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Abstract Finite-dimensional truncations are routinely
used to approximate partial differential equations
(PDES), either to obtain numerical solutions or to derive
reduced-order models. The resulting discretized equa-
tions are known to violate certain physical properties
of the system. In particular, first integrals of the PDE
may not remain invariant after discretization. Here,
we use the method of reduced-order nonlinear solu-
tions (RONS) to ensure that the conserved quantities
of the PDE survive its finite-dimensional truncation. In
particular, we develop two methods: Galerkin RONS
and finite volume RONS. Galerkin RONS ensures the
conservation of first integrals in Galerkin-type trunca-
tions, whether used for direct numerical simulations
or reduced-order modeling. Similarly, finite volume
RONS conserves any number of first integrals of the
system, including its total energy, after finite volume
discretization. Both methods are applicable to general
time-dependent PDEs and can be easily incorporated
in existing Galerkin-type or finite volume code. We
demonstrate the efficacy of our methods on two exam-
ples: direct numerical simulations of the shallow water
equation and a reduced-order model of the nonlinear
Schrodinger equation. As a byproduct, we also gener-
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alize RONS to phenomena described by a system of
PDEs.

Keywords Galerkin truncation - Finite volume
method - Model order reduction - Partial differential
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1 Introduction

Galerkin and Petrov—Galerkin methods are routinely
used to obtain numerical solutions to partial differ-
ential equations (PDEs) and to obtain reduced-order
models of the full PDE [35,56]. Galerkin-type meth-
ods approximate the true solution u(x, ¢) of the PDE
with a finite-dimensional truncation of the form,

N
ix.1) =) ai(n)gi(x). (1)
i=1
where ¢; are some prescribed modes and a; are the
corresponding amplitudes. The approximate solution i
evolves on the N-dimensional linear subspace spanned
by the modes {¢; }lN: |- Galerkin-type truncations lead to
a set of ordinary differential equations (ODEs) for the
amplitudes a; (1), whose solution dictates the evolution
of the approximate solution .

There are two main regimes in which Galerkin trun-
cations are used: direct numerical simulations (DNS)
and reduced-order modeling. In DNS, the goal is to
approximate the solution of the PDE with high accu-
racy and therefore the dimension of the linear subspace
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N is chosen to be as large as possible. Depending on the
PDE, the choice of the modes ¢; can include Fourier
modes, finite elements, piece-wise polynomials, etc.

Many applications, such as inverse problems, sensi-
tivity analysis, control, and uncertainty quantification,
require repeated solves of the PDE. In this case, using
the costly DNS solution may be impractical; therefore
reduced-order models are used instead. For reduced-
order modeling purposes, one seeks an approximate
solution with as few modes N as possible, to reduce the
computational cost. In other words, one sacrifices accu-
racy for computational efficiency. Nonetheless, if the
modes ¢; are chosen carefully and the corresponding
amplitudes a; are evolved appropriately, the reduced-
order solution will have sufficient accuracy to repro-
duce many relevant features of the true solution. Sev-
eral equation-driven and data-driven methods, such as
proper orthogonal decomposition (POD) [7], dynamic
mode decomposition (DMD) [59], and spectral sub-
manifolds (SSM) [32,62], have been developed to dis-
cover the appropriate set of modes ¢; for a particular
PDE.

Whether used for direct numerical simulations or
for reduced-order modeling, Galerkin-type methods
are known to violate certain physical properties of the
system [11,17,44,47]. In particular, quantities which
might be conserved under the dynamics of the PDE,
often fail to remain conserved under its Galerkin trun-
cation. As we review in Sect. 1.1, several techniques
have been developed to address this shortcoming. How-
ever, these methods are either developed for a specific
PDE or are only applicable to a particular class of PDEs.
Here, using the framework of reduced-order nonlinear
solutions (RONS) [2], we develop a universal method
for ensuring that the conserved quantities of the PDE
survive its Galerkin truncation. The resulting method
is applicable to a wide range of time-dependent PDEs
and can be implemented with simple changes to exist-
ing code. Furthermore, we develop two extensions to
the theory of RONS, so that our original contributions
can be summarized as follows:

1. Galerkin RONS: This method ensures that the con-
served quantities of the PDE remain conserved after
Galerkin truncation.

2. RONS for systems of PDEs: RONS was originally
developed for scalar-valued PDEs. Here, we for-
mulate it for a system of PDEs. In particular, this
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allows the use of RONS on PDEs with higher-order
time derivatives.

3. Finite volume RONS: Finite volume methods are
designed to respect the conservation of the state
variable. However, certain conservation-law PDEs
admit additional first integrals which may not be
respected by the finite volume discretization. To
address this issue, we develop finite volume RONS
which conserves all known first integrals of the
PDE.

1.1 Related work

As mentioned earlier, the fact that Galerkin-type trun-
cations do not necessarily respect the physical proper-
ties of the PDE is well-known. A number of attempts
have been made to address this issue. Here, we review
the most relevant studies.

Symmetry reduction: By Noeother’s theorem, any
continuous symmetry of a system leads to a corre-
sponding conserved quantity [39]. As such, it has long
been recognized that symmetries of the system must
be preserved in a reduced model [45]. One approach
is symmetry reduction whereby, before any further
model order reduction, the symmetries of the system
are reduced. For instance, the method of slices [57]
was developed as a simple computational method for
removing translational and rotational symmetries of a
system. This method was later generalized to multi-
ple slices to remove the spurious singularities induced
by symmetry reduction [14,15,27]. In addition to the
method of slices, ideas from differential geometry
have been used to reduce general Lie symmetries of
a system [31,45]. In any case, removing the symme-
tries of the system greatly simplifies its dynamics so
that subsequent POD-Galerkin model reduction on the
symmetry-reduced system succeeds, where it might
have failed prior to symmetry reduction [50]

Hamiltonian systems: Hamiltonian PDEs have arich
geometric structure which may be lost after numeri-
cal discretization. Symplectic integrators were devel-
oped to ensure that the symplectic two-form associated
with a Hamiltonian system is preserved after discretiza-
tion and consequently the discrete system conserves
volume [34,58,65]. Although first derived for Hamil-
tonian ODEs, these ideas have been generalized to
PDEs [12]. For instance, Modin and Viviani [47] devel-
oped a structure-preserving discretization of the two-
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dimensional Euler equation for ideal, incompressible
fluids which respects the conservation of its Casimir
invariants. Building on these ideas, Cifani et al. [19]
showed that such structure-preserving discretizations
reproduce an energy spectrum which agrees with
Kraichnan’s theoretical prediction [40,41], whereas
this prediction is not reproducible by other numeri-
cal methods at moderate Reynolds numbers [9,24].
In addition to DNS, reduced-order modeling meth-
ods have been developed that retain the Hamiltonian
structure of the system. For example, Mohseni and
Peng [52] developed the proper symplectic decom-
position (PSD) which ensures that a POD-Galerkin
model reduction preserves the symplectic structure of
the system. Another example is the symplectic mani-
fold Galerkin (SMG) of Buchfink et al. [13] who reduce
the model to a lower dimensional manifold as opposed
to a linear subspace.

Finite volume method: Many PDEs, which model
physical phenomena, are derived from conservation
laws. Finite volume methods ensure that these con-
servation laws are respected by the discretization. By
construction, finite volume schemes are conservative
in the sense that they conserve the state variables of a
system. However, certain conservation-law PDEs, such
as the shallow water equation considered in this paper,
admit additional first integrals which may not remain
conserved after a finite volume discretization. This has
motivated the development of structure-preserving and
energy-preserving finite volume methods. For exam-
ple, Fjordholm et al. [26] and Tadmor and Zhong [63]
developed structure-preserving schemes which con-
serve the total energy for the shallow water equation
(SWE). Another example appears in Mishra and Tad-
mor [46] who derived a finite volume scheme which
satisfies additional constraints of the system such as
divergence-free and curl-free conditions. In the realm
of reduced-order modeling, starting from a finite vol-
ume discretization, Carlberg et al. [17] developed a
new technique to enforce the conservation of the state
variables in POD-based Galerkin and Petrov-Galerkin
reduced-order models. However, they do not address
enforcing any additional first integrals such as the total
energy of the system.

Well-balanced schemes: Another important prop-
erty of the system is its steady state solutions or equi-
libria. A generic method may not preserve equilibria of
the system after discretization or reduced-order mod-

eling. Well-balanced schemes have been developed to
address this issue [8,30]. Equilibrium solutions often
arise as a result of the balance between external forces,
such as gravity [38] or friction [18], and the internal
structure of the system. Well-balanced methods seek
to maintain this balance after discretization and there-
fore preserve the equilibrium solutions.

Stability-preserving methods: Even if the equilibria
are preserved, their stability may not be preserved by
the method. More specifically, a stable equilibrium of
the system may become unstable after discretization
or model reduction. Although this issue goes beyond
the scope of our work, we review the existing reme-
dies for completeness. Using the control-theoretic idea
of balanced truncations from Moore [49], Willcox and
Peraire [68] developed balanced POD which restricts
the projection onto to the observability and control-
lability subspaces through empirical approximations
of their respective grammians. This method was later
enhanced by Rowley [54] who showed that balanced
POD can preserve the stability of equilibria. In the con-
text of compressible fluid flows, Rowley et al. [55]
proposed a stability-preserving POD-Galerkin method
by using an energy-based inner product instead of the
usual L? inner product. Another example can be found
in [33] who studied linear time-invariant systems. They
use a full-state feedback controller to force the eigen-
values to lie within the unit disc and ensure the stability
of the reduced-order model. These ideas were gener-
alized to linear time-dependent systems in [48] who
constrain the singular values of the linear time-varying
system through a feedback controller. This procedure
limits the transient growth of perturbations and guaran-
tees the stability of the reduced time-dependent system.

The methods reviewed in this section are restrictive
in the sense that they either apply to a particular PDE or
a particular class of PDEs (e.g., Hamiltonian systems).
In contrast, our RONS-based method is applicable to
any PDE with conserved quantities. Furthermore, the
proposed method can be easily implemented on top
of existing Galerkin-type and finite volume schemes.
Of course, this universality and straightforward imple-
mentability come at a cost: although our RONS-based
method ensures conservation of the first integrals of the
system, it does not necessarily preserve any additional
structure such as the symplectic geometry of Hamilto-
nian systems.
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1.2 Outline

We organize the remainder of the paper in the following
manner. In Sect.2, we discuss the general set-up and
framework of RONS in the context of Galerkin projec-
tions. In Sect. 3, we extend the methodology presented
in Sect.2 to systems of equations and finite volume
discretizations. We present two numerical examples in
Sect. 4. Namely we apply our methodology to, the shal-
low water equation (SWE) in Sect. 4.1, and the nonlin-
ear Schrodinger (NLS) equation in Sect. 4.2. Lastly, we
present our concluding remarks in Sect. 5.

2 Mathematical preliminaries

RONS is a method for evolving reduced models which
depend nonlinearly on a set of time-dependent param-
eters [2]. Although it was originally developed for
reduced-order modeling, here we use RONS for both
model order reduction and DNS. In this section, we
review the RONS framework in the context of Galerkin-
type truncations of scalar, real-valued PDEs of the
form,

ur = Fu), u(x,0)=uox), 2)

where 1 : 2 x RT — R is the solution of the PDE,
£2 C R" is the spatial domain, F is a differential oper-
ator, and uo(x) is the initial condition of the PDE. In
Sect.3.1, we extend the theory of RONS to systems of
PDEs, but for this review we restrict our attention to
scalar equations.

Additionally, we assume that the PDE has m con-
served quantities (or first integrals) denoted by /i, such
that

Iy(u(-, 1)) =const.,, k=1,2,...,m, 3)

for all time ¢+ > 0. The conserved quantities /; may
denote physical quantities such as mass, energy, or
momentum, or more abstract quantities that arise from
the structure of the PDE such as the Casimir invariants
of Euler’s equation for ideal fluids [11]. We assume that
the solution u belongs to an appropriate Hilbert space H
endowed with the inner product (-, -) i and the induced
norm | - || g, and we assume that the boundary condi-
tions for the PDE (2) are encoded in the Hilbert space
H.
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Next, we introduce a Galerkin-type approximate
solution u(x, a(t)) of the form,

N
ix a) =) ait)gi ). @)

i=1
where N is the total number of modes, a = (ay, ...,
ay) : Rt — R is the time-dependent vector of
parameters and ¢; : 2 — R are the linearly indepen-
dent basis functions or modes. The basis functions are
chosen based on the structure of the PDE (2). For exam-
ple, the modes can be Fourier modes or finite elements
for high resolution DNS. For reduced-order modeling
purposes, ¢; are a relatively small number of modes,
such as those obtained from the proper orthogonal
decomposition (POD) [7,61] or dynamic mode decom-
position (DMD) [59]. In either case, RONS produces
a system of ordinary differential equations (ODEs) to
evolve the parameters a in time.

Even when the solution u is real-valued, the param-
eters a; and the modes ¢; can be complex-valued, as
is the case for Fourier modes. For the review in this
section, we only consider the case where both the
parameters and modes are real-valued. Generalization
to complex-valued parameters and modes is straightfor-
ward and is included in Appendix A for completeness.

Remark 1 We emphasize that the general construction
of RONS allows the approximate solution # to have a
nonlinear dependence on the time-dependent parame-
ters a(t), but we will not consider this feature here.
For such nonlinear approximate solutions, we refer
the reader to Ref. [2] which discusses their theoreti-
cal underpinnings. Their computational aspects are dis-
cussed in Refs. [4,5].

Galerkin truncation can be obtained by substituting
the approximate solution (4) into the PDE (2) and trun-
cating the right-hand side to the modes {¢1, ..., dn}.
An alternative, yet equivalent, approach is to cast
Galerkin truncation as an optimization problem [2].
More specifically, one seeks to minimize the instanta-
neous error between the rate of change i, of the approx-
imate solution and the rate F'(it) dictated by the PDE.
To this end, we define the cost functional,

1
Ja(t), aw) = 5l - F@%, (5)

which quantifies the error between the left- and right-
hand sides of the PDE at the approximate solution
u. Note that 1, = ), a;¢; depends on a and F(it)
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depends on a. As aresult, the cost functional 7 depends
on both a(t) and a(t).

We minimize the function 7 (a, @) instantaneously
in the following sense. At any time 7, we seek to evolve
the parameters a(¢) such that 7 is minimized at that
instance. More precisely, we solve the instantaneous
optimization problem,

min J(a, a), ©6)
acRN
where the minimum is only taken over a. Since J is
quadratic in a, the optimal solution has an explicit solu-
tion given by

Ma = f(a), )

which is exactly the equation for the standard Galerkin
truncation. Here the metric tensor M, is an N x N
matrix whose elements are given by

iy = (2PN ©
ij = 8611"861]‘[_1_ i»Pjlyg -
and the vector field f : R — R has components,
ou R N
fi=\a - F@) =g F@)y 9)
a; H

Since the set of modes {qbi}f\': | are linearly inde-
pendent, the metric tensor M is symmetric positive-
definite. Moreover, if the modes are orthonormal then
the metric tensor is the N x N identity matrix. In either
case, the linear system of equations (7) has a unique
solution, @ = M~ f(a).

Once the ODE (7) is solved numerically, the approx-
imate solution #(x, a(¢)) can be evaluated. However,
there is no guarantee that this approximate solution
respects the conserved quantities (3). More precisely,
there is generally no guarantee that the quantities
I [u(-, a(t))] are constant in time. Even when the
dimension N of the subspace on which the solution is
projected is very large, the conserved quantities are not
guaranteed to be respected. For instance, consider the
two-dimensional Euler equation for ideal fluids with
periodic boundary conditions, d;@w + u - Vo = 0,
where w (x, t) denotes the vorticity field. Euler’s equa-
tion admits the Casimir invariants, [ = f o (x, t)dx
for any integer k > 1. Let’s consider a Fourier spec-
tral approximation @ of the solution where ¢; are the
Fourier modes. In this approximation, only /; and I,
remain conserved, however, all higher-order Casimir
invariants [ with k > 3 are violated [11]. This is shown
in Fig. 1 for a Fourier pseudo-spectral solution of the

(a) (b)

250

L(t)/1,(0)

0 0 100 150 200 0 50 100 150 200

0.5+ 0.5+

0 50 100 150 200 0 50 100 150 200
t t

Fig.1 Firstfour polynomial Casimir invariants for Euler’s equa-
tion: a I1, b I, ¢ I3, and d I4. In each panel, the red line with
the x markers corresponds to Galerkin RONS whereas the solid
black curve denotes a standard Fourier psuedospectral DNS with
512 x 512 mdoes. (Color figure online)

Euler equation with 512 x 512 modes over the time
interval ¢ € [0, 200].

In the framework of RONS, it is straightforward
to ensure that the conserved quantities are respected
by the approximate solution. To this end, we add the
conserved quantities as constraints to the optimization
problem (6). More specifically, we seek the solution to
the constrained optimization problem,

min J(a, a), (10a)
acRN

s.t. Ip(a(t)) = const. fork=1,2,...,m. (10b)

The solution to this optimization problem can
be written explicitly. Here, we recall the resulting
equations and refer to [2] for a detailed deriva-
tion. The constraints in the optimization problem are
enforced by introducing the Lagrange multipliers A =
(M, ..., Am) | which solve the constraint equation,

C(a)h = b(a). (11)
Here, the constraint matrix C has entries

Cij = <Va1,~,M‘1Van>, (12)
and the components of b are given by

bi = (Vali M7 ). (13)

where (-, -) denotes the usual Euclidean inner product
on RV,
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Remark 2 The conserved quantities are typically
defined by an integral over the spatial domain,

I(u) =/ g(u)dx, (14)
2

for some map g. After substituting the approximate
solution #(x, a(t)) into this equation and integrating
over §2, the result is a function of a. Using a slight
abuse of notation, we write I (a) for I (ii(-, a)). In the
language of differential geometry, I (i1(-, @)) is the pull-
back of I under the map .

The constraint matrix C(a) is symmetric positive-
definite provided that the gradients {V, /i (@)}, are
linearly independent, so the solution to the constraint
equation (11) exists and is unique. As the following
remark shows, this linear independence is not a strong
assumption.

Remark 3 Assume thatthe gradients Vg Iy, ..., Val—1
are linearly independent and that the remaining gradi-
ents Vgly, ..., Vql, can be written as a linear com-
bination of them. If the conservation of I; with 1 <
k < £ — 1 is enforced using RONS, then the remain-
ing conserved quantities with £ < k < m are auto-
matically preserved. For instance, consider the con-
served quantity /,. Since V, I, is linearly dependent on

Voli, ..., Valy_1, there exist constants by such that
-1

Vale(@) =Y biVali(a). (15)
k=1

Now consider the time derivative of this conserved
quantity,

-

d -1

g @ = [Vale(@)]" a = LZ:; bkvalk(a)] a.
(16)

Since we have already ensured that the first £ — 1 con-
served quantities are respected using RONS, we have

d T.

Elk(a) = [Valr(a)] a =0, a7
for 1 < k < £—1. This, together with Eq. (16), implies
that %Iz (a(t)) = 0, i.e., the quantity I, is automati-
cally conserved and therefore it can be omitted. The
same argument applies to all linearly dependent con-
straints with k > £.
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With this set-up, the minimizer of (10) must solve
the ODE:s,

Ma= f@) - > Val(a). (18)

k=1

We refer to Eq. (18) as the Galerkin RONS equation, or
G-RONS for short. The summation term involving the
Lagrange multipliers A ensure that the corresponding
approximate solution & (x, a(t)) respects the conserva-
tion of the quantities I;. We solve the RONS equation
numerically using standard time discretization schemes
such as Runge—Kutta methods. At each time step, the
linear constraint equation (11) needs to be solved to
obtain the Lagrange multipliers. Since the number of
conserved quantities m is often small, solving the con-
straint equation does not constitute a significant com-
putational cost.

Remark 4 We point out that G-RONS ensures the con-
servation of invariants [; at the semi-discrete level.
More specifically, the conservation is respected by the
spatial discretization. In order for the conservation to be
also respected after time discretization, one would need
a conservative time stepping scheme. For example, one
could use arelaxation Runge—Kutta scheme [53]. How-
ever, as we show in our numerical examples, even
standard Runge—Kutta schemes (such as MATLAB’s
ODEA45) work very well, exhibiting only a negligible
amount of decay in the conserved quantities.

Comparing the usual Galerkin equation (7) and the
Galerkin RONS equation (18), we see that they only
differ by the summation term involving the Lagrange
multipliers. Therefore, it is quite straightforward to
modify existing Galerkin code to enforce the conser-
vation of the first integrals [;. For instance, Fig. 1
shows that Galerkin RONS conserves the higher-order
Casimir invariants of the Euler equation.

3 Extensions of RONS

In this section, we develop two extensions of RONS.
In Sect. 3.1, we derive the Galerkin RONS equation for
systems of PDEs. In Sect. 3.2, we apply RONS in con-
junction with finite volume discretization to ensure that
the discretized equations respect all conserved quanti-
ties of the PDE.
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3.1 RONS for systems of PDEs

The RONS theory can be generalized to systems of
PDEs. Consider a system of p PDEs in the form,

U[ZF(u), (19)

whereu : R" xRt — R” has components u, ..., up,
and F is a vector-valued differential operator with com-
ponents Fi, ..., F,. We assume that each component
of the solution belongs to a Hilbert space H;, i.e.,
u; € H;. As before, we assume that the PDE (19) has
m conserved quantities,

Iiy(u(-,t)) =const., k=1,2,...,m, (20)

for all times ¢ > 0.

Consider an approximate solution#t = (i1, ..., itp)
which depends on space x and time-dependent param-
eters a(t). More specifically, we write each component
of the approximate solution as a linear combination of
prescribed modes,

Ni
i (x, ar () = Y _ al (O} (x), 1)

i=1

i Ni

where {¢; (x)}; 1,
ponent i1 of the approximate solution and {a,i (t)};vzk1
are the corresponding time-dependent parameters. We
define the vector a; = (a,l, ...,a,iv") containing all
parameters of the k-th component of &. Note that for
generality, we assumed that each component iy is
expanded by a different set of modes ¢,i. In the spe-
cial case where all components are written in the same
basis, the subscript k can be omitted.

Concatenating all vectors ay together, we definea =
(ai, ..., ap)T € RV where N = Nj+- - +N,. There-
fore, the approximate solution &(x, a(¢)) depends on N
time-dependent parameters. Similar to the scalar case,
we define the cost functional,

are the modes expanding the com-

1. )
I @, a) = Sl - F@)|3, (22)

which measures the discrepancy between the rate of
change of the approximate solution and the rate dic-
tated by the right-hand side of the PDE. Here the Hilbert
space H is defined by the direct sum H = @,’(’:1 Hy,
where uy € Hi. The normon H is defined by ||u ”%1 =
Z,f: 1 gl %Ik . Therefore, we can expand the cost func-
tion and write

P

T =33

2
(23)

In order to express the cost function J more explic-
itly, we define the matrices My < RNexNk and the
vectors f(a) € RN fork = 1,2,..., p. Denoting
the components of My and f, by [M];; and [ f;];,
respectively, we define,

My = (0. ), 1k = o @)

(24)
where i, j € {1, 2, ..., Ni}. Noting that,
dir /0t = ()¢} (x), (25)

itis straightforward to show that the cost functional (23)
can be written equivalently as
"1
o L M
J(a, a) Z > (ar, Myay)
k=1 (26)

1
=l fi) + 5 (Fe@), Fe@)

Recall that (-, -) denotes the Euclidean inner product,
whereas (-, -) g, denotes the functional inner product
on the Hilbert space Hj. Our final step is to write the
cost functional (26) more compactly by defining the

block diagonal matrix M = diag (M|, M, ..., M),
and the vector field f : RY — R such that
M, fi(@)
M, fa(a)
M = . . fla) = :
Mp fp(a)
27

With these expressions, the cost function takes its
final form,

1
J(a,a) = —(iz,Miz)—(d,f)
(28)

l\)l>—‘

P
Z Fi(@), Fe(@),,

which is s1m11ar in form to the scalar-valued case
reviewed in Sect. 2.

We minimize this cost function instantaneously. To
enforce the conserved quantities of the PDE, we fol-
low the same procedure as in the scalar-valued case by
adding them as constraints to the instantaneous opti-
mization problem. More specifically, we seek the solu-
tion of the constrained optimization problem,

min J(a, a),

acRN (29)
s.t. Ip(a(t)) = const. fork=1,2,...,m
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The solution to this constrained optimization problem
satisfies the ODEs,

m
Ma = f(@) =) uVali(@), (30)
k=1
with M and f defined in (27). The proof is similar to
the scalar-valued case and therefore is omitted here for
brevity.

Note that we massaged the cost function 7 for the
system of PDEs so that it has a similar form to the scalar
case. Therefore, it is not surprising that the resulting
equations are identical in form to Eq. (18). However,
there are notable differences. In particular, here M is the
block-diagonal matrix defined in (27) and similarly f
is the vector field obtained by concatenating the vectors
S« Since the modes {¢,i}f\]:"1 are linearly independent,
each block matrix My, is symmetric positive definite.
Hence, the block-diagonal matrix M is also symmetric
positive definite and therefore invertible.

The Lagrange multiplier A = (A1, ..., Jm) T solves
the linear constraint equation C(a)A = b(a), as in
Sect. 2. The components of the constraint matrix C are
givenby C;ij = (Val;, M ’1Va 1), where the gradients
of the conserved quantities I; are now defined by

Va1 Ik (a)

Vaz Ik (a)

Voli(a) = (31)

Va » Ii(a)
The vector b is defined in the same way as in Sect. 2,
ie., by = (VoI;, M~' f). Assuming that the set of
all gradients {V,I};" | is linearly independent, then
the constraint matrix C is symmetric positive-definite.
Thus the solution to the constraint equation exists and
is unique.

We conclude this section by noting that the above
theory can be easily extended to the case where the
components of the approximate solution g (x, ay(t))
depend nonlinearly on their corresponding parameters
ay. In this case, one needs to define f; and M differ-
ently as outlined in Ref. [2]. But the remainder of the
derivation remains unchanged if we allow the nonlinear
dependence of iy on the parameters ay.

3.2 Finite volume RONS

In this section, we consider finite volume methods for
direct numerical simulation of PDEs modeling conser-
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vation laws. Consider a general conservation law of the
form,

u; +V-Gu) =0, (32)

where u(x, t) € R is the solution to the PDE and G is
a potentially nonlinear differential operator. Note that,
for simplicity, we again assume that the solution is
scalar-valued. Nonetheless, our results can be extended
to systems of conservation laws using the method intro-
duced in Sect. 3.1.

Under certain conditions, Eq. (32) conserves the spa-
tial integral of the state variable u. For example, if the
boundary conditions are periodic, or if G (u) is orthog-
onal to the unit normal vector n of the boundary, then

3[ w(x. t)dx = _f V- Gu)dx
at Jo 2

(33)
—/ G(u) -ndS =0,
82

which implies the conservation of the state variable
f o u(x, t)dx. Certain conservation law PDEs admit
additional conserved quantities which are not so appar-
ent. For instance, the shallow water equation, discussed
in Sect. 4.1, conserves the total energy. This additional
conserved quantity can be inferred from the Hamilto-
nian structure of shallow water equation [16], but it is
not apparent from its conservative formulation (32).

Finite volume schemes are designed to conserve
the state variable [17,18,42]. However, there is no
guarantee that the numerical solution respects the
conservation of additional invariants, e.g., the total
energy for the shallow water equation. As reviewed in
Sect. 1.1, there are structure-preserving schemes which
enforce the conservation of additional conserved quan-
tities [26,46,63]. However, these schemes are typically
derived for a particular equation and are not necessar-
ily applicable to different systems. Here, our goal is to
apply the RONS framework to finite volume schemes
in order to ensure that the discretized equations respect
the conservation of any additional invariants. As we
show below, our method is broadly applicable to any
finite volume scheme and is not limited to a particular
PDE.

First, we review the general formulation of the finite
volume method. As opposed to working with the strong
formulation of the conservation law (32), finite vol-
ume methods discretize its integral formulation. More
specifically, let £2 € R” be the spatial domain of the
PDE, and consider the set of N time-independent and
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disjoint control volumes £2;, such that UlN: 182, = £2.
Consider the integral of (32) over the i-th control vol-
ume,

/ uydx +/ V. (Gu))dx =0. (34)
fo? ;

The cell average, over this control volume, is defined
by

Ui(t) = M;—”/Qiu(x,t)dx. (35)

where |£2;| denotes the volume of the i-th cell. Since
the cells are independent of time, the integral of the
conservation law on £2; can be expressed in terms of
the cell averages,

d 1
SU=—— | V.Guwdx
ds 1$2i] J o
I (36)
——— | G- nds,
12i] Jag,

where we applied the divergence theorem with n being
the outward-facing unit normal vector of £2;. Therefore,
the time derivative of the cell average U; can be writ-
ten as the flux of G(u) through the boundary of £2;.
Summing over all cells, the flux through each inter-
nal boundary 0£2; appears twice with opposite signs,
since the unit normals point in opposite directions.
This fact ensures the conservation of the state variable
fQ udx = Zi |.Ql'|Ul'.

In the finite volume method, the flux through the
boundary 0£2; is approximated using the values of the
ith cell average and those of the adjacent cells. Different
finite volume schemes correspond to different methods
for estimating these fluxes. In general, the approxima-
tion of the average flux through the i-th cell can be writ-
ten as a function F;(U) where U = (Uy, ..., Un)T
denotes the vector containing all cell averages. The cor-
responding finite volume scheme is then given by
%Ui =Fi),

Now we turn our attention to finite volume RONS.
For the original PDE (32), we consider an approximate
solution,

i=1,2,...,N. (37)

N
i(x,0) =Y Ui(t)gi(x), (38)
i=1
where U; are the cell averages (35) and ¢; is the indi-
cator function on £2;, i.e.,
1 X € .Q,‘,

¢i(x) = 0 xreon (39)

Being an approximate solution, z does not exactly solve
the PDE (32). Next we define F (1) = Z,N:1 Fi(U)
¢; (x). Using the finite volume discretization (37), the
approximate solution & solves the approximating PDE,

d:u = F). (40)

Although this PDE differs from the original PDE (32),
it admits the same finite volume discretization. In fact,
taking the spatial integral of (40) over the control vol-
ume £2;, we recover Eq. (37) exactly.

We apply RONS to the approximating PDE (40).
More precisely, as in Sect. 2, we solve the constrained
optimization problem,

min J(U,U):
UeRN

s.t. Ix(U(t)) =const. fork=1,...,m, (41b)

1 )
Sl = F@|,, (41a)

where I denote all conserved quantities of the original
PDE (32). These include the state variable f o i(x, t)dx
= ) ; 12;|U;(¢) and any additional conserved quanti-
ties. Using the explicit form of the cost function,

N
JW,U) = % > |9,~|{U? — 20U, F;(U)
i=1 42)

+ [E(U)]Z},

and applying RONS, the solution to the constrained
optimization problem (41) is given by

U=FQU) - Z MMV L(U), (43)
k=1

where the vector field F = (Fy, ..., Fy)' contains
the fluxes F; through the control volumes £2;. Here,
the metric tensor M is diagonal and positive definite,
M;; = |52;|5;;, and therefore its inverse is computable
at insignificant additional computational cost.

As in Sect. 2, the Lagrange multipliers A = (&1,
e, Am)T satisfy the linear system CA = b, where the
constraint matrix C and the vector b are givenby C;; =
(Vul;, M~'VyI;) and b; = (Vy1;, F), respectively.
If no conserved quantities are enforced, i.e., A = 0,
then finite volume RONS coincides with the classical
finite volume discretization (37). We refer to (43) as the
finite volume RONS equation, or FV-RONS for short.
Note that the form of this equation is slightly different
from the Galerkin RONS Egq. (18) since, for FV-RONS,
the equations simplify due to the diagonal metric tensor
M.
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Let 77 denote the integral of the state variable, i.e.,
Il(U)=/ ndx = E |82;1U;. 44)
Q -
1

The gradient of this conserved quantity is related to the

cell volumes,

al

s =19l (45)
The gradient of any additional conserved quantities
depends on the form of that conserved quantity.

In Sect. 4.1, we present numerical results showing
that finite volume RONS conserves both the state vari-
able and the Hamiltonian (i.e., total energy) of the sys-
tem, whereas the classical finite volume methods only
conserve the state variable.

4 Numerical results

Here we present two numerical examples: the shallow
water equation (SWE), and the nonlinear Schrodinger
(NLS) equation. For the shallow water equation, we use
finite volume RONS to enforce the conservation of total
energy in a central-upwind finite volume scheme. As
such, our goal in Sect. 4.1 is not reduced-order model-
ing; rather the solutions are full-order and we compare
finite volume RONS against a classical finite volume
method. In Sect. 4.2, we study reduced-order mod-
els for the nonlinear Schrodinger equation where we
demonstrate the effects of enforcing conserved quanti-
ties in the reduced model.

4.1 Shallow water equation

The shallow water equation, also referred to as the
Saint-Venant system, is a system of PDEs that describes
the evolution of surface waves when the depth of the
fluid is much smaller than the dominant wavelength of
the surface waves. SWE is used in modeling the behav-
ior of tsunami’s [36,37], as well as other phenomenon
such as the dam break problem in engineering [67]. In
one spatial dimension and in dimensionless variables,
the conservative form of the shallow water equation is
given by

n:+ ((n+ H(x))v), =0,

1 (46)
v+ (—v2 + gn) =0,
2 X
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with the corresponding initial data n(x, 0) = no(x) and
v(x, 0) = vo(x).

Here v(x, ¢) is the depth-averaged horizontal veloc-
ity, g is the acceleration due to gravity, and n(x, t)
is the surface elevation away from the surface at rest
n = 0. As depicted in Fig. 2, H (x) is the distance from
the fluid surface at rest to the bottom, and the func-
tion B(x) defines the bottom topography away from
the mean depth D of the fluid. The depth H (x), the
bottom topography B(x), and the average depth D are
relatedby H (x) = D— B(x).Here, we assume periodic
boundary conditions over a domain x € £2 = [0, L].

Equation (46) is written in dimensionless variables.
If we denote the dimensional variables with a tilde,
the dimensionless variables are defined by x = x/¢,
t = vi/l,n = 7#/l, v = U/, where £ is the
characteristic wavelength and v is the characteristic
wave speed. As determined by the Intergovernmental
Oceanographic Commission [20], we choose the char-
acteristic wavelength £ = 2.13 x 10° m and speed
v = 198 m/s, which correspond to the average wave-
length and speed of a tsunami wave in the ocean at
depth D = 4000 m. Lastly, the dimensionless gravita-
tion acceleration is taken to be g = 9.8 £/v°.

The shallow water equation is a hyperbolic set of
PDEs which is well-known to develop shocks and
other discontinuities. However, under certain condi-
tions, global strong solutions to SWE exist and are
unique [1,6]. Here, we only consider such strong solu-
tions of the one-dimensional SWE, which are known
to conserve the following quantities,

Li(t) = / n(x, t)dx, (47a)
2

(1) =/ v(x, t)dx, (47b)
2

Ly =+ / [(n + HW? + gnz] dx. (47¢)
2 e

The first two quantities, /1 and I, corresponding to
the state variables, are trivially conserved. The third
quantity /3 is the total energy, or the Hamiltonian, of
the system. A straightforward calculation shows that
the total energy is also conserved along strong solutions
of the shallow water Eq. [16].

In this section, our goal is to demonstrate that tra-
ditional finite volume schemes, which are designed to
conserve the state variables, fail to conserve the total
energy I3. On the other hand, finite volume RONS,
introduced in Sect. 3.2, respects all these conserved



Enforcing conserved quantities in Galerkin truncation and finite volume discretization

Fig. 2 Schematic 4
illustration of the set-up for
the shallow water equation

)
P ——

quantities. Furthermore, we discuss the implications of
this additional conserved quantity.

To this end, we first describe the traditional finite vol-
ume scheme used here. We use a second-order central-
upwind finite volume scheme as developed in Ref. [43].
The spatial domainis £2 = [0, 10] which we divide into
210 cells of equal length. At each time step, we use a
linear polynomial reconstruction to compute the fluxes
with the nonlinear minmod flux limiter,

U,- x)=U; + ﬂminmod <9M,
2 Ax
pUit1 ~ Uizt Ui — Ui) G — x),
2Ax Ax

where x; is the center of the ith control volume and Ax
is the size of each cell. We take the parameter 6 = 1.2
to ensure that the reconstructions are minimally oscil-
latory [43]. For the time integration, we use a third
order strong-stability-preserving Runge—Kutta (SSP-
RK3) scheme in accordance with Refs. [18,42,43].
This scheme is described in detail in section 2.4.2 of
Ref. [28]. At each iteration of SSP-RK3, we choose the
time step to satisfy the appropriate Courant—Friedrichs-
Lewy (CFL) condition. More specifically, we choose
the time step based on the maximum of the eigenval-
ues of the Jacobian of the map,

(48)

G(nyv):[(n+H)v]

12 +¢n
The eigenvalues are given by
(et = v ) + g (n(x, 1) + H(x)),

ho(x,0) = v(x, 1) =g (1(x. 1) + H()),
which should not be confused with the Lagrange multi-
pliers in the RONS equation (43). We set the time step

(49)

At; at the i-th iteration of SSP-RK3 as
_ Ax
©2max (AT (), AP (o))

where AT (t; 1) = max, {A1(x, t;_1)} and A5 (#; _1)
= max,{—A2(x, -1}

Finite volume RONS uses the same discretization
with the important difference that the summation term
in Eq. (43) is added to the right-hand side of the spatial
discretization, enforcing the conservation of the first
integrals. Here, we have m = 3 corresponding to three
conserved quantities in (47).

First, we test the finite volume (FV) method and FV-
RONS on two benchmark examples: the lake at rest [ 18]
and the Gaussian pulse [36,37]. The lake at rest is a
steady state solution where both n(x, ¢) and v(x, t) are
zero. Both finite volume and FV-RONS were able to
capture this steady state with flat and non-flat bottom
topographies (not shown here). For the Gaussian pulse,
the initial conditions are given by

At;

(50)

0.1 s a2
v @) =0, no(x) = e CGE=5, (51)

We integrate these initial conditions for ten time units.
The initial amplitude of the wave is small enough that
no shock waves form over this time interval, i.e., strong
solutions exist.

As shown in Fig. 3, as the pulse evolves, we see sim-
ilar qualitative behaviors for both FV and FV-RONS.
Both solutions behave as expected for this initial con-
dition: initially, the Gaussian splits into two smaller
pulses that translate in opposite directions (Fig. 3a—
c¢). They pass through the periodic boundary and then
travel towards the center where they eventually merge
with one another (Fig. 3d—e). An important difference
between the two solutions is visible in Fig. 3f which
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Fig.3 Evolution of the Gaussian pulse initial condition, defined
in Eq. (51) with the central-upwind finite volume (FV) scheme
(dashed black line) and FV-RONS (solid red line) at times a

shows a close-up view of the solution at time ¢t = 10.
The amplitude of the FV solution has decayed slightly
more than the FV-RONS solution since FV does not
conserve the total energy while FV-RONS does.

To further illustrate the differences between FV and
FV-RONS, we turn our attention to a more oscillatory
initial condition. Specifically, we define

5
no(x) = cos(2mx) Zaj cos (27rjx + (pj) , (52)
j=2
where the amplitudes «; are sampled from a standard
normal distribution, and the phases ¢; are sampled
from a uniform distribution on [0, 277 ]. To ensure that
the amplitude of the initial surface elevation is small
enough, allowing for strong solution to exist for a long
time, we rescale 7 and define the initial surface eleva-
tion,
1o(x)

M0t = 54 max {rjo (x)} 43)
For the initial velocity we set vgp(x) = 0. We evolve
these initial conditions over the time interval ¢ €
[0, 75].

As shown in Fig. 4, both FV method and FV-RONS
conserve the state invariants /; and /. However, the
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5.2

xT x

t=0,bt=05ctr=2,dr=7,et =10, f close-up of the
pulses as they pass through one another at = 10. (Color figure
online)

total energy /I3 decays significantly when using the FV
method. In contrast, FV-RONS respects the conserva-
tion of the total energy. We emphasize that, as reviewed
in Sect. 1.1, there exist energy-preserving finite volume
methods. Our purpose here is to show that FV-RONS
can preserve energy by minimally modifying existing
FV methods as opposed to developing and implement-
ing specialized FV schemes.

The energy decay of the FV method has a significant
impact on the amplitude of the solutions. Figure 5 com-
pares the evolution of the numerical solutions at three
time instances. Although the initial conditions are iden-
tical, significant differences begin to emerge quickly.
At time ¢ = 10, although both methods predict the
same wavelength, the amplitude of the FV solution has
decayed noticeably more than FV-RONS. This behav-
ior persists for later times; namely by time r = 75,
the amplitude of the FV solution is almost half of the
amplitude of the FV-RONS solution. This amplitude
decay is reminiscent of the results shown in Fig. 3f;
the decay is more significant when the waves are more
oscillatory.

Next, we compared the two numerical methods over
a varied range of initial conditions. We sample 10*
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Fig. 4 Three conserved quantities defined in (47a)—(47c) for
finite volume (FV) and finite volume RONS (FV-RONS). a The
normalized total surface elevation /1, b the total velocity />, and

t =0.00

n(z,1)
n(z,t)

t =10.00

40 60 80 0 20 40 60 80
t t

¢ the normalized total energy /3. In each panel, the solid black
line denotes FV while FV-RONS is the solid red line. (Color
figure online)

t =175.00

n(z,t)

6 8 10 0 2 4 6 8 10

Fig. 5 Comparisons of the surface elevations n(x, t) for FV (dashed black) and RONS (solid red) at different snapshots in time, a

t =0,bt =10, and c t = 75. (Color figure online)

different initial conditions from (52), with randomly
drawn amplitudes o; and phases ¢;, and evolve them
over the time interval [0, 75]. We compute the prob-
ability density function (PDF) of the maximum sur-
face elevation max,cg [n(x, t)]. To this end, we discard
the transients and only record the surface elevation for
t € [25,75] at every At = 0.1 time units.

Figure 6 compares the resulting PDFs for both tra-
ditional FV method and FV-RONS. As a result of
energy decay, the FV method significantly underesti-
mates the surface elevation. The most probable sur-
face elevation according to the FV method is around
05x107° ~ 1.1 m. In contrast, the FV-RONS has
a mode at approximately 1.5 x 107® ~ 3.2 m. More-
over, FV-RONS has a heavier tail as compared to the
FV solution. These results are in agreement with Fig. 5;
as the energy dissipates, the wave heights decrease as
well.

106

10*

PDF

102

100 . . . i
0 1 2 3 4

Maximum Surface Elevation x10°°

Fig. 6 Comparisons of the PDFs of the maximum surface ele-
vation max, n(x, t) for traditional finite volume (dashed black
line) and FV RONS (solid red line). The surface elevations are
reported in dimensionless variables. (Color figure online)
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4.2 Nonlinear Schodinger equation

As a second example, we consider the nonlinear
Schrodinger equation, modeling unidirectional, slowly
modulating surface waves in a deep fluid [3,22,25].
Denoting the surface elevation by 7 (X, 7), we consider
perturbations to a sinusoidal wave such that

7%, 7) = Re {ﬁ(i, 7) expli (kox — wof)]} . (54)

where i denotes the complex-valued wave envelope.
Here, ko is the wave number of the sinusoidal car-
rier wave and wy is its angular frequency. Defining the
dimensionless variables t = wyf, x = kox, u = koit,
the complex envelope u(x, t) satisfies the nonlinear
Schrédinger equation [69],

1 i i
Up = =y = gllax = Elul u. (55)
We note that a similar equation has been used to
describe dispersive optical waves [51].

NLS admits a hierarchy of first integrals [64]. In our
reduced model, we enforce two of the physically most

relevant conserved quantities,

L = | |uldx, (56a)

1 s 1 4
L == | |uy|*dx — = | |u|"dx, (56b)
R 4 Jr

which represent the total mass and energy, respectively.

For the reduced-order model, we consider Galerkin-
type projections onto POD modes. More specifically,
we consider reduced-order solutions of the form,

N
u(x,a(t)) =ux) + Z a; ()i (x) (57)
i=1
where ¢; denotes the i-th POD mode, and #(x) is the
mean. In order to compute the POD modes, we follows
a standard algorithm as outlined in Ref. [10]. Here we
consider NLS over a domain x € [0, L] with periodic
boundary conditions. To gather data for the POD algo-
rithm, we run multiple simulations of NLS over the
time interval ¢ € [0, 20007] (a thousand wave peri-
ods) using a standard pseudo-spectral method with 2'°
Fourier modes for the spatial discretization. Each sim-
ulation corresponds to a different initial condition with
random phases. More specifically, we define

s .

B 2 2mjx

uo(x)zz;e 5 cos( & +<pj), (58)
=
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where the domain size L = 256z is equivalent to 128
wavelengths, and ¢ are the random phases drawn from
a uniform distribution over [0, 27r]. In order to ensure
that the amplitude of the initial envelope u is realistic,
we rescale ¢ to define the initial condition,

0.13

maxc o) >

uo(x) =
For the integration in time, we use an exponential time-
differencing scheme as described in Ref. [23] with a
time step of Ar = 0.025 in accordance with [3,22].

We evolve the model parameters a;(¢) using two
methods: traditional Galerkin (TG) projection and
Galerkin projection with RONS (G-RONS). In G-
RONS, we ensure that the first integrals (56) are con-
served in the reduced model (30). In contrast, TG does
not necessarily respect these conserved quantities. For
both TG and G-RONS, we use N = 9 POD modes
and compare our results against DNS solutions. Note
that, although NLS is a complex-valued PDE, it can
be written as a system of two real-valued PDEs for the
real and imaginary parts of the solution. Therefore, the
method introduced in Sect. 3.1 is applicable here.

For the reduced models, we chose 10* different ini-
tial conditions by sampling the initial amplitudes a; (0)
of the first five POD modes (1 < i < 5) from a standard
uniform distribution over the interval [0, 1] and set the
remaining initial amplitudes (6 < i < 9) equal to zero.
To compare the accuracy of the models, we define the
instantaneous and total relative errors, respectively,

JE e, 1) — e, 1)2dx
S lux, 1)[Pdx

I [ e, 1) — ace, n)Pdxde
T= "7 , (61)
L fy lutx, )|2dxdt

i

(60)

er(t) =

where u(x, t) is the DNS solution and u(x, ¢) is the
reduced-order solution either from TG or from G-
RONS. The solutions are integrated for 7y = 600 time
units and the first 400 time units are discarded to ensure
initial transients do not affect the results; therefore, we
have #; = 400. The instantaneous errors are recorded
every 1 time unit which leads to 10* measurements of
the total error and 2 x 10° measurements of the instan-
taneous error.

Figure 7 shows the PDFs of the instantaneous and
total errors. In both cases, the mode of the error occurs
at a lower value for G-RONS than TG. Moreover, we
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Fig. 7 PDF of the relative
errors: a Instantaneous
relative error (60), b Total
relative error (61) computed
from 10* initial conditions
over the time interval

[400, 600]. In each panel the
dashed blue line indicates
the traditional Galerkin
projection, while the solid
red line denotes G-RONS.

(Color figure online) 0 05 1

Instantaneous Relative Error

Fig. 8 Two snapshot of the
wave elevation n(x, t) =
Refu(x, 1) exp(i(x — 1))]
comparing the TG model
(dashed blue), the G-RONS
model (solid red) and the
ground truth (solid black).
(Color figure online)
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can see lower relative errors occur more frequently for
G-RONS, while higher relative errors occur less fre-
quently. Both results indicate that, by enforcing the
conserved quantities (56), we gain additional accuracy
in the reduced-order model. Figure 8 shows the surfaces
elevation at two time instances. In both instances, the
true surface elevation is much closer to the G-RONS
reduced-order solution, whereas TG either overesti-
mates (top panel) or underestimates (bottom panel) the
true wave height.

Since NLS is frequently used in the prediction of
rogue waves [22], we also compute the PDF of the
maximum surface elevation, i.e., max; |u(x, t)|. Fig-
ure 9 shows that both methods fail to correctly quan-
tify the tail of the distribution corresponding to large
surface elevations. However, the G-RONS model more
closely reproduces the core of the PDF near its mode. In
closing, we point out that Galerkin-type reduced-order
models are known to underestimate the frequency of
rogue waves (tail of the distribution) [3,66]. To address

110

112 114

10% ¢
—-.DNS
- . TG
—G-RONS
100L
P »
A RN
[a W [N
1072 ! \‘
I 1 N
\ \
Y
\
\\
104 : : :
0.05 0.1 0.15 0.2

Maximum Surface Elevation

Fig.9 PDF of the maximum envelope: max, |u(x, t)|. The PDFs
are computed from data saved at every At = 1 time units in the
interval [200, 600] to discard the initial transients. DNS results
are marked by the solid black line, TG is the dashed blue, and
G-RONS is the solid red line. (Color figure online)
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this issue, more complex nonlinear reduced-order mod-
els have been developed which depend nonlinearly on
length-scale and phase parameters, in addition to the
amplitude [21,22]. RONS has been shown to accu-
rately evolve the parameters of such more complex
models [2,3].

5 Conclusions

It is well-known that certain properties of PDEs may be
lost after their numerical discretization. For instance,
first integrals of the PDE may not be invariant after dis-
cretization. This issue has led to the development of a
plethora of structure-preserving numerical schemes for
direct numerical simulation and reduced-order model-
ing of PDEs (see Sect. 1.1 for areview). However, these
methods are often applicable to a particular PDE or a
special class of PDEs such as Hamiltonian systems.

Here, we developed two general-purpose meth-
ods, Galerkin RONS and finite volume RONS, which
are applicable to evolution PDEs without any fur-
ther assumption about the structure of the equations.
Both methods are derived from appropriately formu-
lated constrained optimization problems whose solu-
tions can be explicitly obtained as a set of ODEs. The
constraints ensure that the first integrals of the PDE
remain conserved after discretization.

The resulting ODEs are similar to those found from
usual Galerkin or finite volume discretization with the
crucial difference that a summation term, involving
Lagrange multipliers, is added to the equations. As
such, it is straightforward to implement our methods
on top of existing Galerkin or finite volume code. At
every time step, one needs to solve a linear algebraic
system to obtain the Lagrange multiplier. The size of
this system is small and equal to the number of con-
served quantities being enforced. Therefore, the lin-
ear solves do not constitute a significant computational
cost.

We demonstrated the application of our methods on
two test cases, namely the shallow water equation and
the nonlinear Schrédinger equation. We considered a
central-upwind finite volume schemes for the shallow
water equation. Since this scheme does not preserve
the total energy of the system, the resulting numerical
solutions exhibit significant decay in the amplitude of
the surface elevation. In contrast, finite volume RONS
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ensures the conservation of energy and consequently
eliminates this spurious amplitude decay.

Our third example involves a POD-Galerkin reduced
model of the nonlinear Schrodinger equation for deep
water waves. Galerkin RONS ensures that the total
mass and energy of the system are conserved. Compar-
ing the results against direct numerical simulations, we
observed that the Galerkin RONS reduced model is sig-
nificantly more accurate than the usual POD-Galerkin
model.

Galerkin RONS (18) and finite volume RONS (43)
are guaranteed to conserve the first integrals /; in their
continuous-time formulation. It is a possibility that
this property may be lost after temporal discretiza-
tion, e.g., due to numerical diffusion. In our numeri-
cal examples, we used standard Runge—Kutta schemes
and did not observe any appreciable loss of conserved
quantities. Nonetheless, conservative time integration
schemes can be used to ensure that the conservative
nature of the RONS equations survive their temporal
discretization [29,53,60].

As mentioned earlier, our methods are universally
applicable to time-dependent PDEs. This universal-
ity comes at a cost: additional structures of the PDE,
beyond its conserved quantities, may still be violated by
Galerkin RONS and finite volume RONS. For instance,
the two-form and the Poisson bracket associated with
Hamiltonian systems may not survive our truncation. It
would be interesting to investigate whether such addi-
tional structure can be incorporated in the RONS frame-
work.

Acknowledgements We would like to thank Prof. Alina Cher-
tock and Dr. Michael Reddle for fruitful conversations.

Funding This work was supported by the National Science
Foundation under the Grants DMS-1745654 and DMS-2208541.

Data Availibility Statement No data sets were generated or
analysed during this study.

Declarations

Conflict of interest The authors declare that they have no Con-
flict of interest.

A RONS with complex parameters

Even when the solution u(x, t) of the PDE is real-
valued, the modes ¢; and the corresponding amplitudes
a; might be complex-valued. This occurs, for instance,
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when using Fourier modes. In this appendix, we discuss
how the RONS equations can be modified to allow for
complex-valued modes and amplitudes. In this case, we
decompose each amplitude a; into its real and imagi-
nary parts; namely we let a; (f) = o; () + fﬂ,- (t). Then,
the vector of parameters is definedasa = [e| BT €
RN where & and  are vectors whose i-th components
are o; and B;, respectively.

For the RONS optimization problem, the cost func-
tion remains unchanged, i.e. J(a,a) = % i, —
F(u) ||%1. Thus the optimization problem reads

min J(a, a),
acR2N (62)
s.t. Ix(a(t)) =const., fork=1,2,..., m.

For complex-valued parameters, the metric tensor M is
constructed as follows. Let M have components M;; =
(@i, @) u; then construct the metric tensor M as,

m=|M M (63)
iM M
Moreover, let the vector field f(a) has components

fi = (¢i, FG)) g, andlet f(a) = [f(@) if(@"]".

Then the minimizer of the unconstrained problem is
M = f(a), (64)

where the superscript (r) denotes the real part. The
Lagrange multiplier A is the solution to the constraint
equation CA = b. The components of the constraint
matrix and the vector b are defined similarly, with

Cij = <va1i @. (M) Va, (a>>,
. (65)
bi = <va1i(a>, (M) f<’>(a>>,

where the gradient V1 (a) = [V 1 (a)T Vgl (a)T]T.

The solution to the constrained minimization problem
is

m
MPa = fOa)- Y 7Vl (a). (66)
j=1
For a system of PDEs with p components, we make
the exact same adjustments to each set of a;, M;, and
fi-Similar to Sect. 3.1, the metric tensor M is the block
diagonal matrix,

M = diagM\",.... M),

whose blocks are the real parts of

[ i,
Me=\i, ©7
and the vectors a and f are defined by
M ] [ 1@
ﬁ] i]jl(a)
@ fa@)
a=|B2|, and f@@=|1f2@ |, (68)
o) fr@
—ﬁp— _i.fp(a)_

Furthermore, for systems of equations, the gradients
of the conserved quantities are constructed similarly,
taking

[V, 1j(a)7]
V.Bl Ij(a)
Ve 1j(a)

Voli(a) = | VB 1i(@ | (69)
Vozp Ij (a)

| Vg, 1j(@)]

Constructing the constraint matrix C and the vector b

as in (65), we arrive at the RONS equation in the same
form as Eq. (66).
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