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Abstract—Non-Terrestrial Networks (NTN) are expected to be
a critical component of 6th Generation (6G) networks, providing
ubiquitous, continuous, and scalable services. Satellites emerge
as the primary enabler for NTN, leveraging their extensive
coverage, stable orbits, scalability, and adherence to interna-
tional regulations. However, satellite-based NTN presents unique
challenges, including long propagation delay, high Doppler shift,
frequent handovers, spectrum sharing complexities, and intricate
beam and resource allocation, among others. The integration of
NTNs into existing terrestrial networks in 6G introduces a range
of novel challenges, including task offloading, network routing,
network slicing, and many more. To tackle all these obstacles,
this paper proposes Artificial Intelligence (AI) as a promising
solution, harnessing its ability to capture intricate correlations
among diverse network parameters. We begin by providing a
comprehensive background on NTN and AI, highlighting the
potential of AI techniques in addressing various NTN challenges.
Next, we present an overview of existing works, emphasizing
AI as an enabling tool for satellite-based NTN, and explore
potential research directions. Furthermore, we discuss ongoing
research efforts that aim to enable AI in satellite-based NTN
through software-defined implementations, while also discussing
the associated challenges. Finally, we conclude by providing
insights and recommendations for enabling AI-driven satellite-
based NTN in future 6G networks.

Index Terms—Non-terrestrial networks (NTN), space-air-
ground integrated networks (SAGIN), artificial intelligence (AI),
machine learning (ML), deep learning (DL), 5G-advanced, 6G,
satellite, beam-hopping, handover, spectrum sharing, doppler
shift, resource allocation, computational offloading, network
routing, network slicing, channel estimation, security, open radio
access network (O-RAN), RAN intelligent controller (RIC).

I. INTRODUCTION

T
HE THIRD Generation Partnership Project (3GPP) has

already started the standardization towards the 5th

Generation (5G)-Advanced in Release 17 and 18 to facilitate

its worldwide deployment [1], [2]. 5G-Advanced provides

much higher data rates, lower latency, increased capac-

ity, and more efficient spectrum utilization than any of

its predecessors. It supports a wide range of applications
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encompassing all 5G use cases such as Ultra Reliable Low

Latency Communications (URLLC), massive Machine Type

Communication (mMTC), and enhanced Mobile Broadband

(eMBB) communication with different Key Performance

Indicator (KPI) requirements [3]. Nevertheless, future applica-

tions such as Augmented Reality (AR), Virtual Reality (VR),

Tactile Internet, Holographic Type Communication (HTC),

remote health and surgery, etc. require extremely high through-

put, low latency, high reliability, and ubiquity at the same time

which cannot be met with current technological standards [4].

Consequently, the next-generation global wireless standard,

namely, 6th Generation (6G) has become the current research

focus for the industry and research community [5].

6G is expected to provide an extremely high data rate

(peak data rate up to 1 Tbps and user-experienced data rate

up to 10 Gbps, around 100 times higher than 5G), very low

latency (in the order of µs), high reliability (around 100 times

better than 5G) and extreme coverage to support the diverse

set of future applications [6], [7], [8]. Due to the limited

coverage area and geographical constraints, it is not possible to

guarantee ubiquitous connectivity with existing terrestrial-only

network infrastructures. Non-Terrestrial Networks (NTNs),

networks involving space and aerial platforms, can provide

us with multicast opportunities over very large areas as well

as can serve users even in remote areas or during times

of natural calamities [4]. Furthermore, the launching and

maintenance costs for satellites have significantly decreased as

they are deployed at lower heights (typically around 600 km).

These satellites can provide much higher throughput and

lower latency compared to legacy satellites and potentially can

support different use cases of 6G. So NTN is considered to

become one of the major technological enablers of future 6G

networks visioning connectivity anywhere and anytime [4],

[9], [10], [11]. Tech giants such as SpaceX Starlink, Amazon

Kuiper, and OneWeb have already begun to invest billions of

dollars in this field, reflecting its massive potential for future

growth [12].

Although NTN presents numerous potential benefits for

the development of future 6G networks, it also entails sev-

eral challenges that need to be addressed, primarily due

to the unique characteristics of its mobility and propa-

gation environments [13], [14]. Due to the long distances

between the space-borne Base Stations (BS) and the ground

User Equipment (UE), the propagation delay is usually

higher in NTN environments. Additionally, high-speed air or
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space-borne platforms necessitate modifications to existing

handover and paging protocols, as well as introduce a signif-

icant Doppler shift in carrier frequencies. The large path loss

also increases the minimum power requirement for reliable

transmission, initiating the need for novel beam and resource

allocation strategies. Spectrum sharing in the same frequency

band with existing terrestrial or other services also requires

further study in order to avoid interference between terrestrial

and non-terrestrial users. Even though currently there are some

stand-alone satellite network deployments, the ultimate goal is

the convergence of terrestrial and non-terrestrial environments

for extreme network performance in 6G. [4]. This potential

integrated environment requires efficient computing, routing,

and slicing algorithms for meeting the expected KPI require-

ments of 6G.

Artificial intelligence (AI) is currently having a profound

and revolutionary impact on a multitude of industries, includ-

ing but not limited to healthcare, military, transportation, and

e-Commerce [15]. AI encompasses a wide array of smart

machines, while Machine Learning (ML) is a popular subset

of AI that allows machines to learn from large amounts of

data and make decisions without the need for explicit pro-

gramming [16]. Deep Learning (DL) is a special subset of ML

that studies Artificial Neural Networks (ANNs) which contain

more than one hidden layer, often implemented to simulate the

human brain [17]. DL is currently being leveraged in various

applications, such as computer vision, speech recognition,

and bioinformatics, outperforming human-level performance

in these particular domains. The cellular domain is still in

its infancy in terms of AI integration [18] compared to other

fields due to the complex and dynamic nature of wireless

networks. As an integral part of 6G networks, challenges

associated with NTN deployment provides an enticing field

for AI applications. However, while deploying algorithms in

a real environment, practical implementation difficulties may

arise to provide reliable vertical connectivity between the

ground and space networks. To reach optimal performance,

theoretical advancements in communication system design

must be complemented by appropriate AI solutions for NTN

integration into 6G.

A. Contribution

Most of the existing articles either focus on a discussion

of architecture and challenges associated with NTN or AI

approaches for wireless communications from a broader point

of view. Although some research articles also discuss the

potential research scopes for AI-powered NTNs to some

extent, those discussions are either generally not very com-

prehensive or do not capture the role of AI in NTN-integrated

6G networks in a complete manner. Also, the current research

efforts and practical complications related to AI-empowered

NTN-integrated 6G networks are not covered. This survey

article aims to provide a comprehensive survey into different

AI methods used to overcome the specific challenges of NTN.

To help our readers understand better, we also provide a

necessary relevant background discussion on NTN and its

challenges in the context of 6G. We also discuss different

AI approaches and how they can help solve NTN challenges.

Additionally, we explore ongoing research efforts and the

difficulties of using AI methods in real integrated TNTN

setups in 6G. The main contributions of this article can be

summarized as follows:

1) We present a systematic survey of existing and relevant

research works in each research thrust to organize the

current research progress in these fields. This helps us to

get an insight into the current status and potential future

research scopes of different relevant research fields in

this domain.

2) We summarize the current AI testbeds for satellite

networks and potential integration efforts to current 5G

software-defined testbeds for implementing integrated

satellite-terrestrial networks.

3) We explore various practical complications associated

with applying AI approaches to NTN as future open

issues. This helps us access the maximum potential of

AI techniques while being mindful of the practical con-

straints of NTN integration into next-generation wireless

networks.

4) We provide insights and recommendations on various

aspects of applying AI techniques to satellite-based

NTNs for future 6G networks.

B. Paper Organization

The rest of the paper is organized as follows. In Section II,

we provide a compact overview discussion of NTN and its

platforms, use cases, architecture, and characteristics; and

discuss potential challenges associated with its deployment

in 6G. In Section III, we introduce different types of AI

approaches to provide a brief overview of relevant AI tech-

niques to solve various challenges associated with NTNs. We

then discuss the related surveys on AI-enabled satellite-based

NTNs empowering future 6G networks in Section IV. We

then summarize the existing AI approaches to address various

NTN challenges categorizing them into different NTN research

thrusts in Section V. Furthermore, We summarize the current

research efforts from the industrial and research community to

apply AI into satellite-based NTN in future 6G networks in

Section VI. We also discuss the technical challenges associated

with the integration of AI to NTNs in Section VII. Finally, we

provide a discussion on insights and potential future studies

for ensuring the proper AI-enabled satellite-based NTN in

future 6G networks in Section VIII. We illustrate the structure

of the paper showing the major components in Figure 1 for

better understanding. We also provide the list of acronyms in

Table I for the convenience of the readers.

II. BACKGROUND ON NTN

To understand the role of AI in enabling NTNs in 6G,

we provide a concise background discussion on NTNs and

the challenges associated with NTNs to realize them in 6G

in this section. First, we familiarize the readers with various

space and air-borne NTN components along with the general

architectures and use cases in 6G. We clarify that we focus

on satellite-based NTN while discussing NTNs for the rest
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Fig. 1. Structure of the paper.

of the paper due to their critical role in enabling 6G with

ubiquitous coverage, predictable trajectory, and scalability.

Then we emphasize on unique characteristics of NTNs which

pose new challenges for integrating them into existing ter-

restrial networks for 6G. Depending on the nature of these

challenges, we present the current research trends in this

domain in Section V by combining them with the AI

techniques discussed in Section III.

A. Definition

Non-Terrestrial Network (NTN) refers to any network

operating through the air or space-borne vehicle(s) for com-

munication [19]. This definition implies that two distinct types

of NTN platforms (space-borne and air-borne) can be utilized

for NTN at different heights which is illustrated in Figure 2.

1) Space-Borne Platforms: Space-borne platforms, such as

satellites, are deployed in space for communication [19].

They move around the Earth in specific orbits with varying

angular velocities, relying on gravity to provide the necessary

centripetal force to maintain their orbits. The orbital period

of a satellite refers to the time required for the satellite

to complete one full revolution around the Earth. Due to

differences in orbital periods, some satellites may not be

visible to ground observers all the time. To characterize this,

another term is used to denote the duration of direct visibility

for a satellite. This is known as the horizon time, which

refers to the maximum duration during which the satellite is

within the line of sight of a given ground station or receiver.

Depending on their mobility with respect to the Earth, satel-

lites can be classified into two broad categories: Geostationary

(GEO/GSO) and Non-Geostationary (NGEO/NGSO) Earth

Orbit satellites. We discuss these two types of satellites below

and summarize their key features in Table II.

• Geostationary Earth Orbit (GEO or GSO) Satellites:

These satellites have an orbital period of 24 hours

which is the same as the time required for the Earth
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TABLE I
LIST OF ACRONYMS

to complete a full rotation on its axis. As a result,

these satellites appear stationary from the ground and

are named Geostationary Earth Orbit (GEO or GSO)

Satellites. These satellites orbit on the Earth’s equatorial

plane at an altitude of about 35,786 km to maintain

this orbital period. Due to this high altitude, it has an
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Fig. 2. An illustration of different NTN components in 6G.

TABLE II
KEY FEATURES OF DIFFERENT TYPES OF SATELLITES

extremely large beam footprint (typically the diameter

ranges from 200 to 1000 km) covering a pretty wide area.

However, it also incurs an extremely long propagation

delay (typically around 270 ms) [20] which makes it

infeasible for low-latency communications. These satel-

lites have been used in broadcasting services for a very

long time, but are not very suitable for low-latency

emerging applications.

• Non-Geostationary Earth Orbit (NGEO or NGSO)

Satellites: As the name suggests, these satellites orbit

around the Earth at a period lower than 24 hours, so

they are not stationary with respect to a ground observer.

As the orbital period is smaller, their angular velocity is

also higher but the altitude is lower compared to GEO

satellites. Depending on the heights, they can be divided

into two categories: Low Earth Orbit (LEO) and Medium

Earth Orbit (MEO) satellites. Typically they are deployed

at a height ranging from 200 to 2000 km for LEO and

2000 to 25000 km for MEO satellites. The horizon time

is much smaller for NGEO satellites due to smaller orbital

periods, for example, the LEO satellites deployed at a

height of around 500-600 km with an orbital period of

1.5-2 hours can have a horizon time of 5-10 minutes

depending on channel conditions. Due to smaller heights,

these satellites have a smaller beam footprint (diameter

ranges from 5 to 500 km) with a much smaller propa-

gation delay (typically around 20 ms for LEO satellites

and 94 ms for MEO satellites) [20] compared to GEO

satellites. With their proximity to Earth and lower cost

of launch and maintenance, these satellites, especially

the LEO satellites, have gained significant attention in

recent years. Their reduced propagation delay and path

loss make them an attractive choice for facilitating high-

speed data transfer and real-time communication, so as

to transform the future 6G connectivity.

2) Air-Borne Platforms: High Altitude Platform Systems

(HAPS) refer to air-borne platforms that can be used for

wireless communication. Airships, balloons, and airplanes are

the most prominent types of air-borne platforms in NTN. They

are viewed as air-borne counterparts of terrestrial base stations

serving as High-altitude International Mobile Base Stations

(HIBS) [21]. They usually operate at the stratosphere region

with an altitude of around 20 km and a beam footprint size

with a diameter of several km. Despite it having a lot smaller

propagation delay compared to space-borne platforms, it has

some additional challenges related to stabilization on air and

refueling.

While both satellites and airborne platforms can be utilized

in the development of NTNs, satellites are often considered

more critical for discussions related to NTNs. This is due
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to their global coverage, stable and predictable orbits, high

scalability, and the existence of international regulations that

govern satellites. As such, satellite networks comprise a

significant portion of future NTN-enabled communication

networks. Therefore, for the purposes of this article, we will

primarily focus on satellite-enabled NTNs in the context of

6G communication technology.

B. Role of NTN in 6G

NTNs are anticipated to be a major component of 6G

communication systems, providing a wide array of vertical

services, such as transport, health, energy, automotive, public

safety, and many more. The International Telecommunication

Union (ITU) has identified three major categories of appli-

cations for 5G that are based on network performance and

user Quality of Experience (QoE): (1) eMBB: extremely high

bandwidth with moderate latency requirements, for example,

multimedia applications; (2) mMTC: low power and band-

width and no strict delay requirements, for example, IoT; and

(3) URLLC: low latency and high-reliability requirements, for

example, remote medical surgery. However, future applications

such as AR, VR, Tactile Internet, HTC, intelligent transport

and automation, multi-sense communication, global ubiquitous

connectivity, etc. require extremely high throughput, low

latency, high reliability, and ubiquity at the same time which

cannot be met with current 5G standards [4]. Based on the

characteristics, these new applications are classified into three

more new groups,

1) Ubiquitous MBB (uMBB): High throughput and extreme

coverage requirements, combining both eMBB and mMTC.

Examples: Digital twins, pervasive intelligence, global ubiq-

uitous connectivity, etc.

2) Ultra-Reliable Low Latency Broadband Communication

(ULBC): High throughput and low latency requirements, com-

bining both eMBB and URLLC. Examples: HTC, AR, VR,

Tactile Internet, multi-sense experiences, etc.

3) Massive Ultra-Reliable Low-Latency Communication

(mULC): Extreme coverage and low latency requirements,

combining both mMTC and URLLC. Example: Vehicle-to-

Everything (V2X), intelligent transport and automation, etc.

The principal strength of NTNs lies in their extreme cov-

erage. As discussed in Hexa-X project [22], a flagship for

B5G/6G vision and intelligent fabric of technology enablers

connecting human, physical, and digital worlds, the vision

of enabling 6G networks towards provisioning service every-

where and always through NTN is presented. Due to its

extreme coverage, satellites can reach underserved or unserved

areas such as islands, remote locations, ships, airplanes, etc.

where terrestrial communication is either difficult or impos-

sible to some extent. In times of natural disaster, terrestrial

links can be unavailable, in which case users can benefit

from the reliable backup of non-terrestrial links. This ensures

resilient and robust communication with global connectivity

which is considered to be one of the main features of future 6G

networks. With the advancements in antenna techniques and

miniaturization, high throughput satellites are also deployed

in low earth orbits. Consequently, current 5G use cases

such as mMTC and eMBB as well as future 6G use cases

such as uMBB can be the most important use cases for

NTNs. Furthermore, the considerably low latency for LEO

satellite systems makes the satellite useful even for low-latency

applications. However, 5G URLLC or 6G new use cases

with extremely low latency may not be directly applicable for

NTN use cases. Nevertheless, NTNs can still be beneficial

for these use cases in conjunction with terrestrial networks

to improve network efficiencies and reliability. Combining all

these, satellites are expected to be one of the major driv-

ing forces toward revolutionizing the future 6G applications

extensively.

C. General Architecture

Satellites can employ a transparent payload configura-

tion, acting as a relay that performs RF filtering, frequency

conversion, and amplification to facilitate communication

between UEs and ground stations. Alternatively, they can

utilize a regenerative payload configuration, which involves

payload processing after modulation and coding, and act as

base stations with additional onboard processing capabilities.

Besides, the satellites can provide backhaul support for the

core networks of terrestrial networks. The general architecture

for a satellite-based NTN for the above-mentioned different

configurations as per release 16 and 17 is discussed below

[20], [23]:

1) Satellite: Satellite is the key component of this archi-

tecture. It carries the payload between the UE and

the ground station as shown in Figure 3. In the case

of a transparent payload, it works as a simple relay

that transmits the payload after RF filtering, frequency

conversion, and amplification to the ground station (or

UE). Conversely, in the case of a regenerative payload,

it processes the payload after modulation and coding on

top of these actions, so it works like a BS that needs

onboard processing capabilities. Also as per [23], satel-

lites can provide backhaul by providing a connection

between ground BS and the core network as illustrated

in Figure 3.

2) Gateway: Gateway refers to the ground station that

connects NTN to the public data network. In the case of

a transparent payload, the ground terminal needs to be

equipped with a terrestrial base station. In the case of a

regenerative payload and satellite backhaul support, the

ground terminal only relays the received information to

the core networks.

3) User Equipment (UE): User equipment is either hand-

held or Very Small Aperture Terminal (VSAT) within

the coverage area of the satellite.

4) Feeder Link: Feeder link connects a satellite to the

gateway.

5) Service Link: Service link connects UEs to the serving

satellite.

6) Inter-Satellite Links (ISLs): ISLs provide connectivity

between multiple satellites deployed in NTN so that a

payload can be delivered to other cells.
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Fig. 3. General communication architecture for satellite-based NTN.

D. Fundamental Characteristics of NTN

NTN presents us with several potentially promising use

cases for the next generation of wireless networks as discussed

in Section II-B. However, as can be seen from Section II-A,

it also has a number of unique characteristics due to the

large distances between satellites and ground transceivers, the

high mobility of NGEO satellites, and the proposed frequency

range for operation. In this subsection, we will delve into

these features of NTN and discuss their impact on network

performances and procedures.

1) Target Frequency Band: The allowable frequency range

of operation is 0.5-100 GHz [24]. Traditionally, six major

frequency bands within this range are used in satellite com-

munications, which are listed below:

1) L-Band (1-2 GHz): Global Positioning System (GPS)

carriers and satellite mobile phones, e.g. Iridium, use

this band.

2) S-Band (2-4 GHz): This frequency band is used for

weather radar, marine radar, etc. satellite communica-

tions.

3) C-Band (4-8 GHz): Primarily used for satellite television

broadcasting.

4) X-Band (4-8 GHz): Primarily used in military commu-

nications.

5) Ku-Band (12-18 GHz): Primarily used for satellite

broadcasting services.

6) Ka-Band (26-40 GHz): This frequency band is used

for high-speed data transmission, including broadband

Internet access via communication satellites.

However, as per 3GPP, currently, two frequency bands

(S and Ka-band) are targeted in particular for integrated

TNTN environments considering performance and regulatory

concerns [20]. The two target frequency bands are:

• S-Band: The downlink frequency band is 2170-

2200 MHz and the uplink frequency band is

1980-2010 MHz.

• Ka-band: The downlink frequency band is 19.7-

21.2 GHz and the uplink frequency band is 29.5-30 GHz.

2) Propagation Delay: Propagation delay is the time

duration taken for a signal to reach its destination. For com-

munication signals, we can calculate the propagation delay for

a signal by using the equation: t = d

c
where d is the distance

between the source and destination and c = 3×108 m/s is the

speed of light. Considering the speed of light as a constant,

we observe the propagation delay for a signal is proportional

to the propagation distances. Satellites are located very far

from the surface of the earth as discussed in Section II-A.

Consequently, the propagation delay is going to be extremely

large for NTNs. The GEO, MEO, and LEO satellites can

have a one-way propagation delay of about 270, 94, and

20 ms respectively as shown in Table II. These values are

much larger, especially for GEO and MEO cases compared to

conventional terrestrial networks, which generally have a very

negligible propagation delay of around a few µs [20]. This

extended propagation delay has an effect on different network

procedures and performances for communication systems.

3) Propagation Loss: The propagation loss, or path loss,

refers to the reduction in power density that an electromagnetic

signal experiences as it travels through space. The most

significant component of this path loss is the free space

path loss, which is proportional to the distance between the

source and destination and the frequency of the signal [25].

For NTNs, this free space path loss is much higher (around

60-120 dB) than it is for terrestrial networks, due to the greater

distances between satellites and the use of higher carrier

frequencies. In fact, the Ka-band is not suitable for GEO

satellites, as it does not meet the minimum link budget for

them. The basic path loss component also includes shadow

fading [26], as with traditional terrestrial networks.

In addition to that, there is attenuation due to atmospheric

gases that depends on frequency, elevation angle, altitude

above sea level, and water vapor density [27]. Another
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Fig. 4. Propagation loss for satellites at different heights and with different
carrier frequencies.

important component is attenuation due to rain and fog, which

is typically significant for frequencies above 6 GHz [28].

Additionally, scintillation corresponds to rapid fluctuation

in amplitude and phase of the propagating signal in the

ionosphere (for Sub-6 GHz) and troposphere (for above

6 GHz) [29]. Depending on different scenarios, either flat

fading based on ITU two-state model [30] or fast fading [20]

can be considered. The average propagation loss for different

types of satellites in different frequency bands is illustrated in

Figure 4. This high path loss necessitates the need for efficient

power allocation strategies in NTN.

4) Moving Base Stations: As discussed in Section II-C,

for regenerative payloads, satellites can be used as base sta-

tions for improved network performances. The terrestrial base

stations are located at fixed locations. As the GEO satellites do

not change their relative positions with respect to the ground

terminal, they appear static in nature with respect to the earth’s

surface, so the scenario is similar to terrestrial ones. However,

the scenario is very different for NGEO satellites where they

need to maintain a lower height and higher angular velocity

compared to GEO satellites as discussed in Section II-A, so

they do not appear static from the earth’s surface. Due to the

dynamic nature of NGEO satellites, they turn into moving base

stations in case of regenerative payloads. Due to this high-

speed movement of NGEO satellites, different mobility issues

arise for NTN platforms.

5) Coverage Area: One of the most important features of

the satellites is the large beam footprint associated with them

due to their long distances from the earth’s surface. This

enables the network coverage of very large areas compared

to the coverage area of terrestrial counterparts. It provides

us with ubiquitous network coverage including remote, even

isolated areas. However, this also creates the necessity for

modifications in existing timing and synchronization proce-

dures for conventional terrestrial networks. The cell area is

much larger, so the UEs situated at the farthest side of the cells

experience a larger delay compared to the UEs situated closer

to the satellites [20]. So the timestamps for different network

procedures need to be modified according to the distances of

the users as we will see in the next subsection.

E. Challenges Associated With NTN

NTN offers a range of unique features due to the large

distances between the transceivers and the high mobility of

NGEO satellites, as outlined in Section II-D. These features

open up possibilities for new use cases, taking advantage of the

extensive coverage offered by the satellites. The high mobility

of the satellites also allows for the deployment of satellites

across the globe to provide global network coverage. However,

NTN also presents a number of new challenges that must be

tackled due to these characteristics, which are discussed in

detail below:

1) Channel Estimation: In wireless communications,

Channel State Information (CSI) refers to the information

which represents the state of a communication channel

between the transmitter(s) and the receiver(s); the process of

obtaining this information is known as channel estimation. By

having access to CSI, it is possible to adjust transmissions

to the current channel conditions, which is essential for

achieving reliable communication with high data rates in

multi-antenna systems with effective channel resources and

interference management. There are numerous advanced

approaches, such as Maximum Likelihood estimation and

Minimum Mean Square Error (MMSE) estimation, for

effective channel estimation in traditional terrestrial cellular

networks. Nevertheless, these methods are not well-suited

for NTN, particularly for LEO satellites due to the inherent

time-variant nature of the satellite communication channels.

LEO satellites usually move from horizon to horizon in

approximately 5-10 minutes, so a UE remains within the

coverage of a specific LEO satellite for a very short time

period. Furthermore, the propagation delay for satellite

networks, especially in the case of GEO satellites, is

considerably larger (250 ms RTT) in comparison to general

terrestrial networks. Therefore, the CSI estimated by the LEO

satellites can be outdated [31]. Because of these reasons, the

CSI estimation in NTN necessitates new efficient techniques

in addition to the traditional terrestrial estimation methods.

2) Mobility Management: Since an NGEO satellite oper-

ates at a lower altitude, the coverage area of each

NGEO satellite is smaller than that of a GEO satellite.

Typically around 5-20, NGEO satellites form complex mega-

constellations to sustain global coverage across the earth. The

NGEO satellite needs to move at a much higher speed than

the earth’s rotational speed (can be up to around 7.8 km/s)

to get the necessary centripetal force to move around the

earth at that low altitude. As a result, these satellites typically

orbit around the earth pretty fast (usually within around

2-10 hours) as discussed in Section II-A. This quick orbital

motion poses a great challenge for integrating NGEO satellites

into traditional wireless communication systems. Due to the

smaller orbital period, any specific terrestrial UE can be only

visible to an NGEO satellite for a very short span of time,

typically several minutes. So the UE needs to undergo multiple
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handovers within a short span of time interval regardless

of its mobility [14]. If the satellite covers an area using

multiple spot beams, the scenario is worse because the spot

beam is much smaller compared to a total coverage area of

an NGEO satellite. So the UEs need to through multiple

(beam) handovers within a few minutes, even when they are

stationary, for seamless continuation of data sessions. This

frequent handover phenomenon in NGEO satellite networks

creates a lot of overhead in communication channels, leading

to an overall degradation in network performance.

3) High Doppler Shift: Doppler shift is the shift in the

signal frequency due to the motion of the transceivers. In

the case of NGEO satellites, satellites are moving at a very

high speed under a specific constellation. Due to this relative

motion between UEs and satellites, Doppler shift happens in

the original signal frequency. Due to frequency offsets, UEs

tune to different carrier frequencies than the original carrier

frequencies. So the frequency synchronization is lost, and the

UEs may interfere with the other users. This is known as Inter-

Carrier Interference (ICI) between multiple UEs. Generally,

even for the high mobility scenarios in terrestrial networks, the

frequency shift is pretty negligible, and so is the Doppler shift.

However, the frequency offset is pretty significant in NTN

due to the much higher speed of the NGEO satellites. The

Doppler shift value mainly depends on the carrier frequency

and height of the satellites. For NGEO satellites operating

at Ka-Band, the Doppler shift can go from 225 kHz to

even 720 kHz [20] depending on the heights. This can cause

significant ICI among NTN users which requires efficient

strategies for compensation of the Doppler effect.

4) Resource Management: Spectrum and power are the

two fundamental resources for any communication system.

In NTN, the allocation of these two resources becomes an

even more complex problem due to the high path loss and

limited spectrum availability. As discussed in Section II-D,

the path loss associated with Non-Terrestrial Networks is much

higher compared to terrestrial networks. To correctly decode

the transmitted symbols from the received signals, the received

signal needs to meet the minimum RSRP requirement. That

means the transmitted signal power needs to be much higher

(typically at least 10 times the terrestrial transmitted signals)

than terrestrial signals. This poses a great obstacle for tradi-

tional UEs as they have power limitations. Furthermore, the

target frequency bands as discussed in Section II-D for NTN

are limited. To support a large number of satellite UEs, this

spectrum resource appears to be scarce in NTN systems. So

efficient resource (spectrum and power) allocation strategies

are needed for integrating NTN into terrestrial networks.

5) Spectrum Sharing: As discussed in Section II-D, the

S-Band and Ka-Band are the target bands for NTN. On top

of this limited spectrum allocation, we have interference from

terrestrial users in these bands. In S-Band, we already have

existing terrestrial communication from 4G LTE devices. With

the advent of mm-wave technology, terrestrial communication

is also using the Ka-band in 5G. So the satellite users

will suffer from co-channel interference with the terrestrial

users in both bands. To avoid this interference, we have to

come up with efficient spectrum-sharing techniques to put

the interference below a certain threshold ensuring proper

decoding of the received signals.

6) Effect on Network Procedures: Timing advances ensure

synchronous uplink transmissions for all UEs. The UEs can

be located at different distances from the gNB, so there is a

differential propagation delay between different UEs. If the

uplink reception is not synchronized, the gNB needs to make

sure the allocation of resource blocks to a specific UE does

not include the resource blocks already in use by other UEs,

which is inefficient in terms of resource allocation. Due to

the long propagation delay, the TA is much larger than the

transmission time slots in NTN compared to NR. Also due

to the mobility of LEO satellites, the delay is time-varying

and TA needs dynamic updates for proper uplink alignments.

The other processes affected by the long propagation delay are

Random Access, Hybrid Automatic Repeat Requests (HARQ)

procedures, etc [20]. These procedures need to be modified

properly to compensate for the long propagation delay.

7) Network Aspects: On top of all these challenges, inte-

gration into existing terrestrial networks comes with several

open research issues to be addressed. Computational offload-

ing, which involves transferring the computational burden to

satellite networks for supporting devices with low computing

power, particularly in IoT applications, gets complicated due

to extended propagation delay and highly mobile NGEO satel-

lites. Network routing has been studied for a long time, and

network slicing has been discussed since the implementation

of 5G. However, with the emergence of NTN, the integration

of terrestrial networks calls for research in this area with new

effective strategies. The ever-changing network topology of

mobile NTN platforms makes it challenging to solve these

problems in a complex environment.

Key Takeaways: We note that satellite-based NTNs can

be extremely useful to provide ubiquitous connectivity, ser-

vice continuity, and extreme reliability for diverse future

6G applications. Nevertheless, the extreme nature of the

satellite networks, e.g., long distance between transceivers,

high mobility for NGEO satellites, spectrum sharing with

existing services, and high propagation loss, etc. impose a

highly challenging environment to address for the research

community. These challenges also open a new door for AI

applications to move toward the future 6G revolution. In the

following section, we discuss how AI can be incorporated so

that we can address the issues for potential TNTN integration

for future 6G networks.

III. AI AND ITS RELEVANCE TO NTN CHALLENGES

AI refers to the simulation of human intelligence processes

(e.g. visual reception, speech recognition, computer vision,

etc.) by machines, especially computer systems. This

human-level cognitive ability is achieved through either

some predefined algorithms or learning from data-based

approaches [15]. Many practical systems are very diverse and

complex. The rule-based approaches are not very feasible for

these systems because of an enormous number of scenario

possibilities. As a result, the learning-based approaches show a

lot more promise compared to predefined approaches in these
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Fig. 5. Generic ML model.

types of real systems. As our focus for this paper is mostly

on NTN which has an extremely complex and time-variant

topology, we focus on learning-based approaches when we

consider AI. In this section, we give an overview of these

approaches to get an intuition of how these approaches can be

useful in solving NTN issues discussed in the next section.

A. Machine Learning (ML)

Machine Learning (ML) is a special subset of AI approaches

where machines learn algorithms to perform a task by gen-

eralizing from past experiences or historical data without

being explicitly programmed for it [32]. The performance

of human intelligence processes can be improved with each

iteration evolving through new feature extractions in ML

approaches. Generally speaking, each ML approach has three

distinctive features, namely task, performance measure, and

experience [33]. A machine is first assigned to learn to perform

a specific task. It starts with a model with an initial set

of random parameters. Then at every iteration, the model is

recalculated based on some performance measures, essentially

representing the learning process. Thus utilizing experiences,

it can learn how to perform the task properly which is the

main goal of ML approaches.

A generic ML model works in three phases utilizing various

components [16] - Pre-Training Phase, Training Phase, and

Testing Phase. We discuss the fundamental components of

these three phases as shown in Figure 5 below:

1) Pre-Training Phase: The Pre-Training Phase includes

the choice of learning approach along with the necessary

model initialization. The selection and design of the learning

approach greatly depend on the nature of the problem for

the learning systems. We show in the next few subsections

different learning strategies for different problems. Each ML

model generally requires some initial set of parameters and ini-

tialization that need to be carefully tuned to achieve expected

performances.

2) Training Phase: After setting up the preliminary model

with initialization, the most important phase – training begins.

The training data is provided as input to the initial model.

Typically the raw data collected for a specific problem may

not be properly structured to be used for the model. Moreover,

these data may contain redundant and unnecessary information

which is not beneficial for learning the model. Consequently,

data needs to be preprocessed in a suitable manner to have

good performance. The features also need to be chosen in such

a way that they can capture the correlation for empowering

the learning process. The output of the model is fetched

for performance evaluation. Based on the feedback from the

evaluators, the model is adapted to improve its performance.

This whole learning process is known as ‘training’.

3) Testing Phase: After the training, we have a trained ML

model based on our provided data. This model can be used

to later evaluate in the real environment. Similarly, as training

data, testing data can be generated and preprocessed for

evaluation. The performance evaluator provides the accuracy

of the model using the testing data as inputs. This whole

process is known as ‘testing’. In the case of offline learning,

the testing phase starts once the training is done. On the other

hand, in the case of online training, the testing is generally

executed in a parallel manner with training.

B. Offline vs Online Learning

Depending on the training approach, learning can be either

offline or online. In the case of offline training, training data

is generated in the pre-training phase all at once and can be

used to train the model. In this case, training continues until

some predefined number of iterations or some constraints are

met. In the case of online training, training data is generated

in an incremental manner instead of being generated all at

once. So the difference between the training and testing phases

is blurred as discussed in Section III-A. This specifically

suits the fast-changing environment like wireless networks and

provides benefits in terms of scalability, adaptability, and real-

time learning.

C. Deep Learning (DL)

In complex real-world problems, feature extraction can turn

out to be extremely challenging using generic ML models.

There may be hundreds of parameters that need to be learned

and the outputs may not be linearly correlated to the inputs. So

general ML models may not provide satisfactory performance

in learning these problems. To facilitate mapping outputs to

inputs, Neural Networks (NNs) [34] are widely used in ML

frameworks. With the availability of a large amount of data,

NNs have emerged as a key technology to be used in ML in the

recent past. The learning process can be largely benefited from

the introduction of NNs to deal with complicated large-scale

problems. This learning process involving NNs to estimate

the models is known as Deep Learning (DL) [17] which is a

special important subset of ML.

NNs are inspired by the biological neural networks in the

brain, more specifically the nervous system. To mimic the

operation of the brain, the NNs are composed of multiple

layers where each layer consists of multiple neurons followed

by an activation function. Generally, the neurons in one layer

are connected to the neurons in the adjacent layers. The

connecting edges have weights that represent the relationship

between the neurons. Each layer output can be viewed as some
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Fig. 6. Taxonomy of ML approaches.

intermediate decisions which eventually result in the final out-

put values. The weights are generally trained through a number

of iterations using backpropagation algorithms [35]. Generally,

the cost function associated with the model to calculate the

difference between the predicted and actual outputs is not very

simple, so we use different numerical methods like Gradient

Descent [36], Stochastic Gradient Descent [37], Mini-Batch

Stochastic Gradient Descent [38], Newton’s method [39] etc.

and so on to estimate the gradients of the cost function

with respect to corresponding weights. At each iteration, the

weights are updated by an amount based on these calculated

gradients and a predefined learning rate. As we move towards

the gradient descent direction, it helps us to reduce the cost

at every iteration. In this manner, we can map the inputs to

outputs through NNs.

D. Major Learning Paradigms

Depending on how an algorithm is being trained and on

the basis of the availability of the output for training, learning

approaches can be classified mainly into three categories:

Supervised Learning (SL), Unsupervised Learning (UL), and

Reinforcement Learning (RL). A short overview of different

types of learning approaches is shown in Figure 6. These

approaches are discussed below:

1) Supervised Learning (SL): In an SL model, a training

dataset containing a set of features as inputs and corresponding

current outputs is provided to the model. The model with

an initial set of parameters is trained through a number of

iterations for mapping inputs to outputs. As the output label

is clearly defined, the model can improve its performance by

comparing its predicted outputs with the actual outputs [40].

SL problems can be broadly classified into two categories

depending on the type of output labels: regression and clas-

sification problems. Regression [41] is a statistical method

that investigates the relationship between a dependent (target)

variable to one or more independent (given) variables. In this

method, the functional mapping between inputs and outputs is

estimated by minimizing the error between the predicted and

actual outputs. Here the output label can be continuous. In

classification, the output labels correspond to distinct classes

arising in computer vision, image classification, etc. Generally,

classification problems are solved by using probabilistic clas-

sifiers to map output classes from inputs. To train complex

SL problems, NNs are used to learn complicated functional

Fig. 7. Fully Connected Neural Network (FCNN).

mapping between inputs and outputs. We discuss the major

ML and DL approaches in the context of SL problems below:

ML Approaches: There are a number of SL algorithms to

train the model. Linear regression [42] focuses on regres-

sion problems, whereas logistic regression [43] focuses on

classification problems. Decision tree is used in classification

problems by forming a tree-like structure to learn the best

split at every node level based on a statistical measure

like information gain [44]. The classification starts at the

root node and traverses down along the branches based on

intermediate decisions till the leaf nodes which represent the

final classification decisions. Naive Bayes Model [45] is a

form of a simple probabilistic classifier that uses the Bayesian

Theorem to decide the classes under the strong assumption

of feature independence. It is very useful, especially in high-

dimensional classification problems. Support Vector Machine

(SVM) [46] is another important type of classifier that decides

the splitting hyperplane between different classes by maxi-

mizing the distances between the nearest data point (in both

classes) and the hyperplane.

DL Approaches: Different DL approaches are also proposed

in the literature to tackle complicated SL problems effectively.

Perceptron [47] is one of the first NN architectures that have

been proposed. It is a single-layer NN that can do binary

classification like logistic regression. The main difference is to

introduction of a simple activation function (step function) as

a first step to more complex and advanced architectures. The

simplest multi-layer NN architecture is the Fully Connected

Neural Networks (FCNN) (Figure 7). This is also known as

Multi-Layer Perceptron (MLP). It has multiple hidden layers

between the input and output layers without any back loops.

As the name suggests, all the neurons between two adjacent

layers are connected to each other. Extreme Learning Machine

(ELM) [48] is a very special type of NNs where the neurons

are randomly connected and the training is done one-shot

using least square fits. Another different type of NN is the

Deep Residual Network (DRN) [49] with extra connections

passing input from one layer to a later layer as well as the next

layer. There are also Probabilistic Neural Networks (PNN) [50]

which can recognize the underlying pattern and generate the

probability distribution function for different classes.

Convolutional Neural Networks (CNN) [51] is an important

type of NN that can take multidimensional inputs like images

and classify them with great accuracy by discovering spatial
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Fig. 8. Convolutional Neural Network (CNN).

Fig. 9. Recurrent Neural Network (RNN).

features (Figure 8). The CNNs are composed of convolutional

layers and subsequent pooling layers. The convolutional layers

divide the whole input into smaller blocks and scan through

them to learn the different features. The idea is to exploit

the high correlation among neighboring cells with reduced

complexity. A pooling layer is used to simplify this extraction

process by getting rid of redundant features. Often CNN

is accompanied by an FCNN to take care of nonlinearity

and generate final classification results. A counterpart of

CNN is the Deconvolutional Network (DN) [52] which takes

the classes as inputs and generates CNN input features by

comparing them with actual CNN inputs.

Another important type of NN is Recurrent Neural

Networks (RNN) [53] with back loops. So the neurons in a

layer are not only connected to previous layer neurons but

also can be connected to the neurons from the subsequent

layers. (Figure 9) This allows it to capture temporal correlation

among different layers and can be useful where decisions

from past iterations or samples can influence current ones.

However, they suffer from vanishing gradient issues due to

long-term temporal dependencies [54]. To tackle this issue

more sophisticated architectures like Gated recurrent units

(GRU) [55] and Long-Term Short Memory (LSTM) [56] with

special memory cells and gates are introduced. Reservoir

computing (RC) [57] is a low training complexity RNN

framework for computation where the inputs are fed into a

fixed and non-linear system, known as a reservoir, and then

mapped into outputs from the reservoir neurons. Liquid State

Machines (LSMs) are examples of RCs where the neurons

are randomly connected receiving time-varying inputs. Echo-

state networks (ESNs) are also a type of RC that uses a

sparsely connected hidden layer (reservoir) with typically 1%

connectivity. The connectivity and weights of hidden neurons

are fixed and randomly assigned.

Another significant advancement in deep learning architec-

ture, known as transformers, holds immense promise in the

development of intelligent systems, particularly in communica-

tion environments. The transformer is a sequence-to-sequence

neural network model comprising both an encoder and a

decoder module, each with an identical architecture [58]. To

streamline the input and output sequences, embedding and

positional encoding layers are employed. Both the encoder and

decoder primarily consist of a self-attention sub-layer and a

position-wise sub-layer, with an additional masked attention

sub-layer in the decoder. Each sub-layer is complemented by

a residual connection and normalization module, facilitating

the capture of long-range dependencies within the input data

through self-attention.

2) Unsupervised Learning (UL): In UL, a raw unlabeled

dataset is provided to discover existing patterns and fea-

tures [59] using some statistical learning approach. This is

very useful when the data is not labeled. The algorithms find

the underlying structure of the data and predict the outputs

by adapting the model. Here the classes are not explicitly

stated, so the classes need to be generated based on the

distribution of input features in multi-dimensional spaces. It

can be even used for generating labeled data to transform

the original problem into an SL problem, which is usually

easier to solve. Furthermore, clustering is another important

UL problem where the model outputs different clusters based

on the inherent pattern of data distribution. Dimensionality

reduction can be also classified as a UL problem as it reduces

the state space of the feature vectors in a general ML setup.

ML Approaches: There are a number of unsupervised

learning algorithms in the literature. Principal Component

Analysis (PCA) [60] is primarily used for dimensionality

reduction of a high dimensional dataset. It reduces the number

of correlated features converting them into a set of uncorre-

lated features, which are also termed principal components,

using orthogonal transformation of basis vectors. Reducing the

dimensions of inputs also reduces the number of features to

be learned, which later can be leveraged in SL techniques.

It is sometimes not considered an UL technique, but rather a

preprocessing technique for data analysis with reduced dimen-

sions. In Probabilistic Graph Models (PGMs), the probabilistic

relationship between random variables is modeled through a

graph [61].

K-means Clustering [62] divides all the data points into K

clusters in which each data point belongs to the cluster having

the nearest mean. The mean of the data points in a particular

cluster defines the center of the cluster. Another variant of

K-means Clustering is called K-medoids Clustering where the

centralmost data point of a cluster is defined as the center of

the cluster [63]. Various mixture models, such as the finite

mixture model, Gaussian Mixture Model (GMM) [64], etc.

are also used for clustering. Hierarchical clustering can cluster

data into a hierarchy of groups without predefining the number

of clusters. It also comes with increasing computational

costs compared to other clustering approaches. k-Nearest

Neighbours (KNN) [65] algorithm determines the k-nearest
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Fig. 10. Autoencoder.

neighbors for all the data points of an unknown feature vector

whose class is to be identified.

DL Approaches: Generally speaking, autoencoders [66] are

used to help reduce the noise in data. In an autoencoder,

first, we encode a high dimensional input, then decode it

to reconstruct the input at the output again (Figure 10). The

intermediate hidden layer neurons represent a compressed

representation of the inputs getting rid of irrelevant and noisy

components. Some other variations of this architecture are

variational [67], noisy [68], and sparse [69] autoencoders.

In variational autoencoders, the compact representation of

data is used to generate new data points sampling from the

latent space. In sparse autoencoders, the loss function is

also expanded by adding another term called sparsity penalty

regularization term for encouraging sparsity in the learned rep-

resentations. In denoising autoencoders, robust representations

are learned from the noisy input data.

Deep Belief Networks (DBNs) [70] is a probabilistic

generative graph model composed of hierarchical layers rep-

resenting feature vectors. Here the top layers create undirected

symmetric connections among them forming an associa-

tive memory. Greedy layer-wise training can be used for

DBNs [71]. Two symmetric DBNs can be extended to the

structure of deep autoencoders for efficiently decoding the

feature vectors [72]. To use the feature extraction capability

CNNs for UL, a combination of CNN and DBN is used in [73].

Hopfield NN [74] is a cyclic recurrent NN architecture where

all the nodes are connected to each other. This provides an

abstraction of circular shift register memory to form a global

energy function and finding clusters without a supervisor.

The Boltzmann Machine is another type of recurrent NN that

has a stochastic symmetric recurrent architecture [75]. As the

convergence rate is generally slow for these NNs, a variant

of this, Restricted Boltzmann Machine (RBM) is designed

to learn the probability distribution over input data but in a

layered manner [76].

In UL, competitive learning approaches, such as Self-

Organizing Maps (SOMs) [77], each neuron competes to

represent an input subset. Here a single neuron from a

group of output neurons is activated while the other neu-

rons adjust their individual values in regard to input data

distribution. Generative Adversarial Networks (GAN) [78]

Fig. 11. MDP model.

consist of any two networks, with one generating data

(generative network) and the other judging the generated

data (discriminating network). The prediction accuracy of the

discriminating network is then used to evaluate the error for

the generating network. This creates a form of competition

between the discriminator and the generator to get better in

their corresponding tasks. We can also use ensemble learning

methods [79] comprising multiple learning methods for better

performances.

Generative Diffusion Models (GDMs), as introduced

in [80], represents a recent breakthrough in UL leveraging

DL techniques, drawing inspiration from the principles of

thermodynamic diffusion. GDMs have gained widespread

recognition due to their remarkable ability to generate high-

quality data and simple implementation procedures. In contrast

to GANs, GDMs employ a denoising network that iteratively

converges to an estimate of the real sample. This model

works in two distinct phases: the forward and reverse diffusion

processes [81]. In the forward diffusion phase, Gaussian noise

is gradually introduced through a series of steps to create

the target input for the denoising network. Subsequently, the

denoising network is trained to reverse the noise effect for

generating the original content.

3) Reinforcement Learning (RL): In RL, an agent learns to

behave in a particular environment by performing thousands

of actions and getting rewards or penalties based on those

actions [82]. This behavior (formally known as policy) is

defined by the set of actions the agent learns from its expe-

riences. The environment is defined by some mathematical

models, the most common one is the Markov Decision Process

(MDP) [83]. Here the feedback is neither provided using

explicit labels like in SL nor the model is learned like in UL,

but the behavior of an agent is learned through the rewards

or penalties based on the set of actions taken by going from

one state to another with a transition probability. The goal is

to find out the optimum policy so that the total reward can

be maximized (or the total penalty can be minimized) over a

horizon of future time intervals given the current state of the

agent. In Figure 11, we show a generic structure of an RL

framework as an MDP model.

ML Approaches: Depending on whether an RL model is

explicitly created or not, RL can be fundamentally divided

into two major categories: model-based and model-free RL
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methods [84]. In the model-based methods, the transition

probabilities between different states are assumed to be known,

whereas, in model-free methods, these probabilities are learned

through iterations. Dynamic Programming (DP) [85] is the

most popular model-based method used in practice. However,

model-free methods like the Monte Carlo (MC) method [86]

are most commonly used due to their flexibility and practical-

ity in real systems. Q-learning [87] is one of the most popular

model-free methods where “Q” refers to the expected rewards

for an action taken in a given state over the time horizon,

known as the value function. Another important counterpart of

Q-learning is the State-Action-Reward-State-Action (SARSA)

learning method where the agent learns the optimal policy

in an online fashion [88]. This Q-learning is extended to the

context of stochastic games [89] involving multiple agents

in [90], which is also known as the Multi-Agent Reinforcement

Learning (MARL) method. Another approach for model-

free RL is to learn the policy directly instead of learning

the value functions, which is known as the Policy Gradient

(PG) method [91]. If the policy gradient is estimated in a

deterministic fashion, it is called the Deterministic Policy

Gradient (DPG) method [92]. To have the benefits of both

approaches, the Actor-Critic (AC) method is proposed in [93]

where the critic estimates the value function and the actor

updates the policy gradient in the direction suggested by

the critic.

DL Approaches: General RL approaches without NNs can

work well for small-scale experiments. However, when the

action or state space is really large, the computation com-

plexity exponentially increases. This phenomenon is quite

common in practical systems like communication networks.

To estimate the value functions or policies with RL frame-

works with large state or action spaces, DL approaches can

be very useful. This learning approach is also known as

Deep Reinforcement Learning (DRL). The most popular and

simplest DRL approach is the Deep Q-Network (DQN) [94]

method. In this approach, instead of an iterative approach

for updating Q values in the Q-table, an NN is used to

estimate the Q function value approximately. To prevent a

large overestimation of action values, another DL framework

is introduced on top of DQN for a fair evaluation of policies

in Double Deep-Q-Network (DDQN) [95], [96]. In Dueling

Deep-Q-Network [97] method, both state and action values

are separately estimated. As the expected value function may

be overestimated as the expected value does not capture

the complete probability distribution of random variables,

Distributional Deep-Q-Network [98] is considered to update

the Q function value based on its distribution. In the case of

continuous action spaces, DL aided DPG method, known as

Deep Deterministic Policy Gradient (DDPG) Q-Learning [99]

provides better results. To deal with partial observable envi-

ronments, Deep Recurrent Q-Networks (DRQN) [100] by

introducing an LSTM layer in the FCNN architecture of DQN.

Similarly, as for RL, MARL approaches can be efficiently

solved using DRL architecture for each agent, namely known

as a Multi-Agent Deep Reinforcement Learning (MADRL)

framework.

E. Distributed Learning Paradigms

The learning paradigms discussed in Section III-D, can

be executed in various distributed approaches which will

be discussed in this section. Unlike other fields, future

6G communications systems including satellite-based NTNs

may need to incorporate a huge amount of network data

from different network operators which ask for distributed

approaches more. However, there are some inherent challenges

in terms of privacy and efficiency with distributed approaches

as the network needs to deal with gathering data from

different parties. Three major distributed learning paradigms:

Federated Learning (FL), Decentralized Learning (DcL), and

Split Learning (SpL) are discussed below:

1) Federated Learning (FL): FL is a distributed learning

technique in which multiple network data owners collabora-

tively build and train a global DL model, all while ensuring

data isolation and privacy, as outlined in [101]. In the FL

paradigm, individual data owners are initially provided with

a base model by a centralized server, which they then train

using their own respective data. Subsequently, these locally

trained models are shared back with the central server,

allowing it to update and maintain a global model. This

iterative process continues until the global model reaches

convergence. Consequently, FL enables the development of a

globally trained model through distributed efforts, all the while

safeguarding the privacy of the data owners.

2) Decentralized Learning (DcL): DcL involves computing

nodes conducting local training on their individual DL/ML

models and then sharing these models with neighboring

computing nodes at each iteration. Global convergence is

achieved when all the local models have converged. Notably,

this approach ensures that no actual data is exchanged between

the computing nodes, but the local models are shared among

neighboring nodes. One notable advantage of DcL is the

absence of the need for a centralized server, which is a

requirement in FL. An illustrative example of DcL can be

found in the context of MARL, where agents collaboratively

train their models in a distributed manner, as elaborated

in [102].

3) Split Learning (SpL): In SpL, instead of sharing model

parameters, training occurs across various computing nodes, as

described in [103]. Each computing node has the responsibility

for training multiple layers of NNs within a DL model.

Gradients for backpropagation are exchanged among these

nodes to enhance training efficiency. Consequently, it can

yield superior privacy performance when compared to FL,

as indicated in [104]. Recent endeavors have been made

to combine these two approaches, aiming to harness the

advantages of both methodologies, as explored in [105].

F. Synergy Between AI and NTN

Like many other fields, NTN is expected to be a major

advancement in the realm of AI applications [106]. More

precise and pragmatic analytical models with reduced over-

head consumption, and efficient algorithms with a lower

computational complexity are the primary catalysts for the
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deployment of AI-enabled NTN in next-generation wireless

networks. In the preceding sections, we give a concise

overview of NTN and AI to introduce these two crucial aspects

of this article. Now, we motivate our readers by outlining the

primary motivating forces behind combining AI and NTN for

future wireless networks.

1) Complex Task Automation: In NTNs, the complexity of

tasks and procedures involved in communication networks

is significantly heightened. These tasks encompass a wide

range of operations, including resource allocation, channel

estimation, modulation, coding, and the intricacies of satel-

lite management control. Attempting to perform these tasks

manually is not only challenging but often unfeasible. The

complexity involved in optimizing network performance for

satellites, in particular, renders manual operations insufficient.

Moreover, these tasks require meticulous precision to ensure

uninterrupted service and mitigate potential hazards. However,

the advent of ML and DL approaches has By harnessing

ML and DL, not only can accurate actions be executed,

but complex chains of procedures can also be automated

seamlessly without the need for human intervention following

the general ML framework as discussed in Section III-A.

2) Tractable Solutions: The deployment of next-generation

NTNs is more complex than any other previous-generation

cellular network due to its multifaceted architecture. For

instance, the integration of satellite networks introduces a

significant number of additional parameters to consider for

optimum network performance [107]. However, this can result

in computationally intractable solutions for practical networks,

even if the solutions are computationally tractable, they may

be very inefficient. Resource management in TNTN networks

is a prime example of this, as resource optimization in TNTN

networks often turns into non-convex optimization problems,

where only suboptimal or heuristic solutions can be obtained

using numerical techniques [108], [109]. Fortunately, DL

techniques can approximate complicated functions involving

a large number of input variables with the help of NNs,

as discussed in Section III-C. As a result, complicated

network functionalities can be characterized with NNs and

resource management issues can be solved in a tractable

manner [110], [111].

3) Data-Driven Decision Making: Although probabilistic

and deterministic models can be used to model NTN func-

tionalities, these models are often derived using very strong

assumptions to get the general closed-form expressions, result-

ing in significant deviations in performances in simulations

compared to real networks. In contrast, ML models are

obtained based on real data, which means different scenarios

are taken into account during training, without the need for

making any assumptions. For instance, resource scheduling

for users or network slices in a cellular network is typically

decided based on the channel condition of the corresponding

users or user groups. However, the channel is highly time-

variant, so the decision feedback needs to be in real-time to

incorporate optimal scheduling decisions for all the users in the

network. For NTNs, the scenario is worse due to the extremely

time-variant nature due to the high mobility of NGSO satellites

and dynamic propagation environments. Various AI models, on

the other hand, have shown great promise in dealing with this

kind of challenging problem due to their potential to capture

real scenarios with more precision than theoretical models with

a reasonable amount of computation complexity.

4) Adaptability and Learning: AI algorithms can adapt

to changing network conditions and learn from experience.

Through ML techniques, AI can continually improve its

performance, optimize network operations, and adapt to evolv-

ing user demands. By leveraging AI techniques such as

RL and predictive modeling, NTNs can adaptively allocate

resources, optimize network parameters, and proactively detect

and mitigate faults through online learning as discussed in

Section III-B. AI enables NTNs to dynamically respond to

changing network conditions, enhance operational efficiency,

and ensure uninterrupted service delivery. The ability to learn

from data and make intelligent decisions without human

intervention empowers NTNs to continually improve their

performance, optimize resource utilization, and deliver reliable

connectivity in complex and evolving environments.

5) Reduced Computation Complexity: Obtaining optimal

algorithms for various challenges in NTNs can be a daunting

task. Even if such algorithms are derived for complex systems,

their computational complexity often renders them impractical

for real-world implementation. This complexity arises from

the vast number of variables that govern different network

procedures in NTNs. However, data-driven AI techniques

offer a promising solution by reducing the dimensions of

high-dimensional data through feature learning. Particularly,

DL approaches have demonstrated remarkable effectiveness

in extracting implicit features from complex systems. As a

result, these techniques prove highly valuable in addressing

the diverse challenges encountered in NTN environments.

6) Reduced Transmission Overhead: In some cases, tradi-

tional methods heavily rely on the exchange of information

between various network participants, such as satellites and

users. This might lead to a large overhead in communication

channels, resulting in a decrease in the overall throughput of

the network. AI can be used to reduce the control overhead

of NTNs significantly. For example, to calculate the Doppler

shift, the UEs must be provided with the latest ephemeris

information of the satellites [112]. However, this would cause

an immense overhead and a decline in the achievable data rate

for the UEs. Alternative DL techniques can be employed to

estimate the Doppler shift without requiring any ephemeris

information from the satellites [113]. This leads to a signif-

icant decrease in transmission overhead over communication

channels, resulting in superior network throughput.

7) Real-Time Implementation: Network optimization and

management decisions in NTNs usually require real-time

implementation, usually in the order of milliseconds to tens

of milliseconds. Consequently, complex algorithms cannot be

used to obtain these real-time decisions. In most cases, the

algorithms become either heuristic or offline. To have an

online adaptable approach, AI techniques can be considered

as a suitable option. For example, an online DRL-based

approach as discussed in Section III-B can be used to

obtain resource management decisions in real-time and ensure

proper utilization of available resources in NTNs [114]. This
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is particularly valuable in latency-sensitive decision-making,

such as scheduling, handover decisions, etc.

8) Leveraging CSI: In communication networks, CSI is

fed back to the BS from the UE to assist in selecting

different schemes - such as modulation, channel coding, etc.

- for improved network performance. Leveraging this data,

which contains the general state of the channel, different ML

approaches can be benefited. For example, RL approaches can

use this data to train models. This implies that we do not

need to modify the information segments sent from the UE to

the BS for deploying these RL schemes, but rather can rely

on feedback already existing in the communication networks.

This again illustrates the capability of AI to integrate into

traditional communication networks without any additional

overhead costs. For NTNs, this is more important as the

spectrum is more scarce and expensive; utilizing traditional

CSI feedback for learning becomes another motivating factor

for AI approaches to NTNs.

Key Takeaways: The data-driven ML and DL approaches

are the major AI technologies for empowering satellite-based

NTNs for the next-generation 6G networks. Due to their

inherent capability of capturing practical scenarios with real-

time tractable solutions, different learning paradigms, such as

SL, UL, and RL can be extremely beneficial in addressing

various challenges associated with future NTN-empowered 6G

networks. Consequently, there have been a lot of research

activities to deal with these challenges in the literature. In the

following section, we explore various current research thrusts

for incorporating AI into NTN in greater detail to get insight

into potential research scopes.

IV. RELATED WORKS

The possibility of potential integration of NTNs into 5G-

Advanced [14] and future 6G networks to support various

future high-demanding use cases has attracted significant

attention from the research community in recent times. This

emerging area of research has spurred numerous investigations

to address the unique challenges and opportunities posed

by NTN integration. Reference [120] discusses the potential

integration aspects for satellites, which is an integral part

of NTNs, into future communication networks. Reference

[19] presents a summary of 3GPP efforts towards supporting

NTNs in the 5G-Advanced networks. Reference [119] presents

the real system prototypes along with the general overview

discussion on NTNs. Reference [115] presents the challenges

from the aspects of different communication layers to provide

better insights for addressing these issues. In [13], [14], a

concise discussion on various NTN components, use cases,

technological enablers, and challenges for realizing NTN in

6G is presented. In [133], a detailed survey on the evolution

of satellite networks towards the convergence with terrestrial

networks from 3G to 6G along with the proposed archi-

tectures, use cases, and challenges is presented. In [118],

future architectural options, use cases along the challenges

associated with NTN-integrated 6G networks are explored.

In [134], the necessary architectural evolution for integrating

NTNs into 6G networks along with the challenges is discussed.

[135] specifically focuses on the integrated Space-Air-Ground

Integrated Network (SAGIN) in 6G while discussing the

above topics in the context of NTNs. Another short magazine

paper, [117] on NTN architectures, motivational use cases in

6G, necessary 5G NR modifications and future research direc-

tions is also in the literature. In [116], a detailed discussion on

architectural options for integrating NTN into future 6G and

the challenges associated with it is presented.

Likewise, AI has been acting as a driving force for various

applications in wireless environments, especially in the last

couple of decades; many surveys have been published on these

topics recently [136], [137], [138], [139]. To facilitate the

potential of AI in the 5G-Advanced and 6G environments

several research articles and surveys are in the literature [18],

[140], [141], [142]. In [121], [123], [126], some short surveys

on the role of AI enabling 6G networks focusing on the

vision, research opportunities, and challenges are presented.

Reference [122] discusses the explainability of AI to address

various 6G challenges. In [124], [125], comprehensive surveys

on vision, enabling technologies, and applications for AI on

6G are presented. Some relevant surveys are also published

focusing on different aspects of AI-enabled 6G like perva-

sive network intelligence [143], green communications [144],

privacy [145], [146], network access and routing [147]. As

NTNs are expected to be integrated into the existing terrestrial

environment for the development of 6G networks, it is clear

that AI is expected to play a crucial role in this process. To

unleash the full potential of AI to enable NTN in 6G, we need

to have a clear understanding of the potential issues of NTN,

we can gain insight into what AI tools can be useful down the

road to resolve those issues.

There have been a few research articles capturing the key

aspects of AI as an enabling technology for NTN in 6G in the

recent past. In [115], [119], a short discussion on important

applications of AI/ML in satellite-based NTN communication

for 6G is provided along with the general discussion on

NTN. In [107], several potential AI approaches for sustainable

integrated Terrestrial and Non-Terrestrial Networks (TNTN)

with a focus on maritime networking are discussed in a concise

manner. In [127], a brief discussion of ML approaches to

tackle different potential problems associated with integrated

TNTNs is presented. In [106], it provides a short discussion

on ML approaches for a limited number of issues related to

next-generation mega-satellite networks. In [130], a compact

discussion on different ML and DL techniques at various

layers of the Open Systems Interconnection (OSI) model for

NTN integration into existing 5G infrastructures is presented.

Even though the above-mentioned works attempt to capture the

role of AI in future 6G networks for enabling integrated TNTN

environments, they are generally brief and do not provide a

comprehensive overview of works in this particular domain.

In [128], the potential role of AI techniques in the provision

of NTN-based Intelligent Internet of Things (IoT) services

is discussed; they do not focus on cellular environments for

future integrated TNTN 6G networks. In [129], reviews of

potential AI approaches for both broadcasting and commu-

nication satellites are provided. However, they do not focus

on the issues related to NTN-integrated 6G networks, rather
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only focus on general satellite communication. In [131], a

comprehensive review of the control approaches like coverage,

spectrum, interference, and mobility management required by

NTN platforms that are solved using RL formulations is

presented, but they do not focus on other AI approaches related

to prediction and estimation. A very recent comprehensive

survey paper on ML and DL applications on satellite commu-

nications is published [132]. However, they do not discuss the

current research efforts from the integrated 6G perspective and

the potential challenges of applying ML and DL techniques

in this domain.

Most existing articles either concentrate on analyzing the

architecture and challenges within Non-Terrestrial Networks

(NTNs) or take a broader perspective on AI applications in

wireless communications. While a few research articles touch

upon potential research directions for AI-driven NTNs, these

discussions are often not exhaustive or do not fully grasp the

role of AI in 6G networks integrated with NTNs. Additionally,

the current state of research and the practical complexities tied

to AI-empowered NTN-integrated 6G networks remain largely

unexplored. This survey article attempts to offer a comprehen-

sive overview of various AI techniques employed to address

the distinct challenges encountered in NTN technology. The

list of related articles along with the key features is provided

in Table III.

V. AI-NTN: CURRENT RESEARCH THRUSTS

AI is considered to be one of the major driving forces

for empowering next-generation NTNs. To unleash the great

potential of AI in this field, exploring potential research

thrusts of AI-NTN integration is extremely important. The

scarce network resources, high mobility, and complex and

time-varying hierarchical network topology give rise to

different unique challenges in realizing NTNs for future

wireless networks. Conventional optimization and estimation

approaches are not always feasible for practical deployment

in real networks. Various data-driven AI techniques are being

explored by researchers due to their inherent capability of

learning the surrounding environment and providing superior

performances in practical scenarios. In this section, we discuss

the current research thrusts for AI applications into NTNs.

A. Taxonomy of Research Thrusts

We categorize current research areas according to the

distinct challenges encountered across various communication

layers, facilitating a clearer understanding of the current

AI-NTN research landscape. NTN, owing to its dynamic prop-

agation environment and the high mobility of NGSO satellites,

presents inherent challenges that span all the layers of commu-

nication systems. As the lower layers, namely, the physical and

data link layers are highly affected by the new impairments,

we discuss various challenges associated with these layers in

the next two separate subsections. Following this, we group

traditional network and higher-layer challenges in a subsequent

subsection. Within each subsection, we provide insights into

the problem description, existing conventional methods, and

the application of AI-based approaches to tackle these issues.

While discussing AI methods, we cover SL, UL, and RL

approaches, encompassing perspectives from both ML and DL

for each research focus within their respective subsections.

For a visual representation of this classification scheme, please

refer to Figure 12.

B. Physical Layer Aspects

1) Channel Estimation: Channel estimation is an important

aspect of NTNs, serving a dual role in encompassing compre-

hensive network planning and managing interference, similar

to other wireless networks. This entails the technique of esti-

mating the impacts of the channel through which a transmitted

signal traverses in a wireless environment. Conventionally, the

channel effect is encapsulated in an information block termed

CSI in modern communication systems. While conventional

methods like MMSE or Least Squares are employed for CSI

estimation, they often entail high computational costs and

may not always align with the demands of real networks.

Furthermore, obtaining timely CSI information gets more

challenging due to extended propagation delays and fast-

changing propagation environments in NTN conditions.

Therefore, ML-based methods are increasingly being

adopted by the research community and vendors, as a promis-

ing alternative for channel prediction. This channel estimation

can potentially be turned into an SL problem by considering

channel features such as distance, time delay, received power,

azimuth Angle of Arrival (AoA) and Departure (AoD), ele-

vation angle, Root Mean Square (RMS) Delay Spread, and

frequency as inputs and CSI as output labels. In [148], the

reciprocity property of the downlink and uplink channels in

Time Division Duplexing (TDD) systems is considered. So

the downlink channel is estimated from uplink CSI using

an LSTM-based DL model. In [149], CSI is estimated from

historical CSI data using a CNN-LSTM model. However, as

channel estimation is a near-real-time process, low-complexity

NNs such as ESNs need to be explored for realistic implemen-

tations. In [150], a denoising CNN is used to reduce the LS

channel estimation error. In [151], a CSI prediction scheme

is presented without utilizing any ephemeris information,

rather only using past CSI feedback information leveraging

GRUs with low prediction error. In [152], an auto-regressive

integrated moving average of past CSIs is utilized to predict

future CSIs where the order of the past ones is determined

by an LSTM network. In [153], graph attention networks are

used for cascaded channel estimation for Reflective Intelligent

Surface (RIS) assisted satellite networks in IoT communi-

cations. In [154], future CSI information is predicted using

k-Nearest Neighbour and MLP-based algorithms from past

CSI and some correlated network metrics such as latency,

terminal velocity, weather, and environment state, etc. which

is later used to adapt the modulation and coding scheme for

next timestamp. In [155], an RNN-based CSI compression

technique is presented especially focusing on future SAGIN

networks. An ANN is trained to estimate the fading at 40 GHz

band exploiting the knowledge of its previous channel states

in [156]. In [157], an LSTM-based CSI prediction framework

is discussed to provide in future NTN-integrated 6G networks.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 28,2024 at 19:45:29 UTC from IEEE Xplore.  Restrictions apply. 



1296 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

TABLE III
RELATED PAPERS ON AI APPROACHES FOR SATELLITE-BASED NTNS IN 6G

2) Doppler Shift Estimation: As the LEO satellites move

around the Earth typically at a very high speed, both the

satellite and ground user transceivers experience a large

Doppler effect due to their relative velocity. If the transmitter

moves towards (or away from) the receiver, the emitted signal

from the transmitter may take less (or more) time to reach the

receiver depending on the direction of the movement, hence

the frequency of the signal increases (or decreases). This shift

in signal frequency due to the motion of the transmitter, the

receiver, or both refers to the Doppler shift. If the original

frequency is f0, the Doppler shift due to the motion of

transceivers towards some specific direction with some specific

relative velocity can be given by:

δf = f0 ×
v

c
× cos(θ)

Here

v = The relative velocity of the transceiver

θ = The angle between the direction of the transceiver and

the direction of the propagating signal

For LEO satellites, due to high mobility, This frequency

offset is pretty significant (48 kHz with a center frequency of

2GHz [20]). Due to these frequency offsets, UEs tune to some
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Fig. 12. Taxonomy of research thrusts.

different carrier frequencies from their originally assigned

carrier frequencies. This may lead to ICI between multiple

UEs as discussed in Section II-E.

There have been significant efforts to characterize the

Doppler effect for LEO satellites since the launching of com-

munication satellites. In [161], an equation for Doppler shift

is derived for the simple case of LEO satellites with circular

orbits in the equatorial plane and ground observing points on

the equator. In [162], the Doppler shift is analytically derived

assuming the trajectory of the satellite with respect to the earth

by a great circle arc and the speed of the satellite as constant.

In [112], the Doppler shift is characterized by considering a

new orbit generator using different orbital parameters through

a rigorous analysis. UEs with Global Navigation Satellite

System (GNSS) can get the global positioning of satellites and

estimate the amount of Doppler shift needed to be addressed

for the next transmission slot [163]. However, this increases

the cost and complexity which may not be feasible for

ground UEs [31]. Additionally, The GNSS signals are weak,

not ubiquitous, and susceptible to interference and spoofing.

Recently, there have been also efforts to estimate the Doppler

shift in LEO satellite systems using various other approaches,

such as stochastic geometry [164], Maximum A Posteriori

(MAP) [165], algebraic solutions [166], two-stage estimators

consisting of time-varying Burg spectral analyzer and alpha-

beta filter [167] etc. In [168], the Doppler shift is estimated

using reference signals in more than one frequency position in

Orthogonal Frequency Division Multiplexing (OFDM) carrier

in a 5G integrated NTN system.

These different theoretical approaches can estimate the

Doppler shift with a certain accuracy in different scenar-

ios. However, the methods are generally very cumbersome

due to the complexity associated with the orbital mechan-

ics of the satellites. Most of these methods come with

simplifying assumptions to keep the approach feasible for

practical systems, thereby affecting accuracy. Moreover, due

to the constant high-speed movement of LEO satellites, the

wireless environment associated with it becomes time-variant.

The computation complexity increases more to model these

temporal variations using traditional estimation approaches.

Additionally, the UEs may need the ephemeris information

of the satellites to compute the Doppler shift associated with

its motion, which creates large additional overheads in the

communication channels. To characterize this Doppler effect,

ML-based algorithms seem to appear as potential practical

alternatives to the research community.

In wireless communication systems, due to the mobility of

the transceivers, the channel between the transceivers changes

significantly resulting in received signal power variation and

Doppler shift. So, intuitively, the CSI of this channel should

contain information about the Doppler shift. This idea has

been already explored in terrestrial networks to generate

a model using ML [113], [158], [159]. The ground truth

values or the labels are usually generated using the ephemeris

information. Different channel characteristic variables like

Rician K factor, azimuth AoA width, mean azimuth AoA

and channel estimation errors are generated randomly, and

averaged Power Spectral Density (PSD) is used as inputs with

some preprocessing to a multi-layered FCNN to estimate the

Doppler shift in [158]. In [113], RSRP values mapped from

an ambiguity reducer are used to generate the weights for an

MLP. In [159], different time and frequency domain signals

with various modulation schemes, delay profiles, and Signal

to Noise Ratio (SNR) have been used as inputs to a hybrid

CNN-LSTM model to estimate the Doppler shifts. In NTN, the

research in this domain is still at the early stage The estimated

CSI is used as input to a CNN model to estimate the Doppler

shift in [160]. In the future, other potentially efficient SL

models can be also explored to generate the real-time accurate

Doppler shift in an online manner. In Table IV, we summarize

the AI approaches for Doppler shift estimation in NTN. Even

though the DL techniques are found to be useful in estimating

Doppler shift using channel parameters, Doppler shift can

be also estimated by analyzing the predictable trajectory of

the satellites. Complexity analysis is required to justify the

applicability of these DL architectures replacing the state of

art methods in real systems.

3) Security - Physical Layer Authentication: Due to the

new interfaces introduced by satellite-integrated terrestrial

architectures, various spoofing and replay attacks can be

launched using these interfaces. Spoofing attacks involve an

attacker satellite impersonating a legitimate one, while replay

attacks involve the retransmission of previously intercepted

messages to deceive users. Generally, in terrestrial networks,

these kinds of attacks are detected and mitigated by using

standard cryptographic techniques, a concept also investigated

in satellite communications [169], [170]. However, when it

comes to NTN-integrated future 6G networks, these conven-

tional cryptographic methods face several challenges. Firstly,

these techniques are computationally intensive and, thereby

challenging to implement in satellites due to their limited

onboarding capabilities. Secondly, the highly dynamic and
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TABLE IV
SUMMARY OF AI APPROACHES FOR DOPPLER SHIFT ESTIMATION IN SATELLITE-BASED NTN

massive scale network topology of NTNs, particularly for

enabling IoT devices, necessitates significant modifications in

network protocol design and introduces overheads that may not

be practical to manage with existing architectures Also, these

cryptographic techniques often assume that attackers lack the

computational resources to break the encryption. However,

with ongoing advances in quantum computing research, these

assumptions may no longer hold in the future, presenting yet

another challenge that needs to be addressed.

Physical layer authentication offers a promising alternative

to these conventional techniques. In [171], Wyner intro-

duced the concept of physical layer authentication where

the message was encoded in such a way that the mutual

information between the legitimate channel and wiretap chan-

nel is maximized. This encoding generally captures the unique

characteristics of the channel between the user and the legiti-

mate transmitter, serving as a means to verify the transmitter’s

identity. This technique has been already explored in terres-

trial networks using the CSI information as radio signatures

for the transmitter devices [172], [173], [174]. However, the

prevalence of Line of Sight (LoS) paths in satellite networks

makes radio fingerprinting using channel fading information

from CSI impractical. Furthermore, due to the high mobility

of NGSO satellites, as discussed in Section II-E, the high

Doppler Shift is introduced in received signals, which can

be used to verify the identity of the legitimate satellites.

In [175], a maximum likelihood estimation and uniform

quantizer are used to obtain the secret key bits from the

Doppler frequency shifts, which is used in the authentication

of legitimate satellites [176] In [177], an orbital information –

time difference of arrival-based authentication mechanism is

introduced providing low false authentication rates.

In the recent past, various DL techniques have shown lofty

promises in the field of extracting features from noisy data,

which is also leveraged in this field using different ML models.

In [178], CNNs and Autoencoders are used to extract the

necessary channel features for physical layer authentication of

legitimate satellites. In [179], [180], [181], both the received

signal power and Doppler shift are used for radio fingerprint-

ing using SVMs providing improved authentication rates.

4) Security - Intrusion Detection: In modern satellite-

terrestrial integrated networks, the majority of satellite

communication systems rely on elementary security threat

detection mechanisms. Typically, these mechanisms operate

by flagging an anomaly if the received signal frequency

deviates from the baseline spectrum by a predetermined

threshold. However, this simplistic approach frequently leads

to a significant number of false positives. On top of that many

anomalies represent unusual behavioral patterns, exhibiting

temporal correlations that escape detection by these simple

detectors. Consequently, these conventional methods often

struggle to effectively identify and respond to sophisticated

security threats.

To address these challenges, DL techniques are explored

to efficiently detect security threats using various innovative

approaches. In the study presented in [182], an ensemble

model combining Random Forest (RF) and MLP is developed

to improve the performance of security threat detection across

diverse datasets for satellite communications. [183] leverages

critical feature selection driven by RF to streamline complexity

and enhance the relevance of features before the detection

phase. These features are then forwarded to different NN

architectures, including LSTM, GRU, RF, and ANN enabling

robust security threat detection. These models are tested on dif-

ferent datasets where GRU-empowered threat detection models

exhibit superior performances by capturing temporal behav-

ioral patterns. In [184], a UL approach using LSTM networks

is explored, which can not only detect unforeseen security

threats but also does not need any labeled data. In another

study as shown in [185], two SL and five UL approaches

are considered for threat detection to show the effectiveness

of ML techniques. In [186], a DDPG-based DRL framework

is considered where the agents decide whether the aerial

platform is malicious or not (actions) based on their behavior

(states) and the system condition (rewards) for threat detection.

Recognizing the computational constraints of satellites and

Internet of Things (IoT) devices, federated learning approaches

are also investigated as detailed in [187], [188], [189] for

threat detection.

5) Security - Anti-Jamming: Satellites are vulnerable to

jamming threats due to their predictable and periodic visibility

in NTNs, so anti-jamming approaches are important to tackle

this challenge. Conventional spread spectrum techniques are

used in anti-jamming for satellite networks. However, they

are not very useful in dealing with new smart jamming

attacks which can adjust their actions based on the network

feedback. Various RL techniques are adopted to tackle these

problems in an efficient manner. In [190], [191], a hierarchical

anti-jamming Stackelberg game is introduced for routing anti-

jamming problems which is later solved by providing fast

anti-jamming decisions using a DRL-based routing algorithm

for satellites. in [192], a DL-based jamming detection algo-

rithm is proposed for satellite navigation systems. In [193],

an anti-jamming coalition game is formed to decrease energy

consumption, and suboptimal jamming policies are obtained

by RL approaches. In [194], ML-aided cognitive anti-jamming
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Fig. 13. A simple beam hopping example in satellite-based NTN.

communication is designed, developed, and tested on real

satellite-ground links.

C. Data Link Layer Aspects

1) Beam Hopping: Modern communication satellites form

multiple beams to support a large number of users over a large

area through spatial multiplexing into different NTN cells.

Each satellite can effectively reuse the allocated spectrum

with very low co-channel interference as well as provide

strong signals at the ground user terminals with relatively low

transmission power using beamforming techniques. However,

due to the high cost and low availability of onboard process-

ing computing resources in satellite systems, mostly simple

fixed beam allocation policies are used in traditional satellite

communication. These strategies lack the flexibility to adapt

to the temporal and spatial variation of traffic demands in real

satellite networks. Beam hopping is a technique for allocating

beams in a flexible manner so that these changes can be

addressed efficiently. It refers to a procedure for activating

different beams according to the current demands of an NTN

cell covered by those beams, so effectively hopping the set

of active beams from one combination to another [195].

In Figure 13, a simple beam-hopping scenario is depicted,

where we have different NTN cells with varying demands.

We classify the cells into three different categories, e.g., high,

medium, and low, based on their traffic demands. In the first

scenario, the low-demand NTN cells, e.g. cell 9, have less

number of active beams than high-demand NTN cells, e.g.

cell 6, even lesser than moderate-demand NTN cells, e,g, cell

1, 2, 5 or cell 13. However, due to mobility or change in traffic

patterns, the traffic demand in cell 13 reduces and in cell 5

increases. As a result, we can see the intensity of the beams

also changes accordingly in these two cells at a later time, and

a new beam-hopping pattern emerges.

The key question of beam hopping is to find out which

beams need to be activated when and for how long while

maximizing the network performances given the capac-

ity constraints [202]. This can be effectively formulated

as an optimization problem considering different network

performance metrics such as system throughput, delay, fair-

ness, etc. as the objective(s) along with power and spectrum

constraints. In [203], a convex optimization framework with

an objective to match the system capacity to traffic demand

along with power allocation constraints is considered. This

yields a close-form solution giving insights into resource

allocation policies for maximizing network performances from

different perspectives. However, from the perspective of real

networks, the convex objective function is not very realistic,

so the results are not applicable to real networks in a

straightforward manner. Assuming the non-convexity of the

problem, obtaining a globally optimal solution with efficient

algorithms gets difficult. In [109], the steepest gradient descent

algorithm is chosen to get the sub-optimal solution using

the optimal set of precoding vectors. Some heuristic iterative

approaches are also proposed in [108], [204], [205] to tackle

these non-convex problems in a practical and feasible manner.

Different meta-heuristic approaches like Genetic Algorithm

(GA) [206], Simulated Annealing (SA) Algorithm [207],

Particle Swarm Optimization (PSO) [208], and combined

metaheuristic approaches like GA-SA [209] have been consid-

ered to generate suboptimal solutions with a reduced amount

of computational complexity.

The main challenge in designing a beam-hopping pattern

in an optimization framework lies in the large search space

associated with an optimal solution. The size of the search

space for finding out an optimal beam hopping pattern scales

exponentially with the number of beams in the satellite

networks. Modern satellites can have hundreds to thousands

of beams depending on their coverage area, so the computa-

tional complexity becomes pretty high, and the computation

time becomes pretty large to find out the exact solutions.

The low-complexity suboptimal solutions using iterative and

metaheuristic approaches achieving satisfactory performances

in real networks are not very abundant. In this context, the

DL approaches turn out to be a suitable alternative for this

problem.

In [110], [111], an SL approach is considered by forming

labeled datasets with beam hopping patterns as outputs and

channel matrix, transmission power, and traffic demand as

inputs. First, a mixed integer linear problem formulation for

matching the offered capacity to traffic demands is reduced

to a simple linear programming problem. A training dataset

is generated using conventional optimization algorithms and

a DL model is trained on this dataset by considering beam

hopping patterns as labels. Furthermore, the optimization

framework can be potentially transformed into an RL problem

to capture the optimal beam-hopping pattern in a learning

environment. In [196], [197] the transmission delay is mini-

mized considering the power and beam allocation constraints

using a DRL approach. The state space consists of the average

transmission delay and the buffer length with beam hopping

pattern as actions and the negative Hadamard product of the

current states, the negative of total queuing delay as the

reward function. In [198], a combined DRL-metaheuristic

approach is considered to optimize both the throughput and

delay fairness while at the same time designing different
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TABLE V
SUMMARY OF AI APPROACHES FOR BEAM-HOPPING IN SATELLITE-BASED NTN

reward functions for the two cases. In [199], [200], a network

consisting of real-time and non-real-time traffic is considered.

A multi-objective problem minimizing the transmission delay

for real-time traffics, maximizing the throughput for non-real-

time traffics as well as overall delay fairness is considered.

Individual reward functions are designed to capture each of

the goals. In [201], a cooperative multi-agent framework is

considered to dynamically allocate the power and bandwidth to

illuminating beams optimizing throughput and delay fairness

using a DDQN. In Table V, we summarize the AI approaches

for beam-hopping in NTN. As traffic demand changes with

time, recursive architectures such as RNN, ESN, etc. should

be also explored to design the NN for DL architectures used

to address beam-hopping issues. Also, distributed learning

architectures can be useful to design efficient beam-hopping

schemes.

2) Spectrum Sharing: In traditional communication

systems, satellite, and terrestrial cellular networks generally

occupy different frequency bands, so they do not interfere

with each other. However, the satellites in the new integrated

TNTN environment for 6G are expected to use the same S

and Ka-Band as discussed in Section II-D. This improves

the overall spectral efficiency of the integrated networks as

well as provides a better QoE for the users. However, as both

the satellite and the ground network use the same frequency

band, the signals

produced by them interfere with each other, i.e. cause Co-

Channel Interference (CCI) to each other. In Figure 14, a

simple spectrum-sharing scenario in the downlink channel in

an integrated TNTN network is shown. The satellite user is

connected to a satellite and the downlink channel is indicated

using the green link. There are three more terrestrial BSs using

the same channel as the satellite provide CCI to the satellite

user (indicated by red links).

In TNTN, the spectrum-sharing phenomenon needs more

attention because we have a hierarchical network scenario

consisting of non-terrestrial and terrestrial BSs as shown

in Figure 3. To support this complex topology in a single

framework, we need to come up with efficient spectrum-

sharing strategies causing low interference to the users [217].

In conventional spectrum sharing methods, we use efficient

frequency reuse, leveraging directional antennas, adaptive

Fig. 14. General spectrum sharing scenario in TNTN.

power control, etc. methods to mitigate the effect of CCI.

However, traditional four-color frequency reuse can effectively

reduce the level of interference at the expense of more

spectrum. beamforming approach can reduce the interference

greatly, but that too comes at the cost of increasing complexity.

To tackle this situation, a process called spectrum sensing

is introduced in cognitive radio networks, where the unli-

censed users can sense the occupancy status of the target

band using some radio sensing method [218]. The popular

spectrum sensing methods are Energy Detection (ED)[219],

Cyclo-Stationary Detection (CSD) [220], Eigen Value-based

Detection (EVD) [221] etc. However, these methods either are

simple with poor performance in low SNR scenarios (ED)

or provide good performance but with more computational

complexity (CSD and EVD). For these reasons, ML has been

adopted for spectrum sharing to capture the correlation with a

reduced computational complexity which can be extended to

integrated satellite-terrestrial network scenarios [217].
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TABLE VI
SUMMARY OF AI APPROACHES FOR SPECTRUM SHARING IN TNTN

Different intelligent learning approaches are adopted to

tackle the spectrum-sharing problem for next-generation

TNTN networks [222]. In [210], a spectrum-sharing strategy

is developed for LEO satellites from the GEO satellite spec-

trum historical occupancy data using a CNN-BiLSTM model.

Here the LEO satellite users are considered as unlicensed

secondary users and the GEO satellite users are considered

as the licensed primary users. In [212], a CNN-LSTM-based

spectrum sensing method is introduced for satellites to capture

the spatial and temporal correlation effectively for spectrum

occupancy of satellite systems. In [213], a CNN-LSTM model

is introduced to predict the frequency assignment for satellites

based on historical data. In [214], a modified Q-Learning

algorithm is used in an RL setup for the adaptive selection

of access and modulation schemes for NGSO satellites in

an NGSO-GEO system. In [215], an SVM model is first

used for low complexity spectrum sensing, then a CNN-

based spectrum prediction model based on historical data is

developed. In [216], a cooperative MADRL framework is

considered for bandwidth management in a game-theoretic

model minimizing inter-beam interference. In [211], a CNN-

based spectrum reconstruction method from incomplete data

is discussed for satellite networks. In Table VI, we summarize

the AI approaches for spectrum sharing in TNTN. However,

these spectrum sensing decisions need to be in real-time

to increase the overall throughput of the secondary users;

this means the conventional LSTM architectures need to be

replaced by efficient low-complexity ESN architectures to

tackle this in an online manner. Furthermore, spatial spectrum

sharing scenarios need to be also considered along with the

state of art temporal spectrum sharing scenarios leveraging the

benefits of future 3D SAGIN networks.

3) Resource Allocation: Power and spectrum are the two

fundamental resources for any type of wireless network, and

NTN is also not an exception. The spectrum allocation is

typically performed by the assignment of carriers with equal

width from the allocated spectrum for that service. Hence, the

number of assigned carriers and their positions are optimized

to achieve good signal quality with the minimum resources.

Often, the carrier assignment is achieved by the orthogonal

splitting of the spectrum resources, which is also known

as frequency reuse. However, the strict orthogonality of the

frequency bands cannot be always achieved to achieve better

spectral efficiency. In case of lack of orthogonality of spectrum

resources used by different transceivers can also introduce

CCI. The interfering signal can be effectively suppressed

by increasing transmission power for the original signals.

However, as power is also a scarce resource, we cannot

increase the transmission power indefinitely and increasing

transmission power will result in a decrease in energy effi-

ciency. For better resource utilization, a more robust radio

resource management needs to be designed by controlling both

power and spectrum resources [231].

Generally, an optimization framework can be considered to

optimize the system performance with bandwidth and power

constraints. In most cases, such optimization problems are

non-linear and non-convex due to objective function nonlin-

earity and complex constraints involving Signal to Interference

and Noise Ratio (SINR) [232]. Furthermore, the carrier

assignment indicator variables result in a mixed-integer pro-

gramming problem [232]. Hence, no optimal solution can be

determined using the known methods of convex optimization

with low computation complexity. Instead, suboptimal and

metaheuristic approaches are proposed, which tackle parts of

the problem separately and then iteratively tune the param-

eters [232]. Different suboptimal approaches are adopted to

optimize resource allocations [233], [234], [235], [236], [237]

for satellite systems. However to reduce computation complex-

ity several heuristic [238] and metaheuristic approaches like

GA [206], PSO [208] are explored to reach the suboptimal

solutions within a shorter computation time.

To tackle this resource allocation issue in real satellite

networks in a practical manner, ML approaches are being

started to be adopted by the research community. A DL

framework is combined with conventional optimization algo-

rithms to overcome the computation complexity issue of

the conventional approach in [229], [230] by reducing the

feature space. A model-free DRL framework is adopted for

power allocation of high throughput satellites in [226]. A

Q-learning-based long-term capacity allocation algorithm in

an RL framework is introduced for a heterogeneous satellite

network in [223]. In [114], an Actor-Critic and Critic Only

based RL framework is considered for optimal resource

allocation for LEO satellite networks. Different advanced

RL frameworks like DRL [224], [225], [239], Multi-objective

DRL [228] and MADRL [227] are also proposed to solve
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TABLE VII
SUMMARY OF AI APPROACHES FOR RESOURCE ALLOCATION IN SATELLITE-BASED NTN

the resource allocation issue for satellites. In Table VII, we

summarize the AI approaches for resource allocation in TNTN.

As both power and spectrum are equally important and scarce

resources for NTNs, new DL architectures need to be explored

to jointly allocate these resources in an efficient manner

for NTNs.

4) Network Slicing: Network slicing refers to the process

of virtually partitioning the physical network into different

network slices corresponding to different service requirements.

The slices are allocated with radio resources as per the

demand of the users belonging to the slices. Slicing is useful

for wireless networks as each slice can share the same

physical network infrastructures while receiving necessary

radio resources for guaranteeing a minimum level of service

to the users. Also, network slicing provides the flexibility

to switch users between slices with different amounts of

allocated resources responding to changes in traffic conditions.

Integrated TNTN networks appear to be an excellent candidate

for applying the concept of network slicing due to their

diversified traffic patterns. In fact, different use cases like

mMTC and eMBB applications can be extensively benefited

through the network slicing in these networks. In Figure 15,

a simple network slicing scenario is shown. Here the network

consists of a satellite and a terrestrial BS which form 3 slices

in a combined manner. Slice 1 is for high-priority users, they

share network resources from the satellite and the terrestrial

BS (depicted by green links). Slice 2 is for users with low

latency requirements, the terrestrial BS provides resources to

the users (shown by red links). Slice 3 is for the remote users

who can only be served by the satellite (shown by blue links).

In a general network slicing framework, a composite

utility function consisting of different network performance

characteristics like average throughput and other costs like

slice reconfiguration cost, resource reservation cost, etc. is

formulated as an objective function that needs to be min-

imized. The constraints are generally the minimum service

level To ensure real-time implementation, simple heuristic

approaches are tested on real platforms [240], [241], [242].

requirements depending on the type of services for particular

slices. In [240], an extensible 5G network slicing framework

in conjunction with satellite networks is discussed to facil-

itate the integration of satellite services into 5G. In [243],

a multi-objective optimization problem comprising latency,

Fig. 15. Network slicing in satellite-terrestrial integrated networks.

computational, and power requirements in an edge-computing

scenario is formulated to find suitable slice scheduling strate-

gies based on numerical methods. However, these approaches

do not guarantee optimal performance guarantee. To tackle

this issue, different AI-based approaches are explored as it is

done in the case of traditional 5G terrestrial networks.

In [244], RL-based network slicing frameworks for satellite-

integrated future 6G networks are discussed along with

experimental results for simple networks. In [245], AI-based

network slicing for space-air-ground integrated vehicular

networks is discussed from the perspective of slice creation,

user association, and resource scheduling. In [246], [247],

satellite-terrestrial network slice resource allocation frame-

works utilizing network function virtualization are presented

which can be leveraged for applying advanced AI-based

methods. In [248], FCNNs are used to train a suitable

set of network parameters that can produce latency similar

to a non-linear optimizer-based network slicer. In [249], a

general Radio Access Network (RAN) slicing problem is
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considered where the objective function is a weighted function

of bandwidth and spectrum consumption satisfying QoS and

inter-slice isolation constraints. In a simple 2-slice satellite-

terrestrial integrated network, different DL architectures are

tested. In [250], an ML approach similar to the meta-heuristic

ACO approach is considered to realize network slicing in

a TNTN environment. An air-ground integrated network is

considered in a DRL framework in [251], later solved by

the DDPG algorithm. Here both the actor and critic networks

are FCNNs consisting of four layers. Distributed learning

architectures can be potentially explored in future works for

real network implementations.

5) Handover Optimization: In order to maintain an orbital

path around the Earth at a lower altitude, an LEO satellite

needs to move at a much higher velocity (around 7.8 km/s)

compared to a GEO satellite. So these satellites orbit around

the Earth typically within 2 hours [20]. Due to the smaller

orbital period, any LEO satellite remains visible to a ground

UE for only several minutes which poses a great challenge

for integrating these satellites into the traditional terrestrial

networks. The UE needs to undergo multiple handovers within

a short span of time interval regardless of its mobility status for

seamless continuation of the data sessions [14]. This frequent

handover phenomenon in LEO satellite networks creates a

lot of overhead in communication channels and results in

overall degradation in network performances. Moreover, due to

lower altitudes, the coverage area of an LEO satellite is much

smaller compared to a GEO satellite. Typically a large number

of LEO satellites are needed to maintain global coverage

across the Earth with complex constellations. In the case of

an ultra-dense constellation of LEO satellites (like Starlink),

each UE is generally covered by multiple satellites, so the UE

can choose the best one from the list of suitable candidate

LEO satellites. This problem can be potentially solved in an

optimization framework jointly considering different handover

decision criteria.

In traditional terrestrial communication networks, a UE

chooses to attach to a BS based on periodic signal power

and quality measurements, such as Reference Signal Received

Power (RSRP), and Reference Signal Received Quality

(RSRQ) for the link between the BS and the UE. Moreover,

load balancing is also important to ensure no BS gets over-

loaded or underloaded as a result of initial attachment or

handover procedures. However, for LEO satellite networks,

choosing a satellite BS merely based on signal measurements

and network load information is not enough due to the limited

visibility time of these satellites. So the UE also needs to

take the potential service time into account before attaching to

a satellite. In Figure 16, a simple general handover scenario

involving multiple LEO satellites and a single UE is shown.

Here initially, the UE is connected to an LEO satellite,

indicated as LEO 2, and it needs an immediate handover

to some other neighboring satellite covering the UE, either

to LEO 1 or LEO 3 as it will soon lose the coverage of

LEO 2. As shown in Figure 16, LEO 2 has more network

load and bad channel condition, but offers more service time;

LEO 3 has less network load, moderate channel condition,

but offers less service time. Furthermore, a new satellite,

LEO 4 becomes available for providing coverage to the UE

with excellent channel conditions, great service time with

moderate network load. So even for a simple case involving

4 LEO satellites, the handover decision is not straightforward

for a single UE. So finding a suitable handover strategy for

a UE jointly considering all handover criteria becomes a

complicated problem to be solved.

Different simple greedy strategies, like Maximum Service

Time (MST), Maximum Signal Quality (MSQ), or Minimum

Network Load (MNL) [260] are adopted to solve the problem

in a simple heuristic manner but none of these approaches

provide the optimal solution. The satellite handover scenario

can be also modeled as a directed graph between different

satellites for a single user where the weights can be set

by different handover criteria like Quality of Service (QoS),

service time, etc. [261], [262]. A bipartite graph matching

problem between the satellites and the users [263] is also

considered in the literature to provide the optimal handover

decision for satellites. In addition, a network flow-based cost

minimization approach is considered in [264] by weighting

each edge as the QoS perceived by the user. A handover

strategy based on a potential game in a bipartite graph is

considered in [265]. Different heuristic algorithms are also

proposed to solve the problem [266], [267], [268]. A dynamic

optimization problem is considered to be solved based on

forecasting in [269]. Channel reservation is also associated

to design an efficient handover algorithm while balancing the

load for satellites in [270].

An RL framework can be naturally adopted for solving

this problem considering the handover criteria as states and

UEs as agents who act by selecting a suitable LEO satellite

and collecting a reward based on the network performances.

In [252], only the overall signal quality of the network is

maximized using the RL approach without considering any

other criteria. In [253], [255], a multi-objective optimization

problem considering satellite load and signal quality con-

straints is solved using the DRL approach. In real networks, we

have a large number of UEs; the handover decision for one UE

can affect another UE, so the handover problem needs to be

solved in a cooperative manner. In [254], a MARL framework

is considered where multiple UEs cooperatively optimize

the number of handovers in the whole network considering

different handover criteria. In [256], using graph matching, a

database of optimum handover decisions in satellite networks

is produced and later it is used to predict handover decisions

using a CNN model. Advanced DL architectures like Auction

based DL [257], DDQN [258], Successive DQN [259], etc.

are also considered to provide optimal handover decisions. In

Table VIII, we summarize the AI approaches for handover

optimization in NTN involving LEO satellites. However, as

all the system models consider the agents located at the UE

side, it does not comply with the current standards where

the handover decision is generally controlled by the BSs

(satellites in this case). Furthermore, the distributed multi-

agent learning architectures give rise to stability issues in

real implementations. The handover criteria also need to be

carefully investigated to provide the agents with the necessary

information to learn the mobility behavior of the environment.
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Fig. 16. A Typical Handover Scenario in LEO Satellite-Based NTN

TABLE VIII
SUMMARY OF AI APPROACHES FOR HANDOVER OPTIMIZATION IN SATELLITE-BASED NTN

These issues need to be resolved in an efficient manner for

future research work in this domain.

6) Multiple Access: Multiple access is a vital technique

that enables multiple users to efficiently share network

resources like spectrum and time. In traditional satellite

networks, orthogonal multiple access schemes like Time

Division Multiple Access (TDMA), Frequency Division

Multiple Access (FDMA), Code Division Multiple Access

(CDMA), and Space Division Multiple Access (SDMA) are

employed. These schemes allocate distinct time slots, spectra,

codes, or spatial divisions to us0ers, ensuring their orthog-

onality in resource utilization. However, the performance of

these conventional methods is constrained by the inherent

limitations of these network resources. To meet the extremely

high data rate and low latency demands of future 6G

networks, innovative and efficient multiple access techniques,

such as Non-Orthogonal Multiple Access (NOMA) and Rate

Splitting Multiple Access (RSMA), have emerged in satellite

network research. These advanced techniques deliver superior

performance, achieving higher spectral efficiency and reduced

latency, thereby paving the way for the evolution of future 6G

networks.

In contrast to other conventional approaches, NOMA allows

multiple users to share the same time-frequency resource

block by allocating different power levels to users based on

their respective channel conditions. The users are assigned

the transmit power levels in an inverse manner with respect

to their channel conditions, i.e. users with poorer channel
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conditions are allotted more transmit power whereas users

with better channel conditions are allotted lower transmit

power. These signals are subsequently encoded, combined

using superposition coding, and transmitted to the receiver.

Then Successive Interference Cancellation (SIC) technique is

employed to decode signals for different users. Starting with

the user granted the highest transmission power, SIC succes-

sively extracts signals while treating others as interference.

This process continues down to the user with the lowest

transmission power, efficiently enabling multiple users to share

the resource block and enhancing spectral efficiency. However,

it’s important to note that SIC’s computational complexity

increases with this approach.

The optimum power allocation problem in NOMA for

NTNs can be formulated as a non-convex problem which

is often difficult to solve using conventional approaches.

In [271], a long-term power allocation scheme for NOMA

in satellite-IoT networks is solved by deriving the optimal

decoding order leveraging DL techniques. A DQN-based

DRL approach is investigated in [272] for optimum power

allocation in satellite-IoT networks under different channel

conditions and delay-QoS requirements of NOMA users. In

another study as discussed in [273], the non-convex problem

involving integer variables is later reformulated as a mixed-

integer convex problem which was later solved by two DL

techniques instead of conventional iterative solutions. Some

studies also focus on the non-convex user selection problem

for given power allocations based on the CSI feedback. Such a

study, [274] used DQN to find out the suitable user pairing for

delay-limited NOMA-based satellite networks considering the

channel conditions and delay constraints as states. k-means UL

approach is also considered to find out the pair of terrestrial

users to be simultaneously served by space and aerial BSs

adopting NOMA in [275]. Q-learning is adopted in [276] to

allocate the time slots and communications channels for IoT-

satellite terrestrial relay networks.

Another significant multiple access method, RSMA, is also

explored in the context of satellite networks to enhance

spectral efficiency. In RSMA, user messages are partitioned

into two segments: common and private. The common signals

are collectively encoded and merged into a unified data stream

intended for all users, while each user linearly precodes

their private messages. On the receiver side, the common

component is extracted while treating the private signals as

noise, employing the SIC technique. Subsequently, each user

extracts their respective private signals. This provides the users

with another way to share the same resource blocks with

an increase in spectral efficiency. Generally maximizing the

sum rate for both parts is a complicated non-convex problem

and can be solved by Weighted MMSE (WMMSE) problem

which is difficult to implement in practical hardware. A suc-

cessive convex approximation as well as KarushKuhnTucker

(KKT) conditions are used to calculate the transmit power

in RSMA power for different beams in satellite networks

in [277]. However, DL techniques can be extremely useful

in modeling the solution framework with low complexity as

shown in [278], [279]. Here a deep unfolding technique is

used to implement the WMMSE algorithm using a deep NN

Fig. 17. Task offloading in satellite-terrestrial integrated networks.

and momentum-accelerated Projection Gradient Descent algo-

rithm. A DRL framework using Proximal Policy Optimization

is used to maximize the sum rate in [280]. Here each BS works

as an agent, the channel state information i.e. SINR of the

private and common messages is used as the states, the action

is to find the suitable power allocation whereas the reward is

the achieved sum rate.

D. Upper Layer Aspects

1) Computation Offloading: One of the most important

applications of satellite-terrestrial integrated networks is

enhancing the computation capabilities of existing terrestrial

network architectures leveraging satellites. With traditional ter-

restrial networks, supporting a diverse set of new applications

like AR, VR, etc. with high data processing and extremely

low latency requirement can get very challenging. Generally,

terrestrial BSs are deployed sparsely due to high infrastructure

and maintenance costs. Due to resource constraints, in case

of the high demand for data processing for these types of

applications, the BSs need to offload the computation tasks to

the terrestrial cloud via the satellites [290]. However, due to

longer propagation delay, the latency requirements set by the

applications are difficult to be met [291]. Nevertheless, due

to the emergence of LEO satellites with comparatively low

propagation delay, the overall delay is considerably reduced.

Also instead of acting as relays, the satellite can now also

do the processing works acting as edge-servers. So we can

consider a three-level hierarchical architecture comprising of

ground UEs connected to terrestrial BSs, LEO satellites, and

terrestrial cloud as shown in Figure 17 where the terrestrial

BSs can offload the computational tasks to LEO satellites and

to terrestrial clouds via the LEO satellites.

The main challenges in task offloading problems lie in

meeting the delay constraints for low-latency applications

while minimizing the energy consumption for the satellites.

So this can be formulated as an optimization problem to

come up with an efficient offloading approach for integrated

TNTN architecture. Such an optimization problem is solved

using different conventional approaches like 3D hypergraph

matching [292], game theory [293], stochastic approach [294],

efficient algorithms [295] in the existing literature. In [296], a

joint optimization framework comprising task offloading and

resource allocation is also considered in an integrated satellite-

terrestrial environment. Although these algorithms work well
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TABLE IX
SUMMARY OF AI APPROACHES FOR TASK OFFLOADING IN TNTN

in theory for particular scenarios, in real networks, the feasibil-

ity of these algorithms is compromised due to different issues.

Some of these works do not consider the cooperation among

terrestrial cloud and LEO satellite servers which result in sub-

optimal approaches [292], [293]. Also, these approaches are

some predefined models highly dependent on different network

states causing a large overhead in networks. Moreover, they

usually converge to the solutions after a large number of

iterations causing high computational complexity.

To tackle these issues, different ML approaches are

proposed in the literature to solve task offloading problems.

In [282], a DRL-based task offloading framework dependent

on channel state information is proposed. A similar DRL-

based framework is also considered in [297] with additional

consideration of the dynamic queue condition in satellites.

In [283], both DQN and DDQN are explored to solve the

task offloading problem in a decentralized manner. DDPG

algorithm is considered to solve the optimization problem in

a DQN framework in [281] while taking the potential security

issues into account. An LSTM model is used to solve the

task offloading problem while considering channel conditions

and energy dynamics in [286]. A DL-based caching strategy

is considered in satellite edge networks in [287]. As we have

multiple satellites in the real networks, to improve the overall

system performances, different multi-agent architectures are

considered both in a distributed [288] and cooperative envi-

ronment [284], [285]. Distributed architectures for generating

discrete offloading decisions in a supervised manner are

also considered in [289]. In Table IX, we summarize the

AI approaches for task offloading in TNTN. As the delay

constraints vary with network traffic types, the offloading

decisions need to be derived taking network traffic types into

account. Potential research works can show how computational

offloading can be done for various network traffics and show

superior network performances.

Fig. 18. Network routing in satellite-terrestrial integrated networks.

2) Network Routing: In wireless networks, depending on

the traffic and channel conditions, the network traffics are

routed to different paths among different network nodes so

that the overall network performance can be improved. In any

network with static channel and traffic conditions, this routing

problem can be transformed into the well-known shortest path

problem and solved by Dijkstra’s algorithm [306]. Here the

network nodes can be considered as nodes in the graph and

the edges can represent the links between different nodes.

The weights of the edges can be defined based on the target

network performance metrics like delay, jitter, throughput,

packet loss, etc. However, the topology of the real satellite-

terrestrial integrated networks (shown in Figure 18) are very

complex and dynamic due to hierarchical network architecture

and uncertain channel and traffic conditions, respectively. So

simple Djikstra’s algorithm cannot be directly applied to meet

the performance requirements in these networks.
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TABLE X
SUMMARY OF AI APPROACHES FOR NETWORK ROUTING IN TNTN

In real satellite networks, Asynchronous Transfer Mode

(ATM) routing is introduced in [307]. The well-known Open

Shortest Path First (OSPF) [308] protocol-based Internet

Protocol (IP) routing is also adapted to the dynamic

satellite environment in [309]. However, the dynamics of

satellite-terrestrial networks are very different from traditional

terrestrial networks due to their highly dynamic network

topology, link status, and traffic conditions. Depending on the

instantaneous network topology, a static-dynamic combined

routing scheme is considered in [310]. An ant-colony-

based optimization (ACO) framework is considered in [311].

In [312], a Kalman filter-based Wolf Colony Optimization

algorithm is used to solve the local optimal solution issue

in [311]. An improved ACO framework is considered to find

out the optimal set of links with multiple network constraints

in [313]. A Coordinate Graph (CG) model-based network

routing approach for three-dimensional TNTN is considered

in [314]. In [315], minimum flow maximum residual path-

based network flow algorithm is used to find out the optimal

network routing path for satellites. In [316], a 3-dimensional

network mapping using hyperbolic geometry is considered for

integrated satellite-terrestrial networks.

To cope with the dynamic environment in integrated

satellite-terrestrial networks, different DL architectures are

proposed in the literature. In [301], fuzzy logic is used to

evaluate task requirements to improve the CNN output for

optimal path allocation. The network routing optimization

problem can be put into an RL framework. In [298], a speed-

up Q-learning algorithm is used to find out the optimal routing

strategy for TNTN. A similar Q-learning-based RL framework

is also considered to solve the routing problem for LEO

satellites in [299]. To tackle the complexity issue, a DRL

framework is used to generate optimal routing strategies in

TNTN [305] and LEO satellite networks [299]. FCNN [302],

CNN [127], etc. architectures are used to solve the routing

problem in a supervised manner. Other ML frameworks like

GNN [304] and ELM [303] are also considered to solve

the routing problem in NTNs. In Table X, we summarize

the AI approaches for network routing in TNTN. Recursive

NN architectures need to be also explored for capturing the

temporal behavior in network routing decisions. Furthermore,

the channels are extremely dynamic and time-varying in the

case of TNTNs; the channel conditions can be also considered

in the learning criteria of RL frameworks.

3) Traffic Prediction: Traffic prediction is very critical in

modern communication systems to ensure high-speed low

latency communications. Particularly, in NTNs, accurate traffic

prediction is extremely crucial due to the highly dynamic

network topology as well as diverse user requirements. At

its core, traffic prediction involves forecasting future network

traffic based on past usage patterns. Conventional approaches

such as Auto Regressive Moving Average (ARMA), Auto

Regressive Integrated Moving Average (ARIMA) [317], [318],

etc. are typically used for these predictions. However, the DL

approaches have emerged as more effective alternatives by

providing improved performances in recent times due to their

inherent capability to capture spatial and temporal correlations.

In [319], Radial Basis Functions (RBF) neural network-

based short-term traffic flow forecasting is proposed. In [320],

an LSTM-based architecture is utilized for traffic prediction

due to its temporal characteristics handling capability where

the attention mechanism is used to balance the effect of

inputs on outputs properly. The RNN architectures suffer

from gradient explosion issues. To overcome this issue, GRU

architectures are explored for traffic prediction in [321], [322],

and [323]. In [321], the transfer learning approach and particle

filter online training algorithm are combined to address the

lack of online training data and reduce the training time

complexity. In [322], GNNs are used to extract the spatial

features of the satellite network traffic from the input network

topology, which is later used as an input to a GRU network for

traffic prediction. In [323], on top of the attention mechanism

and GRU models, PSO is used to obtain the best set of

hyperparameters for the network.

Key Takeaways: As evidenced by the above discussion, var-

ious RL techniques are used to examine network optimization

problems such as handover, beam, and resource allocation,

task offloading, network routing, and network slicing, while

SL techniques are employed to tackle estimation problems,

such as Doppler shift, channel state, and spectrum sensing.
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Fig. 19. Relationship diagram different AI techniques and NTN challenges.

UL techniques have not been extensively covered in the

literature due to the ambiguity and difficulty of applying

them in real networks. To further illustrate the interrelations

between different NTN challenges and AI techniques, we

present Figure 19.

VI. AI-NTN INTEGRATION: CURRENT STATUS

In the previous section, we discuss how AI can be ben-

eficial for us in resolving potential NTN issues for the

next-generation 6G networks. In this section, how AI can be

applied to real systems to resolve the challenges associated

with NTNs. We begin our discussion by discussing the current

ML testbeds for satellites. Then we discuss how AI can be

potentially applied to future 6G networks by utilizing the

RAN Intelligent Controller (RIC) embedded in the Open Radio

Access Network (O-RAN) framework [324] to overcome

the inflexibility of the monolithic cellular networks. Finally,

we provide a discussion on current research efforts toward

realizing the Software Defined Radio (SDR) based 5G-NTN

platform development in the O-RAN framework.

A. ML Testbeds for Satellite Networks

MultI-layer awaRe SDN-based testbed for SAtellite-

Terrestrial networks (MIRSAT) testbed [325] provides a

Software Defined Network (SDN) based experimentation

platform for testing network slicing algorithms on NGSO

constellations. The European Space Agency (ESA) has numer-

ous completed projects focusing on the applicability of AI

techniques in satellite networks such as MLSAT [326] and

SATAI [327]. There are also several other ongoing projects

of ESA focusing on AI-satellite issues like AI integrated 5G-

Satellite testbed [328], AI-based interference detection [329],

AI-based signal processing [330], etc. All these testbeds show

promises for AI to be an integral part of future satellite-

terrestrial integrated networks.

B. AI-NTN Integration Through O-RAN-Based RIC

Traditional 5G networks with little or no reconfiguration

capabilities suffer from a wide variety of challenges to satisfy

the heterogeneity and variability of the networks and meet the

strict application requirements [331]. Even though there has

been a significant amount of research on addressing different

issues in 5G cellular networks, an open interface for the

deployment of AI algorithms is required. O-RAN offers a

general framework for the deployment of AI algorithms in 5G-

Advanced networks [332]. It achieves this by facilitating an

open interface that enables the exchange of network KPIs and

control information between the RAN and the AI controller.

This integration allows for the implementation of a closed-

loop control framework for the RAN using different AI

approaches [333], [334]. As a potential integral part of future

6G networks, NTNs are expected to be deployed in the O-

RAN framework to leverage AI capabilities effectively.

In 5G, a base station, namely gNB has multiple functional

splits, namely:

1) Central Unit (CU): responsible for higher layers such as

non-real-time link and network layer functionalities.

2) Distributed Unit (DU): responsible for lower layer

such as near real-time link and upper PHY layer

functionalities.

3) Radio Unit (RU): responsible for low PHY layer

functionalities.

A new central controller entity called RIC is introduced in the

O-RAN architecture which can provide network monitoring

and control functionalities in near real-time and non-real-time

through external and internal applications, called xApps and

rApps respectively, for the purpose of network optimization.

Evidently, these xApps and rApps can provide us with an

effective way of deploying AI algorithms extracting network

KPIs, and sending control commands for optimizing network

performance.

To realize the NTN architecture in the O-RAN framework,

the satellites can be used for either transparent or regenerative

payloads as discussed in Section II-C. In the case of

regenerative payloads, where the NTN platforms work as

BSs, there are multiple options for potential O-RAN-based

NTN deployment. There can be three different architectural

deployments for NTN gNBs in the regenerative architecture:

1) RU in the space/air, CU and DU on the ground,

2) Both RU and DU in the space/air, CU on the ground,

3) CU, DU, and RU in the space/air.

The non-real-time which does not need to consider latency

requirements, is expected to be deployed on the ground con-

sidering power, onboard capability, and mobility constraints.

However, the near real-time RIC needs to be close to DUs

to provide near real-time control functionalities which provide

two different options for its deployments with corresponding

pros and cons. The near real-time RIC should be on the

ground when only RU is in the air, whereas it should be

also in the air in the other two cases. There is a clear trade-

off between the latency and power, mobility, and onboard

capability constraints. If the near-real-time RIC is in the air,

the latency for control commands will be low, whereas the

cost will be high for hosting it in the air. In Figure 20,

the potential framework for AI-Enabled NTN deployment

in O-RAN framework as specified in [324] is illustrated.

Depending on the deployment scenarios of the near-real-time
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Fig. 20. Various architectural deployments for NTN in the O-RAN framework for regenerative payload.

RIC, the xApps can be also deployed also in the air or on the

ground, and so do the AI control algorithms.

C. Current Research Efforts for AI-NTN Integration Through

O-RAN-Based RIC

To facilitate the integration of NTN into 6G networks,

there have been already some technical advancements and

experimental research works towards developing real proto-

types for testing and evaluation of proof-of-concept methods.

OpenAirInterface (OAI) is an open-source 3GPP com-

pliant SDR-based protocol stacks that are widely used

across the research community for experimentation with 5G

networks [335]. As specified in the O-RAN framework, OAI

protocol stacks adopt the notion of RIC by enabling service-

oriented controllers using an efficient Software Development

Kit, called Flexible RIC (FlexRIC) [336]. This RIC provides

an interface for applying AI algorithms in order to optimize

the network performances through xApps as discussed before.

This enables us to perform experiments for testing diverse

AI approaches for optimizing the performances of real 5G

networks.

OAI has been adopted for developing experimental pro-

totypes with 5G-NTN adaptations due to its efficient and

flexible design and structure [337]. Currently, there are sev-

eral research projects on 5G-NTN that are leveraging OAI

protocol stacks to perform experiments with NTN adapta-

tions for both in-lab validation and over-the-satellite testing.

5G AgiLe and flexible integration of SaTellite And cellu-

laR (5G-ALLSTAR) [338] and 5G New Radio EMUlation

over SATellite (5G-EmuSat) [339] project developed a 5G-

NTN platform with necessary PHY and MAC layer 5G-NR

adaptations on top of OAI 5G protocol stacks and a satellite-

channel emulator for in-lab validation. 5G-EmuSat even has

also demonstrated its over-the-satellite capability by having

direct access to a UE using a satellite channel. 5G Space

Communications lab also has performed in-lab validation

experiments extending OAI-4G protocol stacks for NTN along

with ISL implementation using SDR [340]. Two current

ongoing projects focusing on GEO and LEO satellites, named

5G-GOA [341] and 5G-LEO [342] respectively, are currently

working on implementing necessary 3GPP NTN adaptations

extending from 5G protocol stacks of OAI. Even though cur-

rent implementations are mostly for demonstration purposes,

integration of NTN into OAI 5G protocol stacks paves the way

for deploying AI algorithms through xApps in the future.

Key Takeaways: Currently, there are some deployed ML

testbeds specifically designed for satellite networks. Moreover,

O-RAN is envisioned to unleash the great potential of AI in

enabling the future 6G networks via satellite-based NTNs by

addressing various challenges associated with it. Nevertheless,

both O-RAN and NTN standardization aspects are still in

the development process, and different SDR-based 5G pro-

tocol stacks, such as OAI, are being incorporated with NTN

adaptations.

VII. AI-NTN INTEGRATION: CHALLENGES

NTNs come with an intrinsic set of challenges when it

comes to deploying AI models. Even though there is a signifi-

cant decrease in the launching and maintenance cost of various

NTN platforms, especially satellites, cost optimization is still

one of the major limiting factors of realizing NTNs for 6G

communication on a large scale. With that being the case, these

platforms have limited power, spectrum, and computational

resources which limits the performance of the AI models. The

unavoidable long propagation delay along with the complex

and time-varying nature of the NTN environment introduces

additional challenges for AI models to be trained and deployed

in real-time. In this section, we discuss these open research

issues to get an insight into designing an efficient AI-based

non-terrestrial system with robust and superior performance.

A. Limited Onboard Capability

Advanced AI applications necessitate specialized

AI-capable embedded chipsets developed by leading
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technology companies, including NVIDIA, AMD, Intel, and

Qualcomm [343]. Typically, these chipsets feature on-chip

accelerators like CUDA and Tensor, enabling highly efficient

parallel processing of intricate data tasks, especially those

involving extensive matrix operations as utilized in DL

methodologies. The performance of these AI algorithms

highly depends on the availability of the computational

resources and data processing capabilities of the AI hardware

blocks. More computational capability typically means more

power consumption as well as more physical space which

increases the overall maintenance cost for the non-terrestrial

platforms. Most non-terrestrial platforms such as satellites

have a very limited amount of computational resources

due to cost optimization. The efficiency of computing

devices, particularly those used for onboard purposes, is often

quantified by evaluating the ratio of computational power to

the product of power consumption, total mass, and associated

cost. This metric, highlighted in [344], necessitates a notably

high value for onboard computing devices in satellites. All

these AI-capable chipsets must undergo meticulous design

and rigorous testing procedures to ensure they satisfy the

minimum computing efficiency standards mandated for space

platforms. A lot more advancements in miniaturization and

power efficiency are necessary to ensure the adaption of AI

models and algorithms into non-terrestrial platforms with

adequate onboard capabilities as well.

B. Aging of Information

The long propagation delay is a great challenge in the

way of AI-based NTN deployment. Online RL frameworks

are very promising for solving different NTN challenges due

to their inherent capability of adapting to fast time-varying

environments as we show in the previous sections. However,

the performance of these algorithms is highly dependent on

the feedback received from the environment. As the network

changes very rapidly, the feedback has to be real-time or near

real-time to ensure the integrity of the information embedded

in the feedback. For example, the resource allocation for

different network slices and users needs to be near-real-time

(in the order of 1-10 ms) and real-time (less than 1 ms),

respectively. For NTNs, as we know from Section II-D, the

propagation delay is extremely high due to the long distance

between the transmitter and the receiver. Thus the feedback

exchange time intervals are quite high compared to terrestrial

environments which hampers the online training approach

greatly. Furthermore, to adapt to the highly time-varying

environment, AI models usually need to send an appropriate

chain of control commands to the network components. Due

to the rapid channel variations, the channel coherence time

is significantly reduced, leading to potential issues where

both received information and transmitted control commands

may become outdated, resulting in reduced effectiveness for

resource allocation decisions from AI algorithms.

C. Additional Communication Overheads

On top of long propagation delay, non-terrestrial plat-

forms also have limited bandwidth due to the scarcity of

spectrum resources and ensure no additional interference to

the licensed services. As the generic RL frameworks depend

on the feedback received from the environment, the addi-

tional overhead introduced by the network parameters results

in undesirable network resource consumption. Even though

CSI feedback in 5G networks contains a set of network

parameters, this may not be enough for all different network

problems. For instance, when dealing with the handover

optimization problem, many solution techniques operate under

the assumption that mobility state information for satellites

and users is readily available, which is not typically included

in the CSI feedback. Consequently, this assumption introduces

additional feedback overhead alongside the existing format.

This additional communication overhead puts an additional

burden on the limited spectrum of resources allocated for the

non-terrestrial platforms.

D. Security Aspects

Applying AI in NTNs introduces more vulnerability to

various security attacks by introducing new attack surfaces

and less transparency. Adversarial attacks, data poisoning, and

model evasion involving the manipulation of input data to

AI models can cause degradation in network performance

and reliability [345]. Since this input data is gathered from

the NTN environment, featuring various attack interfaces for

potential attackers, there is a risk that the training data used for

AI models could be compromised by these attackers. Denial-

of-Service (DoS) attacks can cause interruptions in crucial

network operations by overwhelming the network with too

much resource consumption [346]. As an illustrative example

within the context of NTNs, an attacker could conceivably

gain access to one of the network slices. They could then

exploit this access to excessively consume network resources

by setting up extreme requirements, potentially leading to

network congestion and subsequently causing a decline in

overall network performance. As discussed before, the AI

controller and the network environment, especially in the

online setup, needs to exchange control information during

training of the models. While carrying the control information

between the AI controller and the network, an attacker can

intercept and possibly modify this information, which is

known as a Man-in-the-Middle (MiM) attack [347]. This can

often result in a degradation in network performances due to

the compromised control information. Therefore, A security-

constrained framework for deploying AI models needs to be

designed carefully in such a way that they can detect and

mitigate these attacks while maintaining the overall network

performance.

E. Environmental Conditions

NTN platforms, especially satellites are generally deployed

in pretty hostile environments with extreme radiation, extreme

temperatures, and other extreme environmental conditions.

The computational hardware for AI models is very susceptible

to radiation as they are built on customized circuitry [344].

The satellites need to consider both single-event effects caused
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by ionizing particles [348] as well as the effects due to long-

term radiation [349]. These effects may result in bit flips both

in registers and memories introducing errors in the control

logic of their hosting hardware platforms. Also, in space, these

circuitry elements need to withstand extreme temperatures for

a long period of time [350]. To ensure the proper performance

of these models, the hosting hardware components are required

to be more advanced and have rigorous testing to ensure

extreme environmental tolerance, which increases the cost of

the satellite operation.

F. Scalability Issue

RL frameworks can be naturally applied to address a

variety of NTN problems with control objectives as we

discuss in the previous section. However, for large-scale 6G

satellite-terrestrial integrated wireless networks, the complex

network topology entails high dimensional state and action

spaces that can lead to high computational complexity for RL

models [351]. In the case of MARL frameworks, the state

space grows exponentially with the increase in the number

of agents [352], making this approach infeasible for large-

scale real networks. Although DRL approaches can be helpful

in reducing the state space [353], more research is needed

to effectively address this challenge in order to successfully

deploy RL approaches in TNTNs.

G. Lack of Convergence

An important challenge to be addressed when applying

the distributed RL framework in real networks for solving

various important NTN challenges like handover optimization

is to deal with its uncertainty in convergence [90]. In this

framework, multiple agents try to optimize their goals based

on the rewards received from the environment. In a competitive

environment, when all the agents are attempting to maximize

their long-term returns, they may take conflicting actions,

resulting in a non-stationary environment with no convergence

to an optimum state [352]. As a result, no optimum policy

can be obtained for the system as a whole. As highlighted

in [254], this convergence issue has limited the number of UEs

(agents) that can be considered in the simulation environment,

thus hindering the potential of this approach.

H. Scarcity of Quality Data

All ML approaches are data-driven, so the availability

of suitable training data is of paramount importance for

the improved performance of these methods. However, in

satellite-terrestrial integrated networks, the generation of qual-

ity data can be sometimes very costly and inefficient, even

impossible at times due to spectrum and intermittent con-

nectivity constraints. Due to this inherent data generation

issue, applying different ML approaches can get extremely

challenging. Additionally, the data distribution and character-

istics in non-terrestrial environments may differ significantly

from terrestrial environments, requiring careful consideration

during model training and adaptation. As a result, the training

procedure can be greatly hampered resulting in performance

degradation of these approaches in real networks.

I. Complicated Hyperparameter Settings

The complexity of satellite-terrestrial networks, such as

their topology and time-varying nature, can make traditional

ML approaches less effective. As a result, DL methods have

become increasingly popular due to their powerful feature

extraction capabilities through NNs. The performance of any

NN is reliant on the hyperparameter settings, such as the

number of layers, activation functions, number of neurons in a

layer, and learning rate. However, there is no way of deriving

an optimal set of these parameters for any given problem to

provide the best performance. In fact, tuning these parameters

to provide satisfactory performance for a particular problem

is not any straightforward process, but rather dependent on

empirical speculations. This means the training process is

not a one-time event, but rather a trial-and-error process that

involves multiple attempts to determine the most suitable

parameters. Moreover, depending on the nature of the problem,

it can be challenging to determine possible candidates for the

parameters to begin with. This results in a very uncertain and

time-consuming training process. For NTNs, these issues are

more severe due to their high network complexity resulting in

a more complex set of hyperparameters.

J. Lack of Generalization

As data-driven ML approaches are used to train ML algo-

rithms, it can be difficult to generalize these algorithms to

different scenarios. Trained models are able to capture the

characteristics of the training data, but this does not always

guarantee successful performance with test data due to the

varying nature of NTNs. A model trained for a specific

scenario may not be successful in another, and may not be

able to adapt to different NTN scenarios. Even if the model

has not encountered certain scenario features during training,

it is desirable to have a model that is generalizable and

performs well in any context. Developing such models is

one of the biggest challenges of the NTN domain due to

their high network complexity. As there are no theoretical

performance bounds for these empirical ML models, unpre-

dictable performance drops can occur while deploying in the

real environment.

Key Takeaways: The cost-limited on-board computation,

highly dynamic environmental conditions, and long propaga-

tion delay introduce a diverse set of challenges to realize

the AI-enabled NTN environment for future 6G networks.

These challenges need to be addressed with efficient solu-

tions to ensure superior network performances in real NTN

deployments.

VIII. INSIGHTS AND POTENTIAL FUTURE STUDIES

In this comprehensive study, we delve into the realm of

NTNs and their relationship with AI techniques, establishing a

solid background for our exploration. We explore the synergy

between NTNs and AI, highlighting how these two domains

intersect and complement each other. Moving forward, we shift

our focus to the current research thrusts in the field, examining

ongoing efforts to bring these concepts to fruition in real-

world networks. While highlighting these advancements, we
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also address the potential challenges that must be overcome

to realize the full potential of NTNs in the context of future

6G networks. Within this section, we provide an in-depth

discussion of valuable insights and potentianl future studies

for leveraging various AI techniques in the context of satellite-

based NTNs.

A. Insights

In this section, we present a summary of the lessons learned

and insights gained from our paper’s discussion. These insights

are intended to serve as valuable guidance and information for

the implementation and integration of AI in shaping the future

landscape of 6G networks.

1) Existing Learning Approaches: Upon examining the

contents presented in Section V, it becomes evident that

SL and RL approaches take center stage in addressing the

diverse array of challenges faced by satellite-based NTNs

in future 6G networks, primarily due to the availability of

real-world data and feedback mechanisms within existing

networks. In the context of SL, having access to well-

labeled data is of utmost importance, especially in scenarios

involving estimation problems like channel estimation and

Doppler Shift estimation. On the contrary, RL shines when

dealing with problems lacking clear labels but featuring a

notion of reward functions. Furthermore, RL techniques are

extremely suitable and efficient for problems where super-

vision is lacking which is usually the case for many NTN

problems such as resource allocation, beam hopping, and

network routing as illustrated in Section V of the paper.

Meanwhile, RL techniques can be effectively employed across

a wide spectrum of problems using general network feedback,

such as CSI, acknowledgments, and more. Consequently, a

significant portion of research efforts tends to leverage RL

frameworks to address their specific challenges.

2) Leveraging Deep Neural Networks: The emergence of

Deep NNs and their effectiveness in addressing intricate

challenges in fields like computer vision and natural language

processing has piqued the interest of the research community

in applying these architectures to network-related issues.

Satellite-based NTNs introduce a unique set of challenges,

characterized by highly dynamic network conditions and

a multitude of variables influencing network performance.

Traditional ML) approaches often fall short in comprehen-

sively addressing these complex problems, frequently limited

to small-scale issues. As a result, DL techniques have gained

significant popularity within the research community, proving

to be a more adept choice for tackling the multifaceted

challenges encountered in satellite-based NTNs, as elaborated

in Section V.

3) Potential Learning Approaches: The nature of UL

approaches presents a unique set of challenges in the context

of highly dynamic and time-varying NTNs. Understanding

and capturing the intrinsic behavioral patterns within such

networks prove to be particularly hard. However, it is impor-

tant to note that UL approaches still hold the potential to

derive the distribution of crucial network parameters that may

not be readily accessible in real networks. These derived

parameters can play a pivotal role in addressing various NTN

challenges. The distributed learning approaches such as FL

can be also beneficial for future satellite-based NTNs as

the computing capabilities requirements can be reduced to a

minimum enhancing practical feasibility.

4) Enabling O-RAN-Based RIC: Currently, there are some

ongoing research efforts focused on developing SDR-based

prototypes for NTNs with adaptations to OAI 4G and 5G pro-

tocol stacks, as discussed in Section VI-C. However, to fully

unlock the potential of AI in NTN for future 6G networks,

the integration of the RIC into these implementations is

crucial. This integration is particularly important given that the

immense benefits of AI in addressing NTN deployment chal-

lenges for future 6G networks are demonstrated in Section V

but current 5G networks lack a dedicated interface for applying

AI algorithms. By enabling the O-RAN framework with RIC,

the deployment of AI algorithms in real NTN networks can be

efficiently performed, paving the way for advanced capabilities

and improved performance.

5) Practical Implications: The cost limitations on onboard

computation, the extreme environmental conditions, and the

extensive propagation delays form a multifaceted array of

challenges when endeavoring to bring AI-driven NTNs to

fruition in anticipation of the forthcoming 6G network era,

as elaborated in Section VII. These formidable challenges

necessitate the development of innovative, resourceful solu-

tions to ensure superior network performance in practical NTN

deployments. Notably, three key factors come to the fore

when considering the limitations imposed on AI capabilities

for satellites and other NTN platforms: power, bandwidth,

security, and physical space. Advancements in miniaturization,

secured system design, energy-efficient design principles, and

the judicious utilization of available bandwidth resources serve

as the driving forces enabling AI technologies within satellite-

based NTNs.

B. Potential Future Studies

In the preceding sections, we have observed how a multitude

of ML and DL approaches has played an important role in

shaping the trajectory of future NTN-enabled 6G networks.

Nonetheless, we have also encountered certain limitations

that enforce the requirement for exploring alternative, more

efficient methodologies. Furthermore, the integration of AI

into NTNs introduces a set of inherent challenges to be

addressed carefully. In this section, our attention shifts to these

prospective areas of future research, aiming to establish a

resilient framework for the forthcoming era of 6G networks

powered by AI techniques.

1) Interrelated Issues: Section V sheds light on the

interconnected nature of the various issues encountered in

NTNs. It is crucial to recognize that addressing a singu-

lar problem can serve as an initial step toward resolving

larger, more complex challenges inherent in TNTNs. However,

when transitioning these solutions into real-world networks,

it becomes imperative to acknowledge and account for the

intricate interdependencies among various aspects. An illus-

trative example of such interrelations lies in the dynamic
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nature of network load status following a user’s attachment

to a satellite. In this scenario, integrating resource allocation

strategies into the handover decisions can yield enhanced

network performance. MIMO systems can be also beneficial

for the single-user and multi-user cases for NTNs as in LTE-

Advanced [354]. By considering the broader context and

understanding how different aspects influence one another, we

can develop more holistic and effective approaches for real-

world NTN implementations.

2) Recurrent Learning Architectures: Presently, the major-

ity of DL algorithms deployed to tackle the time-varying

nature of NTNs in beam-hopping, resource allocation, network

slicing, etc. rely on feed-forward NNs. While these architec-

tures have proven successful in computer vision applications

such as image detection and classification, they may not

effectively capture the temporal behavior inherent in these

NTN problems. Unlike feed-forward networks, recurrent archi-

tectures possess the ability to capture and process temporal

dependencies within the problem domain. By leveraging

RNNs or other similar architectures, we can effectively model

and solve the corresponding NTN challenges in a more com-

prehensive and accurate manner. In particular, for dynamic

spectrum access and sharing approaches low complexity NN

architectures such as ESNs can be very useful for NTNs as

illustrated in [355], [356].

3) Online Implementation: One major limitation of the

current works in the domain is the limited consideration given

to online implementation and the associated computational

complexity when designing algorithms for various control

operations in NTNs. This oversight poses a significant hurdle

to the practical application of these algorithms in real NTNs as

many control decisions in NTN systems must be made in real-

time, and the use of complex deep feed-forward NNs becomes

impractical. To address this challenge, exploring alternative

options becomes imperative. One such option involves investi-

gating low-complexity architectures such as ESNs and ELMs

or combining them with traditional feedforward-NNs. These

low-complexity architectures offer a more viable solution

for online implementation, enabling the deployment of DL

algorithms in real NTN networks in a timely and efficient

manner.

4) Distributed Learning Models: In the context of inte-

grated satellite-terrestrial networks, the adoption of distributed

learning models can significantly enhance scalability. These

models involve distributing the training and inference

processes of machine learning algorithms across multiple

computing nodes, resulting in accelerated computation and

improved efficiency. Various distributed approaches, such as

data parallelism, model parallelism, ensemble learning, and

federated learning, offer promising solutions to address the

diverse challenges faced by NTNs in extended network envi-

ronments [357]. By leveraging these distributed approaches,

NTN systems can effectively harness the power of parallel

computing and collaborative learning to overcome constraints

and achieve optimal performance.

5) Control Feedback Design: One of the major motivating

factors for implementing feedback-based learning, such as RL

methods, in NTNs, is the inherent feedback system of the

current cellular networks. CSI information is readily available

for the BSs which can be helpful in network optimization

approaches. However, with the emergence of NTNs, new

challenges arise, necessitating the efficient design of feedback

mechanisms to minimize the overall overhead while improving

network performance. This consideration is crucial, as AI

approaches for addressing various issues may require similar

types of feedback. The utilization of combined feedback can

prove highly beneficial in optimizing network performance

and achieving efficient resource allocation, thus enhancing the

overall effectiveness of AI algorithms in NTNs.

6) Development in Miniaturization: The limited availabil-

ity of computational resources currently poses a challenge to

the onboard capability of satellites, especially when deploying

AI algorithms. However, the miniaturization of satellite com-

ponents and equipment has emerged as a solution to this issue.

By reducing the weight and size of equipment, miniaturization

enables the integration of more powerful processors and

larger memory devices within the limited space available

on satellites. This advancement in computational resources

greatly facilitates the deployment of AI algorithms, unlocking

new possibilities for satellite applications. Achieving miniatur-

ization in satellite technology requires innovations in material

science, efficient Integrated Circuit (IC) design, advance-

ments in IC fabrication technologies, System-on-Chip (SoC)

integration, and Micro-Electro-Mechanical Systems (MEMS)

design, among others. The development of miniaturization

is particularly crucial for NTNs, as it enhances the onboard

capability of satellites and enables the realization of advanced

technologies and functionalities in space-based systems.

7) Energy Efficiency: The launching and maintenance

of satellites require substantial power consumption, which

imposes limitations on the onboard capability of satellites.

Consequently, efficient energy system design becomes a crit-

ical criterion for NTNs. To address this, various aspects need

to be considered, including lightweight component design,

advanced power management techniques, efficient power con-

version, optimized propulsion system design, effective energy

storage systems, etc. By focusing on these factors, satellite

systems can achieve higher energy efficiency, which is essen-

tial for the successful deployment of advanced AI algorithms.

The performance of these algorithms relies on the availability

of computational resources, making energy efficiency a crucial

aspect to maximize the satellite’s capabilities within the given

power constraints.

8) Secured System Design: As highlighted in Section VII,

security concerns in NTNs can be highly significant, intro-

ducing new attack vectors and vulnerabilities. NTNs are

susceptible to a range of security attacks, including adversarial

attacks, data poisoning, DoS attacks, Fuzzy attacks, MiM

attacks, and more. These attacks have the potential to severely

impact network performance and compromise the integrity

and confidentiality of data. To address these challenges, it

is essential to design efficient intrusion detection and pre-

vention systems specifically tailored for secure NTNs. By

continuously monitoring a set of relevant network parameters

and detecting anomalies in the network’s behavioral patterns,

mitigation techniques can be promptly deployed to ensure
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optimal network performance and safeguard against potential

degradation caused by security breaches.

IX. CONCLUSION

NTN is considered the driver of ubiquitous, reliable, and

scalable 6G wireless networks. It adds new dimensions to

the existing traditional terrestrial communication systems by

providing connections to remote and isolated areas subject

to geographical constraints and offloading the primary links

during traffic peaks. However, diverse unique challenges

are accompanied by the deployment of NTN in existing

communication systems. The long propagation delay, high

Doppler effect, spectrum sharing, complicated resource allo-

cation, and fast and frequent handover are the major problems

associated with NTN deployment. Integration to existing

terrestrial networks presents a set of new problems such as

task offloading, network routing, network slicing, etc. to be

addressed in an efficient manner. The convergence of AI and

NTN allows for the building of sustainable AI-based Non-

Terrestrial Networks addressing many of these challenges.

Depending on the characteristics of the problem at hand,

various learning approaches can be employed. When dealing

with prediction and estimation problems, SL techniques appear

to be a more suitable choice. On the other hand, for tasks

involving closed-loop control, RL techniques show greater

promise. By tailoring the learning approach to the specific

problem, we can effectively leverage the strengths of each

technique and achieve optimal results.

However, the integration of AI into NTNs presents certain

challenges that need to be addressed. Both the industry and

research community are collaborating to ensure the success-

ful implementation of AI-based NTNs in next-generation

wireless networks. This includes the establishment of ML

testbeds specifically designed for satellite networks and the

adaptation of SDR-based OAI 4G/5G protocol stacks for

NTN applications. In order to realize satellite-based NTNs

in future 6G networks, several practical challenges must be

overcome. These challenges include addressing the constraints

of cost-limited onboard capabilities, managing the highly

time-varying nature of satellite networks, and mitigating the

effects of long propagation delays. It is important to consider

these interconnected issues and develop joint solutions to

enhance overall network performance. Furthermore, exploring

low-complexity and distributed learning architectures that

incorporate efficient control feedback mechanisms is essential

for enabling real-time, online implementation. Additionally,

ensuring the secure, compact, and energy-efficient design of

NTN platforms is integral to the successful deployment of

satellite-based NTNs in the 6G era.
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