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Abstract—With the emergence of DNN applications on mobile
devices, plenty of attention has been attracted to their optimiza-
tion. However, the impact of DNN inference tasks on device
power consumption is still a lack of comprehensive study. In this
work, we propose MOC, a Multi-Objective deep reinforcement
learning-assisted DNN inference stage-adaptive CPU-GPU Co-
optimization approach. We find through experiments that CPU-
GPU parameters, including CPU core, CPU, and GPU frequency,
could significantly impact the speed and power consumption
of DNN inference. We empirically analyze various stages of
DNN inference, including pre/post-processing and feed-forward
calculating stages. Based on the analysis, a DNN demand-resource
matching model is proposed to classify the DNNs into various
categories. Next, a multi-objective deep reinforcement learning
(MODRL)-assisted framework is proposed, which considers both
the DNN type and hardware environment, to make decisions
on DNN inference stage-adaptive CPU/GPU parameter tuning.
Finally, a rule-based action refinement technique is introduced to
tailor the search space of MOC. Extensive experiments show that,
compared with existing works, MOC could substantially reduce
the power consumption of DNN inference tasks by up to 74.4%,
meanwhile delivering an excellent speed on mobile devices.

I. INTRODUCTION

Given the popularity and widespread adoption of mobile

devices, the demands for deploying deep neural networks

(DNNs) on these resource-limited platforms has been steadily

increasing. A key challenge during the DNN deployment on

mobile devices arises from the energy efficiency aspect [1]

as they typically operate on limited battery power within a

charging cycle. Plenty of research works have delved into

exploring various compression techniques [2]–[14] such as

pruning and quantization to improve the energy efficiency by

reducing the computational load. Yet few works investigate

the possibility of reducing the power consumption of DNN

inference via appropriate CPU-GPU configuration for DNN

inference on the heterogeneous CPU-GPU system.

While offering promising potentials for power efficiency,

optimizing CPU-GPU configurations for DNN inference poses

a considerable challenge. The optimization entails exploring an

extensive search space encompassing different combinations of

diverse DNN models and various CPU-GPU configurations.

From the perspective of DNN models, their diversity is man-

ifested in both patterns and resource demands. Computation-

intensive models, e.g., ResNet [15], are featured with small

network parameters which reside long in the on-chip cache
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for repeated calculation, thus demanding high computational

resources. In contrast, memory-intensive DNN models, e.g.,

WDSR-based super resolution [16], represent high demands

on memory resources, as the network parameters could go

beyond the capacity of on-chip cache and generate excessive

data movement between DRAM and GPU. As different com-

ponents in the device contribute distinctively in terms of speed

and power consumption [17]–[19], it is essential to perform

adaptive resource allocation via CPU-GPU parameters tuning.

Moreover, the DNN inference process contains several stages,

including pre-processing, feed-forward calculation, and post-

processing stages. Each stage might have different data oper-

ations, hence contributing distinctively to the DNN inference

process. As a result, it is challenging to cover various DNN

patterns and resource demands for multiple DNN inference

stages in CPU-GPU configuration.

From the CPU-GPU configuration perspective, modern mo-

bile is typically equipped with a heterogeneous CPU-GPU

system together with different execution frequency levels.

More specifically, most current mobile devices are facili-

tated with ARM big.LITTLE heterogeneous CPU processing

architectures [20], together with GPU processors to provide

rich computation capacity. Different CPU core clusters and

GPU are equipped with multiple frequency levels. In DNN

inference, the speed and power consumption could be in-

fluenced by the selection of the CPU core cluster, CPU

frequency, and GPU frequency. Prior wisdom addresses this

issue by enhancing the dynamic voltage and frequency scaling

(DVFS) technique but ignores CPU core selection [21]. In our

experiments, inactivating parts of CPU cores could reduce the

power consumption of ResNet50 by 63.6% while delivering

a close speed. The configurable CPU-GPU parameters further

complicate the CPU-GPU configuration task.

Due to the huge search space, heuristic tuning methods

fail to find the best-suited CPU-GPU configuration efficiently.

Some works propose to allocate the hardware resources with

reinforcement learning (RL) [22], [23], which mainly focus

on the feed-forward calculation stage in DNN inference and

perform a coarse-grained configuration with less efficiency. It

is necessary to propose a novel approach to find the best-suited

CPU-GPU configuration accurately and automatically.

In this work, we propose MOC, a Multi-Objective deep

RL-assisted DNN inference stage-adaptive CPU-GPU Co-

optimization framework. First, we comprehensively study the

DNN inference process and propose a DNN demand-resource
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matching model to classify the DNN models into several

categories. Next, a multi-objective deep reinforcement learning

(MODRL) model is established, considering the DNN types

and the real-time hardware status in CPU-GPU configuration.

Finally, a rule-based action refinement technique is proposed,

which tailors the search space of MOC by refining the unnec-

essary CPU-GPU configurations. Combining these techniques,

MOC could reach the Pareto-optimal speed and power for

given DNN models on mobile devices. Experimental results

show that, compared with existing works, MOC could reduce

the power consumption of DNN inference by up to 74.4.%

with only 1.2% latency degradation.

In summary, this work makes the following contributions.

• We investigated the various stages of DNN inference and

proposed a DNN demand-resource matching model to

classify DNN models into several categories.

• We proposed MOC, a multi-objective deep reinforcement

learning-assisted model to configure the CPU-GPU sys-

tem adaptive to various DNN types and stages.

• We introduced a rule-based action refinement technique

to tailor the search space of MOC, hence guiding MOC

to converge to the best-suited CPU-GPU configurations

faster and more effectively.

II. BACKGROUND AND RELATED WORK

DNN Inference: Understanding DNN inference process is

critical in CPU-GPU parameter configuration. There are three

main sequential stages in a DNN inference process, including

pre-processing, feed-forward calculation, and post-processing

stages. Figure 1 shows the data flow of DNN inference.

• Pre-processing is mainly executed on CPU. Initially, the

INPUT data is loaded to DRAM. CPU needs to transform

the data for GPU calculation. This could incur DRAM-

CPU data movement and CPU operations. Finally, the

processed data are fed to GPU either in data copy mode

via shared memory, or in mapping mode.

• Feed-forward calculation is mainly executed on GPU,

except for some CPU instructions, such as kernel initial-

ization. Initially, WEIGHT is stored in shared memory,

then copied to GPU cache layer-wisely and flushed after

computation. Meanwhile, FEATURE MAP is generated

as the output feature of the former layer, and copied

from GPU cache to shared memory for further use.

In calculation, it is copied to GPU cache and fed to

the current layer. Thereby, FEATURE MAP is circulated

frequently between shared memory and GPU cache.

• Post-processing transforms the OUTPUT data to user-

perceivable format. OUTPUT is the last feature map of a

DNN model. It is generated at GPU cache, transmitted to

shared memory, and copied in DRAM, finally transmitted

to CPU for post-processing. The post-processing stage

could be deemed as a reverse operation of the pre-

processing stage. Thus, a similar resource demand should

be shared by both stages.

Different stages have distinguished resource demands. The

pre/post-process stages are sensitive to the bandwidth of CPU

GPU
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Fig. 1: Data Flow during DNN Inference.

caches and DRAM. To boost this stage, the system should

improve the CPU DVFS level, or enlarge the CPU cache

by activating bigger CPU core cluster. In contrast, the feed-

forward calculation stage holds an apparent reliance on the

GPU capacity for fast calculation.

Heterogeneous CPU-GPU System: Mobile devices are

mostly equipped with ARM big.LITTLE heterogeneous CPU

architectures [20]. For example, the Snapdragon CPU platform

in Oneplus 8T [24] is equipped with 1 big core, 3 medium

cores, and 4 little cores. The big core is power-hungry with

high performance, while the little cores are the opposite. More-

over, multiple voltage and frequency levels are provided for

both CPU and GPU to be selected. Hence, it is prohibitively

expensive to manually search for the best-suited configuration

in such a myriad searching space.

Prior arts leverage the DVFS technique to trade off the

power and performance of the device. A higher voltage pro-

vides better performance for intensive workloads, e.g., mobile

games, at the cost of increased power consumption [25]. Some

works study the impact of CPU [26]–[29] or GPU [30]–[32]

DVFS on DNNs. Other works [22], [23] propose to allocate the

hardware resources for DNN inference tasks through the RL

model. However, they are less efficient for three reasons. First,

they perform a coarse-grained allocation, focusing only on

the feed-forward calculating stage. Instead, MOC configures

the CPU-GPU system for each stage in DNN inference.

Second, they simply feed the parameters of DNN network

and hardware to the RL model, leading to a long training

time. In contrast, MOC classifies DNN models into several

categories and takes the DNN type as the input. Moreover, we

empirically set several rules for action refinement in MOC.

Hence, the training process of MOC could be significantly

shortened and converged to stable status. Third, they adopt

the single-objective RL model, with a constrained power or

speed in their rewards. This could lead to the convergence

of local optimality. MOC strives to reach the global-optimal

Pareto-frontiers by adopting a multi-objective RL technique.

In summary, current works targeting DNN inference-

oriented hardware resource allocation are less efficient. This

poses the necessity of a novel framework in DNN inference-

adaptive CPU-GPU co-optimization.

Authorized licensed use limited to: Northeastern University. Downloaded on June 27,2024 at 15:53:14 UTC from IEEE Xplore.  Restrictions apply. 



stage Cluster #core fCPU fGPU T (ms) ∆P (W)

P medium 3 1.8GHz N/A 7.72 0.78
P little 4 1.8GHz N/A 12.97 0.75
F medium 3 1.8GHz 587MHz 28.47 2.19
F little 4 1.8GHz 587MHz 29.19 1.97

TABLE I: Impact of CPU-GPU configurations on DNN in-

ference stages (WDSR). P denotes the sum of pre- and post-

processing stage, F denotes feed-forward calculating stage.

(a) Apply configs on WDSR (b) Apply configs on ResNet50 

Fig. 2: a) Applying both configurations including ResNet50

Pareto-optimal configurations on WDSR. b) Applying both

configurations including WDSR Pareto-optimal configurations

on ResNet50. Red triangles indicate those configurations are

ResNet50’s Pareto-optimal configuration. Blue circles are the

Pareto-optimality for WDSR.

III. MOTIVATION

A. Impact of CPU-GPU Configs on DNN Inference Stages

In DNN inference, the three stages are performed sequen-

tially, and the inference time could be obtained by summing

up the time of each stage. It is important to note that different

stages of DNN inference favor different configurations, as they

are mainly executed on distinct processors. Tab. I shows the

impact of CPU-GPU configurations on DNN inference stages.

As pre- and post-processing stages reveal similar resource

demands, we merge them together. For P stage, changing the

CPU configuration will incur latency degradation by 68.0%

while only gaining 3.9% power reduction. However, for F

stage, similar configuration tuning only incurs 2.5% latency

degradation but obtains 11.2% power reduction. These results

indicate that different configurations for different stages could

further optimize the power consumption of DNN inference.

B. Demand of DNN-adaptive System Configurations

DNN inference tasks are diverse in hardware resource

demands. To demonstrate the diversity, we select three DNN

models with different patterns, including ResNet50 [15],

WDSR [16], and EfficientNet-b0 [33] as the representatives.

Tab. II describes the details of the selected DNNs. With the

diverse models in hand, we wonder if there is a once-for-

all best-suited configuration to achieve power-efficient DNN

inference. To verify this, we manually evaluate the speed and

power of one DNN model i to get the best-suited configuration

c∗i . Then, this configuration c∗i is applied to another model j.

We show the comparison of applying c∗i on model j with

Model Input Size Output Size #Params #FLOPs

ResNet50 3× 224× 224 1× 1000 25.56M 8.22G
EfficientNet-b0 3× 224× 224 1× 1000 5.27M 801.34M

WDSR 3× 540× 960 3× 1080× 1920 2.85K 2.80G

TABLE II: The input size, the total number of parameters, and

total Floating-point operations (FLOPs) of each DNN model.

the best configuration c∗j , and the results are shown in Fig. 2.

Apparently, different DNNs require different configurations for

better power efficiency. Due to space limitations, we exhibit

the result for ResNet50 and WDSR in Fig. 2. When we apply

the best-suited speed-oriented configuration of ResNet50 on

WDSR, it can only achieve 42.12ms inference speed, while

WDSR can deliver 36.14ms speed when using its best-suited

configuration. Meanwhile, the best-suited configurations for

WDSR could increase the power consumption when applied

on ResNet-50 by 87.0% (from 1.62W to 3.03W) if compared

with the best-suited configurations of ResNet-50 itself. These

results put forward the necessity of DNN-adaptive CPU-GPU

configuration.

C. Huge Search Space of CPU-GPU Configuration

The heterogeneous CPU-GPU architecture in mobile de-

vices provides rich selections in system parameter configu-

rations, including three CPU core clusters, CPU, and GPU

frequency. Take a recent OnePlus 8T as an example. It has 3

CPU core clusters, 8 CPU cores, 48 CPU frequencies, and 6

GPU frequencies, resulting in 367,289 available combinations.

Collecting the performance for different DNN inference stages

even expands the search space. Moreover, there are many

prevailing DNN models with diverse resource demands, fur-

ther complicating the DNN-adaptive CPU-GPU configuration

task. As a result, it is impractical for designers to address the

configuration issue manually.

Putting all together, we would raise a question: Is it possible

to propose a novel framework to quickly achieve the Pareto-

optimal latency and power consumption for various stages of

different DNN inference tasks on mobile devices?

IV. METHODOLOGY

To address the issue above, we propose MOC, a Multi-

Objective RL-assisted DNN inference-adaptive CPU-GPU Co-

optimization framework. Fig. 3 shows the architecture of

MOC, which is mainly composed of three components, in-

cluding the demand-resource matching-based model, MODRL

model, and rule-based action refinement technique.

A. DNN Demand-resource Matching Model

To facilitate more appropriate CPU-GPU configuration for

different types of DNN models, we propose a heuristic model

to classify the DNN algorithms according to their resource

demands and the available hardware resources of the device.

We introduce two models: 1) FF (Feed-Forward) ceiling

model, and 2) CM (CPU-Memory) ceiling model.

FF ceiling model classifies DNNs for the feed-forward

calculation stage, whose typical feature is that either GPU

processors are waiting for data transmission or the memory
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Fig. 3: Architecture of MOC. In MODRL, Si is the ith state, W is the weight vector, Qt is the Q-value of tthaction.

system is waiting for the GPU calculation. The roofline model

classifies DNNs by which operation is more intensive – data

processing or data movement [34]. The current roofline models

or their extension, e.g., [35], [36] neglect the frequent data

reuse of DNN weights, which may lead to a misunderstanding

of the relationship between GPU cache size and data memory

footprint. We extend the roofline model by taking the frequent

data reuse into consideration.

We first calculate the layer-wise cache-aware factor µℓ by

Eq. (1), where the +., is the ceil function, the GMEMcache is

the GPU cache size and ℓ indicates DNN layer ℓ. Byteℓw
and Byteℓi are the weights and input feature map data size

of layer ℓ, respectively. Note that Byteℓi for the CONV layer

needs to be collected after implementing the image-to-column

transform, since the CONV is implemented by GEMM. Then,

we calculate the cache-aware arithmetic intensity Iaµ by

Eq. (2), where L is the number of layers, FLOPℓ denotes

layer ℓ’s FLOP, Byteℓ is the data size of layer ℓ, including

the weights, feature map, and output, and µℓ is from Eq. (1);

Finally, the forward ceiling model can be obtained by Eq. (3),

where kGPU is a constant related to GPU, calculated by the

number of processing units and the FLOPS per cycle of the

processing unit, fGPU is the GPU frequency, kGPU × fGPU

approximates the calculation capacity of GPU with various

GPU frequencies, and ´ is the DRAM bandwidth. The hint

behind this is that the larger the DNN layer data size over

the GPU cache size, the more requirements for the GPU to

access the DRAM, compromising the effectiveness of the high

DRAM bandwidth.

µℓ =







⌈

Byte
ℓi

GMEMcache−Byte
ℓw

⌉

GMEMcache > Byteℓw
⌈

Byte
ℓi
+Byte

ℓw

GMEMcache

⌉

GMEMcache < Byteℓw

(1)

Iaµ = 1

|L|

∑

ℓ∈L

FLOPℓ

Byte
ℓ
×µℓ

(2)

Ppeak = min

{

kGPU × fGPU

´ × Iaµ
(3)
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Fig. 4: FF ceiling model of OnePlus 8T.

Fig. 4 shows the FF ceiling model for OnePlus 8T. Multiple

ceilings indicate the attainable performance is increasing with

GPU frequency. Therefore, EfficientNet-b0 could be either

memory-bound or computation-bound when GPU frequency

varies. In contrast, WDSR is always memory-bound, while

ResNet50 is always computation-bound.

CM ceiling model classifies DNN models in pre/post-

process stages by comparing the waiting time of CPU cores

and the memory system. To classify the DNN model as CPU-

intensive or CPU-efficient, we introduce our CM ceiling model

as Eq. (4), Bytedata is the data size copied to the CPU cache,

CMEMcache is the CPU cache size, which might be different

for different CPU core clusters. This term (tPROCESSING) defines

the CPU time to read the input data from DRAM to the CPU

cache. kCPU is the constant related to the CPU architecture,

and fCPU is CPU frequency, which impacts data transmission

and computing kernel initialization.

tPROCESSING ≈ Byte
data

CMEMcache
× kCPU × 1

fCPU

(4)

Since the input/output processing is mainly determined by

the CPU, the processing time can be formulated by the number

of copies required for each data and the speed of processing.

Derived from the calculation of up., the CM ceiling model can

be illustrated as Fig. 5. The color intensity denotes the CPU

frequency, the more intense, the higher frequency. The input

data, with size 3×224×224, occupies 558KB of memory and

needs three copies to complete the transfer. For larger input/

output data size, such as WDSR in Table II, a input with size
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Fig. 5: Illustration of CM ceiling model for single medium

CPU core of the OnePlus 8T (CacheL2 = 256KB), the color

intensity denotes the CPU frequency.
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3×540×960 requires 5.93MB memory and at least 24 copies,

not to mention the output with an even larger size.

According to the models above, we categorize DNN

models into five categories, including three GPU-oriented

categories (computation-intensive, memory-intensive, both-

efficient) and two CPU-oriented categories (CPU-intensive,

and CPU-efficient). A DNN model could fit one GPU-related

category and one CPU-related category.

B. MODRL: Multi-objective Deep RL Model

We show the design space of MOC in Fig. 6 and describe

each component of MOC in detail as follows.

1) State space: The state space considers both the DNN

parameters and the mobile device running status. Unlike prior

works [22], [23], MOC classifies the DNN models as a pre-

knowledge to tailor the search space. Hence, we consider the

DNN type and the DNN layer number in the state space.

For the device parameters, we consider the current CPU-

GPU configuration, as it could decide the current speed and

power of the device. Moreover, we consider other hardware

parameters, e.g., CPU cache, GPU cache, and GPU bandwidth.

These parameters could vary from device to device, hence

are taken into consideration to make MOC adaptive to given

devices. Note that the DNN type is a two-dimensional tuple

that contains the classification results of both FF and CM

ceiling models. For pre/post-processing stages, the FF ceiling

model DNN type is labeled as 0, as pre/post-processing stages

are GPU-irrelevant. Similarly, in the feed-forward calculation

stage, the DNN type of the CM ceiling model is labeled as 0.

2) Action space: MOC generates an action for each stage

in DNN inference. Specifically, the action space consists of

configuring the active CPU core cluster, CPU frequency, and

GPU frequency. By traversing available combinations of the

three parameters for each state in the training stage, MOC

could search for the best-suited combination by finding the

action with the maximum Q value in online decision-making.

3) Weight space: We take a weight vector as the input

of MOC, as referring to current MORL algorithms [37].

Each weight in the vector denotes the relative importance

between DNN inference speed and power consumption in

the reward function. With our design, users can decide how

many tuning policies to be used according to the requirements

by simply specifying the length of the vector. For example,

the user could configure the vector as {0,1}, in which 0

means power-oriented parameter tuning, while 1 means speed-

oriented tuning. With the guidance of the weight vector, MOC

could learn the tuning object of the user and perform fast

convergence for all weights in a one-take training.

4) Reward: The reward in MOC is the weighted sum of

normalized power and speed of each stage in DNN inference,

formulated by Eq. (5), where ³ is the weight to determine the

trade-off between the model speed and power consumption,

and the speed and power are both normalized.

Re = ³× (1− speed) + (1− ³)× (1− power) (5)

5) Experience replay buffer: We adopt a multi-list formu-

lated experience replay buffer in MOC. Each list in the buffer

maintains all samples for each weight. By doing so, MOC only

selects the sample from the same weight during training, thus

avoiding interference from other weights and helping reduce

the training effort to meet specific user objects.

6) Deep-Q-Network (DQN) model: A multi-head Multi-

layer Perceptron (MLP) with three fully-connected layers

combined with batch normalization and ReLU activation is

adopted as the DQN model. The inputs are processed by the

embedding layers that map the categorical or discrete input

variables into continuous vector space. The multi-head denotes

the DQN model contains multiple outputs corresponding to the

candidate actions in the action space.

C. Rule-based Action Refinement

To further reduce the search space of MOC and boost its

training process, we comprehensively studied the relationship

between CPU-GPU configurations and DNN inference speed

and power. Based on the results, several rules are proposed to

refine the action space in MOC.

Rule 1: In the feed-forward calculation stage, MOC only

selects actions with one little CPU core.

Feed-forward calculation stage mainly happens in the GPU,

during which the CPU only takes charge of minor tasks, e.g.,

kernel activation, and task scheduling. Hence, one little CPU

core is powerful enough to afford most DNNs in this stage.

Rule 2: In pre/post-processing stages, MOC only selects

actions with the lowest GPU frequency.

Pre/post-processing stages mainly happen in CPU, hence we

could choose the lowest GPU frequency in both stages.

Rule 3: In pre/post-processing stages, MOC should not

choose the CPU core cluster with only one core.
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Large amounts of data movements happen in the pre/post-

processing stages, which demands enough CPU cache re-

sources to boost both stages. As a result, one CPU core with

only one CPU cache is insufficient for both stages.

The proposed rules are derived from a large number of

evaluations conducted on multiple prevalent DNN models.

Owning the space constraint, we exhibit representative data

by separately examining the impacts of modifying the CPU

frequency, the GPU frequency, and the number of CPU cores

on the DNN inference stages of various DNN models using the

OnePlus 8T. We decreased the CPU frequency from 1.8GHz

to 0.6GHz and the GPU frequency from 587MHz to 305MHz.

Additionally, we varied the number of CPU cores according to

the order of reducing the total L2-cache size, which includes

all CPU cores(1× big core, 3× mid cores, and 4times little

cores), 3×mid cores, 4×little cores, 1×big core, 1×mid core,

and 1×little core.

Fig. 7 shows the power consumption and latency of the

feed-forward stage for ResNet50, EfficientNet-b0, and WDSR.

Fig. 7 shows that, in the feed-forward stage, reducing the

GPU frequency results in a decrease in power consumption;

however, it also slows down the speed. Although the CPU

frequency and the number of cores have minimal impact on

the latency, the number of CPU cores has more influence on

the power consumption reduction, which supports the rule of

selecting actions with one little CPU core, thereby the Rule 1.

Fig. 8 shows the power consumption and latency of the

pre/post-processing stage. We select the data size 1×1000 and

224 × 224 × 3 that are usually used for image classification

tasks, and 1080 × 1920 × 3, widely used in tasks with HR

image input/output. Notably, the GPU frequency has no impact

on both the latency and power consumption since the GPU

does not involve in the pre/post-processing stage. Hence it is

intuitive to keep the GPU frequency to the lowest frequency

to avoid the possible influence of the GPU, demonstrating

the Rule 2. The number of CPU cores is more influential

on latency compared to the CPU frequency. When reducing

the number of CPU cores, the latency increases by factors of

approximately ×2.9, ×3.4, and ×9.2 for data size 1 × 1000,

224×224×3, and 1080×1920×3, respectively. On the other

hand, reducing the CPU frequency results in the inference

latency increase of approximately ×2.0, ×1.9, and ×1.2 for

the same data size. However, the number of CPU cores and

the CPU frequency have a similar impact on reducing power

consumption. It shows the important role of the CPU during

pre/post-processing, thereby supporting the proposed Rule 3.

D. Overhead analysis

The overhead incurred by MOC is minor. The overhead of

the Deep-Q Network model is 2.31ms per action on average.

Besides, it only provides the best-suited configuration for

each stage as preset. Thus it will not impact DNN inference.

The primary overhead of MOC is DVFS switching, which

only takes dozens of microseconds [25]. This overhead can

be considered negligible compared to the latency of DNN

inference stages.

(a) Latency variation

(b) Power variation

Fig. 7: Latency (a) and power (b) variation when switching

the GPU frequency, CPU frequency, or CPU cores alone for

ResNet50, WDSR, and EfficientNet-b0 during feed-forward

stage on OnePlus 8T.

(b) Power variation

(a) Latency variation

Fig. 8: Latency (a) and power (b) variation when switching

the GPU frequency, CPU frequency, or CPU cores alone for

1×1000, 224×224×3, and 1080×1920×3 data size during

the pre/post-processing stage on OnePlus 8T.

E. Implementation

MOC could be integrated as a lightweight component in the

mobile compiler, i.e., CoCo-Gen [38] and TVM [39]. It con-

tains pre-trained DQN models to provide suitable configura-

tions for the model device. The API, MOC.retrieve(DNN,

³), is provided to the developer for retrieving the best-

suited CPU-GPU configuration based on the current mobile

configuration. Given the input DNN parameter, MOC could

determine the corresponding DNN category with our DNN

demand-resource matching model. ³, as mentioned in Eq. (5),

indicates the weight parameter between the speed latency and

power consumption. Thus, the API retrieves the correspond-

ing configuration based on the DNN model, the developer’s

demands, and the device specification for the DNN demand-

resource matching model.

V. EVALUATION

A. Experimental Environments

1) Experiemntal Setup: We use the OnePlus 8T [24] to

perform the DNN inference. It has the Qualcomm SnapDragon

865 chipset with a Qualcomm Kyro 585 Cota-core CPU

(1×2.84 GHz Cortex-A77 & 3×2.42 GHz Cortex-A77 &

4×1.80 GHz Cortex-A55) and a Qualcomm Adreno 650
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CPU Cluster

(#Cores)

fCPU

(GHz)

fGPU

(MHz)

little (4)
0.69, 0.78, 0.88, 0.97, 1.08, 1.17,

1.25, 1.34, 1.42, 1.52, 1.61, 1.71, 1.80 587

525

490

441.6

400

305

medium (3)

0.71, 0.83, 0.94, 1.06, 1.17, 1.29,

1.38, 1.48, 1.57, 1.67, 1.77, 1.86,

1.96, 2.05, 2.15, 2.25, 2.34, 2.42

big (1)

0.84, 0.96, 1.08, 1.19, 1.31, 1.4, 1.52,

1.63, 1.75, 1.86, 1.98, 2.07, 2.17, 2.27,

2.36, 2.46, 2.55, 2.65, 2.75, 2.84

TABLE III: Actions for the OnePlus 8T. The number of CPU

cores in the cluster is shown after the cluster name.

GPU. Tab. III enumerates the actions of the OnePlus 8T. The

Monsoon High Voltage Power Monitor (HVPM) is adopted to

measure the power consumption of mobile devices [40].

2) MOC Training: The training codes are implemented on

PyTorch. The DQN model is trained with collected data of

ResNet50, EfficientNet-b0, and WDSR on a NVIDIA 2080Ti

GPU. We train the model for 100k iterations using the Adam

optimizer with ´1 = 0.9, ´2 = 0.99. The initial learning

rate is set to 1 × 10−3 and halved at 50k and 75k iterations.

The ϵ of ϵ-greedy strategy is initially set to 0.9 and decayed

exponentially to 0.05. Various ³ weights are selected for

multiple DQN models to compromise the different speeds or

power consumption requirements.

3) DNN Inference: DNN inference is executed on OnePlus

8T with CoCo-Gen [38] as the compiler. Each testing DNN

takes 1000 runs on different configurations. The average power

consumption is obtained as the Pavg during each test. For a

fair comparison, the power of the idle state is also collected as

the baseline of the corresponding configuration. Then, ∆P =
Pavg − Pidle is collected as the power consumption.

4) State-of-the-art (SOTA) works: MOC can be tuned by

defining the ³ in reward to meet customized requirements. We

compare MOC with CDC, PowerSave, Schedutil, and TFlite.

Coarse-Grained Configuration (CDC) adopts DRL in coarse-

grained DNN inference CPU-GPU configuration, where they

neither consider the resource-demand for various models nor

the different stages of DNN inference, with referring to [22],

[23]. Due to no code being publicly released, we implemented

the CDC methodology ourselves based on published papers.

PowerSave [41] and Schedutil [42] are classic DVFS gov-

ernors. Schedutil activates all CPU cores with varied CPU

and GPU frequencies following the device resource utilization.

PowerSave keeps CPU frequency to the user-defined lowest

value. TFlite is a prevalent mobile DNN compiler [7], whose

default configuration activates four little CPU cores with

Schedutil DVFS governor. These SOTA works use one CPU-

GPU configuration for the whole DNN inference process.

B. Experimental Results and Analysis

To demonstrate the advantages of MOC, we compare it

with SOTA works on different DNN models. ResNet50 is a

famous image classification with high computation resource

demands. WDSR focuses on image super-resolution tasks that

require huge memory and can be applied on the mobile device

[7]. EfficientNet-b0 is an image classification model designed

for efficient inference and has been widely applied to the

model device. These three representative DNN models focus

on different fields and have distinct resource demands.

We select different ³ ∈ {0.1, 0.2, 0.3, ..., 1.0} for the DQN

model, where the ³ is the parameter in Eq. 5, to evaluate

the performance of the MOC under different situations. For

each ³, we take the average inference speed and power

consumption gathered from random initial states. The average

inference speed and power consumption are taken as the

performance of the corresponding DQN model. Fig. 9 and

Tab. IV show the experimental results of various approaches.

Several observations are induced from the results.

The CDC introduces DRL to optimize the device config-

uration to reduce power consumption but lacks to consider

the different resource demands among each DNN inference

stage and DNN categories. As shown in Tab. IV, we compare

CDC using three different configurations, where CDC∗ and

CDC are configured to achieve a similar power and latency

as MOC2, respectively. MOC2 can obtain faster inference

speed (15.6% for ResNet50, 17.9% for WDSR, and 0.5% for

EfficientNet-b0) compared to CDC∗. In addition, MOC2 can

reduce power consumption by 24.8% for ResNet50, 11.4% for

WDSR, and 34.6% for EfficientNet-b0 compared to CDC . In

addition, we also configure CDC⋄ to achieve a similar latency

as MOC3, which shows the capacity to retain an acceptable

inference speed when ultra-low power consumption. Here

MOC3 mitigates power consumption by 52.3% for ResNet50,

20.8% for WDSR, and 56.8% for EfficientNet-b0 with almost

0.5% inference speed slower. This is because MOC performs

a fine-grained CPU-GPU configuration for each stage in DNN

inference, while CDC configures the CPU-GPU system for the

whole DNN inference process.

Compared with the Schedutil, MOC could reduce power

consumption by 67.2% for ResNet50, 45.1% for WDSR,

and 75.5% for EfficientNet-b0, with minor defects on speed

latency, 0.8% for ResNet50, 0.4% for WDSR, and 1.2% for

EfficientNet-b0. Schedutil governor is designed for general

tasks and only takes the processor’s utilization to adapt the

CPU frequency dynamically. Without considering the unique

demands of DNN models fails to achieve a suitable perfor-

mance for DNN applications.

The Powersave governor only reduces the CPU frequency.

Although it could mitigate the power consumption incurred by

the CPU, it will also induce inference speed degradation. MOC

can outperform Powersave on ResNet50 (28.3% power reduc-

tion with only 9.8% slow in speed), WDSR (17.6% power

reduction with even 5.7 % faster speed), and EfficientNet-

b0 (34.7% power reduction with 9.3% faster speed). The

reason is that activating suitable CPU cores can increase power

efficiency while keeping fair inference speed with MOC.

TFlite mitigates the power issue of Schedutil by only

activating the little CPU cluster, thereby improving power

efficiency without significantly compromising inference speed.

However, MOC can surpass TFlite by employing an adaptive

CPU-GPU configuration that extends beyond the CPU cluster,
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Fig. 9: Comparison of MOC with SOTA works.

Method

Schedutil

PowerSave

TFlite

CDC∗

CDC 

CDC⋄

MOC1

MOC2

MOC3

ResNet50

T (ms)↓ ∆P (W)↓

37.88 4.32

41.32 1.52

38.43 1.74

54.31 1.08

46.09 1.46

58.16 0.44

38.21 1.59

45.81 1.09

58.95 0.21

WDSR

T (ms)↓ ∆P (W)↓

35.89 4.81

42.51 1.88

46.37 1.78

48.82 1.53

40.11 1.75

56.80 0.77

36.04 2.83

40.08 1.54

57.28 0.61

EfficientNet-b0

T (ms)↓ ∆P (W)↓

14.04 3.63

16.12 1.09

15.92 0.78

15.95 0.74

14.69 1.08

19.36 0.37

14.21 0.93

14.62 0.71

19.34 0.16

TABLE IV: Comparison with SOTA methods. MOC1, MOC2,

MOC3 correspond to setting ³ = 0.9, 0.8, 0.2 in reward

function, respectively. CDC∗ is configured to achieve the

similar power as MOC2. CDC is configured to achieve the

similar latency as MOC2. CDC⋄ is configured to achieve the

similar latency as MOC3.
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Fig. 10: Ablation study of MOC

allowing for enhanced performance and efficiency. MOC can

reduce the power consumption by 18.9% for ResNet50, 39.2%

for WDSR, and 4.5% for EfficientNet-b0), even speed up the

inference time (0.5% for ResNet50, 13.6% for WDSR, and

6.3% for EfficientNet-b0).

MOC outperforms these works by both DNN-adaptive and

fine-grained configurations. Moreover, MOC represents more

flexibility over these works, as users could select their desired

CPU-GPU configuring policy, e.g., power-oriented or speed-

oriented, by setting the weight in the reward function in MOC.

C. Ablation Study

In the ablation study, we investigate the impact of our rule-

based action refinement. By comparing MOC with and without

rule-based action refinement during the deep reinforcement

learning training process, it shows the advantages of action

refinement in the MOC. Moreover, we also compared the

influence of DNN model classification during each stage. The

object is to demonstrate the MOC benefit from distinguishing

DNN categories when providing suited configuration.

1) Importance of rule-based action refinement in MOC:

The MOC could be revised without rule-based action refine-

ment, where no actions will be ignored during the training. As

shown in Fig. 10, the Q-value of MOC converges around 75k

iterations while MOC without rule-based refinement converges

around 90k iterations with a higher variation. This is because

the rule-based action refinement provides prior knowledge that

filters out those actions that might incur worse performance.

2) The necessity of DNN classification in MOC: The ab-

sence of DNN model classification in MOC leads to inferior

Q-values in comparison to other approaches in Fig. 10. Various

categories of DNN models exhibit distinct preferences for

CPU-GPU configurations based on their CPU/GPU resource

demands during different inference stages. Disregarding these

attributes impedes MOC from obtaining suitable CPU-GPU

configurations for each DNN model. These results verify the

necessity of adopting DNN classification in MOC.

With both techniques, the oscillation of the Q-value of MOC

can be effectively reduced, which leads to faster convergence

and stable performance.

VI. CONCLUSION

This paper proposes MOC, a Multi-Objective CPU-GPU

Co-optimization approach for power-efficient DNN inference

on mobile devices. MOC strives to configure the CPU-GPU

system adaptive to DNN inference stages, thus achieving

a Pareto-optimal inference power and speed. First, a DNN

demand-resource matching model is proposed to classify DNN

models into 5 groups. Then, a multi-objective DRL model

is established to adaptively configure the CPU-GPU system

for each DNN inference stage. Finally, a rule-based action

refinement technique is introduced to tailor the search space of

MOC. Evaluations show that MOC could significantly reduce

the power consumption of DNN inference while delivering an

excellent speed. We expect that MOC could provide hints for

subsequent works in DNN acceleration on mobile devices.
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