTL and EXP simulations (EXP - CTL). The differences in sea ice cover between
266 the simulations are seasonally varying with the greatest differences in September coinciding with
267 the seasonal sea ice minimum (Fig. 1a). Although sea ice loss is greatest in September, the mean
268 impact on atmospheric circulation is greatest in the winter, consistent with previous studies (Vihma
269 2014). This seasonality of the atmospheric response can be seen in the monthly mean differences
270 in 500 hPa geopotential height (Z_{500}) and sea level pressure (SLP) between the simulations (Fig.
271 S1). The winter mean atmospheric response to future sea ice loss shows a clear signal of Arctic
272 Amplification with warmer potential temperatures at 850 hPa (Θ_{850}) that are greatest at the high
273 latitudes (Fig. 2a). Consistent with an increase in mean column temperature, we find a similar
274 pattern in the geopotential heights in the mid-troposphere (Z_{500} , Fig. 2b).

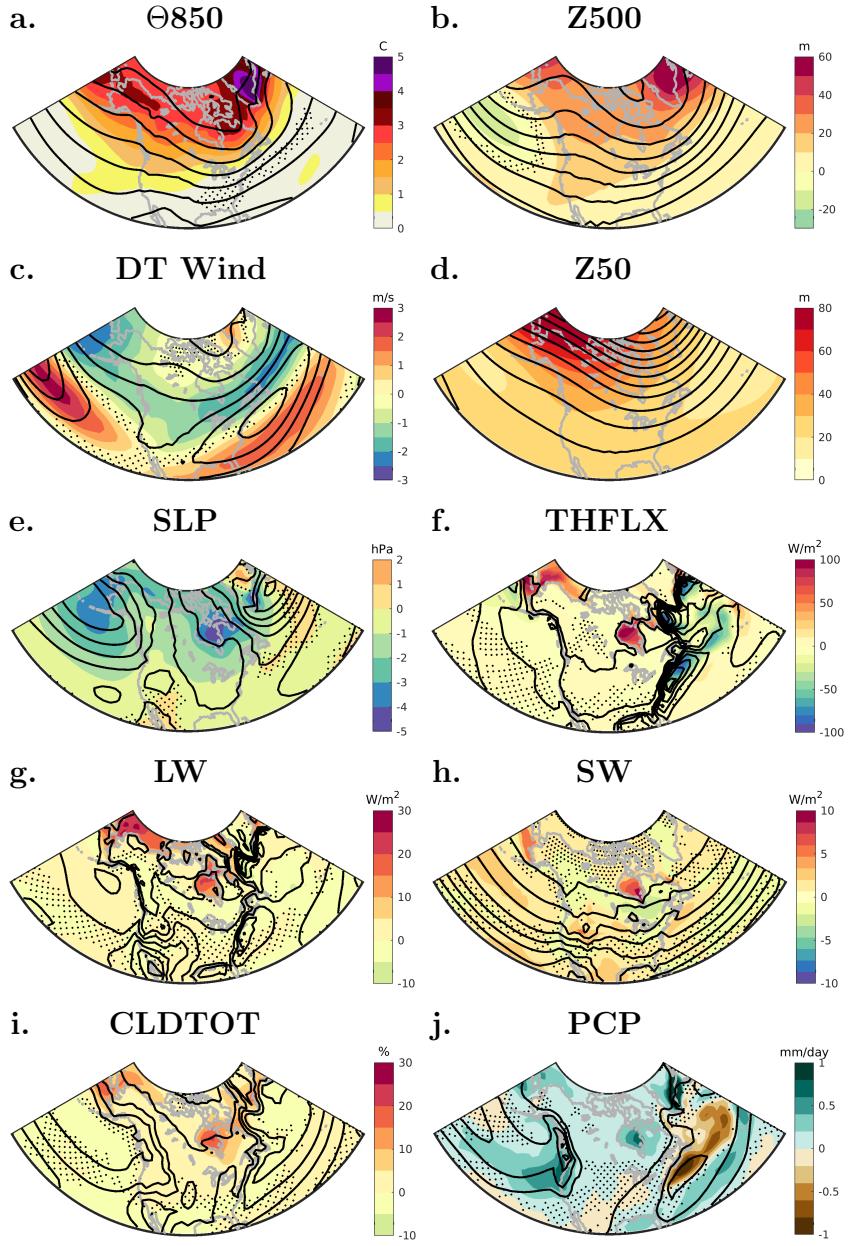
275 During the winter, differences in sea ice between the CTL and EXP are concentrated in the
276 marginal sea ice zone with reductions of up to 100% sea ice cover (Fig. 1b). The local response to
277 sea ice loss can be clearly seen in the surface fluxes and SLP. Over the marginal seas where sea ice
278 loss is greatest and the atmosphere is exposed to more open ocean, there is a substantial increase
279 in turbulent heat flux (defined as the sum of the sensible and latent heat flux) from the ocean to the
280 atmosphere (Fig. 2f). Over the Bering/Beaufort Sea and Hudson Bay this change in turbulent heat
281 flux reaches 100 W m^{-2} . Consistent with a large decrease in surface albedo with a greater fraction
282 of ice free ocean there is a large increase in net absorbed shortwave radiation at the surface with
283 sea ice loss (Fig. 2h). The warmer surface temperatures of an ice free ocean, are associated with a
284 larger net surface outgoing longwave radiation (Fig. 2g). Finally, there is a local reduction in SLP
285 concentrated near regions of sea ice loss (Fig. 1e) consistent with a thermal low response (Fig. 2e).
286 For example, over the Hudson Bay there are large negative SLP anomalies that reach -5 hPa . Over
287 and downstream of these regions of newly open ocean in the Bering/Beaufort Seas and Hudson Bay
288 there is enhanced total cloud cover (Fig. 2i) and precipitation ((Fig. 2f,j) consistent with enhanced
289 sensible and latent heat flux associated with a transition to ice free conditions (Fig. 2f).

290 In the mid-latitudes, negative anomalies in the winter mean Z_{500} and SLP response indicate
291 a deepening of the Aleutian low in the North Pacific (Fig. 2b,e). This is dynamically consist-
292 ent with an intensification and elongation of the Pacific jet, where we would expect a corre-
293 sponding eastward displacement of an enhanced secondary circulation favoring a more intense
294 troposphere-deep cyclonic circulation. Here we identify the jet using the wind speed on the dy-
295 namic tropopause, where the dynamic tropopause is defined as the 2 potential vorticity unit (PVU;
296 $1 \text{ PVU} = 10^{-6} \text{ K kg}^{-1} \text{ m}^{-2} \text{ s}^{-1}$) surface (Fig. 2c). The dynamic tropopause is an ideal surface upon
297 which to examine mid-latitude jets as this is where the jet is maximized and it rises with the
298 increasing column temperature (Hoskins et al. 1985) thus ensuring that the differences are due to
299 changes in the jet rather than the height of the tropopause. Coinciding with the elongated North
300 Pacific jet and deeper Aleutian low, we see an increase in precipitation that extends to the west
301 coast of North America (Fig. 2j).

311 Over the Atlantic, the response to sea ice loss includes an increase in Z_{500} (Fig. 2b) over
312 Greenland and an equatorward shift of the North Atlantic jet, as seen in the dipole of wind speed
313 on the dynamic tropopause (Fig. 2c), consistent with several previous studies (Deser et al. 2015;
314 Sun et al. 2015; Blackport and Kushner 2017, 2018; Screen et al. 2018; Ronalds et al. 2020).
315 Furthermore, we find a dipole in precipitation over the North Atlantic as would be expected from
316 an equatorward shift of the storm track along with the jet (Fig. 2j). The winter mean SLP response
317 shows no clear change in the Icelandic Low (Fig. 2e).

318 *b. Identification of Large-Scale Patterns*

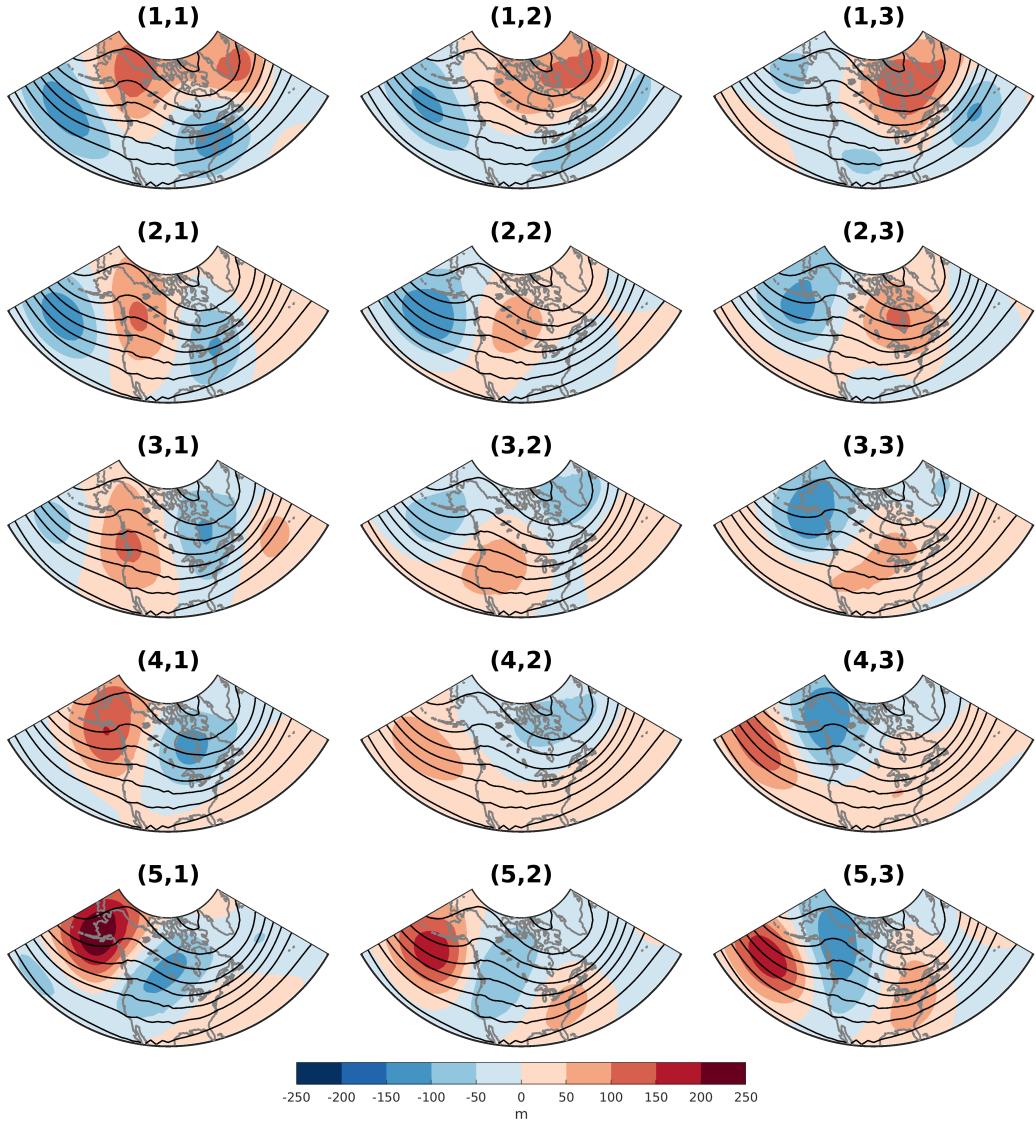
319 To understand the impact of sea ice loss on LSMPs, we begin by first identifying dominant large-
320 scale patterns of Z'_{500} using SOM (Fig. 3). Fig. 3 shows the Z'_{500} SOM nodes (LSMPs) in color
321 and composites of Z_{500} in the control simulation (S_{CTL}) in black lines. In general, LSMPs on the
322 left side of the SOM have amplified climatological ridges (troughs) over western (eastern) North
323 America and vice versa on the right side of the SOM. Enhancement of the ridge/trough patterns
324 shifts from being further east in LSMPs at the top of the SOM (e.g. LSMP [1,1]) to further west
325 at the bottom (e.g. LSMP [5,1]). Similarly, negative (positive) anomalies over the climatological
326 ridge (trough) shift from being to the west in LSMP [1,3] to further east in LSMP [5,3].



302 **FIG. 2.** Mean winter differences between simulations (EXP - CTL) in color and climatology in black contours
 303 for a) Θ_{850} with climatology contoured every 5 K, b) Z_{500} with climatology contoured every 100 m, c) wind speed
 304 on the dynamic tropopause (DT WIND) with climatology contoured every 5 m/s, d) 50hPa geopotential height
 305 (Z_{50}) with climatology contoured every 100 m, e) SLP with climatology contoured every 4 hPa, f) turbulent
 306 heat flux (THFLX) with climatology contoured every 10 W m s^{-2} , g) Surface longwave radiation (LW) with
 307 climatology contoured every 5 W m s^{-2} , h) Surface shortwave radiation (SW) with climatology contoured every
 308 2 W m s^{-2} , i) Total cloud cover (CLDT) with climatology contoured every 5%, and j) Precipitation (PCP) with
 309 climatology contoured every 2 mm d^{-1} . Insignificant differences at the 5% significance level according to a
 310 resampling test are stippled.

327 The LSMPs [1,1] and [2,1] in the upper left corner have a pattern similar to the positive phase of
328 the Pacific North American Pattern (PNA, Wallace and Gutzler (1981)) with negative anomalies in
329 the Pacific and Eastern North America and positive anomalies over Alaska / the Pacific Northwest.
330 Conversely, LSMP [5,3] in the bottom right corner resembles the negative PNA. LSMPs [1,1],
331 [1,2] and [1,3] include anomalies over the North Atlantic that are consistent with a negative Arctic
332 Oscillation (AO, Thompson and Wallace (1998)) or North Atlantic Oscillation (NAO, Hurrell
333 (1995)) like pattern. LSMPs [1,1] and [1,2] have positive Z'_{500} near Iceland while LSMP [1,3]
334 has a center of action shifted further west. LSMPs [1,2] and [1,3] have negative anomalies over
335 the subtropical North Atlantic. In contrast, LSMPs [3,2] and [4,2] have weak positive AO/NAO-
336 like anomalies. Although the NAO is an important feature of the Northern Hemisphere climate
337 variability and exerts an impact on North American weather, our SOM is trained with data over
338 North America and therefore we expect variability over the North Atlantic will have a limited
339 presence as compared to other sources. LSMPs [4,1] and [5,1] have a strong positive anomaly over
340 Alaska that acts to amplify and shift the climatological ridge over the Rockies further east, while
341 LSMPs [3,3], [4,3], and [5,3] have a negative anomaly over Alaska. LSMPs [1,1], [1,2], [2,1],
342 and [2,2] exhibit a strengthened Aleutian Low, while LSMPs [4,3], [5,1], [5,2], and [5,3] exhibit a
343 weakened Aleutian low. Nodes in the center of the SOM have weaker patterns overall.

346 To obtain further understanding of the synoptic conditions associated with each map LSMP and
347 their sensible weather impacts, we compute control simulation composites (S_{CTL}) for additional
348 variables. LSMPs in the top left of the SOM (namely LSMPs [1,1], [1,2], [2,1], [2,2]) have deeper
349 Aleutian lows as shown in their sea level pressure anomalies (SLP', Figs. 4, 5) consistent with the
350 negative values in Z'_{500} SOM (Fig. 3). Those on the right side of the SOM (namely LSMPs [3,3],
351 [4,3], [5,3]) have Aleutian Lows that are shifted further east toward the continent and coupled with
352 a high over the subtropics (Fig. 4, 5). This high/low pressure couplet of SLP over the Gulf of
353 Alaska and west coast of North America acts to generate westerly lower-tropospheric winds through
354 geostrophic balance arguments. This in turn can act to enhance the transport of warm maritime air
355 into the continent, which is seen in the positive Θ'_{850} values over western North America associated
356 with these LSMPs (Fig. 4). LSMPs on the top and left side of the SOM are generally colder,
357 specifically nodes [1,1], [1,2], [3,1], and [4,1]. These are associated with either an enhancement of
358 the climatological high pressure and ridge over western North America (LSMPs [1,1], [2,1], [3,1],

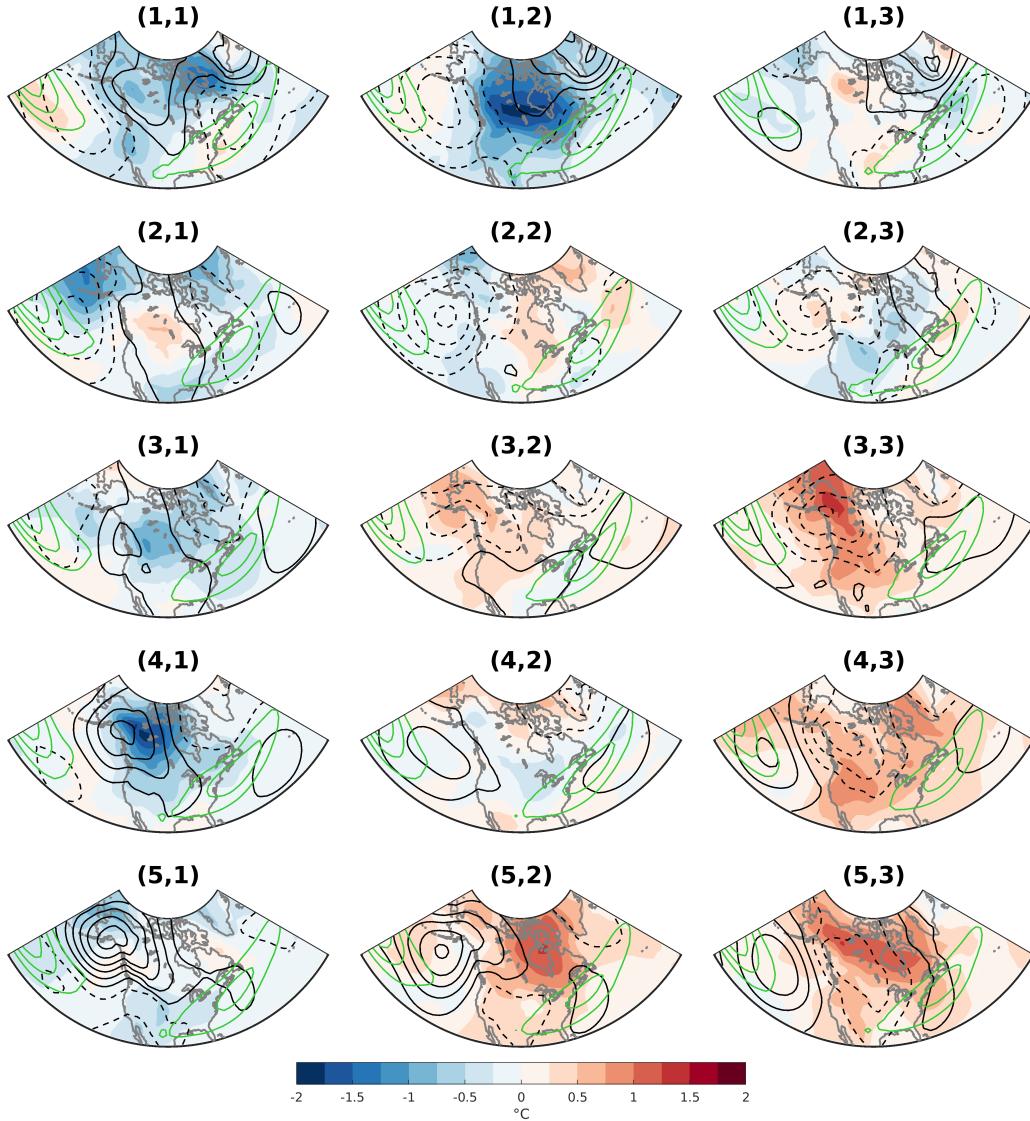


344 FIG. 3. SOM of DJF Z'_{500} (color, m) over North America with the DJF climatological mean Z_{500} (black
 345 contours every 100 m).

359 [4,1]) and/or a weakened Iceland Low (LSMPs [1,1] and [2,1]) consistent with the negative phase
 360 of the NAO (Fig. 4). LSMPs [1,2] and [4,1] are associated with particularly deep cold anomalies
 361 down to -2°C .

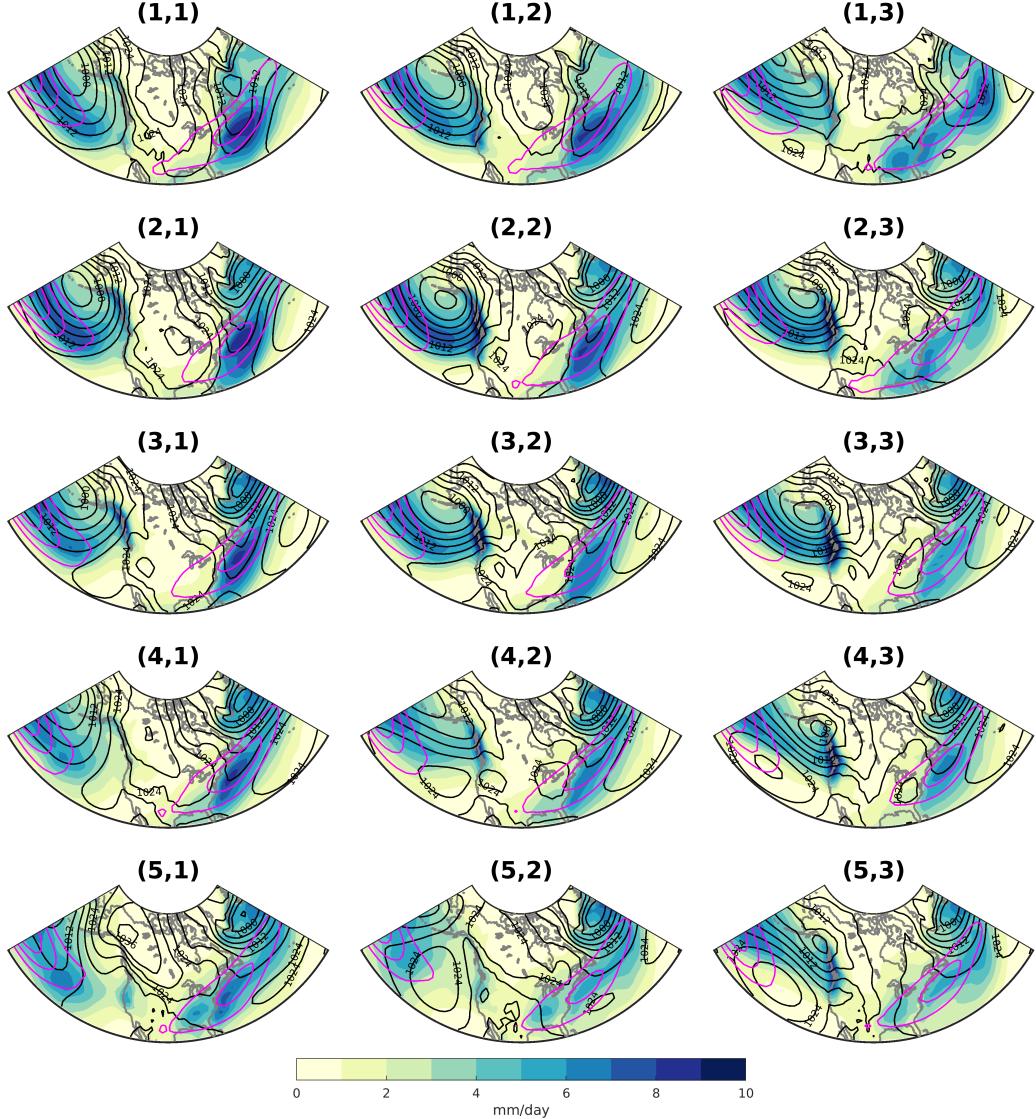
362 Circulation patterns can also play a key role in the precipitation over the continental US. LSMPs
 363 with strong Aleutian lows that are closer to the continent ([2,2], [2,3], [3,2], [3,3]) are associated
 364 with enhanced precipitation along the west coast whereas nodes with weaker Aleutian Lows ([4,1],
 365 [5,1], [4,2], [5,2]) have less precipitation along the west coast (Fig. 5 and contours in Fig. 9).

366 Enhanced precipitation in the Southeastern US is found in LSMPs [5,1], [5,2], [5,3] and [1,3], all
 367 of which are characterized by a trough over the Southeastern US (Fig. 5 and contours in Fig. 9).
 368 In contrast, precipitation is reduced in LSMPs [2,1], [3,1], and [3,2] where the trough is located
 369 offshore (Fig. 5 and contours in Fig. 9).



370 FIG. 4. CTL composites of Θ'_{850} (color, $^{\circ}\text{C}$), SLP' (black contours every 4 hPa, dashed negative from 2 hPa),
 371 and wind speed on the dynamic tropopause (green contours every 5 m s^{-1} from 35 m s^{-1})

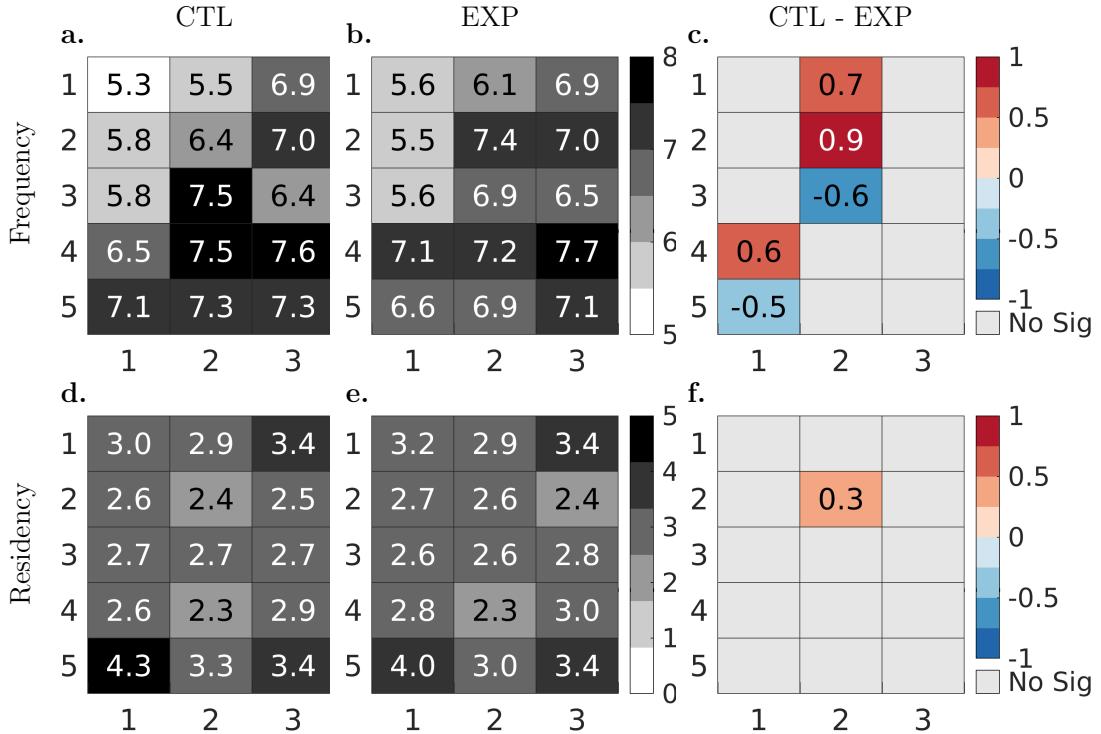
374 Fig. 6a,b shows the associated frequency of each map node in the CTL and EXP simulations.
 375 All LSMPs in Fig. 3 are present in both the CTL and EXP simulations. In the CTL simulation,
 376 LSMPs [3,2], [4,2], and [4,3] occur most often. The LSMPs that occur least often are [1,1] and



372 FIG. 5. CTL composites of total precipitation (color, mm d^{-1}), SLP (black contours every 4 hPa), and wind
 373 speed on the dynamic tropopause (magenta contours every 5 m s^{-1} from 35 m s^{-1})

377 [1,2], both of which are characterized a deepened Aleutian low, cold Θ'_{850} over North America,
 378 and high SLP' over northeastern Canada and Greenland. In the EXP simulation, LSMPs [2,2],
 379 [4,2], and [4,3] occur most often, while LMSPs [1,1], [2,1], and [3,1] occur least often. The mean
 380 residency time, defined as the number of consecutive days spent in a given map node, are shown in
 381 Fig. 6d,e for the CTL and EXP simulations respectively. Mean residency times range from 3.2-4.3
 382 days with LSMP [5,1] having the highest and LSMP [4,2] the lowest residency time for both the
 383 CTL and EXP simulations. It should be noted that for both the frequency and residency time the

384 values will change depending on the SOM size (decreasing with increasing SOM size), therefore
 385 the actual values are less meaningful than how they might change between the CTL to the EXP
 386 simulations.



387 FIG. 6. Heatmaps of frequency of occurrence (top row) of each node in the CTL (a), EXP (b), and their
 388 difference (c) and mean residency time (bottom row) for each node in the CTL (d), EXP (e), and their difference
 389 (f). Differences are only shown when significant at the 95% level using a permutation test.

390 c. Impact of Sea Ice Loss on LSMP Frequency and Residency

391 To understand the impact of sea ice loss on LSMPs, we will first discuss the impact on their
 392 frequency of occurrence and residency. Fig. 6c demonstrates the difference in frequency of each
 393 LSMP between the CTL and EXP. LSMP [3,2] decreases in frequency by -0.6% while LSMPs [1,2]
 394 and [2,2] increase in frequency by 0.7% and 0.9% respectively. These changes may seem small;
 395 however, relative to the CTL frequency of 6.4% in LSMP [2,2], for example, the fractional increase
 396 is 14%. All of these LSMPs ([1,2], [2,2], and [3,2]) have anomalously strong Aleutian Lows but

397 LSMPs [1,2] and [2,2] are stronger than LSMP [1,3] (Figs. 3 and 4) therefore these changes in
398 frequency imply that patterns with deepened Aleutian Lows become more common with sea ice
399 loss. It should be noted that here we have already removed the seasonal mean difference between
400 the experiments that was characterized by a mean deepening of the Aleutian Low and that this
401 result shows further changes in how often these deepened Aleutian Low patterns occur. We also
402 see that LSMP [5,1] decreases in frequency while LSMP [4,1] increases in frequency with sea ice
403 loss. Since node [5,1] has a larger positive Z'_{500} over Alaska than node [4,1] (Fig. 3), this can be
404 interpreted as the positive anomaly over Alaska becoming de-amplified.

405 Unlike the frequency, only LSMP [2,2] experiences a significant change in mean residency time,
406 with an increase of 0.3 days. This LSMP also exhibited an increase in frequency, indicating that
407 some of the increase in frequency is due to enhanced persistence. Since these LSMPs capture
408 synoptic spatial scale variability, they include patterns associated with Rossby wave propagation
409 across North America. The overall lack of change in residency times across the SOM implies that
410 there is no general change in the speed of wave propagation owing to sea ice loss.

411 *d. Impact of Sea Ice Loss on LSMP Pattern*

412 To complete our investigation of sea ice impacts on LSMPs, we examine differences in LSMP
413 composite mean (ΔS) for a variety of atmospheric variables. The impact of Arctic sea ice loss is
414 to weaken the Z'_{500} in many LSMPs, which can be interpreted as a reduction in variability (Fig.
415 7). The best example of this is LSMP [1,2], where the magnitude of the gradient associated with
416 the –NAO-like dipole in Z'_{500} between the Icelandic Low and Subtropical High is reduced by
417 approximately 15% with sea ice loss. In many cases, the ΔS of Z'_{500} are not centered on the CTL
418 composites Z'_{500} and thus are better characterized as a shift in location, for example the anomalous
419 ridging along the west coast in LSMPs [4,1], [5,1], and [5,2] is shifted further south. A few LSMPs
420 are amplified with sea ice loss, for example, the positive Z'_{500} in the subtropical Pacific in LSMPs
421 [4,3] and [5,3] are deepened and in [5,3] extended further east toward the continent. LSMP [1,3]
422 also has negative ΔS of Z'_{500} in the North Pacific consistent with a deepened Aleutian Low. In all
423 cases, the ΔS of Z'_{500} are smaller than the CTL composites and so there is no change in the sign
424 of the patterns. This is necessarily true for Z'_{500} since the SOM is trained and BMUs are assigned

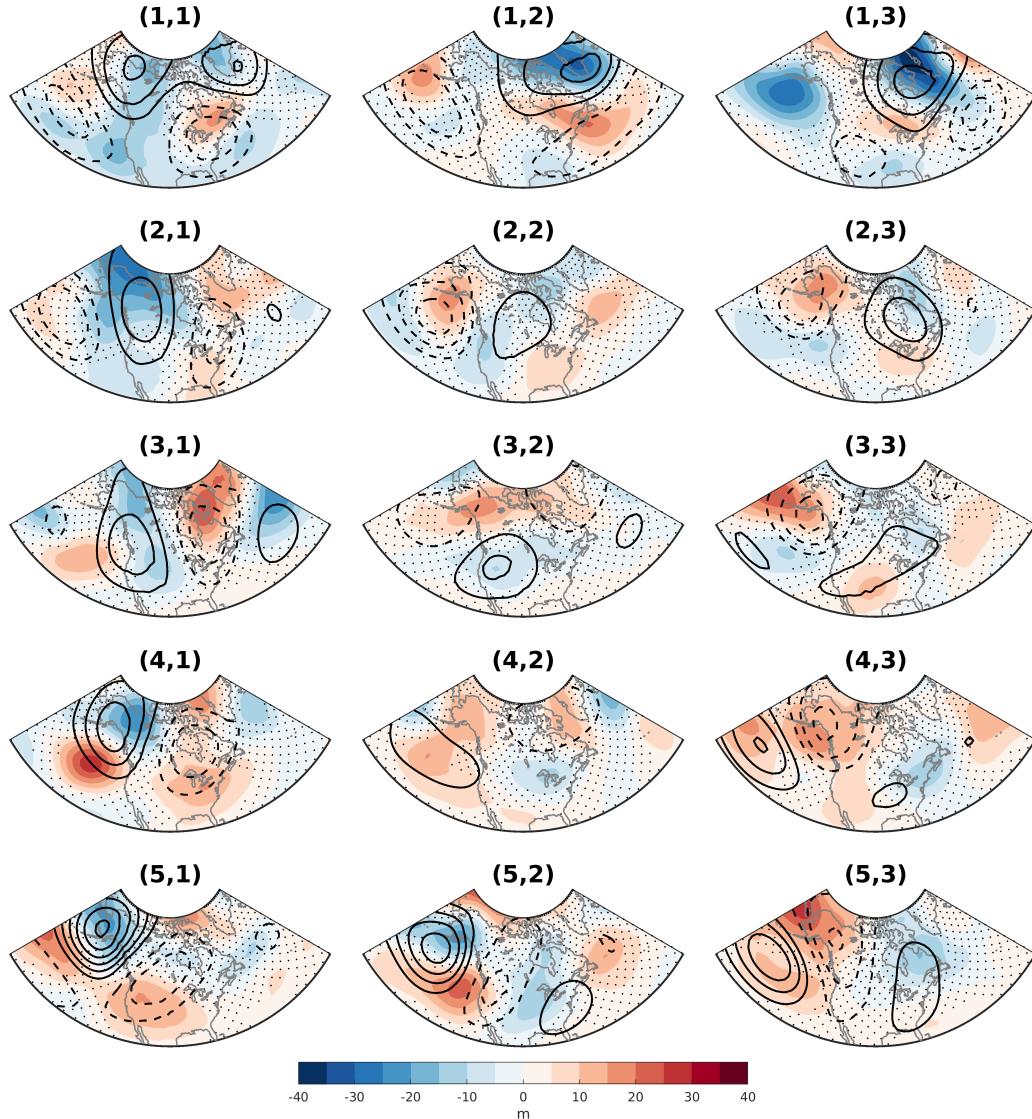
425 based on this field. However, for other fields, LSMP composites may see larger changes if the
426 conditions associated with these Z'_{500} patterns change.

427 To understand the impact of sea ice loss on the sensible weather associated with these circulation
428 patterns, we examine ΔS of Θ'_{850} (Fig. 8) and precipitation anomalies (Fig. 9). The most striking
429 impact of sea ice loss on Θ'_{850} is in LSMP [1,2] (Fig. 8). This LSMP was associated with deep cold
430 anomalies up to -1.75°C in the CTL simulation. However, the impact of sea ice loss far exceeds this
431 at up to $+4^{\circ}\text{C}$ in ΔS of Θ'_{850} , resulting in a change in sign of Θ'_{850} associated with this LSMP in the
432 CTL relative to the EXP. LSMP [4,1] that is also associated with strong cold anomalies over North
433 America reaching -2°C in the CTL simulation experiences a large decrease in magnitude with sea
434 ice loss of up to $+1.5^{\circ}\text{C}$. Both LSMPs [4,1] and [1,2] increase in frequency with sea ice loss, so
435 the circulation patterns typically associated with deep cold anomalies become more common with
436 sea ice loss; however, they are much less cold or, in the case of [1,2], now associated with a warm
437 Θ'_{850} .

438 Looking across the entire SOM, we see that a reduction in the amplitude of Θ'_{850} associated
439 with these Z'_{500} LSMPs is ubiquitous (Fig. 8). Other LSMPs associated with large cold anomalies
440 (LSMPs [1,1], [2,1], [5,1], and [2,3]) become warmer and those associated with warmer anomalies
441 become colder. Several of these LSMPs (namely [3,3], [4,3], [5,3]), are not associated with
442 significant changes in frequency (Fig. 6), so their contribution to changes in variability is solely
443 through a change in pattern. This de-amplification of Θ'_{850} is consistent with the general reduction
444 in Z'_{500} across the SOM owing to sea ice loss. One explanation is that the reduction of horizontal
445 temperature gradients owing to AA may lead to a reduction in anomalous temperature advections
446 occurring in these nodes, even though the mean impact of AA is already removed by virtue of
447 computing the anomalies. This can result in reduced Θ'_{850} and through hypsometric arguments in
448 a corresponding reduction in Z'_{500} .

449 The impact of sea ice loss on precipitation anomalies associated with these LSMPs is less
450 robust and more localized (Fig. 9). LSMPs [3,1], [4,1], and [4,2] all experience a small decrease
451 in precipitation along the California coast, acting to amplify the precipitation anomalies values
452 typically associated with these LSMPs (Fig. 9). This is consistent with a positive SLP' that acts to
453 further reduce the transport of moist air to the region (Fig. S2). The opposite is true for LSMPs
454 [1,1] and [2,2] (Fig. 9, S2). LSMP [1,3] experiences an increase in ΔS of precipitation anomalies

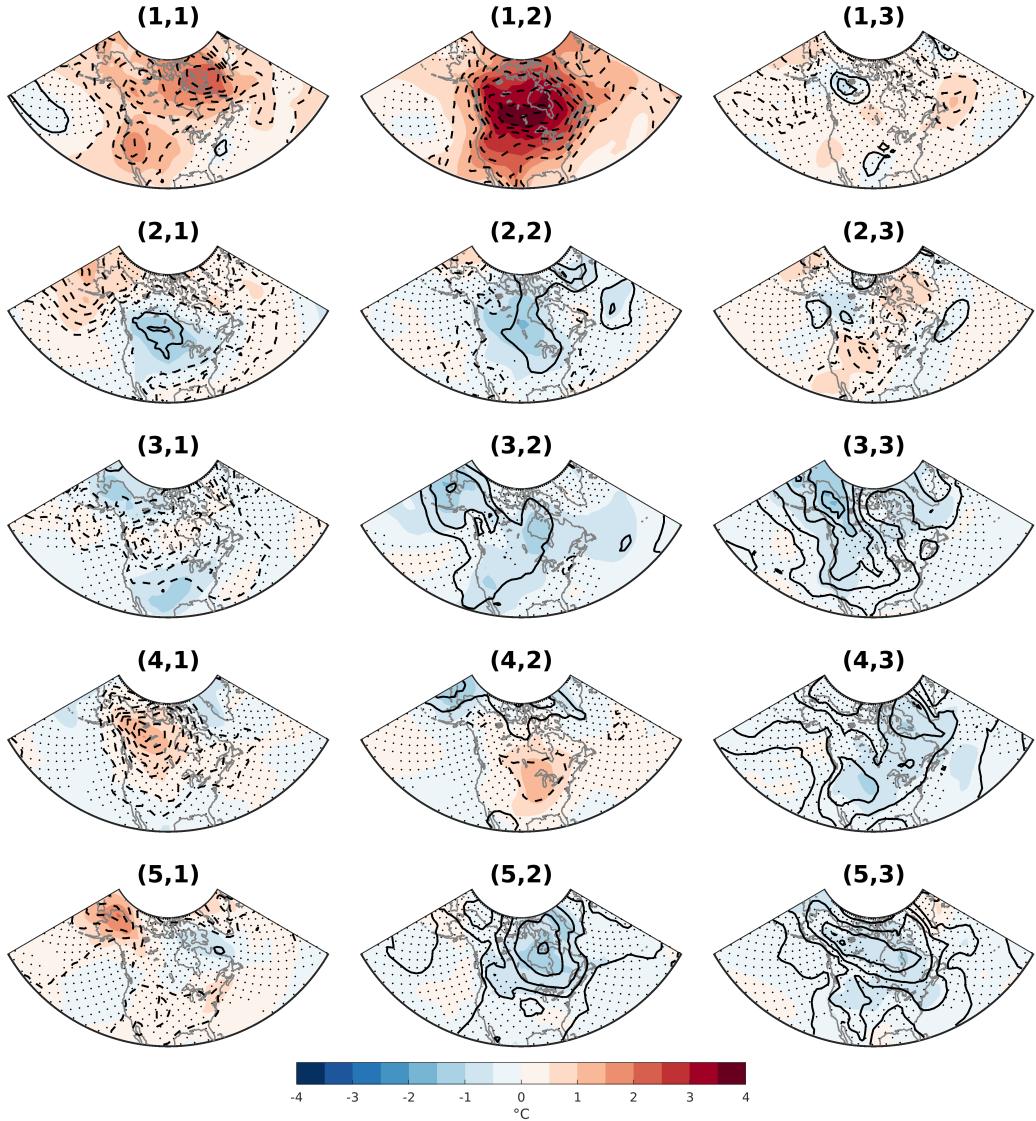
455 in the southeastern US (Fig. 9) consistent with the enhanced troughing (Fig. 7, S2) occurring in
 456 proximity to the Gulf of Mexico and Atlantic Basin, well known moisture sources for the region.
 457 The opposite is true for LSMP [3,3].



458 FIG. 7. CTL Composites of Z'_{500} (contours, every 50 m from ± 50 m, dashed negative) and difference in
 459 composites (EXP-CTL) of Z'_{500} (color, stippled insignificant using Student's t-test).

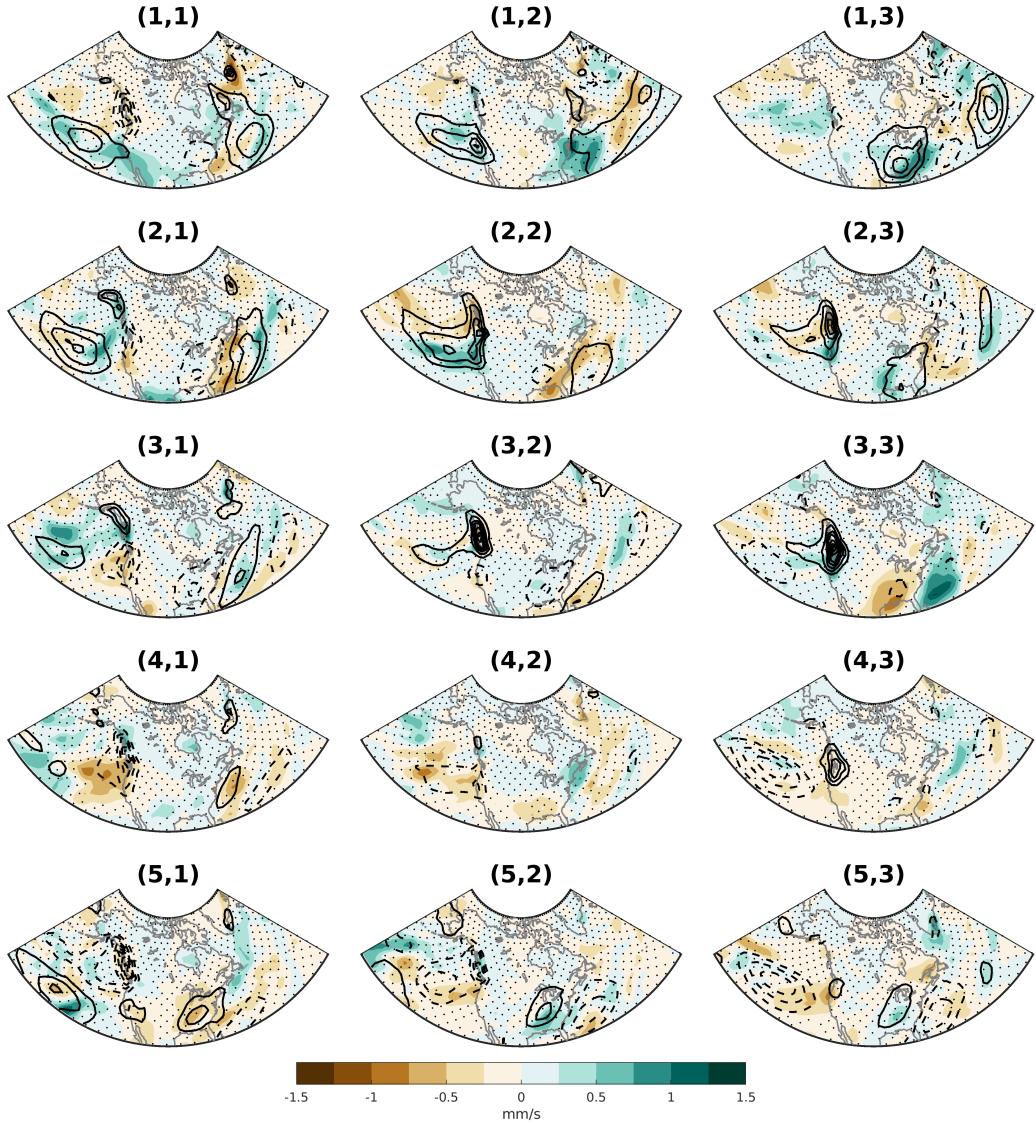
465 *e. Mechanisms Responsible for LSMP [1,2] Pattern Changes*

466 Given the striking changes in LSMP [1,2] and in particular the associated Θ'_{850} , a deeper
 467 investigation into mechanisms operating in this node is warranted. First, it is important to recognize



460 FIG. 8. CTL Composites of Θ'_{850} (contours, every 0.25° C from $\pm 0.25^\circ$ C, dashed negative) and difference in
 461 composites (EXP-CTL) of Θ'_{850} (color, stippled insignificant using Student's t-test).

468 that the LSMPs identified in this study are from anomalous Z'_{500} fields relative to the respective
 469 climatologies of each simulation (i.e. Z'_{500}). Thus, these patterns represent atmospheric variability
 470 separate from mean impacts of sea ice loss. However, when it comes to understanding the impacts
 471 of these LSMPs on fields such as Θ_{850} , the mean impacts of sea ice loss can still be important. As
 472 such, in the ensuing analysis we will be examining both composites of total fields (e.g. Z_{500}) and
 473 anomaly fields (e.g. Z'_{500}).



462 FIG. 9. CTL Composites of precipitation anomalies (contours, every 1 mm d^{-1} from $\pm 1 \text{ mm d}^{-1}$, dashed
 463 negative) and difference in composites (EXP-CTL) of precipitation anomalies (color, stippled insignificant using
 464 Student's t-test).

474 Fig. 10 shows the CTL and EXP composite of Θ_{850} and SLP. In the CTL simulation, high SLP
 475 over the center of the continent and low SLP over the North Atlantic implies a north-northeasterly
 476 geostrophic wind. Coupled with the strong meridional background temperature gradient between
 477 the pole and the midlatitudes, there is implied geostrophic cold air advection over northeastern
 478 North America. Furthermore, the anticyclonic circulation around the high pressure system would

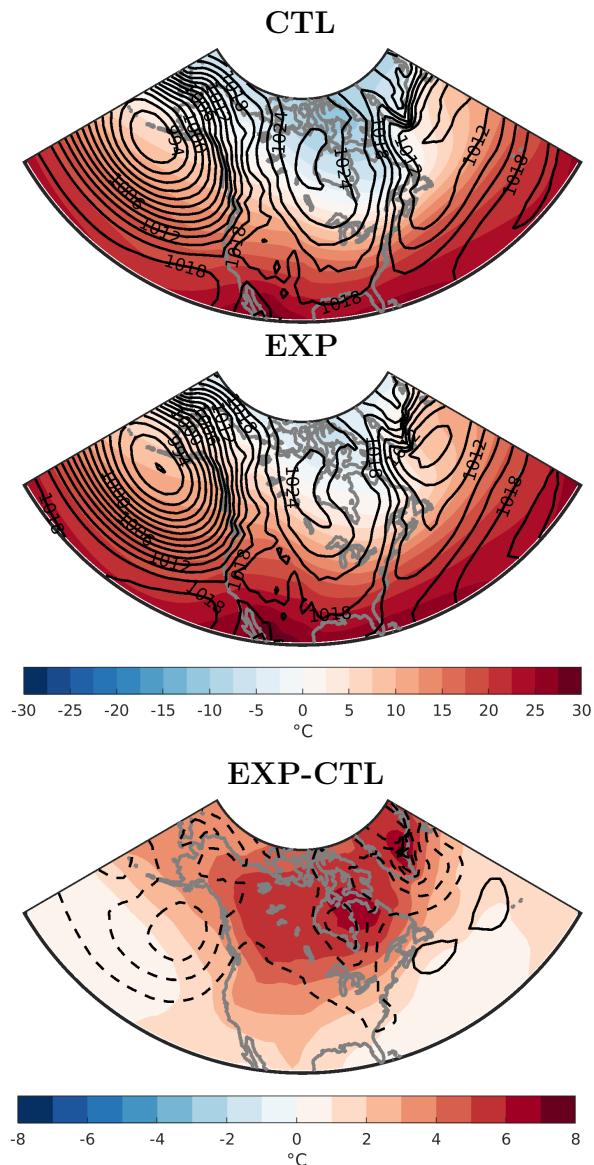
479 aid in transporting this cold air throughout North America. This helps explain why LSMP [1,2] is
480 associated with deep cold continental temperatures.

481 In the EXP simulations, the background temperature gradient from equator to pole is weakened,
482 as is expected with AA (Fig. 10). This in and of itself would cause a reduction in cold air advection
483 in this LSMP. However, we also see that the high pressure over Hudson Bay is weakened resulting
484 in a slackening of the SLP gradient over eastern Canada and a weakening of the implied north-
485 northeasterly geostrophic wind by roughly 30%. Furthermore, the overall reduction in the strength
486 of the high pressure system would reduce the typical transport of this cold air into the interior of
487 North America. This can be seen, for example, in the slackening of the meridional pressure gradient
488 from Hudson Bay to the Gulf of Mexico coast. Therefore, though we could ascribe the changes in
489 cold air advection to mean AA and the weakened temperature gradient (a thermodynamic impact),
490 these changes in SLP also imply a large role for dynamical impacts.

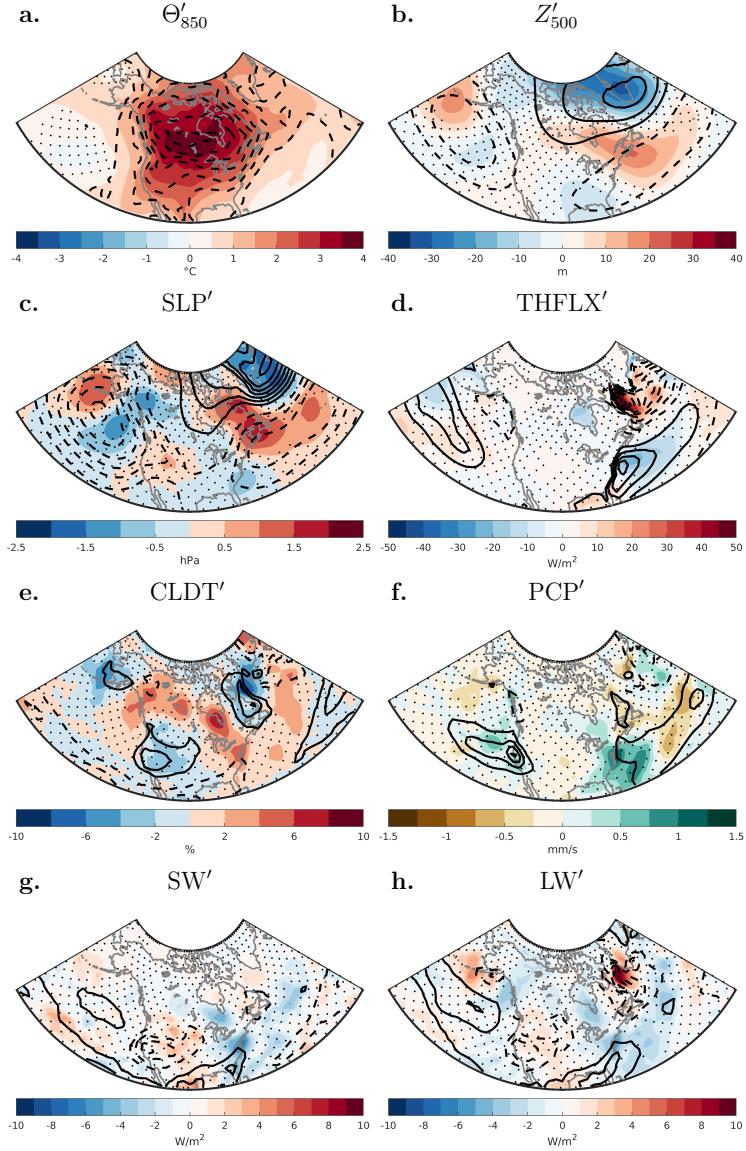
491 As discussed previously, there is an increase in mean winter turbulent heat flux and decrease
492 in mean winter SLP between the two simulations over Hudson Bay (Fig. 2), consistent with a
493 local thermal low pressure response to sea ice loss. The difference in CTL and EXP LSMP [1,2]
494 composites of SLP' are insignificant over much of the North American continent (Fig. 11c).
495 Furthermore, the effect of turbulent heat flux is smaller in LSMP [1,2] (Fig. 11d) potentially owing
496 to the warmer Θ'_{850} reducing the ocean-atmosphere temperature gradients (Fig. 11a). This implies
497 that much of the differences in the SLP gradients discussed above are owing to differences in the
498 mean climatology between the CTL and EXP simulations and how this projects onto the LSMP
499 [1,2] circulation pattern rather than changes in SLP that are specific to this LSMP. For this node
500 in particular, where the high pressure in this region is an important factor, this mean change acts
501 to reduce the zonal SLP gradient and consequently the strong cold air advection in northeastern
502 North America that characterizes the LSMP.

503 In addition to changes in temperature advection, diabatic processes may also play a role in the
504 increased Θ'_{850} associated with LMSP [1,2]. There is an increase in total cloud cover anomalies
505 and precipitation anomalies downstream (south) of Hudson Bay with sea ice loss (Fig. 11e,f). This
506 is expected given the mean increase in moisture and heat flux (Fig. 2f) from the ice-free surface
507 with sea ice loss (Fig. 1b). This increase in clouds and precipitation relative to other LSMPs is
508 associated with less incoming net short wave radiation and less upward longwave radiation (Fig.

509 11g,h). Furthermore, we would expect an increase in diabatic heating to be associated with cloud
 510 and precipitation generation, though this cannot be directly confirmed with the variables saved in
 511 these model simulations. These results imply a role of diabatic processes in addition to temperature
 512 advection in producing the large differences in Θ'_{850} in LSMP [1,2].



513 FIG. 10. Node [1,2] composites of Θ'_{850} (color) and SLP (black contours every 4hPa) for a) CTL, b) EXP and
 514 c) their difference (EXP - CTL). For a) and b) SLP contours are every 4hPa and for c) SLP contours are every
 515 1hPa with dashed negative values and the 0 contour omitted.



516 FIG. 11. Node [1,2] CTL composites (contours) and differences (EXP-CTL) in composites (color) for a)
 517 Θ'_{850} (contours every 0.25° C from $\pm 0.25^\circ$ C, dashed negative), b) Z'_{500} (contours every 50 m from ± 50 m,
 518 dashed negative), c) SLP' (contours every 2 hPa from ± 2 hPa, dashed negative), d) turbulent heat flux anomalies
 519 ($THFLX'$, contours every 20 W m^{-2} from $\pm 20 \text{ W m}^{-2}$, dashed negative), e) total cloud cover anomalies
 520 ($CLDT'$, contours every 5% from $\pm 5\%$, dashed negative), f) precipitation anomalies (PCP' , contours every
 521 1 mm d^{-1} from $\pm 1 \text{ mm d}^{-1}$, dashed negative), g) incoming shortwave radiation anomalies (SW' , positive down,
 522 contours every 5 W m^{-2} from $\pm 5 \text{ W m}^{-2}$, dashed negative), and h) outgoing longwave radiation anomalies
 523 (LW' , positive up, contours every 5 W m^{-2} from $\pm 5 \text{ W m}^{-2}$, dashed negative). All figures have insignificant
 524 differences at the 5% level computed using a Student's t-test stippled.

525 *f. Contributions of changes in LSMPs to mean DJF response to sea ice loss*

526 AA is one of the most notable impacts of Arctic sea ice loss. In Fig. 2a we can see this reflected
 527 in the DJF seasonal mean difference between the CTL and EXP ($\Delta\Theta_{850}$). As described above, some
 528 LSMPs are associated with greater changes Θ'_{850} than others (e.g. LSMP [1,2]). Decomposing the
 529 DJF mean Θ'_{850} response by LSMP contribution can provide an avenue into better understanding
 530 of how synoptic scale processes relate to mean Θ'_{850} response and elucidate additional mechanisms
 531 responsible for AA that might otherwise be obscured.

532 As discussed in the methods section, the mean difference between experiments can be approxi-
 533 mated as those arising due to changes in frequency versus pattern of the LSMPs (Eqn. 4). For Θ_{850}
 534 the contribution from changes in frequency are much smaller than from changes in pattern (not
 535 shown). On the left side of equation 4, $\Delta(fS)$ is an approximation of the seasonal mean difference
 536 between experiments for a given variable (e.g. $\Delta\Theta_{850}$). Substituting these assumptions, we can
 537 re-write equation 4 for Θ_{850} as:

$$\Delta\Theta_{850} \approx \sum_{i=1}^n f_{avg,i} \Delta S_i \quad (8)$$

538 where $f_{avg,i}$ is the mean frequency of occurrence over the CTL and EXP simulations and ΔS_i is the
 539 composite mean Θ_{850} of EXP minus that of CTL for a given node i . Expanding out the summation,
 540 dividing both sides by $\Delta\Theta_{850}$ and multiplying by 100 we can obtain the percent contribution of
 541 each node to $\Delta\Theta_{850}$.

$$100 \approx \frac{f_{avg,1} \Delta S_1}{\Delta\Theta_{850}} \cdot 100 + \frac{f_{avg,2} \Delta S_2}{\Delta\Theta_{850}} \cdot 100 + \dots + \frac{f_{avg,15} \Delta S_{15}}{\Delta\Theta_{850}} \cdot 100 \quad (9)$$

542 In Fig. 12, each of the terms of the right hand side are plotted, showing the percent contribution
 543 of each node to the mean DJF Θ_{850} response. The sum of all the percent contributions over all
 544 nodes is approximately equal to 100 ($\pm 5\%$) at each grid point location, confirming that changes in
 545 composite are indeed the greatest contributor to the mean Θ_{850} response.

546 To avoid the creation of artificially high values of percent contribution where $\Delta\Theta_{850}$ is very
 547 small, grid points where $\Delta\Theta_{850}$ is not statistically significant are masked out in Fig. 12. This is
 548 computed using a permutation test applied at each grid point to determine if the mean of DJF days
 549 used for the SOM analysis in the CTL are different from the EXP simulation with a significance

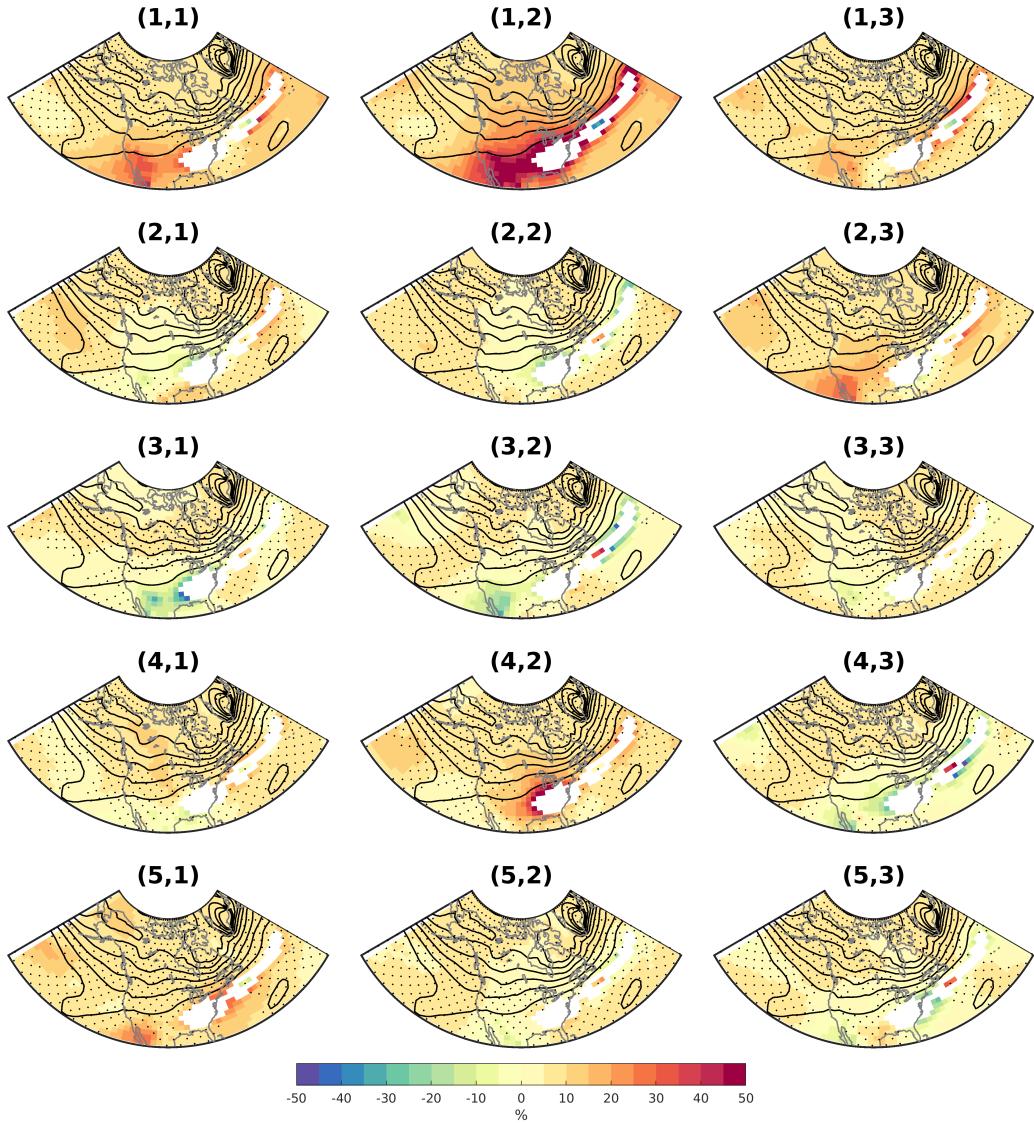
550 level of 95%. This is similar to test used in Fig. 2 except there the DJF seasonal mean is computed
551 first and the null hypothesis is that the seasonal means are the same.

552 If each of these nodes contributed equally to the mean Θ_{850} response, we would expect the
553 percent contribution over 15 nodes to be 6.6% at each grid point. To test this, we compute a null
554 distribution of percent contributions using a permutation test. Here the percent contributions are
555 computed as in equation 9 but using an average frequency of 6.6% and the number of days per
556 composites equal to the frequency times the number of input data vectors. We then shuffle the SOM
557 node labels and choose a new set of CTL and EXP randomly without replacement and compute
558 the difference in their composites. This process is repeated 500 times and if the actual percent
559 contribution to the mean Θ_{850} response is greater than the 97.5th or less than the 2.5th percentiles
560 of this null distribution, it is considered significant at the 95% level.

561 The results show that there are indeed nodes that contribute much more significantly to mean
562 Θ_{850} response than others. LSMP [1,2] stands out for its significant contributions to mean DJF
563 Θ_{850} response over the majority of North America ranging from 20-50%. Over Northern Canada
564 (including the Northwest Territories, Nunavut, and Northern Quebec) where mean Θ_{850} response
565 is greatest, LSMP [1,2] contributes up to 20% of the total mean Θ_{850} response. This is more than
566 double the rate if there was an equal distribution across nodes. LSMP [4,1] also has a notable
567 increase in contribution to the mean Θ_{850} response of up to 15% over the Yukon and Northwest
568 Territories. It should be noted that these two LSMP were associated with deep cold anomalies in
569 the CTL simulations (Fig. 4) in these regions. This implies that processes specific to these LSMPs,
570 such as those outlined in Section 3c, are important for creating the mean Θ_{850} response and can
571 occur on synoptic time scales.

578 In the midlatitudes, the mean Θ_{850} response is much smaller and the contributions of LSMPs is
579 larger. LSMP [1,2] contributes up to 50% to the mean Θ_{850} response in the southern United States.
580 This implies that LSMP [1,2] plays an important role in propagating the mean Θ_{850} response into
581 the mid-latitudes. There are also notable positive contributions to the mean Θ_{850} response in the
582 southern United States from LSMPs [1,1], [2,3], and [4,2] as well as negative contribution other
583 LSMPs including [2,1], [2,2], [3,1], [3,2], [3,3], [4,1], and [4,3]. This is consistent with the general
584 reduction in intensity in Θ_{850} across LSMPs identified in Fig. 8. It should be noted that in these
585 regions where $\Delta\Theta_{850}$ is smaller, the percent contribution will be much larger for the same ΔS_i .

586 One interpretation of these results is therefore that when the mean signal is smaller the impact of
 internal variability will be larger.



572 FIG. 12. Percent contribution of changes in each LSMP composite pattern to mean Θ_{850} in DJF (color).
 573 For reference, the DJF mean difference between CTL and EXP ($\Delta\Theta_{850}$) are provided in contours every 0.5°C
 574 beginning at 0.5°C as shown in Fig. 2a in color. Locations where $\Delta\Theta_{850}$ is not significantly different at the
 575 95% confidence level as determined using a permutation test are masked out. Stippling shows regions where the
 576 percent contribution of changes in LSMP composite are not significant at a 95% level as determined using a
 577 permutation test.

588 **4. Conclusions**

589 The goal of this study was to identify the impact of future sea ice loss on large-scale meteorological
590 patterns (LSMPs) and their associated sensible weather impacts. We analyze output from two
591 fully-coupled CESM-WACCM simulations, one with sea ice nudged to the ensemble mean of the
592 WACCM historical runs averaged over 1980-1999, and the other simulation nudged to projected
593 RCP 8.5 values over 2080-2099. A machine learning method, self-organizing maps (SOMs), is
594 used to identify LSMPs of anomalous 500 hPa in both experiments. Composite analysis of days
595 assigned to these LSMPs is then used to understand the associated sensible weather conditions.

596 To identify the impact of sea ice loss on LSMPs, we quantify differences in how often these
597 LSMPs occur (frequency) and for how many consecutive days data are classified in these LSMPs
598 (residency). There are significant changes in LSMP frequency, most notably with two patterns
599 associated with the coldest potential temperatures at 850 hPa (Θ'_{850}) becoming more common in
600 the future. However, there were little changes in the residency across the set of LSMPs, indicating
601 that there is no general change in the speed of propagation of Rossby waves or stagnation of the
602 flow with sea ice loss.

603 The impact of sea ice loss on LSMP patterns and their associated sensible weather impacts were
604 identified by taking differences in composites of the CTL and EXP simulations for a variety of
605 variables. In general, sea ice loss tends to de-amplify and in some cases shift the LSMP patterns,
606 as seen in the composites differences in Z'_{500} . The impact of sea ice loss on Θ'_{850} is generally
607 consistent with the general reduction in amplitude of the Z'_{500} . This is consistent with previous
608 studies that suggested that decreases in the variance of temperature can occur due to the mean AA
609 (Screen 2014; Screen et al. 2015; Collow et al. 2019; Dai and Deng 2021). Since the amplitude of
610 tropospheric waves can generally be attributed to the displacement of air masses, it makes sense
611 that with a reduction in the background temperature gradient associated with AA we would find a
612 commensurate reduction in amplitude of LSMPs and their associated Θ'_{850} . There are less robust
613 and more localized impacts of sea ice loss on precipitation anomalies associated with the LSMPs
614 that are generally consistent with SLP' changes.

615 One LSMP in particular, LSMP [1,2], exhibits a striking change in associated Θ'_{850} with sea ice
616 loss. In the CTL simulation, this LSMP is associated with deep cold anomalies of Θ'_{850} reaching
617 -1.75°C ; however, with Arctic sea ice loss there is an increase in Θ'_{850} exceeding 4°C . LSMP [1,2]

618 is associated with a ridge of higher pressure over the center of the continent that would facilitate
619 Northerly flow of cold Arctic air deep into the continental US and Canada in the CTL simulation,
620 as can be seen in the cold anomalies across much of the North American continent. AA reduces
621 the meridional temperature gradient and thus would result in a reduction in cold air advection
622 associated with this LSMP.

623 In this framework, it is possible to further identify the coincident impact of dynamical forcing.
624 With Arctic sea ice loss, there are enhanced turbulent heat fluxes from the newly ice free Hudson
625 Bay and the resulting local thermal low pressure anomaly in the wintertime. This results in both
626 a reduction in the southward extent of the high SLP ridge and a weakening of the localized SLP
627 gradient, consequently limiting the geostrophic meridional flow. Since these SLP changes are
628 related to a local thermal response to sea ice loss that are geographically tied to Hudson Bay,
629 they are likely robust to internal variability unlike many other dynamical impacts of sea ice loss.
630 The combined impact of these two changes in the background mean state, both dynamical and
631 thermodynamical, would result in a reduction in cold air advection. This analysis indicates that
632 when it comes to the sensible weather impacts associated with LSMPs, there is an interplay between
633 changes in the mean state and changes in the LSMP.

634 We further identify diabatic forcing mechanisms that may increase the Θ'_{850} in this LSMP. With
635 Arctic sea ice loss, there is an increase in total cloud cover anomalies downstream of Hudson Bay
636 with a coinciding decrease in anomalous shortwave radiation reaching the surface and increase in
637 anomalous longwave radiation down. Along with this increase total cloud cover anomalies there
638 is also an enhancement of precipitation anomalies, both of which are likely associated with latent
639 heating although this cannot not be confirmed given the fields available in our simulations.

640 Given the association of LSMP [1,2] with large changes in Θ'_{850} owing to sea ice loss, a follow-
641 on question was how important this specific LSMP is to the overall mean Θ_{850} response which
642 is largely an AA signal. We find that in the Canadian north where the mean Θ_{850} response is
643 large, this single LSMP accounts for up to 20% of the total signal. This is significantly larger
644 than the 6.6% that would be expected if that signal were equally distributed among all the LSMPs.
645 Although the mean Θ_{850} response is weaker in the midlatitudes, the role of LSMP [1,2] is even
646 greater reaching 50% in the southern United States. This implies that LSMP [1,2] play an out-sized
647 role in the mean Θ_{850} response and its propagation further south.

648 Although we haven't examined extreme temperature events in this study, LSMP [1,2] does
649 resemble the broad-scale patterns associated with cold-air outbreaks over the Eastern US (e.g.
650 Walsh et al. 2001). Previous literature has highlighted the role of AA in reducing the intensity
651 of cold air outbreaks over North America (Screen et al. 2015; Ayarzagüena and Screen 2016);
652 however, this analysis demonstrates that further investigation including the role of dynamics and
653 diabatic effects in cold air outbreaks could yield new insight into the problem.

654 The results in this study demonstrate that there are notable changes in LSMPs and their associated
655 sensible weather with Arctic sea ice loss. However, here we have shown results from just a single
656 set of climate model simulations. Future work conducting a similar analysis with a suite of climate
657 model experiments, such as those available in the Polar Amplification Model Intercomparison
658 Project (PAMIP, Smith et al. (2019)), would help confirm the robustness of these results.

659 *Acknowledgments.* We would like to thank Kevin Bowley for insightful discussions regarding this
660 research. This research was supported by NSF Grant AGS-2236771. NCAR is sponsored by the
661 National Science Foundation under Cooperative Agreement 1852977. We would like to acknowl-
662 edge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by
663 NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science
664 Foundation. Additional computations for this research were performed on the Pennsylvania State
665 University’s Institute for Computational and Data Sciences’ Roar supercomputer.

666 *Data availability statement.* The WACCM simulations utilized in this study and the final
667 SOM used to identify the LSMPs are openly available from the Penn State DataCommons at
668 <https://doi.org/10.26208/144H-0X26>. The Self-Organizing Map Program Package (SOM_PAK;
669 Kohonen (2001)) is available at <http://www.cis.hut.fi/research/som-research/>.

670 References

671 Alexander, M., U. S. Bhatt, J. Walsh, M. Timlin, J. Milller, and J. Scott, 2004: The Atmospheric
672 Response to Realistic Arctic Sea Ice Anomalies in an AGCM during Winter. *Journal of Climate*,
673 **17** (5), 890–905, URL [https://doi.org/10.1175/1520-0442\(2004\)017<0890:TARTRA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2).

674 Ayarzagüena, B., and J. A. Screen, 2016: Future Arctic sea ice loss reduces severity of cold air
675 outbreaks in midlatitudes. *Geophysical Research Letters*, **43** (6), 2801–2809, <https://doi.org/10.1002/2016GL068092>.

676 Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in
677 midlatitudes. *Geophysical Research Letters*, **40** (17), 4734–4739, <https://doi.org/10.1002/grl.50880>.

678 Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream:
679 Can it? Has it? Will it? *Wiley Interdisciplinary Reviews: Climate Change*, **6** (3), 277–286,
680 <https://doi.org/10.1002/wcc.337>.

681 Blackport, R., and P. J. Kushner, 2017: Isolating the atmospheric circulation response to arctic sea
682 ice loss in the coupled climate system. *Journal of Climate*, **30** (6), 2163–2185, <https://doi.org/10.1175/JCLI-D-16-0257.1>.

686 Blackport, R., and P. J. Kushner, 2018: The role of extratropical ocean warming in the coupled
687 climate response to Arctic sea ice loss. *Journal of Climate*, **31** (22), <https://doi.org/10.1175/JCLI-D-18-0192.1>.

688

689 Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude
690 of midlatitude atmospheric waves. *Science Advances*, **6** (8), 1–10, <https://doi.org/10.1126/sciadv.aay2880>.

691

692 Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus, 2016: Sinuosity
693 of midlatitude atmospheric flow in a warming world. *Geophysical Research Letters*, **43** (15),
694 8259–8268, <https://doi.org/10.1002/2016GL070309>.

695

696 Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather.
Nature Geoscience, **7** (9), <https://doi.org/10.1038/ngeo2234>.

697

698 Collow, T. W., W. Wang, and A. Kumar, 2019: Reduction in Northern Midlatitude 2-m Temperature
699 Variability due to Arctic Sea Ice Loss. *Journal of Climate*, **32** (16), 5021–5035, <https://doi.org/10.1175/JCLI-D-18-0692.1>.

700

701 Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice
702 cover: Results from different techniques. *Journal of Geophysical Research: Oceans*, **122** (8),
703 6883–6900, <https://doi.org/10.1002/2017JC012768>.

704

705 Dai, A., and J. Deng, 2021: Arctic amplification weakens the variability of daily temperatures
over northern middle-high latitudes. *Journal of Climate*, **34** (7), 2591–2609, <https://doi.org/10.1175/JCLI-D-20-0514.1>.

706

707 Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under in-
creasing CO₂. *Nature Communications*, **10** (121), <https://doi.org/10.1038/s41467-018-07954-9>.

708

709 Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The Seasonal Atmospheric Re-
710 sponse to Projected Arctic Sea Ice Loss in the Late Twenty-First Century. *Journal of Climate*,
711 **23** (2), 333–351, <https://doi.org/10.1175/2009JCLI3053.1>, URL <http://journals.ametsoc.org/doi/abs/10.1175/2009JCLI3053.1>.

712

713 Deser, C., R. a. Tomas, and L. Sun, 2015: The role of ocean-atmosphere coupling in the
zonal mean atmospheric response to Arctic sea ice loss. *Journal of Climate*, **28**, 2168–2186,

714 <https://doi.org/10.1175/JCLI-D-14-00325.1>, URL <http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00325.1>.

715

716 Francis, J., and S. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-
717 latitudes. *Geophysical Research Letters*, **39** (6), 1–6, <https://doi.org/10.1029/2012GL051000>,
718 URL <http://doi.wiley.com/10.1029/2012GL051000>.

719 Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid
720 Arctic warming. *Environmental Research Letters*, **10** (1), <https://doi.org/10.1088/1748-9326/10/1/014005>.

721

722 Gervais, M., E. Atallah, J. R. Gyakum, and L. B. Tremblay, 2016: Arctic Air Masses in a Warming
723 World. *Journal of Climate*, **29**, 2359–2373, <https://doi.org/10.1175/JCLI-D-15-0499.1>.

724 Gervais, M., J. Shaman, and Y. Kushnir, 2020: Impact of the North Atlantic Warming Hole on Sen-
725 sible Weather. *Journal of Climate*, **33** (10), 4255–4271, <https://doi.org/10.1175/jcli-d-19-0636.1>.

726

727 Grotjahn, R., and Coauthors, 2016: *North American extreme temperature events and re-
728 lated large scale meteorological patterns: a review of statistical methods, dynamics, mod-
729 eling, and trends*, Vol. 46. Springer Berlin Heidelberg, 1151–1184 pp., <https://doi.org/10.1007/s00382-015-2638-6>.

730

731 Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models.
732 *Climate Dynamics*, **21** (3-4), <https://doi.org/10.1007/s00382-003-0332-6>.

733

734 Hoskins, B. J., M. E. McIntyre, and a. W. Robertson, 1985: On the use and significance of
735 isentropic potential vorticity maps. *Quarterly Journal of the Royal Meteorological Society*,
736 **111** (470), 877–946.

737

738 Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliot, 2015: CICE: The Los Alamos
739 Sea Ice Model Documentation and Software User’s Manual Version 5.1 LA-CC-06-012. *Los
Alamos National Laboratory Tech. Rep. LA-CC-06-012*, 76.

740

741 Hurrell, J. W., 1995: Decadal trends in the north atlantic oscillation. *Science*, **269**, 676–679.

742

740 Hurrell, J. W., and Coauthors, 2013: The community earth system model: A framework for collabora-
741 tive research. *Bulletin of the American Meteorological Society*, **94**, 1339–1360, <https://doi.org/10.1175/BAMS-D-12-00121.1>.

743 Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a
744 summer ice-free Arctic? *Geophysical Research Letters*, **43** (17), 9113–9120, <https://doi.org/10.1002/2016GL070067>.

746 Kang, J. M., T. A. Shaw, and L. Sun, 2023: Arctic Sea Ice Loss Weakens Northern Hemisphere
747 Summertime Storminess but Not Until the Late 21st Century. *Geophysical Research Letters*,
748 **50** (9), 1–10, <https://doi.org/10.1029/2022GL102301>.

749 Kohonen, T., 2001: *Self-Organizing Maps Third Edition*. Springer.

750 Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L. M. Polvani, 2013:
751 Climate change from 1850 to 2005 simulated in CESM1(WACCM). *Journal of Climate*, **26** (19),
752 7372–7391, <https://doi.org/10.1175/JCLI-D-12-00558.1>.

753 McCusker, K. E., P. J. Kushner, J. C. Fyfe, M. Sigmond, V. V. Kharin, and C. M. Bitz, 2017:
754 Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing.
755 *Geophysical Research Letters*, **44** (15), 7955–7964, <https://doi.org/10.1002/2017GL074327>.

756 Oudar, T., E. Sanchez-Gomez, F. Chauvin, J. Cattiaux, L. Terray, and C. Cassou, 2017: Re-
757 spective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the North-
758 ern Hemisphere atmospheric circulation. *Climate Dynamics*, **49**, 3693–3713, <https://doi.org/10.1007/s00382-017-3541-0>.

760 Peings, Y., Z. M. Labe, and G. Magnusdottir, 2021: Are 100 Ensemble Members Enough to
761 Capture the Remote Atmospheric Response to +2°C Arctic Sea Ice Loss? *Journal of Climate*,
762 **34** (10), 3751–3769, <https://doi.org/10.1175/jcli-d-20-0613.1>.

763 Perlitz, J., M. Hoerling, and R. Dole, 2015: Arctic Tropospheric Warming: Causes
764 and Linkages to Lower Latitudes. *Journal of Climate*, **28** (6), 2154–2167, <https://doi.org/10.1175/JCLI-D-14-00095.1>.

766 Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feed-
767 backs in contemporary climate models. *Nature Geoscience*, **7**, 181–184, <https://doi.org/10.1038/NGEO2071>.

768

769 Ronalds, B., E. A. Barnes, R. Eade, Y. Peings, and M. Sigmond, 2020: North Pacific zonal
770 wind response to sea ice loss in the Polar Amplification Model Intercomparison Project and
771 its downstream implications. *Climate Dynamics*, **55** (7-8), 1779–1792, <https://doi.org/10.1007/s00382-020-05352-w>, URL <https://doi.org/10.1007/s00382-020-05352-w>.

772

773 Screen, J., 2014: Arctic amplification decreases temperature variance in northern mid- to high-
774 latitudes. *Nature Climate Change*, **4**, 577–582, <https://doi.org/10.1038/NCLIMATE2268>.

775

776 Screen, J., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic
777 warming. *Geophysical Research Letters*, **39**, 1–5, <https://doi.org/10.1029/2012GL051598>.

778

779 Screen, J., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic
780 temperature amplification. *Nature*, **464**, 1334–1337, <https://doi.org/10.1038/nature09051>, URL
781 <http://dx.doi.org/10.1038/nature09051>.

782

783 Screen, J., I. Simmonds, C. Deser, and R. Tomas, 2013: The Atmospheric Response to
784 Three Decades of Observed Arctic Sea Ice Loss. *Journal of Climate*, **26** (4), 1230–1248,
785 <https://doi.org/10.1175/JCLI-D-12-00063.1>, URL <http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00063.1>.

786

787 Screen, J. A., C. Deser, and L. Sun, 2015: Reduced Risk of North American Cold Extremes
788 due to Continued Arctic Sea Ice Loss. *Bulletin of the American Meteorological Society*, **96** (9),
789 1489–1503, <https://doi.org/10.1175/BAMS-D-14-00185.1>.

790

791 Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to
792 Arctic sea-ice loss across climate models. *Nature Geoscience*, **11** (3), 155–163, <https://doi.org/10.1038/s41561-018-0059-y>, URL <http://dx.doi.org/10.1038/s41561-018-0059-y>.

793

794 Serreze, M. C., a. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence
795 of surface-based Arctic amplification. *The Cryosphere Discussions*, **2**, 601–622, <https://doi.org/10.5194/tcd-2-601-2008>.

796

793 Singarayer, J., J. Bambier, and P. Valdes, 2006: Twenty-First-Century Climate Impacts from a
794 Declining Arctic Sea Ice Cover. *Journal of Climate*, **19**, 1109–1125, URL <https://doi.org/10.1175/JCLI3649.1>.

795

796 Smith, D., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP)
797 contribution to CMIP6: investigating the causes and consequences of polar amplification. *Geo-
798 scientific Model Development*, **12**, 1–42, <https://doi.org/10.5194/gmd-2018-82>.

799

800 Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017:
801 Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean-atmosphere
802 coupling and the background state. *Journal of Climate*, **30** (12), 4547–4565, <https://doi.org/10.1175/JCLI-D-16-0564.1>.

803

804 Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation
805 response to projected Arctic sea ice loss. *Journal of Climate*, **28** (19), 7824–7845, <https://doi.org/10.1175/JCLI-D-15-0169.1>.

806

807 Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the winter-
808 time geopotential height and temperature fields. *Geophysical Research Letters*, **25** (9), 1297,
<https://doi.org/10.1029/98GL00950>.

809

810 Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas, 2000: SOM Toolbox for Matlab 5.
Tech. Rep. 0, Helsinki Univiversity of Technology, Helsinki, Finland.

811

812 Vihma, T., 2014: Effects of Arctic Sea Ice Decline on Weather and Climate : A Review. *Surveys
in Geophysics*, **35**, 1175–1214, <https://doi.org/10.1007/s10712-014-9284-0>.

813

814 Wallace, J., and D. Gutzler, 1981: Teleconnections in the Geopotential Height Field during the
815 Northern Hemisphere Winter. *Monthly Weather Review*, **109**, 784–812, URL [https://doi.org/10.1175/1520-0493\(1981\)109%3C0784:TITGHF%3E2.0.CO;2](https://doi.org/10.1175/1520-0493(1981)109%3C0784:TITGHF%3E2.0.CO;2).

816

817 Walsh, J. E., a. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the
818 United States and Europe, 1948-99. *Journal of Climate*, **14** (1987), 2642–2658, [https://doi.org/10.1175/1520-0442\(2001\)014<2642:ECOTU>2.0.CO;2](https://doi.org/10.1175/1520-0442(2001)014<2642:ECOTU>2.0.CO;2).

819 Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update
820 from CMIP5 models. *Geophysical Research Letters*, **39** (18), n/a–n/a, <https://doi.org/10.1029/2012GL052868>, URL <http://doi.wiley.com/10.1029/2012GL052868>.

821