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Abstract

With the success of Vision Transformers (ViTs) in com-

puter vision tasks, recent arts try to optimize the performance

and complexity of ViTs to enable efficient deployment on mo-

bile devices. Multiple approaches are proposed to accelerate

attention mechanism, improve inefficient designs, or incorpo-

rate mobile-friendly lightweight convolutions to form hybrid

architectures. However, ViT and its variants still have higher

latency or considerably more parameters than lightweight

CNNs, even true for the years-old MobileNet. In practice,

latency and size are both crucial for efficient deployment on

resource-constraint hardware. In this work, we investigate

a central question, can transformer models run as fast as

MobileNet and maintain a similar size? We revisit the de-

sign choices of ViTs and propose a novel supernet with low

latency and high parameter efficiency. We further introduce

a novel fine-grained joint search strategy for transformer

models that can find efficient architectures by optimizing

latency and number of parameters simultaneously. The pro-

posed models, EfficientFormerV2, achieve 3.5% higher top-1

accuracy than MobileNetV2 on ImageNet-1K with similar

latency and parameters. This work demonstrate that prop-

erly designed and optimized vision transformers can achieve

high performance even with MobileNet-level size and speed1.

1. Introduction

The promising performance of Vision Transformers

(ViTs) [20] has inspired many follow-up works to further

1Code: https://github.com/snap-research/EfficientFormer.

Figure 1. Comparison of model size, speed, and performance

(top-1 accuracy on ImageNet-1K). Latency is profiled by iPhone

12 (iOS 16). The area of each circle is proportional to the number

of parameters (model size). EfficientFormerV2 achieves high per-

formance with small model sizes and fast inference speed.

refine the model architecture and improve training strate-

gies, leading to superior results on most computer vision

benchmarks, such as classification [49, 51, 8, 54], segmen-

tation [80, 14, 6], detection [7, 44, 66], and image synthe-

sis [21, 26]. As the essence of ViT, Multi Head Self At-

tention (MHSA) mechanism is proved to be effective in

modeling spatial dependencies in 2D images, enabling a

global receptive field. In addition, MHSA learns second-

order information with the attention heatmap as dynamic

weights, which is a missing property in Convolution Neural

Networks (CNNs) [27]. However, the cost of MSHA is also

obvious–quadratic computation complexity with respect to
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the number of tokens (resolution). Consequently, ViTs tend

to be more computation intensive and have higher latency

compared to widely adopted lightweight CNNs [33, 32], es-

pecially on resource-constrained mobile devices, limiting

their wide deployment in real-world applications.

Many research efforts [56, 57, 58, 45] are taken to allevi-

ate this limitation. Among them, one direction is to reduce

the quadratic computation complexity of the attention mech-

anism. Swin [50] and following works [19, 49] propose

window-based attention such that the receptive field is con-

strained to a pre-defined window size, which also inspires

subsequent work to refine attention patterns [11, 75, 78, 59].

With the pre-defined span of attention, the computation com-

plexity becomes linear to resolution. However, sophisticated

attention patterns are generally difficult to support or ac-

celerate on mobile devices because of intensive shape and

index operations. Another track is to combine lightweight

CNN and attention mechanism to form a hybrid architecture

[56, 13, 55]. The benefit comes two-fold. First, convolu-

tions are shift invariant and are good at capturing local and

detailed information, which can be considered as a good

complement to ViTs [27]. Second, by placing convolutions

in the early stages while placing MHSA in the last several

stages to model global dependency, we can naturally avoid

performing MHSA on high resolution and save computa-

tions [48]. Albeit achieving satisfactory performance, the

latency and model size are still less competitive compared to

lightweight CNNs. For instance, MobileViT [56] achieves

better performance than MobileNetV2 while being at least

5× slower on iPhone 12. As applicable to CNNs, architec-

ture search, pruning, and quantization techniques are also

thoroughly investigated [35, 36, 52, 37, 9, 45, 48]. Never-

theless, these models still emerge obvious weaknesses, e.g.,

EfficientFormer-L1 [45] achieves comparable speed and bet-

ter performance than MobileNetV2×1.4, while being 2×

larger. Thus, a practical yet challenging question arises:

Can we design a transformer-based model that is both

light and fast, and preserves high performance?

In this work, we address the above question and pro-

pose a new family of mobile vision backbones. We con-

sider three vital factors: number of parameters, latency, and

model performance, as they reflect disk storage and mo-

bile applications. First, we introduce novel architectural

improvements to form a strong design paradigm. Second,

we propose a fine-grained architecture search algorithm that

jointly optimizes model size and speed for transformer mod-

els. With our network design and search method, we obtain a

series of models under various constraints of model size and

speed while maintaining high performance, named Efficient-

FormerV2. Under the exact same size and latency (on iPhone

12), EfficientFormerV2-S0 outperforms MobileNetV2 by

3.5% higher top-1 accuracy on ImageNet-1K [18]. Com-

pared to EfficientFormer-L1 [45], EfficientFormerV2-S1 has

similar performance while being 2× smaller and 1.3× faster

(Tab. 2). We further demonstrate promising results in down-

stream tasks such as detection and segmentation (Tab. 3).

Our contributions can be concluded as follows.

• We comprehensively study mobile-friendly design choices

and introduce novel changes, which is a practical guide to

obtaining ultra-efficient vision transformer backbones.

• We propose a novel fine-grained joint search algorithm

that simultaneously optimizes model size and speed for

transformer models, achieving superior Pareto optimality.

• For the first time, we show that vision transformer models

can be as small and fast as MobileNetV2 while obtaining

much better performance. EfficientFormerV2 can serve

as a strong backbone in various downstream tasks.

2. Related Work

Vaswani et al. [73] propose attention mechanism to model

sequences in NLP task, which forms transformer architec-

ture. Transformers are later adopted to vision tasks by

Dosovitskiy et al. [20] and Carion et al. [7]. DeiT [70]

improves ViT by training with distillation and achieves

competitive performance against CNNs. Later research

further improves ViTs by incorporating hierarchical de-

sign [74, 71], injecting locality with the aid of convolu-

tions [25, 17, 27, 66], or exploring different types of to-

ken mixing such as local attention [50, 19], spatial MLP

mixer [69, 68], and non-parameterized pool mixer [83]. With

appropriate changes, ViTs demonstrate strong performance

in downstream vision tasks [80, 87, 86, 41, 40, 21, 84].

To benefit from the advantageous performance, efficient

deployment of ViTs has become a research hotspot, espe-

cially for mobile devices [56, 13, 58, 55]. For reducing

the computation complexity of ViTs, many works propose

new modules and architecture design [39, 28, 22, 43, 63],

while others eliminate redundancies in attention mecha-

nism [75, 31, 10, 46, 15, 62, 72, 5]. Similar to CNNs, archi-

tecture search [12, 23, 9, 89, 48, 16, 77], pruning [85], and

quantization [52] are also explored for ViTs.

We conclude two major drawbacks of the study in ef-

ficient ViT. First, many optimizations are not suitable for

mobile deployment. For example, the quadratic computation

complexity of the attention mechanism can be reduced to

linear by regularizing the span or pattern of attention mech-

anism [50, 19, 11, 79]. Still, the sophisticated reshaping

and indexing operations are not even supported on resource-

constrained devices [45]. It is crucial to rethink the mobile-

friendly designs. Second, though recent hybrid designs and

network search methods reveal efficient ViTs with strong

performance [56, 48, 45], they mainly optimize the Pareto

cure for one metric while being less competitive in others.

For example, MobileViT [56] is parameter efficient while

being times slower than lightweight CNNs [64, 67]. Effi-
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cientFormer [45] wields ultra-fast speed on mobile, but the

model size is enormous. LeViT [24] and MobileFormer [13]

achieve favorable FLOPs at the cost of redundant parameters.

3. Rethinking Hybrid Transformer Network

In this section, we study the design choices for ef-

ficient ViTs and introduce the changes that lead to the

smaller size and faster speed without a performance drop.

EfficientFormer-L1 [45] is used as a baseline model given

its superior performance on mobile devices.

3.1. Token Mixers vs. Feed Forward Network

Incorporating local information can improve performance

and make ViTs more robust to the absence of explicit po-

sitional embedding [6]. PoolFormer [83] and Efficient-

Former [45] employ 3 × 3 average pooling layers (Fig. 2(a))

as local token mixer. Replacing these layers with depth-wise

convolutions (DWCONV) of the same kernel size does not

introduce latency overhead, while the performance is im-

proved by 0.6% with negligible extra parameters (0.02M).

Further, recent work [23, 6] suggest that it is also benefi-

cial to inject local information modeling layers in the Feed

Forward Network (FFN) in ViTs to boost performance with

minor overhead. It is noteworthy that by placing extra depth

wise 3×3 convolutions in FFNs to capture local information,

the functionality of original local mixer (pooling or convolu-

tion) is duplicated. Based on these observations, we remove

the explicit residual-connected local token mixer and move

the dept-wise 3 × 3 CONV into the FFN, to get a unified

FFN (Fig. 2(b)) with locality enabled. We apply the unified

FFN to all stages of the network, as in Fig. 2(a,b). Such

design modification simplifies the network architecture to

only two types of blocks (local FFN and global attention),

and boosts the accuracy to 80.3% at the same latency (see

Tab. 1) with minor overhead in parameters (0.1M). More

importantly, this modification allows us to directly search

the network depth with the exact number of modules in order

to extract local and global information, especially at the late

stages of the network, as discussed in Sec. 4.2.

3.2. Search Space Refinement

With the unified FFN and the deletion of residual-

connected token mixer, we examine whether the search space

from EfficientFormer is still sufficient, especially in terms

of depth. We vary the network depth (number of blocks in

each stage) and width (number of channels), and find that

deeper and narrower network leads to better accuracy (0.2%

improvement), less parameters (0.13M reduction), and lower

latency (0.1ms acceleration), as in Tab. 1. Therefore, we set

this network as a new baseline (accuracy 80.5%) to vali-

date subsequent design modifications, and enable a deeper

supernet for architecture search in Sec. 4.2.

In addition, 5-stage models with further down-sized spa-

tial resolution ( 1

64
) have been widely employed in efficient

ViT arts [24, 13, 48]. To justify whether we should search

from a 5-stage supernet, we append an extra stage to current

baseline network and verify the performance gain and over-

head. It is noteworthy that though computation overhead

is not a concern given the small feature resolution, the ad-

ditional stage is parameter intensive. As a result, we need

to shrink the network dimension (depth or width) to align

parameters and latency to the baseline model for fair compar-

ison. As seen in Tab. 1, the best performance of the 5-stage

model surprisingly drops to 80.31% with more parameters

(0.39M) and latency overhead (0.2ms), despite the saving in

MACs (0.12G). This aligns with our intuition that the fifth

stage is computation efficient but parameter intensive. Given

that 5-stage network can not introduce more potentials in our

size and speed scope, we stick to 4-stage design. This anal-

ysis also explains why some ViTs offer an excellent Pareto

curve in MACs-Accuracy, but tend to be quite redundant in

size [24, 13]. As the most important takeaway, optimizing

single metric is easily trapped, and the proposed joint search

in Sec. 4.2 provides a feasible solution to this issue.

3.3. MHSA Improvements

We then study the techniques to improve the performance

of attention modules without raising extra overhead in model

size and latency. As shown in Fig. 2(c), we investigate two

approaches for MHSA. First, we inject local information into

the Value matrix (V ) by adding a depth-wise 3 × 3 CONV,

which is also employed by [23, 66]. Second, we enable

communications between attention heads by adding fully

connected layers across head dimensions [65] that are shown

as Talking Head in Fig. 2(c). With these modifications,

we further boost the performance to 80.8% with similar

parameters and latency compared to the baseline model.

3.4. Attention on Higher Resolution

Attention mechanism is beneficial to performance. How-

ever, applying it to high-resolution features harms mobile ef-

ficiency since it has quadratic time complexity corresponding

to spatial resolution. We investigate strategies to efficiently

apply MHSA to higher resolution (early stages). Recall that

in the current baseline network obtained in Sec. 3.3, MHSA

is only employed in the last stage with 1

32
spatial resolution

of the input images. We apply extra MHSA to the second

last stage with 1

16
feature size, and observe 0.9% gain in

accuracy. On the down side, the inference speed slows down

by almost 2.7×. Thus, it is necessary to properly reduce

complexity of the attention modules.

Although some work propose window-based atten-

tion [50, 19], or downsampled Keys and Values [42] to allevi-

ate this problem, we find that they are not best-suited options

for mobile deployment. Window-based attention is diffi-
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Figure 2. Network architectures. We consider three metrics, i.e., model performance, size, and inference speed, and study the models that

improve any metric without hurting others. (a) Network of EfficientFormer [45] that serves as a baseline model. (b) Unified FFN (Sec. 3.1).

(c) MHSA improvements (Sec. 3.3). (d)&(e) Attention on higher resolution (Sec. 3.4). (f) Dual-Path Attention downsampling (Sec. 3.5).

Table 1. Number of parameters, latency, and performance for various design choices. The latency is tested on iPhone 12. Top-1 accuracy

is obtained by validating models on ImageNet-1K for the classification task.

Section Method #Params (M) MACs (G) Latency (ms) Top-1 (%)

(Baseline) EfficientFormer-L1 12.25 1.30 1.4 79.2

Sec. 3.1
Pool Mixer→ DWCONV3×3 12.27 1.30 1.4 79.8

✓ Feed Forward Network 12.37 1.33 1.4 80.3

Sec. 3.2
✓ Vary Depth and Width 12.24 1.20 1.3 80.5

5-Stage Network 12.63 1.08 1.5 80.3

Sec. 3.3 ✓ Locality in V & Talking Head 12.25 1.21 1.3 80.8

Sec. 3.4
Attention at Higher Resolution 13.10 1.48 3.5 81.7

✓ Stride Attention 13.10 1.31 1.5 81.5

Sec. 3.5
Attention Downsampling 13.18 1.33 1.6 81.4

✓ Dual-Path Attention Downsampling 13.40 1.35 1.6 81.8

cult to accelerate on mobile devices due to the sophisticated

window partitioning and reordering. As for downsampling

Keys (K) and Values (V ) in [42], full resolution Queries (Q)

are required to preserve the output resolution (Out) after

attention matrix multiplication:

Out[B,H,N,C] = (Q[B,H,N,C] ⋅K
T

[B,H,C,N
2
]) ⋅V[B,H,N

2
,C], (1)

where B, H , N , C denotes batch size, number of heads,

number of tokens, and channel dimension respectively.

Based on our test, the latency of the model merely drops to

2.8ms, which is still 2× slower than the baseline model.

Therefore, to perform MHSA at the earlier stages of the

network, we downsample all Query, Key, and Value to a fixed

spatial resolution ( 1

32
) and interpolate the outputs from the

attention back to the original resolution to feed into the next

layer, as shown in Fig. 2((d)&(e)). We refer to this method

as Stride Attention. As in Tab. 1, this simple approximation

significantly reduces the latency from 3.5ms to 1.5ms and

preserves a competitive accuracy (81.5% vs. 81.7%).
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3.5. Dual­Path Attention Downsampling

Most vision backbones utilize strided convolutions or

pooling layers to perform a static and local downsampling

and form a hierarchical structure. Some recent works start to

explore attention downsampling. For instance, LeViT [24]

and UniNet [48] propose to halve feature resolution via

attention mechanism to enable context-aware downsampling

with the global receptive field. Specifically, the number of

tokens in Query is reduced by half so that the output from

the attention module is downsampled:

Out[B,H,N
2
,C] = (Q[B,H,N

2
,C] ⋅K

T
[B,H,C,N]) ⋅V[B,H,N,C]. (2)

However, it is nontrivial to decide how to reduce the number

of tokens in Query. Graham et al. empirically use pooling to

downsample Query [24], while Liu et al. propose to search

for local or global approaches [48]. To achieve acceptable

inference speed on mobile devices, applying attention down-

sampling to early stages with high resolution is not favorable,

restricting the values of existing works that search different

downsampling approaches at higher-resolution.

Instead, we propose a combined strategy, which is dual-

path attention downsampling, that wields both locality and

global dependency, as in Fig. 2(f). To get downsampled

Queries, we use pooling as static local downsampling, 3 × 3

DWCONV as learnable local downsampling, and combine

and project the results into Query dimension. In addition,

the attention downsampling module is residual connected

to a regular strided CONV to form a local-global manner,

similar to the downsampling bottlenecks [30] or inverted

bottlenecks [64]. As shown in Tab. 1, with slightly more

parameters and latency overhead, we further improve the

accuracy to 81.8% with dual-path attention downsampling,

which also has better performance than only using attention

module for subsampling, i.e., attention downsampling.

4. EfficientFormerV2

As discussed, current arts merely focus on optimizing

one metric, thus are either redundant in size [45] or slow in

inference [56]. To find the most suitable vision backbones for

mobile deployment, we propose to jointly optimize model

size and speed. Furthermore, the network designs in Sec. 3

favor a deeper network architecture (Sec. 3.2) and more

attentions (Sec. 3.4), calling for an improved search space

and algorithm. In what follows, we present the supernet

design of EfficientFormerV2 and its search algorithm.

4.1. Design of EfficientFormerV2

As discussed in Sec. 3.2, we employ a 4-stage hierarchi-

cal design which obtains feature sizes in {1
4
, 1
8
, 1

16
, 1

32
} of

the input resolution. Similar to its predecessor [45], Effi-

cientFormerV2 starts with a small kernel convolution stem

to embed input image instead of using inefficient embedding

of non-overlapping patches,

X
B,Cj∣j=1

,H
4
,W

4

i∣i=1,j∣j=1
= stem(XB,3,H,W

0
), (3)

where B denotes the batch size, C refers to channel dimen-

sion (also represents the width of the network), H and W are

the height and width of the feature, Xj is the feature in stage

j, j ∈ {1,2,3,4}, and i indicates the i-th layer. The first two

stages capture local information on high resolutions; thus

we only employ the unified FFN (FFN, Fig. 2(b)),

X
B,Cj ,

H

2j+1
, W

2j+1

i+1,j = Si,j ⋅ FFN
Cj ,Ei,j (Xi,j) +Xi,j , (4)

where Si,j is a learnable layer scale [83] and the FFN is

constructed by two properties: stage width Cj and a per-

block expansion ratio Ei,j . Note that each FFN is residual

connected. In the last two stages, both local FFN and global

MHSA blocks are used. Therefore, on top of Eqn. 4, global

blocks are defined as:

X
B,Cj ,

H

2j+1
, W

2j+1

i+1,j = Si,j ⋅ MHSA(Proj(Xi,j)) +Xi,j , (5)

where Queries (Q), Keys (K), and Values (V ) are pro-

jected from input features through linear layers Q,K,V ←

Proj(Xi,j), and

MHSA(Q,K,V ) = Softmax(Q ⋅KT
+ ab) ⋅ V, (6)

with ab as a learnable attention bias for position encoding.

4.2. Jointly Optimizing Model Size and Speed

Though the baseline network EfficientFormer [45] is

found by latency-driven search and wields fast inference

speed on mobile, there are two major drawbacks for the

search algorithm. First, the search process is merely con-

strained by speed, resulting in the final models being pa-

rameter redundant, as in Fig. 1. Second, it only searches

for depth (number of blocks Nj per stage) and stage width

Cj , which is in a coarse-grained manner. In fact, the ma-

jority of computations and parameters of the network are in

FFNs, and the parameter and computation complexity are

linearly related to its expansion ratio Ei,j . Ei,j can be speci-

fied independently for each FFN without the necessity to be

identical. Thus, searching Ei,j enables a more fine-grained

search space where the computations and parameters can dis-

tribute flexibly and non-uniformly within each stage. This is

a missing property in most recent ViT NAS arts [23, 48, 45],

where Ei,j remains identical per stage. We propose a search

algorithm that enables a flexible per-block configuration,

with joint constraints on size and speed, and finds vision

backbones best suited for mobile devices.
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4.2.1 Search Objective

First, we introduce the metric guiding our joint search algo-

rithm. Given the fact that the size and latency of a network

all matter when evaluating mobile-friendly models, we con-

sider a generic and fair metric that better understands the

performance of a network on mobile devices. Without loss

of generality, we define a Mobile Efficiency Score (MES):

MES = Score ⋅/
i

(Mi

Ui

)−αi , (7)

where i ∈ {size, latency, ...} and αi ∈ (0,1] indicating the

corresponding importance. Mi, and Ui represent the metric

and its unit. Score is a pre-defined base score set as 100

for simplicity. Model size is calculated by the number of

parameters, and latency is measured as running time when

deploying models on devices. Since we focus on mobile

deployment, the size and speed of MobileNetV2 are used as

the unit. Specifically, we define Usize = 3M, and Ulatency as

1ms latency on iPhone 12 (iOS 16) deployed with CoreML-

Tools [1]. To emphasize speed, we set αlatency = 1.0 and

αsize = 0.5. Decreasing size and latency can lead to a higher

MES, and we search for Pareto optimality on MES-Accuracy.

The form of MES is general and can be extended to other

metrics of interest, such as inference-time memory footprint

and energy consumption. Furthermore, the importance of

each metric is easily adjustable by appropriately defining αi.

4.2.2 Search Space and SuperNet

Search space consists of: (i) the depth of the network, mea-

sured by the number of blocks Nj per stage, (ii) the width

of the network, i.e., the channel dimension Cj per stage, and

(iii) expansion ratio Ei,j of each FFN. The amount of MHSA

can be seamlessly determined during depth search, which

controls the preservation or deletion of a block in the super-

net. Thus, we set every block as MHSA followed by FFN in

the last two stages of the supernet and obtain subnetworks

with the desired number of global MHSA by depth search.

Supernet is constructed by using a slimmable network [82]

that executes at elastic depth and width to enable a pure

evaluation-based search algorithm. Elastic depth can be

naturally implemented through stochastic drop path augmen-

tation [34]. As for width and expansion ratio, we follow Yu

et al. [81] to construct switchable layers with shared weights

but independent normalization layers, such that the corre-

sponding layer can execute at different channel numbers

from a predefined set, i.e., multiples of 16 or 32. Specifi-

cally, the expansion ratio Ei,j is determined by the channels

of the depth-wise 3 × 3 Conv in each FFN, and stage width

Cj is determined by aligning the output channels of the

last projection (1 × 1 Conv) of FFN and MHSA blocks. The

switchable execution can be expressed as:

X̂i = µc ⋅
w∶c ⋅Xi − µc√

Ã2
c + ϵ

+ ´c, (8)

where w∶c refers to slicing the first c filters of the weight

matrix to obtain a subset of output, and γc, βc, µc, and σc

are the parameters and statistics of the normalization layer

designated for width c. The supernet is pre-trained with

Sandwich Rule [82] by training the largest, the smallest, and

randomly sampled two subnets at each iteration (we denote

these subnets as max, min, rand-1, and rand-2 in Alg. 1).

Algorithm 1 Evaluation-based search for size and speed

Require: Latency lookup table T ∶ {FFNC,E ,MHSAC}
Ensure: Subnet satisfying objectives: params, latency, or MES

→ Super-net Pretraining:

for epoch do

for each iter do

for subnet ∈ {min, rand-1, rand-2, max} do

Y←∏i{FFNi,MHSAi}(Xi)
L← criterion(Y, label), backpropagation

end for ▷ Sandwich Rule

Update parameters (AdamW [53])

end for

end for ▷ finish supernet training

→ Joint search for size and speed:

Initialize state S ← {SNmax , SCmax , SEmax}
while Objective not satisfied do

Execute action Â← argminA
∆Acc

∆MES

Update state frontier

end while ▷ get sub-net with target MES

→ Train the searched architecture from scratch

Discussion. The pruning of our supernet is partially inspired

by the slimmable network [82]. However, the differences are

also significant. First, the search objective is different. We

apply the introduced joint search objective for optimizing

model size and efficiency (Sec. 4.2.1). Second, the search

actions are different. Depth is pruned through the reduction

of each block, which is possible since we unify the design

and only adopt two blocks: Feed Forward Network (Sec. 3.1)

and attention block. The way of pruning the depth is different

from the slimmable network. Unifying all the flexible search

actions under one joint objective has not been studied for

transformers before.

4.2.3 Search Algorithm

Now that search objective, search space, and supernet are

formulated, we present the search algorithm. Since the su-

pernet is executable at elastic depth and switchable width,

we can search the subnetworks with the best Pareto curve by

analyzing the efficiency gain and accuracy drop with respect

to each slimming action. We define the action pool as:

A ∈ {AN[i,j],AC[j],AE[i,j]}, (9)
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Table 2. Classification results on ImgeNet-1K. We report the number of parameters, i.e., Params (M), GMACs, Training Epochs, and

Top-1 accuracy for various methods. The latency results are obtained by running models on iPhone 12 (Neural Engine) compiled with

CoreMLTools, Pixel 6 (CPU) compiled with XNNPACK, and Nvidia A100 (GPU) compiled with TensorRT. The batch size is 1 for models

tested on iPhone 12 and Pixel 6, and 64 for A100. (-) denotes unrevealed or unsupported models. † denotes we re-train the previous

models with the exact same training recipe as our work. Different training seeds result in about 0.1% fluctuation in accuracy. The latency is

benchmarked with warmup and averaged over multiple runs, where the error ranges within 0.1 ms.

Model Type Params (M) GMACs
Latency (ms)

MES ↑ Epochs Top-1(%)
iPhone 12 Pixel 6 A100

MobileNetV2×1.0 CONV 3.5 0.3 0.9 25.3 5.0 102.9 300 71.8

MobileNetV2×1.0 † CONV 3.5 0.3 0.9 25.3 5.0 102.9 300 72.2

MobileViT-XS Hybrid 2.3 0.7 7.3 64.4 11.7 15.6 300 74.8

EdgeViT-XXS Hybrid 4.1 0.6 2.4 30.9 11.3 35.6 300 74.4

Hydra Attention Hybrid 3.5 0.38 4.1 - 9.7 22.6 300 75.6

EfficientFormerV2-S0 Hybrid 3.5 0.40 0.9 20.8 6.6 102.9 300 / 450 75.7 / 76.2

MobileNetV2×1.4 CONV 6.1 0.6 1.2 42.8 7.3 58.4 300 74.7

MobileNetV2×1.4 † CONV 6.1 0.6 1.2 42.8 7.3 58.4 300 76.7

MobileNetV3-L CONV 5.4 0.22 15.8 - 7.2 4.7 300 75.2

FBNet-V3 CONV 5.6 0.39 1.0 - 7.9 73.2 300 75.1

EfficientNet-B0 CONV 5.3 0.4 1.4 29.4 10.0 53.7 350 77.1

DeiT-T Attention 5.9 1.2 9.2 66.6 7.1 7.8 300 74.5

EdgeViT-XS Hybrid 6.7 1.1 3.6 55.5 14.3 18.6 300 77.5

LeViT-128S Hybrid 7.8 0.31 19.9 15.5 3.4 3.1 1000 76.6

EfficientFormerV2-S1 Hybrid 6.1 0.65 1.1 33.3 8.8 63.8 300 / 450 79.0 / 79.7

EfficientNet-B3 CONV 12.0 1.8 5.3 123.8 35.0 9.4 350 81.6

PoolFormer-s12 Pool 12 2.0 1.5 82.4 14.5 33.3 300 77.2

LeViT-192 Hybrid 10.9 0.66 29.6 30.1 5.2 1.8 1000 80.0

MobileFormer-508M Hybrid 14.0 0.51 6.6 55.2 14.6 7.0 450 79.3

UniNet-B1 Hybrid 11.5 1.1 2.2 57.7 16.9 23.2 300 80.8

EdgeViT-S Hybrid 11.1 1.9 4.6 92.5 21.2 11.3 300 81.0

EfficientFormer-L1 Hybrid 12.3 1.3 1.4 50.7 8.4 35.3 300 79.2

EfficientFormerV2-S2 Hybrid 12.6 1.25 1.6 57.2 14.5 30.5 300 / 450 81.6 / 82.0

ResNet50 CONV 25.5 4.1 2.5 167.5 9.0 13.7 300 78.5

ResNet50 † CONV 25.5 4.1 2.5 167.5 9.0 13.7 300 80.5

ConvNext-T CONV 29.0 4.5 83.7 340.5 28.8 0.4 300 82.1

ResMLP-S24 SMLP 30 6.0 7.6 325.4 17.4 4.2 300 79.4

PoolFormer-s24 Pool 21 3.6 2.4 154.3 28.2 15.7 300 80.3

PoolFormer-s36 Pool 31 5.2 3.5 224.9 41.2 8.9 300 81.4

DeiT-S Attention 22.5 4.5 11.8 218.2 15.5 3.1 300 81.2

PVT-Small Attention 24.5 3.8 24.4 - 23.8 1.4 300 79.8

T2T-ViT-14 Attention 21.5 4.8 - - 21.0 - 310 81.5

Swin-Tiny Attention 29 4.5 - - 22.0 - 300 81.3

CSwin-T Attention 23 4.3 - - 28.7 - 300 82.7

LeViT-256 Hybrid 18.9 1.12 31.4 50.7 6.7 1.3 1000 81.6

LeViT-384 Hybrid 39.1 2.35 48.8 102.2 10.2 0.6 1000 82.6

Convmixer-768 Hybrid 21.1 20.7 11.6 - - 3.3 300 80.2

NasViT-Supernet Hybrid - 1.9 - - - - 360 82.9

EfficientFormer-L3 Hybrid 31.3 3.9 2.7 151.9 13.9 11.5 300 82.4

EfficientFormer-L7 Hybrid 82.1 10.2 6.6 392.9 30.7 2.9 300 83.3

EfficientFormerV2-L Hybrid 26.1 2.56 2.7 117.7 22.5 12.6 300 / 450 83.3 / 83.5

Supernet Hybrid 37.1 3.57 4.2 - - 6.8 300 83.5

where AN[i,j] denotes slimming each block, AC[j] refers to

shrinking the width of a stage, and AE[i,j] denotes slimming

each FFN to a smaller expansion. Initializing the state with

full depth and width (largest subnet), we evaluate the accu-

racy outcome (∆Acc) of each frontier action on a validation

partition of ImageNet-1K, which only takes about 4 GPU-

minutes. Meanwhile, parameter reduction (∆Params) can

be directly calculated from layer properties, i.e., kernel size,

in-channels, and out-channels. We obtain the latency re-

duction (∆Latency) through a pre-built latency look-up
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table measured on iPhone 12 with CoreMLTools. With the

metrics in hand, we can compute ∆MES through ∆Params

and ∆Latency, and choose the action with the minimum

per-MES accuracy drop: Â← argminA
∆Acc

∆MES
. It is notewor-

thy that though the action combination is enormous, we only

need to evaluate the frontier one at each step, which is linear

in complexity. Details can be found in Alg. 1.

5. Experiments

5.1. ImageNet­1K Classification

Implementation Details. We implement the model through

PyTorch 1.12 [60] and Timm library [76], and use 16

NVIDIA A100 GPUs to train our models. We train the

models from scratch by 300 and 450 epochs on ImageNet-

1K [18], with AdamW [53] optimizer. Learning rate is set to

10−3 per 1,024 batch size with cosine decay. We use a stan-

dard image resolution, i.e., 224 × 224, for both training and

testing. Similar to DeiT [70], we use RegNetY-16GF [61]

with 82.9% top-1 accuracy as the teacher model for hard

distillation. We use three testbeds to benchmark the latency:

• iPhone 12 - NPU. We get the latency on iPhone 12 (iOS

16) by running the models on Neural Engine (NPU). The

models (batch size of 1) are compiled with CoreML [1].

• Pixel 6 - CPU. We test model latency on Pixel 6 (Android)

CPU. To obtain the latency for most works under compar-

ison, we replace the activation from all models to ReLU

to get fair comparisons. The models (batch size of 1) are

compiled with XNNPACK [4].

• Nvidia GPU. We also provide the latency on a high-end

GPU–Nvidia A100. The models (batch size of 64) are

deployed in ONNX [2] and executed by TensorRT [3].

Evaluation on Single Metric. We show the comparison

results in Tab. 2, which includes the most recent and rep-

resentative works on vision transformers and CNNs. The

works that do not have public models or are not compatible

with mobile devices [6, 79, 49] are not contained in Tab. 2.

EfficientFormerV2 series achieve the SOTA results on a sin-

gle metric, i.e., number of parameters or latency. For model

size, EfficientFormerV2-S0 outperforms EdgeViT-XXS [58]

by 1.3% top-1 accuracy with even 0.6M fewer parameters

and MobileNetV2×1.0 [64] by 3.5% top-1 with similar num-

ber of parameters. For large models, EfficientFormerV2-L

model achieves identical accuracy to recent EfficientFormer-

L7 [45] while being 3.1× smaller. As for speed, with

comparable or lower latency, EfficientFormerV2-S2 outper-

forms UniNet-B1 [48], EdgeViT-S [58], and EfficientFormer-

L1 [45] by 0.8%, 0.6% and 2.4% top-1 accuracy, respec-

tively. We hope the results can provide practical insight

to inspire future architecture design: modern deep neural

networks are robust to architecture permutation, optimizing

the architecture with joint constraints, such as latency and

model size, will not harm individual metrics.

Jointly Optimized Size and Speed. Further, we demon-

strate the superior performance of EfficientFormerV2 when

considering both model size and speed. Here we use MES as

a more practical metric to assess mobile efficiency than using

size or latency alone. EfficientFormerV2-S1 outperforms

MobileViT-XS [56], EdgeViT-XXS [58], and EdgeViT-

XS [58] by 4.2%, 4.6%, and 1.5% top-1, respectively, with

far higher MES. With 1.8× higher MES, EfficientFormerV2-

L outperforms MobileFormer-508M [13] by 4.0% top-1

accuracy. The evaluation results answer the central ques-

tion raised at the beginning: with the proposed mobile ef-

ficiency benchmark (Sec. 4.2.1), we can avoid entering a

pitfall achieving seemingly good performance on one metric

while sacrificing too much for others. Instead, we can obtain

efficient mobile ViT backbones that are both light and fast.

5.2. Downstream Tasks

Object Detection and Instance Segmentation. We ap-

ply EfficientFormerV2 as backbone in Mask-RCNN [29]

pipeline and experiment on MS COCO 2017 [47]. The

model is initialized with ImageNet-1K pretrained weights.

We use AdamW [53] optimizer with an initial learning rate as

2×10−4 and conduct training for 12 epochs with resolution as

1333×800. Following Li et al. [42], we apply a weight decay

as 0.05 and freeze the normalization layers in the backbone.

As in Tab. 3, with similar model size, our EfficientFormerV2-

S2 outperform PoolFormer-S12 [83] by 6.1 APbox and 4.9

APmask. EfficientFormerV2-L outperforms EfficientFormer-

L3 [45] by 3.3 APbox and 2.3 APmask.

Semantic Segmentation. We perform experiments on

ADE20K [88], a challenging scene segmentation dataset

with 150 categories. Our model is integrated as a feature

encoder in Semantic FPN [38] pipeline, with ImageNet-1K

pretrained weights. We train our model on ADE20K for 40K

iterations with batch size as 32 and learning rate as 2 × 10−4

with a poly decay by the power of 0.9. We apply weight

decay as 10−4 and freeze the normalization layers. Training

resolution is 512× 512, and we employ a single scale testing

on the validation set. As in Tab. 3, EfficientFormerV2-S2

outperforms PoolFormer-S12 [83] and EfficientFormer-L1

[45] by 5.2 and 3.5 mIoU, respectively.

5.3. Ablation Analysis on Search Algorithm

We compare the proposed search algorithm with the ran-

dom search and the one from EfficientFormer [45]. As

seen in Tab. 4, our search algorithm obtains models with

much better performance than random search, i.e., Random

1 and Random 2. Compared with EfficientFormer [45], we

achieve higher accuracy under similar parameters and la-

tency, demonstrating the effectiveness of fine-grained search

and joint optimization of latency and size.
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Table 3. Object detection & instance segmentation on MS COCO 2017 with the Mask RCNN pipeline.

Backbone Params (M)
Detection & Instance Segmentation Semantic

APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 mIoU

ResNet18 11.7 34.0 54.0 36.7 31.2 51.0 32.7 32.9

PoolFormer-S12 12.0 37.3 59.0 40.1 34.6 55.8 36.9 37.2

EfficientFormer-L1 12.3 37.9 60.3 41.0 35.4 57.3 37.3 38.9

EfficientFormerV2-S2 12.6 43.4 65.4 47.5 39.5 62.4 42.2 42.4

ResNet50 25.5 38.0 58.6 41.4 34.4 55.1 36.7 36.7

PoolFormer-S24 21.0 40.1 62.2 43.4 37.0 59.1 39.6 40.3

Swin-T 29.0 42.2 64.4 46.2 39.1 64.6 42.0 41.5

EfficientFormer-L3 31.3 41.4 63.9 44.7 38.1 61.0 40.4 43.5

EfficientFormerV2-L 26.1 44.7 66.3 48.8 40.4 63.5 43.2 45.2

Table 4. Ablation analysis of search algorithms. Our proposed

fine-grained search with joint constraints on size and speed achieves

better results than random search and the coarse-grained, single

objective search from EfficientFormer [45]. Latency is measured

on iPhone 12.

Search Algorithm Params (M) Latency (ms) Top-1 (%)

Random 1 3.5 1.0 74.7

Random 2 3.5 1.0 75.0

EfficientFormerV2 (Ours) 3.5 0.9 75.7

EfficientFormer [45] 3.1 0.9 74.2

EfficientFormerV2 (Ours) 3.1 0.9 75.0

6. Discussion and Conclusion

In this work, we comprehensively study transformer back-

bones, identify inefficient designs, and introduce mobile-

friendly novel architectural changes. We further propose a

fine-grained joint search on size and speed and obtain the

EfficientFormerV2 model family. We extensively bench-

mark and compare our work with existing studies on dif-

ferent hardware and demonstrate that EfficientFormerV2

is both lightweight, ultra-fast in inference speed and high

performance. Since we focus on size and speed, one future

direction is to apply the joint optimization methodology to

subsequent research exploring other critical metrics, such as

memory footprint and CO2 emission.
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