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Abstract—With the emergence of DNN applications on mobile
devices, plenty of attention has been attracted to their optimiza-
tion. However, the impact of DNN inference tasks on device
power consumption is still a lack of comprehensive study. In this
work, we propose MOC, a Multi-Objective deep reinforcement
learning-assisted DNN inference stage-adaptive CPU-GPU Co-
optimization approach. We find through experiments that CPU-
GPU parameters, including CPU core, CPU, and GPU frequency,
could significantly impact the speed and power consumption
of DNN inference. We empirically analyze various stages of
DNN inference, including pre/post-processing and feed-forward
calculating stages. Based on the analysis, a DNN demand-resource
matching model is proposed to classify the DNNs into various
categories. Next, a multi-objective deep reinforcement learning
(MODRL)-assisted framework is proposed, which considers both
the DNN type and hardware environment, to make decisions
on DNN inference stage-adaptive CPU/GPU parameter tuning.
Finally, a rule-based action refinement technique is introduced to
tailor the search space of MOC. Extensive experiments show that,
compared with existing works, MOC could substantially reduce
the power consumption of DNN inference tasks by up to 74.4%,
meanwhile delivering an excellent speed on mobile devices.

I. INTRODUCTION

Given the popularity and widespread adoption of mobile
devices, the demands for deploying deep neural networks
(DNNs) on these resource-limited platforms has been steadily
increasing. A key challenge during the DNN deployment on
mobile devices arises from the energy efficiency aspect [1]
as they typically operate on limited battery power within a
charging cycle. Plenty of research works have delved into
exploring various compression techniques [2]-[14] such as
pruning and quantization to improve the energy efficiency by
reducing the computational load. Yet few works investigate
the possibility of reducing the power consumption of DNN
inference via appropriate CPU-GPU configuration for DNN
inference on the heterogeneous CPU-GPU system.

While offering promising potentials for power efficiency,
optimizing CPU-GPU configurations for DNN inference poses
a considerable challenge. The optimization entails exploring an
extensive search space encompassing different combinations of
diverse DNN models and various CPU-GPU configurations.
From the perspective of DNN models, their diversity is man-
ifested in both patterns and resource demands. Computation-
intensive models, e.g., ResNet [15], are featured with small
network parameters which reside long in the on-chip cache
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for repeated calculation, thus demanding high computational
resources. In contrast, memory-intensive DNN models, e.g.,
WDSR-based super resolution [16], represent high demands
on memory resources, as the network parameters could go
beyond the capacity of on-chip cache and generate excessive
data movement between DRAM and GPU. As different com-
ponents in the device contribute distinctively in terms of speed
and power consumption [17]-[19], it is essential to perform
adaptive resource allocation via CPU-GPU parameters tuning.
Moreover, the DNN inference process contains several stages,
including pre-processing, feed-forward calculation, and post-
processing stages. Each stage might have different data oper-
ations, hence contributing distinctively to the DNN inference
process. As a result, it is challenging to cover various DNN
patterns and resource demands for multiple DNN inference
stages in CPU-GPU configuration.

From the CPU-GPU configuration perspective, modern mo-
bile is typically equipped with a heterogeneous CPU-GPU
system together with different execution frequency levels.
More specifically, most current mobile devices are facili-
tated with ARM big.LITTLE heterogeneous CPU processing
architectures [20], together with GPU processors to provide
rich computation capacity. Different CPU core clusters and
GPU are equipped with multiple frequency levels. In DNN
inference, the speed and power consumption could be in-
fluenced by the selection of the CPU core cluster, CPU
frequency, and GPU frequency. Prior wisdom addresses this
issue by enhancing the dynamic voltage and frequency scaling
(DVES) technique but ignores CPU core selection [21]. In our
experiments, inactivating parts of CPU cores could reduce the
power consumption of ResNet50 by 63.6% while delivering
a close speed. The configurable CPU-GPU parameters further
complicate the CPU-GPU configuration task.

Due to the huge search space, heuristic tuning methods
fail to find the best-suited CPU-GPU configuration efficiently.
Some works propose to allocate the hardware resources with
reinforcement learning (RL) [22], [23], which mainly focus
on the feed-forward calculation stage in DNN inference and
perform a coarse-grained configuration with less efficiency. It
is necessary to propose a novel approach to find the best-suited
CPU-GPU configuration accurately and automatically.

In this work, we propose MOC, a Multi-Objective deep
RL-assisted DNN inference stage-adaptive CPU-GPU Co-
optimization framework. First, we comprehensively study the
DNN inference process and propose a DNN demand-resource
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matching model to classify the DNN models into several
categories. Next, a multi-objective deep reinforcement learning
(MODRL) model is established, considering the DNN types
and the real-time hardware status in CPU-GPU configuration.
Finally, a rule-based action refinement technique is proposed,
which tailors the search space of MOC by refining the unnec-
essary CPU-GPU configurations. Combining these techniques,
MOC could reach the Pareto-optimal speed and power for
given DNN models on mobile devices. Experimental results
show that, compared with existing works, MOC could reduce
the power consumption of DNN inference by up to 74.4.%
with only 1.2% latency degradation.

In summary, this work makes the following contributions.

« We investigated the various stages of DNN inference and
proposed a DNN demand-resource matching model to
classify DNN models into several categories.

« We proposed MOC, a multi-objective deep reinforcement
learning-assisted model to configure the CPU-GPU sys-
tem adaptive to various DNN types and stages.

e We introduced a rule-based action refinement technique
to tailor the search space of MOC, hence guiding MOC
to converge to the best-suited CPU-GPU configurations
faster and more effectively.

II. BACKGROUND AND RELATED WORK

DNN Inference: Understanding DNN inference process is
critical in CPU-GPU parameter configuration. There are three
main sequential stages in a DNN inference process, including
pre-processing, feed-forward calculation, and post-processing
stages. Figure 1 shows the data flow of DNN inference.

« Pre-processing is mainly executed on CPU. Initially, the
INPUT data is loaded to DRAM. CPU needs to transform
the data for GPU calculation. This could incur DRAM-
CPU data movement and CPU operations. Finally, the
processed data are fed to GPU either in data copy mode
via shared memory, or in mapping mode.

o Feed-forward calculation is mainly executed on GPU,
except for some CPU instructions, such as kernel initial-
ization. Initially, WEIGHT is stored in shared memory,
then copied to GPU cache layer-wisely and flushed after
computation. Meanwhile, FEATURE MAP is generated
as the output feature of the former layer, and copied
from GPU cache to shared memory for further use.
In calculation, it is copied to GPU cache and fed to
the current layer. Thereby, FEATURE MAP is circulated
frequently between shared memory and GPU cache.

o Post-processing transforms the OUTPUT data to user-
perceivable format. OUTPUT is the last feature map of a
DNN model. It is generated at GPU cache, transmitted to
shared memory, and copied in DRAM, finally transmitted
to CPU for post-processing. The post-processing stage
could be deemed as a reverse operation of the pre-
processing stage. Thus, a similar resource demand should
be shared by both stages.

Different stages have distinguished resource demands. The

pre/post-process stages are sensitive to the bandwidth of CPU
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Fig. 1: Data Flow during DNN Inference.

caches and DRAM. To boost this stage, the system should
improve the CPU DVEFS level, or enlarge the CPU cache
by activating bigger CPU core cluster. In contrast, the feed-
forward calculation stage holds an apparent reliance on the
GPU capacity for fast calculation.

Heterogeneous CPU-GPU System: Mobile devices are
mostly equipped with ARM big.LITTLE heterogeneous CPU
architectures [20]. For example, the Snapdragon CPU platform
in Oneplus 8T [24] is equipped with 1 big core, 3 medium
cores, and 4 little cores. The big core is power-hungry with
high performance, while the little cores are the opposite. More-
over, multiple voltage and frequency levels are provided for
both CPU and GPU to be selected. Hence, it is prohibitively
expensive to manually search for the best-suited configuration
in such a myriad searching space.

Prior arts leverage the DVFS technique to trade off the
power and performance of the device. A higher voltage pro-
vides better performance for intensive workloads, e.g., mobile
games, at the cost of increased power consumption [25]. Some
works study the impact of CPU [26]-[29] or GPU [30]-[32]
DVEFES on DNNs. Other works [22], [23] propose to allocate the
hardware resources for DNN inference tasks through the RL
model. However, they are less efficient for three reasons. First,
they perform a coarse-grained allocation, focusing only on
the feed-forward calculating stage. Instead, MOC configures
the CPU-GPU system for each stage in DNN inference.
Second, they simply feed the parameters of DNN network
and hardware to the RL model, leading to a long training
time. In contrast, MOC classifies DNN models into several
categories and takes the DNN type as the input. Moreover, we
empirically set several rules for action refinement in MOC.
Hence, the training process of MOC could be significantly
shortened and converged to stable status. Third, they adopt
the single-objective RL model, with a constrained power or
speed in their rewards. This could lead to the convergence
of local optimality. MOC strives to reach the global-optimal
Pareto-frontiers by adopting a multi-objective RL technique.

In summary, current works targeting DNN inference-
oriented hardware resource allocation are less efficient. This
poses the necessity of a novel framework in DNN inference-
adaptive CPU-GPU co-optimization.
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stage | Cluster | #core | fepu | fepu | T(ms) | APW)
P medium 3 1.8GHz N/A 7.72 0.78
P little 4 1.8GHz N/A 12.97 0.75
F medium 3 1.8GHz | 587MHz 28.47 2.19
F little 4 1.8GHz | 587MHz 29.19 1.97

TABLE I: Impact of CPU-GPU configurations on DNN in-
ference stages (WDSR). P denotes the sum of pre- and post-
processing stage, F' denotes feed-forward calculating stage.
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(a) Apply configs on WDSR (b) Apply configs on ResNet50

Fig. 2: a) Applying both configurations including ResNet50
Pareto-optimal configurations on WDSR. b) Applying both
configurations including WDSR Pareto-optimal configurations
on ResNet50. Red triangles indicate those configurations are
ResNet50’s Pareto-optimal configuration. Blue circles are the
Pareto-optimality for WDSR.

III. MOTIVATION
A. Impact of CPU-GPU Configs on DNN Inference Stages

In DNN inference, the three stages are performed sequen-
tially, and the inference time could be obtained by summing
up the time of each stage. It is important to note that different
stages of DNN inference favor different configurations, as they
are mainly executed on distinct processors. Tab. I shows the
impact of CPU-GPU configurations on DNN inference stages.
As pre- and post-processing stages reveal similar resource
demands, we merge them together. For P stage, changing the
CPU configuration will incur latency degradation by 68.0%
while only gaining 3.9% power reduction. However, for F
stage, similar configuration tuning only incurs 2.5% latency
degradation but obtains 11.2% power reduction. These results
indicate that different configurations for different stages could
further optimize the power consumption of DNN inference.

B. Demand of DNN-adaptive System Configurations

DNN inference tasks are diverse in hardware resource
demands. To demonstrate the diversity, we select three DNN
models with different patterns, including ResNet50 [15],
WDSR [16], and EfficientNet-b0 [33] as the representatives.
Tab. II describes the details of the selected DNNs. With the
diverse models in hand, we wonder if there is a once-for-
all best-suited configuration to achieve power-efficient DNN
inference. To verify this, we manually evaluate the speed and
power of one DNN model ¢ to get the best-suited configuration
c;. Then, this configuration ¢ is applied to another model j.
We show the comparison of applying ¢ on model j with

Model | Input Size | Output Size | #Params | #FLOPs
ResNet50 3 X224 x 224 1 x 1000 25.56M 8.22G
EfficientNet-b0 | 3 x 224 x 224 1 x 1000 5.27TM 801.34M

WDSR 3 x 540 x 960 | 3 x 1080 x 1920 2.85K 2.80G

TABLE II: The input size, the total number of parameters, and
total Floating-point operations (FLOPs) of each DNN model.

the best configuration cj, and the results are shown in Fig. 2.
Apparently, different DNNs require different configurations for
better power efficiency. Due to space limitations, we exhibit
the result for ResNet50 and WDSR in Fig. 2. When we apply
the best-suited speed-oriented configuration of ResNet50 on
WDSR, it can only achieve 42.12ms inference speed, while
WDSR can deliver 36.14ms speed when using its best-suited
configuration. Meanwhile, the best-suited configurations for
WDSR could increase the power consumption when applied
on ResNet-50 by 87.0% (from 1.62W to 3.03W) if compared
with the best-suited configurations of ResNet-50 itself. These
results put forward the necessity of DNN-adaptive CPU-GPU
configuration.

C. Huge Search Space of CPU-GPU Configuration

The heterogeneous CPU-GPU architecture in mobile de-
vices provides rich selections in system parameter configu-
rations, including three CPU core clusters, CPU, and GPU
frequency. Take a recent OnePlus 8T as an example. It has 3
CPU core clusters, 8 CPU cores, 48 CPU frequencies, and 6
GPU frequencies, resulting in 367,289 available combinations.
Collecting the performance for different DNN inference stages
even expands the search space. Moreover, there are many
prevailing DNN models with diverse resource demands, fur-
ther complicating the DNN-adaptive CPU-GPU configuration
task. As a result, it is impractical for designers to address the
configuration issue manually.

Putting all together, we would raise a question: Is it possible
to propose a novel framework to quickly achieve the Pareto-
optimal latency and power consumption for various stages of
different DNN inference tasks on mobile devices?

IV. METHODOLOGY

To address the issue above, we propose MOC, a Multi-
Objective RL-assisted DNN inference-adaptive CPU-GPU Co-
optimization framework. Fig. 3 shows the architecture of
MOC, which is mainly composed of three components, in-
cluding the demand-resource matching-based model, MODRL
model, and rule-based action refinement technique.

A. DNN Demand-resource Matching Model

To facilitate more appropriate CPU-GPU configuration for
different types of DNN models, we propose a heuristic model
to classify the DNN algorithms according to their resource
demands and the available hardware resources of the device.
We introduce two models: 1) FF (Feed-Forward) ceiling
model, and 2) CM (CPU-Memory) ceiling model.

FF ceiling model classifies DNNs for the feed-forward
calculation stage, whose typical feature is that either GPU
processors are waiting for data transmission or the memory
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Fig. 3: Architecture of MOC. In MODRL, S; is the ith state, W is the weight vector, Q; is the Q-value of tthaction.

system is waiting for the GPU calculation. The roofline model
classifies DNNs by which operation is more intensive — data
processing or data movement [34]. The current roofline models
or their extension, e.g., [35], [36] neglect the frequent data
reuse of DNN weights, which may lead to a misunderstanding
of the relationship between GPU cache size and data memory
footprint. We extend the roofline model by taking the frequent
data reuse into consideration.

We first calculate the layer-wise cache-aware factor v, by
Eq. (1), where the [.] is the ceil function, the GMEM qcpe 1S
the GPU cache size and ¢ indicates DNN layer /. Byte,,,
and Byte,; are the weights and input feature map data size
of layer /, respectively. Note that Byte,, for the CONV layer
needs to be collected after implementing the image-to-column
transform, since the CONV is implemented by GEMM. Then,
we calculate the cache-aware arithmetic intensity I,, by
Eq. (2), where L is the number of layers, FLOP, denotes
layer £’s FLOP, Byte, is the data size of layer ¢, including
the weights, feature map, and output, and -, is from Eq. (1);
Finally, the forward ceiling model can be obtained by Eq. (3),
where kg py is a constant related to GPU, calculated by the
number of processing units and the FLOPS per cycle of the
processing unit, fopy is the GPU frequency, kgpy X fapu
approximates the calculation capacity of GPU with various
GPU frequencies, and S is the DRAM bandwidth. The hint
behind this is that the larger the DNN layer data size over
the GPU cache size, the more requirements for the GPU to
access the DRAM, compromising the effectiveness of the high
DRAM bandwidth.
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Fig. 4: FF ceiling model of OnePlus 8T.

Fig. 4 shows the FF ceiling model for OnePlus 8T. Multiple
ceilings indicate the attainable performance is increasing with
GPU frequency. Therefore, EfficientNet-bO could be either
memory-bound or computation-bound when GPU frequency
varies. In contrast, WDSR is always memory-bound, while
ResNet50 is always computation-bound.

CM ceiling model classifies DNN models in pre/post-
process stages by comparing the waiting time of CPU cores
and the memory system. To classify the DNN model as CPU-
intensive or CPU-efficient, we introduce our CM ceiling model
as Eq. (4), Byte,,;,, is the data size copied to the CPU cache,
CMEMcache is the CPU cache size, which might be different
for different CPU core clusters. This term (tprocrssing) defines
the CPU time to read the input data from DRAM to the CPU
cache. kcpy is the constant related to the CPU architecture,
and fopy is CPU frequency, which impacts data transmission
and computing kernel initialization.

Bytedata
CMEMcache

x kepu X fepu

“4)

Since the input/output processing is mainly determined by
the CPU, the processing time can be formulated by the number
of copies required for each data and the speed of processing.
Derived from the calculation of u,, , the CM ceiling model can
be illustrated as Fig. 5. The color intensity denotes the CPU
frequency, the more intense, the higher frequency. The input
data, with size 3 x 224 x 224, occupies 558KB of memory and
needs three copies to complete the transfer. For larger input/
output data size, such as WDSR in Table II, a input with size
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Fig. 6: Design space of MOC.

3% 540 x 960 requires 5.93MB memory and at least 24 copies,
not to mention the output with an even larger size.

According to the models above, we categorize DNN
models into five categories, including three GPU-oriented
categories (computation-intensive, memory-intensive, both-
efficient) and two CPU-oriented categories (CPU-intensive,
and CPU-efficient). A DNN model could fit one GPU-related
category and one CPU-related category.

B. MODRL: Multi-objective Deep RL Model

We show the design space of MOC in Fig. 6 and describe
each component of MOC in detail as follows.

1) State space: The state space considers both the DNN
parameters and the mobile device running status. Unlike prior
works [22], [23], MOC classifies the DNN models as a pre-
knowledge to tailor the search space. Hence, we consider the
DNN type and the DNN layer number in the state space.
For the device parameters, we consider the current CPU-
GPU configuration, as it could decide the current speed and
power of the device. Moreover, we consider other hardware
parameters, e.g., CPU cache, GPU cache, and GPU bandwidth.
These parameters could vary from device to device, hence
are taken into consideration to make MOC adaptive to given
devices. Note that the DNN type is a two-dimensional tuple
that contains the classification results of both FF and CM
ceiling models. For pre/post-processing stages, the FF ceiling
model DNN type is labeled as 0, as pre/post-processing stages
are GPU-irrelevant. Similarly, in the feed-forward calculation
stage, the DNN type of the CM ceiling model is labeled as O.

2) Action space: MOC generates an action for each stage
in DNN inference. Specifically, the action space consists of
configuring the active CPU core cluster, CPU frequency, and

GPU frequency. By traversing available combinations of the
three parameters for each state in the training stage, MOC
could search for the best-suited combination by finding the
action with the maximum Q value in online decision-making.

3) Weight space: We take a weight vector as the input
of MOC, as referring to current MORL algorithms [37].
Each weight in the vector denotes the relative importance
between DNN inference speed and power consumption in
the reward function. With our design, users can decide how
many tuning policies to be used according to the requirements
by simply specifying the length of the vector. For example,
the user could configure the vector as {0,1}, in which 0
means power-oriented parameter tuning, while 1 means speed-
oriented tuning. With the guidance of the weight vector, MOC
could learn the tuning object of the user and perform fast
convergence for all weights in a one-take training.

4) Reward: The reward in MOC is the weighted sum of
normalized power and speed of each stage in DNN inference,
formulated by Eq. (5), where « is the weight to determine the
trade-off between the model speed and power consumption,
and the speed and power are both normalized.

Re = a x (1 —speed) + (1 — a) x (1 — power)  (5)

5) Experience replay buffer: We adopt a multi-list formu-
lated experience replay buffer in MOC. Each list in the buffer
maintains all samples for each weight. By doing so, MOC only
selects the sample from the same weight during training, thus
avoiding interference from other weights and helping reduce
the training effort to meet specific user objects.

6) Deep-Q-Network (DQN) model: A multi-head Multi-
layer Perceptron (MLP) with three fully-connected layers
combined with batch normalization and ReLU activation is
adopted as the DQN model. The inputs are processed by the
embedding layers that map the categorical or discrete input
variables into continuous vector space. The multi-head denotes
the DQN model contains multiple outputs corresponding to the
candidate actions in the action space.

C. Rule-based Action Refinement

To further reduce the search space of MOC and boost its
training process, we comprehensively studied the relationship
between CPU-GPU configurations and DNN inference speed
and power. Based on the results, several rules are proposed to
refine the action space in MOC.

Rule I: In the feed-forward calculation stage, MOC only

selects actions with one little CPU core.
Feed-forward calculation stage mainly happens in the GPU,
during which the CPU only takes charge of minor tasks, e.g.,
kernel activation, and task scheduling. Hence, one little CPU
core is powerful enough to afford most DNNs in this stage.

Rule 2: In pre/post-processing stages, MOC only selects
actions with the lowest GPU frequency.

Pre/post-processing stages mainly happen in CPU, hence we
could choose the lowest GPU frequency in both stages.

Rule 3: In pre/post-processing stages, MOC should not
choose the CPU core cluster with only one core.
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Large amounts of data movements happen in the pre/post-
processing stages, which demands enough CPU cache re-
sources to boost both stages. As a result, one CPU core with
only one CPU cache is insufficient for both stages.

The proposed rules are derived from a large number of
evaluations conducted on multiple prevalent DNN models.
Owning the space constraint, we exhibit representative data
by separately examining the impacts of modifying the CPU
frequency, the GPU frequency, and the number of CPU cores
on the DNN inference stages of various DNN models using the
OnePlus 8T. We decreased the CPU frequency from 1.8GHz
to 0.6GHz and the GPU frequency from 587MHz to 305MHz.
Additionally, we varied the number of CPU cores according to
the order of reducing the total L2-cache size, which includes
all CPU cores(1x big core, 3x mid cores, and 4times little
cores), 3xmid cores, 4 xlittle cores, 1xbig core, 1xmid core,
and 1xlittle core.

Fig. 7 shows the power consumption and latency of the
feed-forward stage for ResNet50, EfficientNet-b0, and WDSR.
Fig. 7 shows that, in the feed-forward stage, reducing the
GPU frequency results in a decrease in power consumption;
however, it also slows down the speed. Although the CPU
frequency and the number of cores have minimal impact on
the latency, the number of CPU cores has more influence on
the power consumption reduction, which supports the rule of
selecting actions with one little CPU core, thereby the Rule 1.

Fig. 8 shows the power consumption and latency of the
pre/post-processing stage. We select the data size 1 x 1000 and
224 x 224 x 3 that are usually used for image classification
tasks, and 1080 x 1920 x 3, widely used in tasks with HR
image input/output. Notably, the GPU frequency has no impact
on both the latency and power consumption since the GPU
does not involve in the pre/post-processing stage. Hence it is
intuitive to keep the GPU frequency to the lowest frequency
to avoid the possible influence of the GPU, demonstrating
the Rule 2. The number of CPU cores is more influential
on latency compared to the CPU frequency. When reducing
the number of CPU cores, the latency increases by factors of
approximately x2.9, x3.4, and x9.2 for data size 1 x 1000,
224 x 224 x 3, and 1080 x 1920 x 3, respectively. On the other
hand, reducing the CPU frequency results in the inference
latency increase of approximately x2.0, x1.9, and x1.2 for
the same data size. However, the number of CPU cores and
the CPU frequency have a similar impact on reducing power
consumption. It shows the important role of the CPU during
pre/post-processing, thereby supporting the proposed Rule 3.

D. Overhead analysis

The overhead incurred by MOC is minor. The overhead of
the Deep-Q Network model is 2.31ms per action on average.
Besides, it only provides the best-suited configuration for
each stage as preset. Thus it will not impact DNN inference.
The primary overhead of MOC is DVFS switching, which
only takes dozens of microseconds [25]. This overhead can
be considered negligible compared to the latency of DNN
inference stages.
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Fig. 7: Latency (a) and power (b) variation when switching
the GPU frequency, CPU frequency, or CPU cores alone for
ResNet50, WDSR, and EfficientNet-b0 during feed-forward
stage on OnePlus 8T.
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Fig. 8: Latency (a) and power (b) variation when switching
the GPU frequency, CPU frequency, or CPU cores alone for
1 %1000, 224 x 224 x 3, and 1080 x 1920 x 3 data size during
the pre/post-processing stage on OnePlus 8T.

E. Implementation

MOC could be integrated as a lightweight component in the
mobile compiler, i.e., CoCo-Gen [38] and TVM [39]. It con-
tains pre-trained DQN models to provide suitable configura-
tions for the model device. The API, MOC.retrieve (DNN,
«), is provided to the developer for retrieving the best-
suited CPU-GPU configuration based on the current mobile
configuration. Given the input DNN parameter, MOC could
determine the corresponding DNN category with our DNN
demand-resource matching model. o, as mentioned in Eq. (5),
indicates the weight parameter between the speed latency and
power consumption. Thus, the API retrieves the correspond-
ing configuration based on the DNN model, the developer’s
demands, and the device specification for the DNN demand-
resource matching model.

V. EVALUATION
A. Experimental Environments

1) Experiemntal Setup: We use the OnePlus 8T [24] to
perform the DNN inference. It has the Qualcomm SnapDragon
865 chipset with a Qualcomm Kyro 585 Cota-core CPU
(1x2.84 GHz Cortex-A77 & 3x2.42 GHz Cortex-A77 &
4x1.80 GHz Cortex-A55) and a Qualcomm Adreno 650
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CPU Cluster fopu fapu
(#Cores) (GHz) (MHz)
little (4) 0.69, 0.78, 0.88, 0.97, 1.08, 1.17,
1.25, 1.34, 1.42, 1.52, 1.61, 1.71, 1.80 587
0.71, 0.83, 0.94, 1.06, 1.17, 1.29, 525
medium (3) 1.38, 1.48, 1.57, 1.67, 1.77, 1.86, 490

1.96, 2.05, 2.15, 2.25, 2.34, 2.42 441.6
0.84, 0.96, 1.08, 1.19, 1.31, 1.4, 1.52, 400
1.63, 1.75, 1.86, 1.98, 2.07, 2.17, 2.27, 305

2.36, 2.46, 2.55, 2.65, 2.75, 2.84

big (1)

TABLE III: Actions for the OnePlus 8T. The number of CPU
cores in the cluster is shown after the cluster name.

GPU. Tab. III enumerates the actions of the OnePlus 8T. The
Monsoon High Voltage Power Monitor (HVPM) is adopted to
measure the power consumption of mobile devices [40].

2) MOC Training: The training codes are implemented on
PyTorch. The DQN model is trained with collected data of
ResNet50, EfficientNet-b0, and WDSR on a NVIDIA 2080Ti
GPU. We train the model for 100k iterations using the Adam
optimizer with 8 = 0.9, fo = 0.99. The initial learning
rate is set to 1 x 103 and halved at 50k and 75k iterations.
The € of e-greedy strategy is initially set to 0.9 and decayed
exponentially to 0.05. Various o weights are selected for
multiple DQN models to compromise the different speeds or
power consumption requirements.

3) DNN Inference: DNN inference is executed on OnePlus
8T with CoCo-Gen [38] as the compiler. Each testing DNN
takes 1000 runs on different configurations. The average power
consumption is obtained as the P,,, during each test. For a
fair comparison, the power of the idle state is also collected as
the baseline of the corresponding configuration. Then, AP =
Pyvg — Piaie 1s collected as the power consumption.

4) State-of-the-art (SOTA) works: MOC can be tuned by
defining the « in reward to meet customized requirements. We
compare MOC with CDC, PowerSave, Schedutil, and TFlite.
Coarse-Grained Configuration (CDC) adopts DRL in coarse-
grained DNN inference CPU-GPU configuration, where they
neither consider the resource-demand for various models nor
the different stages of DNN inference, with referring to [22],
[23]. Due to no code being publicly released, we implemented
the CDC methodology ourselves based on published papers.
PowerSave [41] and Schedutil [42] are classic DVFS gov-
ernors. Schedutil activates all CPU cores with varied CPU
and GPU frequencies following the device resource utilization.
PowerSave keeps CPU frequency to the user-defined lowest
value. TFlite is a prevalent mobile DNN compiler [7], whose
default configuration activates four little CPU cores with
Schedutil DVFS governor. These SOTA works use one CPU-
GPU configuration for the whole DNN inference process.

B. Experimental Results and Analysis

To demonstrate the advantages of MOC, we compare it
with SOTA works on different DNN models. ResNet50 is a
famous image classification with high computation resource
demands. WDSR focuses on image super-resolution tasks that
require huge memory and can be applied on the mobile device

[7]. EfficientNet-b0 is an image classification model designed
for efficient inference and has been widely applied to the
model device. These three representative DNN models focus
on different fields and have distinct resource demands.

We select different o € {0.1,0.2,0.3, ..., 1.0} for the DQN
model, where the « is the parameter in Eq. 5, to evaluate
the performance of the MOC under different situations. For
each o, we take the average inference speed and power
consumption gathered from random initial states. The average
inference speed and power consumption are taken as the
performance of the corresponding DQN model. Fig. 9 and
Tab. IV show the experimental results of various approaches.
Several observations are induced from the results.

The CDC introduces DRL to optimize the device config-
uration to reduce power consumption but lacks to consider
the different resource demands among each DNN inference
stage and DNN categories. As shown in Tab. IV, we compare
CDC using three different configurations, where CDC* and
CDC' are configured to achieve a similar power and latency
as MOC?, respectively. MOC? can obtain faster inference
speed (15.6% for ResNet50, 17.9% for WDSR, and 0.5% for
EfficientNet-b0) compared to CDC*. In addition, MOC? can
reduce power consumption by 24.8% for ResNet50, 11.4% for
WDSR, and 34.6% for EfficientNet-b0 compared to CDC'. In
addition, we also configure CDC® to achieve a similar latency
as MOC?, which shows the capacity to retain an acceptable
inference speed when ultra-low power consumption. Here
MOC? mitigates power consumption by 52.3% for ResNet50,
20.8% for WDSR, and 56.8% for EfficientNet-b0 with almost
0.5% inference speed slower. This is because MOC performs
a fine-grained CPU-GPU configuration for each stage in DNN
inference, while CDC configures the CPU-GPU system for the
whole DNN inference process.

Compared with the Schedutil, MOC could reduce power
consumption by 67.2% for ResNet50, 45.1% for WDSR,
and 75.5% for EfficientNet-b0, with minor defects on speed
latency, 0.8% for ResNet50, 0.4% for WDSR, and 1.2% for
EfficientNet-b0. Schedutil governor is designed for general
tasks and only takes the processor’s utilization to adapt the
CPU frequency dynamically. Without considering the unique
demands of DNN models fails to achieve a suitable perfor-
mance for DNN applications.

The Powersave governor only reduces the CPU frequency.
Although it could mitigate the power consumption incurred by
the CPU, it will also induce inference speed degradation. MOC
can outperform Powersave on ResNet50 (28.3% power reduc-
tion with only 9.8% slow in speed), WDSR (17.6% power
reduction with even 5.7 % faster speed), and EfficientNet-
b0 (34.7% power reduction with 9.3% faster speed). The
reason is that activating suitable CPU cores can increase power
efficiency while keeping fair inference speed with MOC.

TFlite mitigates the power issue of Schedutil by only
activating the little CPU cluster, thereby improving power
efficiency without significantly compromising inference speed.
However, MOC can surpass TFlite by employing an adaptive
CPU-GPU configuration that extends beyond the CPU cluster,
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Fig. 9: Comparison of MOC with SOTA works.
ResNet50 WDSR EfficientNet-b0 . . . .
Method || . (ms), APOW)L. T(ms), APOW)L T(ms), APOW)) 1r11)f.1uen'ce odeNN model }cllais/:llgccatéon (;ur;ng ea‘igh 'stagé.llll"he
Schedutil 3783 43 3580 481 1404 363 object 1s to e':monstratet e. / ‘ene t from 1s.t1nguls ng
PowerSave || 4132  1.52 4251 188 16.12  1.09 DNN categories when providing suited configuration.

TFlite 3843  1.74 4637  1.78 1592 078 1) Importance of rule-based action refinement in MOC:
cDC* 5431  1.08 4882 153 1595  0.74 The MOC could be revised without rule-based action refine-
CDCI ‘5‘6~(1)2 1'12 4(6).” 1;3 }4-62 1.0273 ment, where no actions will be ignored during the training. As
1511())%1 3321 (1)'59 ; 632 2.83 1‘9";1 8;3 shown in Fig. 10, the Q-value of MOC converges around 75k
Moc® || 4581 109 4008 154 1462 071 iterations while MOC without rule-based refinement converges
MOC? 58.95  0.21 57.28  0.61 1934  0.16 around 90k iterations with a higher variation. This is because

TABLE IV: Comparison with SOTA methods. MOC!, MOCZ?,
MOC? correspond to setting o = 0.9,0.8,0.2 in reward
function, respectively. CDC* is configured to achieve the
similar power as MOC?. CDC' is configured to achieve the
similar latency as MOC?. CDC? is configured to achieve the
similar latency as MOC3.
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Fig. 10: Ablation study of MOC

allowing for enhanced performance and efficiency. MOC can
reduce the power consumption by 18.9% for ResNet50, 39.2%
for WDSR, and 4.5% for EfficientNet-b0), even speed up the
inference time (0.5% for ResNet50, 13.6% for WDSR, and
6.3% for EfficientNet-b0).

MOC outperforms these works by both DNN-adaptive and
fine-grained configurations. Moreover, MOC represents more
flexibility over these works, as users could select their desired
CPU-GPU configuring policy, e.g., power-oriented or speed-
oriented, by setting the weight in the reward function in MOC.

C. Ablation Study

In the ablation study, we investigate the impact of our rule-
based action refinement. By comparing MOC with and without
rule-based action refinement during the deep reinforcement
learning training process, it shows the advantages of action
refinement in the MOC. Moreover, we also compared the

the rule-based action refinement provides prior knowledge that
filters out those actions that might incur worse performance.

2) The necessity of DNN classification in MOC: The ab-
sence of DNN model classification in MOC leads to inferior
Q-values in comparison to other approaches in Fig. 10. Various
categories of DNN models exhibit distinct preferences for
CPU-GPU configurations based on their CPU/GPU resource
demands during different inference stages. Disregarding these
attributes impedes MOC from obtaining suitable CPU-GPU
configurations for each DNN model. These results verify the
necessity of adopting DNN classification in MOC.

With both techniques, the oscillation of the Q-value of MOC
can be effectively reduced, which leads to faster convergence
and stable performance.

VI. CONCLUSION

This paper proposes MOC, a Multi-Objective CPU-GPU
Co-optimization approach for power-efficient DNN inference
on mobile devices. MOC strives to configure the CPU-GPU
system adaptive to DNN inference stages, thus achieving
a Pareto-optimal inference power and speed. First, a DNN
demand-resource matching model is proposed to classify DNN
models into 5 groups. Then, a multi-objective DRL model
is established to adaptively configure the CPU-GPU system
for each DNN inference stage. Finally, a rule-based action
refinement technique is introduced to tailor the search space of
MOC. Evaluations show that MOC could significantly reduce
the power consumption of DNN inference while delivering an
excellent speed. We expect that MOC could provide hints for
subsequent works in DNN acceleration on mobile devices.
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