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Revolutionizing Future Connectivity: A
Contemporary Survey on AI-Empowered
Satellite-Based Non-Terrestrial Networks in 6G
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Abstract—Non-Terrestrial Networks (NTN) are expected to be
a critical component of 6th Generation (6G) networks, providing
ubiquitous, continuous, and scalable services. Satellites emerge
as the primary enabler for NTN, leveraging their extensive
coverage, stable orbits, scalability, and adherence to interna-
tional regulations. However, satellite-based NTN presents unique
challenges, including long propagation delay, high Doppler shift,
frequent handovers, spectrum sharing complexities, and intricate
beam and resource allocation, among others. The integration of
NTNs into existing terrestrial networks in 6G introduces a range
of novel challenges, including task offloading, network routing,
network slicing, and many more. To tackle all these obstacles,
this paper proposes Artificial Intelligence (AI) as a promising
solution, harnessing its ability to capture intricate correlations
among diverse network parameters. We begin by providing a
comprehensive background on NTN and AI, highlighting the
potential of Al techniques in addressing various NTN challenges.
Next, we present an overview of existing works, emphasizing
Al as an enabling tool for satellite-based NTN, and explore
potential research directions. Furthermore, we discuss ongoing
research efforts that aim to enable AI in satellite-based NTN
through software-defined implementations, while also discussing
the associated challenges. Finally, we conclude by providing
insights and recommendations for enabling Al-driven satellite-
based NTN in future 6G networks.

Index Terms—Non-terrestrial networks (NTN), space-air-
ground integrated networks (SAGIN), artificial intelligence (AI),
machine learning (ML), deep learning (DL), 5G-advanced, 6G,
satellite, beam-hopping, handover, spectrum sharing, doppler
shift, resource allocation, computational offloading, network
routing, network slicing, channel estimation, security, open radio
access network (O-RAN), RAN intelligent controller (RIC).

I. INTRODUCTION

HE THIRD Generation Partnership Project (3GPP) has
Talready started the standardization towards the 5th
Generation (5G)-Advanced in Release 17 and 18 to facilitate
its worldwide deployment [1], [2]. 5G-Advanced provides
much higher data rates, lower latency, increased capac-
ity, and more efficient spectrum utilization than any of
its predecessors. It supports a wide range of applications
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encompassing all 5G use cases such as Ultra Reliable Low
Latency Communications (URLLC), massive Machine Type
Communication (mMTC), and enhanced Mobile Broadband
(eMBB) communication with different Key Performance
Indicator (KPI) requirements [3]. Nevertheless, future applica-
tions such as Augmented Reality (AR), Virtual Reality (VR),
Tactile Internet, Holographic Type Communication (HTC),
remote health and surgery, etc. require extremely high through-
put, low latency, high reliability, and ubiquity at the same time
which cannot be met with current technological standards [4].
Consequently, the next-generation global wireless standard,
namely, 6th Generation (6G) has become the current research
focus for the industry and research community [5].

6G is expected to provide an extremely high data rate
(peak data rate up to 1 Tbps and user-experienced data rate
up to 10 Gbps, around 100 times higher than 5G), very low
latency (in the order of ps), high reliability (around 100 times
better than 5G) and extreme coverage to support the diverse
set of future applications [6], [7], [8]. Due to the limited
coverage area and geographical constraints, it is not possible to
guarantee ubiquitous connectivity with existing terrestrial-only
network infrastructures. Non-Terrestrial Networks (NTNs),
networks involving space and aerial platforms, can provide
us with multicast opportunities over very large areas as well
as can serve users even in remote areas or during times
of natural calamities [4]. Furthermore, the launching and
maintenance costs for satellites have significantly decreased as
they are deployed at lower heights (typically around 600 km).
These satellites can provide much higher throughput and
lower latency compared to legacy satellites and potentially can
support different use cases of 6G. So NTN is considered to
become one of the major technological enablers of future 6G
networks visioning connectivity anywhere and anytime [4],
[9], [10], [11]. Tech giants such as SpaceX Starlink, Amazon
Kuiper, and OneWeb have already begun to invest billions of
dollars in this field, reflecting its massive potential for future
growth [12].

Although NTN presents numerous potential benefits for
the development of future 6G networks, it also entails sev-
eral challenges that need to be addressed, primarily due
to the unique characteristics of its mobility and propa-
gation environments [13], [14]. Due to the long distances
between the space-borne Base Stations (BS) and the ground
User Equipment (UE), the propagation delay is usually
higher in NTN environments. Additionally, high-speed air or
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space-borne platforms necessitate modifications to existing
handover and paging protocols, as well as introduce a signif-
icant Doppler shift in carrier frequencies. The large path loss
also increases the minimum power requirement for reliable
transmission, initiating the need for novel beam and resource
allocation strategies. Spectrum sharing in the same frequency
band with existing terrestrial or other services also requires
further study in order to avoid interference between terrestrial
and non-terrestrial users. Even though currently there are some
stand-alone satellite network deployments, the ultimate goal is
the convergence of terrestrial and non-terrestrial environments
for extreme network performance in 6G. [4]. This potential
integrated environment requires efficient computing, routing,
and slicing algorithms for meeting the expected KPI require-
ments of 6G.

Artificial intelligence (AI) is currently having a profound
and revolutionary impact on a multitude of industries, includ-
ing but not limited to healthcare, military, transportation, and
e-Commerce [15]. Al encompasses a wide array of smart
machines, while Machine Learning (ML) is a popular subset
of Al that allows machines to learn from large amounts of
data and make decisions without the need for explicit pro-
gramming [16]. Deep Learning (DL) is a special subset of ML
that studies Artificial Neural Networks (ANNs) which contain
more than one hidden layer, often implemented to simulate the
human brain [17]. DL is currently being leveraged in various
applications, such as computer vision, speech recognition,
and bioinformatics, outperforming human-level performance
in these particular domains. The cellular domain is still in
its infancy in terms of Al integration [18] compared to other
fields due to the complex and dynamic nature of wireless
networks. As an integral part of 6G networks, challenges
associated with NTN deployment provides an enticing field
for Al applications. However, while deploying algorithms in
a real environment, practical implementation difficulties may
arise to provide reliable vertical connectivity between the
ground and space networks. To reach optimal performance,
theoretical advancements in communication system design
must be complemented by appropriate Al solutions for NTN
integration into 6G.

A. Contribution

Most of the existing articles either focus on a discussion
of architecture and challenges associated with NTN or Al
approaches for wireless communications from a broader point
of view. Although some research articles also discuss the
potential research scopes for Al-powered NTNs to some
extent, those discussions are either generally not very com-
prehensive or do not capture the role of Al in NTN-integrated
6G networks in a complete manner. Also, the current research
efforts and practical complications related to Al-empowered
NTN-integrated 6G networks are not covered. This survey
article aims to provide a comprehensive survey into different
Al methods used to overcome the specific challenges of NTN.
To help our readers understand better, we also provide a
necessary relevant background discussion on NTN and its
challenges in the context of 6G. We also discuss different
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Al approaches and how they can help solve NTN challenges.
Additionally, we explore ongoing research efforts and the
difficulties of using AI methods in real integrated TNTN
setups in 6G. The main contributions of this article can be
summarized as follows:

1) We present a systematic survey of existing and relevant
research works in each research thrust to organize the
current research progress in these fields. This helps us to
get an insight into the current status and potential future
research scopes of different relevant research fields in
this domain.

2) We summarize the current Al testbeds for satellite
networks and potential integration efforts to current 5G
software-defined testbeds for implementing integrated
satellite-terrestrial networks.

3) We explore various practical complications associated
with applying Al approaches to NTN as future open
issues. This helps us access the maximum potential of
Al techniques while being mindful of the practical con-
straints of NTN integration into next-generation wireless
networks.

4) We provide insights and recommendations on various
aspects of applying Al techniques to satellite-based
NTNs for future 6G networks.

B. Paper Organization

The rest of the paper is organized as follows. In Section II,
we provide a compact overview discussion of NTN and its
platforms, use cases, architecture, and characteristics; and
discuss potential challenges associated with its deployment
in 6G. In Section III, we introduce different types of Al
approaches to provide a brief overview of relevant Al tech-
niques to solve various challenges associated with NTNs. We
then discuss the related surveys on Al-enabled satellite-based
NTNs empowering future 6G networks in Section IV. We
then summarize the existing Al approaches to address various
NTN challenges categorizing them into different NTN research
thrusts in Section V. Furthermore, We summarize the current
research efforts from the industrial and research community to
apply Al into satellite-based NTN in future 6G networks in
Section VI. We also discuss the technical challenges associated
with the integration of Al to NTNs in Section VII. Finally, we
provide a discussion on insights and potential future studies
for ensuring the proper Al-enabled satellite-based NTN in
future 6G networks in Section VIII. We illustrate the structure
of the paper showing the major components in Figure 1 for
better understanding. We also provide the list of acronyms in
Table I for the convenience of the readers.

II. BACKGROUND ON NTN

To understand the role of Al in enabling NTNs in 6G,
we provide a concise background discussion on NTNs and
the challenges associated with NTNs to realize them in 6G
in this section. First, we familiarize the readers with various
space and air-borne NTN components along with the general
architectures and use cases in 6G. We clarify that we focus
on satellite-based NTN while discussing NTNs for the rest
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Fig. 1. Structure of the paper.

of the paper due to their critical role in enabling 6G with
ubiquitous coverage, predictable trajectory, and scalability.
Then we emphasize on unique characteristics of NTNs which
pose new challenges for integrating them into existing ter-
restrial networks for 6G. Depending on the nature of these
challenges, we present the current research trends in this
domain in Section V by combining them with the Al
techniques discussed in Section III.

A. Definition

Non-Terrestrial Network (NTN) refers to any network
operating through the air or space-borne vehicle(s) for com-
munication [19]. This definition implies that two distinct types
of NTN platforms (space-borne and air-borne) can be utilized
for NTN at different heights which is illustrated in Figure 2.

1) Space-Borne Platforms: Space-borne platforms, such as
satellites, are deployed in space for communication [19].
They move around the Earth in specific orbits with varying

Learnings

angular velocities, relying on gravity to provide the necessary
centripetal force to maintain their orbits. The orbital period
of a satellite refers to the time required for the satellite
to complete one full revolution around the Earth. Due to
differences in orbital periods, some satellites may not be
visible to ground observers all the time. To characterize this,
another term is used to denote the duration of direct visibility
for a satellite. This is known as the horizon time, which
refers to the maximum duration during which the satellite is
within the line of sight of a given ground station or receiver.
Depending on their mobility with respect to the Earth, satel-
lites can be classified into two broad categories: Geostationary
(GEO/GSO) and Non-Geostationary (NGEO/NGSO) Earth
Orbit satellites. We discuss these two types of satellites below
and summarize their key features in Table II.
o Geostationary Earth Orbit (GEO or GSO) Satellites:
These satellites have an orbital period of 24 hours
which is the same as the time required for the Earth
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TABLE I
LIST OF ACRONYMS

Acronyms Definitions Acronyms Definitions

3GPP Third Generation Partnership Project MADRL Multi-Agent Deep Reinforcement Learning
5G 5th Generation MAP Maximum A Posteriori

6G 6th Generation MARL Multi-Agent Reinforcement Learning
AC Actor-Critic MC Monte Carlo method

ACO Ant-Colony based Optimization MDP Markov Decision Process

Al Artificial Intelligence MEMS Micro-Electro-Mechanical Systems
ANN Artificial Neural Networks MEO Medium Earth Orbit

AoA Angle of Arrival MiM Man-in-the-Middle

AoD Angle of Departure ML Machine Learning

AR Augmented Reality MLP Multi-Layer Perceptron

ARIMA Auto-Regressive Moving Average MMSE Minimum Mean Square Error

ARMA Auto-Regressive Integrated Moving Average mMTC massive Machine Type Communication
ATM Asynchronous Transfer Mode MNL Minimum Network Load

BS Base Station MSQ Maximum Signal Quality

CCI Co-Channel Interference MST Maximum Service Time

CDMA Code Division Multiple Access mULC massive Ultra-reliable low-Latency Communication
CG Coordinate Graph NGEO/NGSO Non-Geostationary Earth Orbit

CNN Convolutional Neural Network NN Neural Network

CSD Cyclo-Stationary Detection NOMA Non-Orthogonal Multiple Access

CSI Channel State Information NTN Non-Terrestrial Networks

CU Central Unit OAI OpenAirInterface

DBN Deep Belief Network OFDM Orthogonal Frequency Division Multiplexing
DcL Decentralized Learning O-RAN Open Radio Access Network

DDPG Deep Deterministic Policy Gradient OSI Open Systems Interconnection

DDQN Double Deep Q-Learning Network OSPF Open Shortest Path First

DL Deep Learning PCA Principal Component Analysis

DN Deconvolutional Network PG Policy Gradient

DoS Denial-of-Service PGM Probabilistic Graph Model

DP Dynamic Programming PNN Probabilistic Neural Network

DPG Deterministic Policy Gradient PSD Power Spectral Density

DQN Deep Q-Learning Network PSO Particle Swarm Optimization

DRL Deep Reinforcement Learning QoE Quality of Experience

DRN Deep Residual Network QoS Quality of Service

DRQN Deep Recurrent Q-Learning Network RC Reservoir Computing

DU Distributed Unit RAN Radio Access Network

ED Energy Detection RBM Restricted Boltzmann Machine

eMBB enhanced Mobile Broadband RF Random Forest

ELM Extreme Learning Machine RIC RAN Intelligent Controller

ESA European Space Agency RIS Reflective Intelligent Surface

ESN Echo-State Network RL Reinforcement Learning

EVD Eigen Value-based Detection RMS Root Mean Square

FCNN Fully Connected Neural Network RNN Recurrent Neural Network

FDMA Frequency Division Multiple Access RSMA Rate-Splitting Multiple Access

FL Federated Learning RSRP Reference Signal Received Power
FlexRIC Flexible RIC RSRQ Reference Signal Received Quality

GA Genetic Algorithm RU Radio Unit

GDM Generative Diffusion Model SA Simulated Annealing

GMM Gaussian Mixture Model SAGIN Space-Air-Ground Integrated Networks
GAN Generative Adversarial Network SARSA State-Action-Reward-State-Action
GNN Graph Neural Network SDMA Space Division Multiple Access
GEO/GSO Geostationary Earth Orbit SDN Software Defined Network

GNSS Global Navigation Satellite System SDR Software Defined Radio

GPS Global Positioning System SINR Signal to Interference and Noise Ratio
GRU Gated Recurrent Unit SL Supervised Learning

HAPS High Altitude Platform System SNR Signal to Noise Ratio

HARQ Hybrid Automatic Repeat Request SoC System-on-Chip

HIBS High-altitude International Mobile Base Station SOM Self-Organizing Map

HTC Holographic Type Communication SpL Split Learning

IC Integrated Circuit SVM Support Vector Machine

ICI Inter-Carrier Interference TDD Time Division Duplexing

IoT Internet of Things TDMA Time Division Multiple Access

1P Internet Protocol TNTN integrated Terrestrial and Non-Terrestrial Network
ISL Inter-Satellite Link UE User Equipment

ITU International Telecommunication Union UL Unsupervised Learning

KKT KarushKuhnTucker ULBC Ultra-reliable low Latency Broadband Communication
KNN k-Nearest Neighbor uMBB ubiquitous Mobile BroadBand

KPI Key Performance Indicator URLLC Ultra Reliable Low Latency Communication
LEO Low Earth Orbit V2X Vehicle-to-Everything

LoS Line of Sight VR Virtual Reality

LSM Liquid State Machine VSAT Very Small Aperture Terminal

LSTM Long-Term Short Memory WMMSE Weighted Minimum Mean Square Error

to complete a full rotation on its axis. As a result,
these satellites appear stationary from the ground and
are named Geostationary Earth Orbit (GEO or GSO)

Satellites. These satellites orbit on the Earth’s equatorial
plane at an altitude of about 35,786 km to maintain
this orbital period. Due to this high altitude, it has an
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TABLE I
KEY FEATURES OF DIFFERENT TYPES OF SATELLITES

Attribute GEO MEO LEO
Orbital height (km) 35786 2000-25000 200-2000
Typical diameter of | 1000 500 100

beam footprint (km)

Propagation delay (ms) | 270 94 12-25
Orbital period (hours) 24 12 1.5-2
Horizon time 24 hours 1-2 hours 5-10 minutes

extremely large beam footprint (typically the diameter
ranges from 200 to 1000 km) covering a pretty wide area.
However, it also incurs an extremely long propagation
delay (typically around 270 ms) [20] which makes it
infeasible for low-latency communications. These satel-
lites have been used in broadcasting services for a very
long time, but are not very suitable for low-latency
emerging applications.

e Non-Geostationary Earth Orbit (NGEO or NGSO)
Satellites: As the name suggests, these satellites orbit
around the Earth at a period lower than 24 hours, so
they are not stationary with respect to a ground observer.
As the orbital period is smaller, their angular velocity is
also higher but the altitude is lower compared to GEO
satellites. Depending on the heights, they can be divided
into two categories: Low Earth Orbit (LEO) and Medium
Earth Orbit (MEO) satellites. Typically they are deployed
at a height ranging from 200 to 2000 km for LEO and
2000 to 25000 km for MEO satellites. The horizon time
is much smaller for NGEO satellites due to smaller orbital

35000J_
km
GEO
Satellite
10000
km
MEO
Satellite
2000
km
LEO 500 km—+
Satellite
20 km—
HAPS
Airships ~ 10km
Ground

periods, for example, the LEO satellites deployed at a
height of around 500-600 km with an orbital period of
1.5-2 hours can have a horizon time of 5-10 minutes
depending on channel conditions. Due to smaller heights,
these satellites have a smaller beam footprint (diameter
ranges from 5 to 500 km) with a much smaller propa-
gation delay (typically around 20 ms for LEO satellites
and 94 ms for MEO satellites) [20] compared to GEO
satellites. With their proximity to Earth and lower cost
of launch and maintenance, these satellites, especially
the LEO satellites, have gained significant attention in
recent years. Their reduced propagation delay and path
loss make them an attractive choice for facilitating high-
speed data transfer and real-time communication, so as
to transform the future 6G connectivity.

2) Air-Borne Platforms: High Altitude Platform Systems
(HAPS) refer to air-borne platforms that can be used for
wireless communication. Airships, balloons, and airplanes are
the most prominent types of air-borne platforms in NTN. They
are viewed as air-borne counterparts of terrestrial base stations
serving as High-altitude International Mobile Base Stations
(HIBS) [21]. They usually operate at the stratosphere region
with an altitude of around 20 km and a beam footprint size
with a diameter of several km. Despite it having a lot smaller
propagation delay compared to space-borne platforms, it has
some additional challenges related to stabilization on air and
refueling.

While both satellites and airborne platforms can be utilized
in the development of NTNs, satellites are often considered
more critical for discussions related to NTNs. This is due
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to their global coverage, stable and predictable orbits, high
scalability, and the existence of international regulations that
govern satellites. As such, satellite networks comprise a
significant portion of future NTN-enabled communication
networks. Therefore, for the purposes of this article, we will
primarily focus on satellite-enabled NTNs in the context of
6G communication technology.

B. Role of NIN in 6G

NTNs are anticipated to be a major component of 6G
communication systems, providing a wide array of vertical
services, such as transport, health, energy, automotive, public
safety, and many more. The International Telecommunication
Union (ITU) has identified three major categories of appli-
cations for 5G that are based on network performance and
user Quality of Experience (QoE): (1) eMBB: extremely high
bandwidth with moderate latency requirements, for example,
multimedia applications; (2) mMTC: low power and band-
width and no strict delay requirements, for example, IoT; and
(3) URLLC: low latency and high-reliability requirements, for
example, remote medical surgery. However, future applications
such as AR, VR, Tactile Internet, HTC, intelligent transport
and automation, multi-sense communication, global ubiquitous
connectivity, etc. require extremely high throughput, low
latency, high reliability, and ubiquity at the same time which
cannot be met with current 5G standards [4]. Based on the
characteristics, these new applications are classified into three
more new groups,

1) Ubiquitous MBB (uMBB): High throughput and extreme
coverage requirements, combining both eMBB and mMTC.
Examples: Digital twins, pervasive intelligence, global ubig-
uitous connectivity, etc.

2) Ultra-Reliable Low Latency Broadband Communication
(ULBC): High throughput and low latency requirements, com-
bining both eMBB and URLLC. Examples: HTC, AR, VR,
Tactile Internet, multi-sense experiences, etc.

3) Massive Ultra-Reliable Low-Latency Communication
(mULC): Extreme coverage and low latency requirements,
combining both mMTC and URLLC. Example: Vehicle-to-
Everything (V2X), intelligent transport and automation, etc.

The principal strength of NTNs lies in their extreme cov-
erage. As discussed in Hexa-X project [22], a flagship for
B5G/6G vision and intelligent fabric of technology enablers
connecting human, physical, and digital worlds, the vision
of enabling 6G networks towards provisioning service every-
where and always through NTN is presented. Due to its
extreme coverage, satellites can reach underserved or unserved
areas such as islands, remote locations, ships, airplanes, etc.
where terrestrial communication is either difficult or impos-
sible to some extent. In times of natural disaster, terrestrial
links can be unavailable, in which case users can benefit
from the reliable backup of non-terrestrial links. This ensures
resilient and robust communication with global connectivity
which is considered to be one of the main features of future 6G
networks. With the advancements in antenna techniques and
miniaturization, high throughput satellites are also deployed
in low earth orbits. Consequently, current 5G use cases
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such as mMTC and eMBB as well as future 6G use cases
such as uMBB can be the most important use cases for
NTNs. Furthermore, the considerably low latency for LEO
satellite systems makes the satellite useful even for low-latency
applications. However, 5G URLLC or 6G new use cases
with extremely low latency may not be directly applicable for
NTN use cases. Nevertheless, NTNs can still be beneficial
for these use cases in conjunction with terrestrial networks
to improve network efficiencies and reliability. Combining all
these, satellites are expected to be one of the major driv-
ing forces toward revolutionizing the future 6G applications
extensively.

C. General Architecture

Satellites can employ a transparent payload configura-
tion, acting as a relay that performs RF filtering, frequency
conversion, and amplification to facilitate communication
between UEs and ground stations. Alternatively, they can
utilize a regenerative payload configuration, which involves
payload processing after modulation and coding, and act as
base stations with additional onboard processing capabilities.
Besides, the satellites can provide backhaul support for the
core networks of terrestrial networks. The general architecture
for a satellite-based NTN for the above-mentioned different
configurations as per release 16 and 17 is discussed below
[20], [23]:

1) Satellite: Satellite is the key component of this archi-
tecture. It carries the payload between the UE and
the ground station as shown in Figure 3. In the case
of a transparent payload, it works as a simple relay
that transmits the payload after RF filtering, frequency
conversion, and amplification to the ground station (or
UE). Conversely, in the case of a regenerative payload,
it processes the payload after modulation and coding on
top of these actions, so it works like a BS that needs
onboard processing capabilities. Also as per [23], satel-
lites can provide backhaul by providing a connection
between ground BS and the core network as illustrated
in Figure 3.

2) Gateway: Gateway refers to the ground station that
connects NTN to the public data network. In the case of
a transparent payload, the ground terminal needs to be
equipped with a terrestrial base station. In the case of a
regenerative payload and satellite backhaul support, the
ground terminal only relays the received information to
the core networks.

3) User Equipment (UE): User equipment is either hand-
held or Very Small Aperture Terminal (VSAT) within
the coverage area of the satellite.

4) Feeder Link: Feeder link connects a satellite to the
gateway.

5) Service Link: Service link connects UEs to the serving
satellite.

6) Inter-Satellite Links (ISLs): ISLs provide connectivity
between multiple satellites deployed in NTN so that a
payload can be delivered to other cells.
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Fig. 3. General communication architecture for satellite-based NTN.

D. Fundamental Characteristics of NTN

NTN presents us with several potentially promising use
cases for the next generation of wireless networks as discussed
in Section II-B. However, as can be seen from Section II-A,
it also has a number of unique characteristics due to the
large distances between satellites and ground transceivers, the
high mobility of NGEO satellites, and the proposed frequency
range for operation. In this subsection, we will delve into
these features of NTN and discuss their impact on network
performances and procedures.

1) Target Frequency Band: The allowable frequency range
of operation is 0.5-100 GHz [24]. Traditionally, six major
frequency bands within this range are used in satellite com-
munications, which are listed below:

1) L-Band (1-2 GHz): Global Positioning System (GPS)
carriers and satellite mobile phones, e.g. Iridium, use
this band.

S-Band (2-4 GHz): This frequency band is used for
weather radar, marine radar, etc. satellite communica-
tions.

C-Band (4-8 GHz): Primarily used for satellite television
broadcasting.

X-Band (4-8 GHz): Primarily used in military commu-
nications.

Ku-Band (12-18 GHz): Primarily used for satellite
broadcasting services.

Ka-Band (26-40 GHz): This frequency band is used
for high-speed data transmission, including broadband
Internet access via communication satellites.

However, as per 3GPP, currently, two frequency bands
(S and Ka-band) are targeted in particular for integrated
TNTN environments considering performance and regulatory
concerns [20]. The two target frequency bands are:

e S-Band: The downlink frequency band is 2170-

2200 MHz and the uplink frequency band is
1980-2010 MHz.

2)

3)
4)
5)

0)

e Ka-band: The downlink frequency band is 19.7-
21.2 GHz and the uplink frequency band is 29.5-30 GHz.

2) Propagation Delay: Propagation delay is the time
duration taken for a signal to reach its destination. For com-
munication signals, we can calculate the propagation delay for
a signal by using the equation: ¢t = % where d is the distance
between the source and destination and ¢ = 3x 108 m/s is the
speed of light. Considering the speed of light as a constant,
we observe the propagation delay for a signal is proportional
to the propagation distances. Satellites are located very far
from the surface of the earth as discussed in Section II-A.
Consequently, the propagation delay is going to be extremely
large for NTNs. The GEO, MEO, and LEO satellites can
have a one-way propagation delay of about 270, 94, and
20 ms respectively as shown in Table II. These values are
much larger, especially for GEO and MEO cases compared to
conventional terrestrial networks, which generally have a very
negligible propagation delay of around a few ps [20]. This
extended propagation delay has an effect on different network
procedures and performances for communication systems.

3) Propagation Loss: The propagation loss, or path loss,
refers to the reduction in power density that an electromagnetic
signal experiences as it travels through space. The most
significant component of this path loss is the free space
path loss, which is proportional to the distance between the
source and destination and the frequency of the signal [25].
For NTNs, this free space path loss is much higher (around
60-120 dB) than it is for terrestrial networks, due to the greater
distances between satellites and the use of higher carrier
frequencies. In fact, the Ka-band is not suitable for GEO
satellites, as it does not meet the minimum link budget for
them. The basic path loss component also includes shadow
fading [26], as with traditional terrestrial networks.

In addition to that, there is attenuation due to atmospheric
gases that depends on frequency, elevation angle, altitude
above sea level, and water vapor density [27]. Another
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important component is attenuation due to rain and fog, which
is typically significant for frequencies above 6 GHz [28].
Additionally, scintillation corresponds to rapid fluctuation
in amplitude and phase of the propagating signal in the
ionosphere (for Sub-6 GHz) and troposphere (for above
6 GHz) [29]. Depending on different scenarios, either flat
fading based on ITU two-state model [30] or fast fading [20]
can be considered. The average propagation loss for different
types of satellites in different frequency bands is illustrated in
Figure 4. This high path loss necessitates the need for efficient
power allocation strategies in NTN.

4) Moving Base Stations: As discussed in Section II-C,
for regenerative payloads, satellites can be used as base sta-
tions for improved network performances. The terrestrial base
stations are located at fixed locations. As the GEO satellites do
not change their relative positions with respect to the ground
terminal, they appear static in nature with respect to the earth’s
surface, so the scenario is similar to terrestrial ones. However,
the scenario is very different for NGEO satellites where they
need to maintain a lower height and higher angular velocity
compared to GEO satellites as discussed in Section II-A, so
they do not appear static from the earth’s surface. Due to the
dynamic nature of NGEO satellites, they turn into moving base
stations in case of regenerative payloads. Due to this high-
speed movement of NGEO satellites, different mobility issues
arise for NTN platforms.

5) Coverage Area: One of the most important features of
the satellites is the large beam footprint associated with them
due to their long distances from the earth’s surface. This
enables the network coverage of very large areas compared
to the coverage area of terrestrial counterparts. It provides
us with ubiquitous network coverage including remote, even
isolated areas. However, this also creates the necessity for
modifications in existing timing and synchronization proce-
dures for conventional terrestrial networks. The cell area is
much larger, so the UEs situated at the farthest side of the cells
experience a larger delay compared to the UEs situated closer
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to the satellites [20]. So the timestamps for different network
procedures need to be modified according to the distances of
the users as we will see in the next subsection.

E. Challenges Associated With NTN

NTN offers a range of unique features due to the large
distances between the transceivers and the high mobility of
NGEO satellites, as outlined in Section II-D. These features
open up possibilities for new use cases, taking advantage of the
extensive coverage offered by the satellites. The high mobility
of the satellites also allows for the deployment of satellites
across the globe to provide global network coverage. However,
NTN also presents a number of new challenges that must be
tackled due to these characteristics, which are discussed in
detail below:

1) Channel Estimation: In wireless communications,
Channel State Information (CSI) refers to the information
which represents the state of a communication channel
between the transmitter(s) and the receiver(s); the process of
obtaining this information is known as channel estimation. By
having access to CSI, it is possible to adjust transmissions
to the current channel conditions, which is essential for
achieving reliable communication with high data rates in
multi-antenna systems with effective channel resources and
interference management. There are numerous advanced
approaches, such as Maximum Likelihood estimation and
Minimum Mean Square Error (MMSE) estimation, for
effective channel estimation in traditional terrestrial cellular
networks. Nevertheless, these methods are not well-suited
for NTN, particularly for LEO satellites due to the inherent
time-variant nature of the satellite communication channels.
LEO satellites usually move from horizon to horizon in
approximately 5-10 minutes, so a UE remains within the
coverage of a specific LEO satellite for a very short time
period. Furthermore, the propagation delay for satellite
networks, especially in the case of GEO satellites, is
considerably larger (250 ms RTT) in comparison to general
terrestrial networks. Therefore, the CSI estimated by the LEO
satellites can be outdated [31]. Because of these reasons, the
CSI estimation in NTN necessitates new efficient techniques
in addition to the traditional terrestrial estimation methods.

2) Mobility Management: Since an NGEO satellite oper-
ates at a lower altitude, the coverage area of each
NGEO satellite is smaller than that of a GEO satellite.
Typically around 5-20, NGEO satellites form complex mega-
constellations to sustain global coverage across the earth. The
NGEO satellite needs to move at a much higher speed than
the earth’s rotational speed (can be up to around 7.8 km/s)
to get the necessary centripetal force to move around the
earth at that low altitude. As a result, these satellites typically
orbit around the earth pretty fast (usually within around
2-10 hours) as discussed in Section II-A. This quick orbital
motion poses a great challenge for integrating NGEO satellites
into traditional wireless communication systems. Due to the
smaller orbital period, any specific terrestrial UE can be only
visible to an NGEO satellite for a very short span of time,
typically several minutes. So the UE needs to undergo multiple
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handovers within a short span of time interval regardless
of its mobility [14]. If the satellite covers an area using
multiple spot beams, the scenario is worse because the spot
beam is much smaller compared to a total coverage area of
an NGEO satellite. So the UEs need to through multiple
(beam) handovers within a few minutes, even when they are
stationary, for seamless continuation of data sessions. This
frequent handover phenomenon in NGEO satellite networks
creates a lot of overhead in communication channels, leading
to an overall degradation in network performance.

3) High Doppler Shift: Doppler shift is the shift in the
signal frequency due to the motion of the transceivers. In
the case of NGEO satellites, satellites are moving at a very
high speed under a specific constellation. Due to this relative
motion between UEs and satellites, Doppler shift happens in
the original signal frequency. Due to frequency offsets, UEs
tune to different carrier frequencies than the original carrier
frequencies. So the frequency synchronization is lost, and the
UEs may interfere with the other users. This is known as Inter-
Carrier Interference (ICI) between multiple UEs. Generally,
even for the high mobility scenarios in terrestrial networks, the
frequency shift is pretty negligible, and so is the Doppler shift.
However, the frequency offset is pretty significant in NTN
due to the much higher speed of the NGEO satellites. The
Doppler shift value mainly depends on the carrier frequency
and height of the satellites. For NGEO satellites operating
at Ka-Band, the Doppler shift can go from 225 kHz to
even 720 kHz [20] depending on the heights. This can cause
significant ICI among NTN users which requires efficient
strategies for compensation of the Doppler effect.

4) Resource Management: Spectrum and power are the
two fundamental resources for any communication system.
In NTN, the allocation of these two resources becomes an
even more complex problem due to the high path loss and
limited spectrum availability. As discussed in Section II-D,
the path loss associated with Non-Terrestrial Networks is much
higher compared to terrestrial networks. To correctly decode
the transmitted symbols from the received signals, the received
signal needs to meet the minimum RSRP requirement. That
means the transmitted signal power needs to be much higher
(typically at least 10 times the terrestrial transmitted signals)
than terrestrial signals. This poses a great obstacle for tradi-
tional UEs as they have power limitations. Furthermore, the
target frequency bands as discussed in Section II-D for NTN
are limited. To support a large number of satellite UEs, this
spectrum resource appears to be scarce in NTN systems. So
efficient resource (spectrum and power) allocation strategies
are needed for integrating NTN into terrestrial networks.

5) Spectrum Sharing: As discussed in Section II-D, the
S-Band and Ka-Band are the target bands for NTN. On top
of this limited spectrum allocation, we have interference from
terrestrial users in these bands. In S-Band, we already have
existing terrestrial communication from 4G LTE devices. With
the advent of mm-wave technology, terrestrial communication
is also using the Ka-band in 5G. So the satellite users
will suffer from co-channel interference with the terrestrial
users in both bands. To avoid this interference, we have to
come up with efficient spectrum-sharing techniques to put
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the interference below a certain threshold ensuring proper
decoding of the received signals.

6) Effect on Network Procedures: Timing advances ensure
synchronous uplink transmissions for all UEs. The UEs can
be located at different distances from the gNB, so there is a
differential propagation delay between different UEs. If the
uplink reception is not synchronized, the gNB needs to make
sure the allocation of resource blocks to a specific UE does
not include the resource blocks already in use by other UEs,
which is inefficient in terms of resource allocation. Due to
the long propagation delay, the TA is much larger than the
transmission time slots in NTN compared to NR. Also due
to the mobility of LEO satellites, the delay is time-varying
and TA needs dynamic updates for proper uplink alignments.
The other processes affected by the long propagation delay are
Random Access, Hybrid Automatic Repeat Requests (HARQ)
procedures, etc [20]. These procedures need to be modified
properly to compensate for the long propagation delay.

7) Network Aspects: On top of all these challenges, inte-
gration into existing terrestrial networks comes with several
open research issues to be addressed. Computational offload-
ing, which involves transferring the computational burden to
satellite networks for supporting devices with low computing
power, particularly in IoT applications, gets complicated due
to extended propagation delay and highly mobile NGEO satel-
lites. Network routing has been studied for a long time, and
network slicing has been discussed since the implementation
of 5G. However, with the emergence of NTN, the integration
of terrestrial networks calls for research in this area with new
effective strategies. The ever-changing network topology of
mobile NTN platforms makes it challenging to solve these
problems in a complex environment.

Key Takeaways: We note that satellite-based NTNs can
be extremely useful to provide ubiquitous connectivity, ser-
vice continuity, and extreme reliability for diverse future
6G applications. Nevertheless, the extreme nature of the
satellite networks, e.g., long distance between transceivers,
high mobility for NGEO satellites, spectrum sharing with
existing services, and high propagation loss, etc. impose a
highly challenging environment to address for the research
community. These challenges also open a new door for Al
applications to move toward the future 6G revolution. In the
following section, we discuss how Al can be incorporated so
that we can address the issues for potential TNTN integration
for future 6G networks.

III. AI AND ITS RELEVANCE TO NTN CHALLENGES

Al refers to the simulation of human intelligence processes
(e.g. visual reception, speech recognition, computer vision,
etc.) by machines, especially computer systems. This
human-level cognitive ability is achieved through either
some predefined algorithms or learning from data-based
approaches [15]. Many practical systems are very diverse and
complex. The rule-based approaches are not very feasible for
these systems because of an enormous number of scenario
possibilities. As a result, the learning-based approaches show a
lot more promise compared to predefined approaches in these
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types of real systems. As our focus for this paper is mostly
on NTN which has an extremely complex and time-variant
topology, we focus on learning-based approaches when we
consider Al In this section, we give an overview of these
approaches to get an intuition of how these approaches can be
useful in solving NTN issues discussed in the next section.

A. Machine Learning (ML)

Machine Learning (ML) is a special subset of Al approaches
where machines learn algorithms to perform a task by gen-
eralizing from past experiences or historical data without
being explicitly programmed for it [32]. The performance
of human intelligence processes can be improved with each
iteration evolving through new feature extractions in ML
approaches. Generally speaking, each ML approach has three
distinctive features, namely task, performance measure, and
experience [33]. A machine is first assigned to learn to perform
a specific task. It starts with a model with an initial set
of random parameters. Then at every iteration, the model is
recalculated based on some performance measures, essentially
representing the learning process. Thus utilizing experiences,
it can learn how to perform the task properly which is the
main goal of ML approaches.

A generic ML model works in three phases utilizing various
components [16] - Pre-Training Phase, Training Phase, and
Testing Phase. We discuss the fundamental components of
these three phases as shown in Figure 5 below:

1) Pre-Training Phase: The Pre-Training Phase includes
the choice of learning approach along with the necessary
model initialization. The selection and design of the learning
approach greatly depend on the nature of the problem for
the learning systems. We show in the next few subsections
different learning strategies for different problems. Each ML
model generally requires some initial set of parameters and ini-
tialization that need to be carefully tuned to achieve expected
performances.

2) Training Phase: After setting up the preliminary model
with initialization, the most important phase — training begins.
The training data is provided as input to the initial model.
Typically the raw data collected for a specific problem may
not be properly structured to be used for the model. Moreover,
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these data may contain redundant and unnecessary information
which is not beneficial for learning the model. Consequently,
data needs to be preprocessed in a suitable manner to have
good performance. The features also need to be chosen in such
a way that they can capture the correlation for empowering
the learning process. The output of the model is fetched
for performance evaluation. Based on the feedback from the
evaluators, the model is adapted to improve its performance.
This whole learning process is known as ‘training’.

3) Testing Phase: After the training, we have a trained ML
model based on our provided data. This model can be used
to later evaluate in the real environment. Similarly, as training
data, testing data can be generated and preprocessed for
evaluation. The performance evaluator provides the accuracy
of the model using the testing data as inputs. This whole
process is known as ‘testing’. In the case of offline learning,
the testing phase starts once the training is done. On the other
hand, in the case of online training, the testing is generally
executed in a parallel manner with training.

B. Offline vs Online Learning

Depending on the training approach, learning can be either
offline or online. In the case of offline training, training data
is generated in the pre-training phase all at once and can be
used to train the model. In this case, training continues until
some predefined number of iterations or some constraints are
met. In the case of online training, training data is generated
in an incremental manner instead of being generated all at
once. So the difference between the training and testing phases
is blurred as discussed in Section III-A. This specifically
suits the fast-changing environment like wireless networks and
provides benefits in terms of scalability, adaptability, and real-
time learning.

C. Deep Learning (DL)

In complex real-world problems, feature extraction can turn
out to be extremely challenging using generic ML models.
There may be hundreds of parameters that need to be learned
and the outputs may not be linearly correlated to the inputs. So
general ML models may not provide satisfactory performance
in learning these problems. To facilitate mapping outputs to
inputs, Neural Networks (NNs) [34] are widely used in ML
frameworks. With the availability of a large amount of data,
NN have emerged as a key technology to be used in ML in the
recent past. The learning process can be largely benefited from
the introduction of NNs to deal with complicated large-scale
problems. This learning process involving NNs to estimate
the models is known as Deep Learning (DL) [17] which is a
special important subset of ML.

NNs are inspired by the biological neural networks in the
brain, more specifically the nervous system. To mimic the
operation of the brain, the NNs are composed of multiple
layers where each layer consists of multiple neurons followed
by an activation function. Generally, the neurons in one layer
are connected to the neurons in the adjacent layers. The
connecting edges have weights that represent the relationship
between the neurons. Each layer output can be viewed as some
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intermediate decisions which eventually result in the final out-
put values. The weights are generally trained through a number
of iterations using backpropagation algorithms [35]. Generally,
the cost function associated with the model to calculate the
difference between the predicted and actual outputs is not very
simple, so we use different numerical methods like Gradient
Descent [36], Stochastic Gradient Descent [37], Mini-Batch
Stochastic Gradient Descent [38], Newton’s method [39] etc.
and so on to estimate the gradients of the cost function
with respect to corresponding weights. At each iteration, the
weights are updated by an amount based on these calculated
gradients and a predefined learning rate. As we move towards
the gradient descent direction, it helps us to reduce the cost
at every iteration. In this manner, we can map the inputs to
outputs through NNs.

D. Major Learning Paradigms

Depending on how an algorithm is being trained and on
the basis of the availability of the output for training, learning
approaches can be classified mainly into three categories:
Supervised Learning (SL), Unsupervised Learning (UL), and
Reinforcement Learning (RL). A short overview of different
types of learning approaches is shown in Figure 6. These
approaches are discussed below:

1) Supervised Learning (SL): In an SL model, a training
dataset containing a set of features as inputs and corresponding
current outputs is provided to the model. The model with
an initial set of parameters is trained through a number of
iterations for mapping inputs to outputs. As the output label
is clearly defined, the model can improve its performance by
comparing its predicted outputs with the actual outputs [40].
SL problems can be broadly classified into two categories
depending on the type of output labels: regression and clas-
sification problems. Regression [41] is a statistical method
that investigates the relationship between a dependent (target)
variable to one or more independent (given) variables. In this
method, the functional mapping between inputs and outputs is
estimated by minimizing the error between the predicted and
actual outputs. Here the output label can be continuous. In
classification, the output labels correspond to distinct classes
arising in computer vision, image classification, etc. Generally,
classification problems are solved by using probabilistic clas-
sifiers to map output classes from inputs. To train complex
SL problems, NNs are used to learn complicated functional
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mapping between inputs and outputs. We discuss the major
ML and DL approaches in the context of SL problems below:

ML Approaches: There are a number of SL algorithms to
train the model. Linear regression [42] focuses on regres-
sion problems, whereas logistic regression [43] focuses on
classification problems. Decision tree is used in classification
problems by forming a tree-like structure to learn the best
split at every node level based on a statistical measure
like information gain [44]. The classification starts at the
root node and traverses down along the branches based on
intermediate decisions till the leaf nodes which represent the
final classification decisions. Naive Bayes Model [45] is a
form of a simple probabilistic classifier that uses the Bayesian
Theorem to decide the classes under the strong assumption
of feature independence. It is very useful, especially in high-
dimensional classification problems. Support Vector Machine
(SVM) [46] is another important type of classifier that decides
the splitting hyperplane between different classes by maxi-
mizing the distances between the nearest data point (in both
classes) and the hyperplane.

DL Approaches: Different DL approaches are also proposed
in the literature to tackle complicated SL problems effectively.
Perceptron [47] is one of the first NN architectures that have
been proposed. It is a single-layer NN that can do binary
classification like logistic regression. The main difference is to
introduction of a simple activation function (step function) as
a first step to more complex and advanced architectures. The
simplest multi-layer NN architecture is the Fully Connected
Neural Networks (FCNN) (Figure 7). This is also known as
Multi-Layer Perceptron (MLP). It has multiple hidden layers
between the input and output layers without any back loops.
As the name suggests, all the neurons between two adjacent
layers are connected to each other. Extreme Learning Machine
(ELM) [48] is a very special type of NNs where the neurons
are randomly connected and the training is done one-shot
using least square fits. Another different type of NN is the
Deep Residual Network (DRN) [49] with extra connections
passing input from one layer to a later layer as well as the next
layer. There are also Probabilistic Neural Networks (PNN) [50]
which can recognize the underlying pattern and generate the
probability distribution function for different classes.

Convolutional Neural Networks (CNN) [51] is an important
type of NN that can take multidimensional inputs like images
and classify them with great accuracy by discovering spatial
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features (Figure 8). The CNNs are composed of convolutional
layers and subsequent pooling layers. The convolutional layers
divide the whole input into smaller blocks and scan through
them to learn the different features. The idea is to exploit
the high correlation among neighboring cells with reduced
complexity. A pooling layer is used to simplify this extraction
process by getting rid of redundant features. Often CNN
is accompanied by an FCNN to take care of nonlinearity
and generate final classification results. A counterpart of
CNN is the Deconvolutional Network (DN) [52] which takes
the classes as inputs and generates CNN input features by
comparing them with actual CNN inputs.

Another important type of NN is Recurrent Neural
Networks (RNN) [53] with back loops. So the neurons in a
layer are not only connected to previous layer neurons but
also can be connected to the neurons from the subsequent
layers. (Figure 9) This allows it to capture temporal correlation
among different layers and can be useful where decisions
from past iterations or samples can influence current ones.
However, they suffer from vanishing gradient issues due to
long-term temporal dependencies [54]. To tackle this issue
more sophisticated architectures like Gated recurrent units
(GRU) [55] and Long-Term Short Memory (LSTM) [56] with
special memory cells and gates are introduced. Reservoir
computing (RC) [57] is a low training complexity RNN
framework for computation where the inputs are fed into a
fixed and non-linear system, known as a reservoir, and then
mapped into outputs from the reservoir neurons. Liquid State
Machines (LSMs) are examples of RCs where the neurons
are randomly connected receiving time-varying inputs. Echo-
state networks (ESNs) are also a type of RC that uses a
sparsely connected hidden layer (reservoir) with typically 1%
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connectivity. The connectivity and weights of hidden neurons
are fixed and randomly assigned.

Another significant advancement in deep learning architec-
ture, known as transformers, holds immense promise in the
development of intelligent systems, particularly in communica-
tion environments. The transformer is a sequence-to-sequence
neural network model comprising both an encoder and a
decoder module, each with an identical architecture [58]. To
streamline the input and output sequences, embedding and
positional encoding layers are employed. Both the encoder and
decoder primarily consist of a self-attention sub-layer and a
position-wise sub-layer, with an additional masked attention
sub-layer in the decoder. Each sub-layer is complemented by
a residual connection and normalization module, facilitating
the capture of long-range dependencies within the input data
through self-attention.

2) Unsupervised Learning (UL): In UL, a raw unlabeled
dataset is provided to discover existing patterns and fea-
tures [59] using some statistical learning approach. This is
very useful when the data is not labeled. The algorithms find
the underlying structure of the data and predict the outputs
by adapting the model. Here the classes are not explicitly
stated, so the classes need to be generated based on the
distribution of input features in multi-dimensional spaces. It
can be even used for generating labeled data to transform
the original problem into an SL problem, which is usually
easier to solve. Furthermore, clustering is another important
UL problem where the model outputs different clusters based
on the inherent pattern of data distribution. Dimensionality
reduction can be also classified as a UL problem as it reduces
the state space of the feature vectors in a general ML setup.

ML Approaches: There are a number of unsupervised
learning algorithms in the literature. Principal Component
Analysis (PCA) [60] is primarily used for dimensionality
reduction of a high dimensional dataset. It reduces the number
of correlated features converting them into a set of uncorre-
lated features, which are also termed principal components,
using orthogonal transformation of basis vectors. Reducing the
dimensions of inputs also reduces the number of features to
be learned, which later can be leveraged in SL techniques.
It is sometimes not considered an UL technique, but rather a
preprocessing technique for data analysis with reduced dimen-
sions. In Probabilistic Graph Models (PGMs), the probabilistic
relationship between random variables is modeled through a
graph [61].

K-means Clustering [62] divides all the data points into K
clusters in which each data point belongs to the cluster having
the nearest mean. The mean of the data points in a particular
cluster defines the center of the cluster. Another variant of
K-means Clustering is called K-medoids Clustering where the
centralmost data point of a cluster is defined as the center of
the cluster [63]. Various mixture models, such as the finite
mixture model, Gaussian Mixture Model (GMM) [64], etc.
are also used for clustering. Hierarchical clustering can cluster
data into a hierarchy of groups without predefining the number
of clusters. It also comes with increasing computational
costs compared to other clustering approaches. k-Nearest
Neighbours (KNN) [65] algorithm determines the k-nearest
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neighbors for all the data points of an unknown feature vector
whose class is to be identified.

DL Approaches: Generally speaking, autoencoders [66] are
used to help reduce the noise in data. In an autoencoder,
first, we encode a high dimensional input, then decode it
to reconstruct the input at the output again (Figure 10). The
intermediate hidden layer neurons represent a compressed
representation of the inputs getting rid of irrelevant and noisy
components. Some other variations of this architecture are
variational [67], noisy [68], and sparse [69] autoencoders.
In variational autoencoders, the compact representation of
data is used to generate new data points sampling from the
latent space. In sparse autoencoders, the loss function is
also expanded by adding another term called sparsity penalty
regularization term for encouraging sparsity in the learned rep-
resentations. In denoising autoencoders, robust representations
are learned from the noisy input data.

Deep Belief Networks (DBNs) [70] is a probabilistic
generative graph model composed of hierarchical layers rep-
resenting feature vectors. Here the top layers create undirected
symmetric connections among them forming an associa-
tive memory. Greedy layer-wise training can be used for
DBNs [71]. Two symmetric DBNs can be extended to the
structure of deep autoencoders for efficiently decoding the
feature vectors [72]. To use the feature extraction capability
CNNs for UL, a combination of CNN and DBN is used in [73].
Hopfield NN [74] is a cyclic recurrent NN architecture where
all the nodes are connected to each other. This provides an
abstraction of circular shift register memory to form a global
energy function and finding clusters without a supervisor.
The Boltzmann Machine is another type of recurrent NN that
has a stochastic symmetric recurrent architecture [75]. As the
convergence rate is generally slow for these NNs, a variant
of this, Restricted Boltzmann Machine (RBM) is designed
to learn the probability distribution over input data but in a
layered manner [76].

In UL, competitive learning approaches, such as Self-
Organizing Maps (SOMs) [77], each neuron competes to
represent an input subset. Here a single neuron from a
group of output neurons is activated while the other neu-
rons adjust their individual values in regard to input data
distribution. Generative Adversarial Networks (GAN) [78]
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consist of any two networks, with one generating data
(generative network) and the other judging the generated
data (discriminating network). The prediction accuracy of the
discriminating network is then used to evaluate the error for
the generating network. This creates a form of competition
between the discriminator and the generator to get better in
their corresponding tasks. We can also use ensemble learning
methods [79] comprising multiple learning methods for better
performances.

Generative Diffusion Models (GDMs), as introduced
in [80], represents a recent breakthrough in UL leveraging
DL techniques, drawing inspiration from the principles of
thermodynamic diffusion. GDMs have gained widespread
recognition due to their remarkable ability to generate high-
quality data and simple implementation procedures. In contrast
to GANs, GDMs employ a denoising network that iteratively
converges to an estimate of the real sample. This model
works in two distinct phases: the forward and reverse diffusion
processes [81]. In the forward diffusion phase, Gaussian noise
is gradually introduced through a series of steps to create
the target input for the denoising network. Subsequently, the
denoising network is trained to reverse the noise effect for
generating the original content.

3) Reinforcement Learning (RL): In RL, an agent learns to
behave in a particular environment by performing thousands
of actions and getting rewards or penalties based on those
actions [82]. This behavior (formally known as policy) is
defined by the set of actions the agent learns from its expe-
riences. The environment is defined by some mathematical
models, the most common one is the Markov Decision Process
(MDP) [83]. Here the feedback is neither provided using
explicit labels like in SL nor the model is learned like in UL,
but the behavior of an agent is learned through the rewards
or penalties based on the set of actions taken by going from
one state to another with a transition probability. The goal is
to find out the optimum policy so that the total reward can
be maximized (or the total penalty can be minimized) over a
horizon of future time intervals given the current state of the
agent. In Figure 11, we show a generic structure of an RL
framework as an MDP model.

ML Approaches: Depending on whether an RL model is
explicitly created or not, RL can be fundamentally divided
into two major categories: model-based and model-free RL
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methods [84]. In the model-based methods, the transition
probabilities between different states are assumed to be known,
whereas, in model-free methods, these probabilities are learned
through iterations. Dynamic Programming (DP) [85] is the
most popular model-based method used in practice. However,
model-free methods like the Monte Carlo (MC) method [86]
are most commonly used due to their flexibility and practical-
ity in real systems. Q-learning [87] is one of the most popular
model-free methods where “Q” refers to the expected rewards
for an action taken in a given state over the time horizon,
known as the value function. Another important counterpart of
Q-learning is the State-Action-Reward-State-Action (SARSA)
learning method where the agent learns the optimal policy
in an online fashion [88]. This Q-learning is extended to the
context of stochastic games [89] involving multiple agents
in [90], which is also known as the Multi-Agent Reinforcement
Learning (MARL) method. Another approach for model-
free RL is to learn the policy directly instead of learning
the value functions, which is known as the Policy Gradient
(PG) method [91]. If the policy gradient is estimated in a
deterministic fashion, it is called the Deterministic Policy
Gradient (DPG) method [92]. To have the benefits of both
approaches, the Actor-Critic (AC) method is proposed in [93]
where the critic estimates the value function and the actor
updates the policy gradient in the direction suggested by
the critic.

DL Approaches: General RL approaches without NNs can
work well for small-scale experiments. However, when the
action or state space is really large, the computation com-
plexity exponentially increases. This phenomenon is quite
common in practical systems like communication networks.
To estimate the value functions or policies with RL frame-
works with large state or action spaces, DL approaches can
be very useful. This learning approach is also known as
Deep Reinforcement Learning (DRL). The most popular and
simplest DRL approach is the Deep Q-Network (DQN) [94]
method. In this approach, instead of an iterative approach
for updating Q values in the Q-table, an NN is used to
estimate the Q function value approximately. To prevent a
large overestimation of action values, another DL framework
is introduced on top of DQN for a fair evaluation of policies
in Double Deep-Q-Network (DDQN) [95], [96]. In Dueling
Deep-Q-Network [97] method, both state and action values
are separately estimated. As the expected value function may
be overestimated as the expected value does not capture
the complete probability distribution of random variables,
Distributional Deep-Q-Network [98] is considered to update
the Q function value based on its distribution. In the case of
continuous action spaces, DL aided DPG method, known as
Deep Deterministic Policy Gradient (DDPG) Q-Learning [99]
provides better results. To deal with partial observable envi-
ronments, Deep Recurrent Q-Networks (DRQN) [100] by
introducing an LSTM layer in the FCNN architecture of DQN.
Similarly, as for RL, MARL approaches can be efficiently
solved using DRL architecture for each agent, namely known
as a Multi-Agent Deep Reinforcement Learning (MADRL)
framework.
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E. Distributed Learning Paradigms

The learning paradigms discussed in Section III-D, can
be executed in various distributed approaches which will
be discussed in this section. Unlike other fields, future
6G communications systems including satellite-based NTNs
may need to incorporate a huge amount of network data
from different network operators which ask for distributed
approaches more. However, there are some inherent challenges
in terms of privacy and efficiency with distributed approaches
as the network needs to deal with gathering data from
different parties. Three major distributed learning paradigms:
Federated Learning (FL), Decentralized Learning (DcL), and
Split Learning (SpL) are discussed below:

1) Federated Learning (FL): FL is a distributed learning
technique in which multiple network data owners collabora-
tively build and train a global DL model, all while ensuring
data isolation and privacy, as outlined in [101]. In the FL
paradigm, individual data owners are initially provided with
a base model by a centralized server, which they then train
using their own respective data. Subsequently, these locally
trained models are shared back with the central server,
allowing it to update and maintain a global model. This
iterative process continues until the global model reaches
convergence. Consequently, FL enables the development of a
globally trained model through distributed efforts, all the while
safeguarding the privacy of the data owners.

2) Decentralized Learning (DcL): DcL involves computing
nodes conducting local training on their individual DL/ML
models and then sharing these models with neighboring
computing nodes at each iteration. Global convergence is
achieved when all the local models have converged. Notably,
this approach ensures that no actual data is exchanged between
the computing nodes, but the local models are shared among
neighboring nodes. One notable advantage of DcL is the
absence of the need for a centralized server, which is a
requirement in FL. An illustrative example of DcL can be
found in the context of MARL, where agents collaboratively
train their models in a distributed manner, as elaborated
in [102].

3) Split Learning (SpL): In SpL, instead of sharing model
parameters, training occurs across various computing nodes, as
described in [103]. Each computing node has the responsibility
for training multiple layers of NNs within a DL model.
Gradients for backpropagation are exchanged among these
nodes to enhance training efficiency. Consequently, it can
yield superior privacy performance when compared to FL,
as indicated in [104]. Recent endeavors have been made
to combine these two approaches, aiming to harness the
advantages of both methodologies, as explored in [105].

F. Synergy Between Al and NTN

Like many other fields, NTN is expected to be a major
advancement in the realm of AI applications [106]. More
precise and pragmatic analytical models with reduced over-
head consumption, and efficient algorithms with a lower
computational complexity are the primary catalysts for the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 28,2024 at 19:45:29 UTC from IEEE Xplore. Restrictions apply.



MAHBOOB AND LIU: REVOLUTIONIZING FUTURE CONNECTIVITY

deployment of Al-enabled NTN in next-generation wireless
networks. In the preceding sections, we give a concise
overview of NTN and Al to introduce these two crucial aspects
of this article. Now, we motivate our readers by outlining the
primary motivating forces behind combining Al and NTN for
future wireless networks.

1) Complex Task Automation: In NTNs, the complexity of
tasks and procedures involved in communication networks
is significantly heightened. These tasks encompass a wide
range of operations, including resource allocation, channel
estimation, modulation, coding, and the intricacies of satel-
lite management control. Attempting to perform these tasks
manually is not only challenging but often unfeasible. The
complexity involved in optimizing network performance for
satellites, in particular, renders manual operations insufficient.
Moreover, these tasks require meticulous precision to ensure
uninterrupted service and mitigate potential hazards. However,
the advent of ML and DL approaches has By harnessing
ML and DL, not only can accurate actions be executed,
but complex chains of procedures can also be automated
seamlessly without the need for human intervention following
the general ML framework as discussed in Section III-A.

2) Tractable Solutions: The deployment of next-generation
NTNs is more complex than any other previous-generation
cellular network due to its multifaceted architecture. For
instance, the integration of satellite networks introduces a
significant number of additional parameters to consider for
optimum network performance [107]. However, this can result
in computationally intractable solutions for practical networks,
even if the solutions are computationally tractable, they may
be very inefficient. Resource management in TNTN networks
is a prime example of this, as resource optimization in TNTN
networks often turns into non-convex optimization problems,
where only suboptimal or heuristic solutions can be obtained
using numerical techniques [108], [109]. Fortunately, DL
techniques can approximate complicated functions involving
a large number of input variables with the help of NN,
as discussed in Section III-C. As a result, complicated
network functionalities can be characterized with NNs and
resource management issues can be solved in a tractable
manner [110], [111].

3) Data-Driven Decision Making: Although probabilistic
and deterministic models can be used to model NTN func-
tionalities, these models are often derived using very strong
assumptions to get the general closed-form expressions, result-
ing in significant deviations in performances in simulations
compared to real networks. In contrast, ML models are
obtained based on real data, which means different scenarios
are taken into account during training, without the need for
making any assumptions. For instance, resource scheduling
for users or network slices in a cellular network is typically
decided based on the channel condition of the corresponding
users or user groups. However, the channel is highly time-
variant, so the decision feedback needs to be in real-time to
incorporate optimal scheduling decisions for all the users in the
network. For NTNs, the scenario is worse due to the extremely
time-variant nature due to the high mobility of NGSO satellites
and dynamic propagation environments. Various Al models, on
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the other hand, have shown great promise in dealing with this
kind of challenging problem due to their potential to capture
real scenarios with more precision than theoretical models with
a reasonable amount of computation complexity.

4) Adaptability and Learning: Al algorithms can adapt
to changing network conditions and learn from experience.
Through ML techniques, Al can continually improve its
performance, optimize network operations, and adapt to evolv-
ing user demands. By leveraging Al techniques such as
RL and predictive modeling, NTNs can adaptively allocate
resources, optimize network parameters, and proactively detect
and mitigate faults through online learning as discussed in
Section III-B. AI enables NTNs to dynamically respond to
changing network conditions, enhance operational efficiency,
and ensure uninterrupted service delivery. The ability to learn
from data and make intelligent decisions without human
intervention empowers NTNs to continually improve their
performance, optimize resource utilization, and deliver reliable
connectivity in complex and evolving environments.

5) Reduced Computation Complexity: Obtaining optimal
algorithms for various challenges in NTNs can be a daunting
task. Even if such algorithms are derived for complex systems,
their computational complexity often renders them impractical
for real-world implementation. This complexity arises from
the vast number of variables that govern different network
procedures in NTNs. However, data-driven Al techniques
offer a promising solution by reducing the dimensions of
high-dimensional data through feature learning. Particularly,
DL approaches have demonstrated remarkable effectiveness
in extracting implicit features from complex systems. As a
result, these techniques prove highly valuable in addressing
the diverse challenges encountered in NTN environments.

6) Reduced Transmission Overhead: In some cases, tradi-
tional methods heavily rely on the exchange of information
between various network participants, such as satellites and
users. This might lead to a large overhead in communication
channels, resulting in a decrease in the overall throughput of
the network. Al can be used to reduce the control overhead
of NTNs significantly. For example, to calculate the Doppler
shift, the UEs must be provided with the latest ephemeris
information of the satellites [112]. However, this would cause
an immense overhead and a decline in the achievable data rate
for the UEs. Alternative DL techniques can be employed to
estimate the Doppler shift without requiring any ephemeris
information from the satellites [113]. This leads to a signif-
icant decrease in transmission overhead over communication
channels, resulting in superior network throughput.

7) Real-Time Implementation: Network optimization and
management decisions in NTNs usually require real-time
implementation, usually in the order of milliseconds to tens
of milliseconds. Consequently, complex algorithms cannot be
used to obtain these real-time decisions. In most cases, the
algorithms become either heuristic or offline. To have an
online adaptable approach, Al techniques can be considered
as a suitable option. For example, an online DRL-based
approach as discussed in Section III-B can be used to
obtain resource management decisions in real-time and ensure
proper utilization of available resources in NTNs [114]. This
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is particularly valuable in latency-sensitive decision-making,
such as scheduling, handover decisions, etc.

8) Leveraging CSI: In communication networks, CSI is
fed back to the BS from the UE to assist in selecting
different schemes - such as modulation, channel coding, etc.
- for improved network performance. Leveraging this data,
which contains the general state of the channel, different ML
approaches can be benefited. For example, RL approaches can
use this data to train models. This implies that we do not
need to modify the information segments sent from the UE to
the BS for deploying these RL schemes, but rather can rely
on feedback already existing in the communication networks.
This again illustrates the capability of Al to integrate into
traditional communication networks without any additional
overhead costs. For NTNs, this is more important as the
spectrum is more scarce and expensive; utilizing traditional
CSI feedback for learning becomes another motivating factor
for AI approaches to NTNs.

Key Takeaways: The data-driven ML and DL approaches
are the major Al technologies for empowering satellite-based
NTNs for the next-generation 6G networks. Due to their
inherent capability of capturing practical scenarios with real-
time tractable solutions, different learning paradigms, such as
SL, UL, and RL can be extremely beneficial in addressing
various challenges associated with future NTN-empowered 6G
networks. Consequently, there have been a lot of research
activities to deal with these challenges in the literature. In the
following section, we explore various current research thrusts
for incorporating Al into NTN in greater detail to get insight
into potential research scopes.

IV. RELATED WORKS

The possibility of potential integration of NTNs into 5G-
Advanced [14] and future 6G networks to support various
future high-demanding use cases has attracted significant
attention from the research community in recent times. This
emerging area of research has spurred numerous investigations
to address the unique challenges and opportunities posed
by NTN integration. Reference [120] discusses the potential
integration aspects for satellites, which is an integral part
of NTNs, into future communication networks. Reference
[19] presents a summary of 3GPP efforts towards supporting
NTNs in the 5G-Advanced networks. Reference [119] presents
the real system prototypes along with the general overview
discussion on NTNs. Reference [115] presents the challenges
from the aspects of different communication layers to provide
better insights for addressing these issues. In [13], [14], a
concise discussion on various NTN components, use cases,
technological enablers, and challenges for realizing NTN in
6G is presented. In [133], a detailed survey on the evolution
of satellite networks towards the convergence with terrestrial
networks from 3G to 6G along with the proposed archi-
tectures, use cases, and challenges is presented. In [118],
future architectural options, use cases along the challenges
associated with NTN-integrated 6G networks are explored.
In [134], the necessary architectural evolution for integrating
NTNs into 6G networks along with the challenges is discussed.
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[135] specifically focuses on the integrated Space-Air-Ground
Integrated Network (SAGIN) in 6G while discussing the
above topics in the context of NTNs. Another short magazine
paper, [117] on NTN architectures, motivational use cases in
6G, necessary 5G NR modifications and future research direc-
tions is also in the literature. In [116], a detailed discussion on
architectural options for integrating NTN into future 6G and
the challenges associated with it is presented.

Likewise, Al has been acting as a driving force for various
applications in wireless environments, especially in the last
couple of decades; many surveys have been published on these
topics recently [136], [137], [138], [139]. To facilitate the
potential of Al in the 5G-Advanced and 6G environments
several research articles and surveys are in the literature [18],
[140], [141], [142]. In [121], [123], [126], some short surveys
on the role of Al enabling 6G networks focusing on the
vision, research opportunities, and challenges are presented.
Reference [122] discusses the explainability of Al to address
various 6G challenges. In [124], [125], comprehensive surveys
on vision, enabling technologies, and applications for Al on
6G are presented. Some relevant surveys are also published
focusing on different aspects of Al-enabled 6G like perva-
sive network intelligence [143], green communications [144],
privacy [145], [146], network access and routing [147]. As
NTNs are expected to be integrated into the existing terrestrial
environment for the development of 6G networks, it is clear
that Al is expected to play a crucial role in this process. To
unleash the full potential of Al to enable NTN in 6G, we need
to have a clear understanding of the potential issues of NTN,
we can gain insight into what Al tools can be useful down the
road to resolve those issues.

There have been a few research articles capturing the key
aspects of Al as an enabling technology for NTN in 6G in the
recent past. In [115], [119], a short discussion on important
applications of AI/ML in satellite-based NTN communication
for 6G is provided along with the general discussion on
NTN. In [107], several potential Al approaches for sustainable
integrated Terrestrial and Non-Terrestrial Networks (TNTN)
with a focus on maritime networking are discussed in a concise
manner. In [127], a brief discussion of ML approaches to
tackle different potential problems associated with integrated
TNTNSs is presented. In [106], it provides a short discussion
on ML approaches for a limited number of issues related to
next-generation mega-satellite networks. In [130], a compact
discussion on different ML and DL techniques at various
layers of the Open Systems Interconnection (OSI) model for
NTN integration into existing 5G infrastructures is presented.
Even though the above-mentioned works attempt to capture the
role of Al in future 6G networks for enabling integrated TNTN
environments, they are generally brief and do not provide a
comprehensive overview of works in this particular domain.
In [128], the potential role of Al techniques in the provision
of NTN-based Intelligent Internet of Things (IoT) services
is discussed; they do not focus on cellular environments for
future integrated TNTN 6G networks. In [129], reviews of
potential Al approaches for both broadcasting and commu-
nication satellites are provided. However, they do not focus
on the issues related to NTN-integrated 6G networks, rather
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only focus on general satellite communication. In [131], a
comprehensive review of the control approaches like coverage,
spectrum, interference, and mobility management required by
NTN platforms that are solved using RL formulations is
presented, but they do not focus on other Al approaches related
to prediction and estimation. A very recent comprehensive
survey paper on ML and DL applications on satellite commu-
nications is published [132]. However, they do not discuss the
current research efforts from the integrated 6G perspective and
the potential challenges of applying ML and DL techniques
in this domain.

Most existing articles either concentrate on analyzing the
architecture and challenges within Non-Terrestrial Networks
(NTNs) or take a broader perspective on Al applications in
wireless communications. While a few research articles touch
upon potential research directions for Al-driven NTNs, these
discussions are often not exhaustive or do not fully grasp the
role of Al in 6G networks integrated with NTNs. Additionally,
the current state of research and the practical complexities tied
to Al-empowered NTN-integrated 6G networks remain largely
unexplored. This survey article attempts to offer a comprehen-
sive overview of various Al techniques employed to address
the distinct challenges encountered in NTN technology. The
list of related articles along with the key features is provided
in Table III.

V. AI-NTN: CURRENT RESEARCH THRUSTS

Al is considered to be one of the major driving forces
for empowering next-generation NTNs. To unleash the great
potential of AI in this field, exploring potential research
thrusts of AI-NTN integration is extremely important. The
scarce network resources, high mobility, and complex and
time-varying hierarchical network topology give rise to
different unique challenges in realizing NTNs for future
wireless networks. Conventional optimization and estimation
approaches are not always feasible for practical deployment
in real networks. Various data-driven Al techniques are being
explored by researchers due to their inherent capability of
learning the surrounding environment and providing superior
performances in practical scenarios. In this section, we discuss
the current research thrusts for Al applications into NTNs.

A. Taxonomy of Research Thrusts

We categorize current research areas according to the
distinct challenges encountered across various communication
layers, facilitating a clearer understanding of the current
AI-NTN research landscape. NTN, owing to its dynamic prop-
agation environment and the high mobility of NGSO satellites,
presents inherent challenges that span all the layers of commu-
nication systems. As the lower layers, namely, the physical and
data link layers are highly affected by the new impairments,
we discuss various challenges associated with these layers in
the next two separate subsections. Following this, we group
traditional network and higher-layer challenges in a subsequent
subsection. Within each subsection, we provide insights into
the problem description, existing conventional methods, and
the application of Al-based approaches to tackle these issues.
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While discussing Al methods, we cover SL, UL, and RL
approaches, encompassing perspectives from both ML and DL
for each research focus within their respective subsections.
For a visual representation of this classification scheme, please
refer to Figure 12.

B. Physical Layer Aspects

1) Channel Estimation: Channel estimation is an important
aspect of NTNs, serving a dual role in encompassing compre-
hensive network planning and managing interference, similar
to other wireless networks. This entails the technique of esti-
mating the impacts of the channel through which a transmitted
signal traverses in a wireless environment. Conventionally, the
channel effect is encapsulated in an information block termed
CSI in modern communication systems. While conventional
methods like MMSE or Least Squares are employed for CSI
estimation, they often entail high computational costs and
may not always align with the demands of real networks.
Furthermore, obtaining timely CSI information gets more
challenging due to extended propagation delays and fast-
changing propagation environments in NTN conditions.

Therefore, ML-based methods are increasingly being
adopted by the research community and vendors, as a promis-
ing alternative for channel prediction. This channel estimation
can potentially be turned into an SL problem by considering
channel features such as distance, time delay, received power,
azimuth Angle of Arrival (AoA) and Departure (AoD), ele-
vation angle, Root Mean Square (RMS) Delay Spread, and
frequency as inputs and CSI as output labels. In [148], the
reciprocity property of the downlink and uplink channels in
Time Division Duplexing (TDD) systems is considered. So
the downlink channel is estimated from uplink CSI using
an LSTM-based DL model. In [149], CSI is estimated from
historical CSI data using a CNN-LSTM model. However, as
channel estimation is a near-real-time process, low-complexity
NN such as ESNs need to be explored for realistic implemen-
tations. In [150], a denoising CNN is used to reduce the LS
channel estimation error. In [151], a CSI prediction scheme
is presented without utilizing any ephemeris information,
rather only using past CSI feedback information leveraging
GRUs with low prediction error. In [152], an auto-regressive
integrated moving average of past CSIs is utilized to predict
future CSIs where the order of the past ones is determined
by an LSTM network. In [153], graph attention networks are
used for cascaded channel estimation for Reflective Intelligent
Surface (RIS) assisted satellite networks in IoT communi-
cations. In [154], future CSI information is predicted using
k-Nearest Neighbour and MLP-based algorithms from past
CSI and some correlated network metrics such as latency,
terminal velocity, weather, and environment state, etc. which
is later used to adapt the modulation and coding scheme for
next timestamp. In [155], an RNN-based CSI compression
technique is presented especially focusing on future SAGIN
networks. An ANN is trained to estimate the fading at 40 GHz
band exploiting the knowledge of its previous channel states
in [156]. In [157], an LSTM-based CSI prediction framework
is discussed to provide in future NTN-integrated 6G networks.
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TABLE III
RELATED PAPERS ON Al APPROACHES FOR SATELLITE-BASED NTNS IN 6G

Ref. | Pub. Background Discussion on AI-Enabled NTN in 6G
year | NTN challenges | Al relevance Research thrusts 6G perspective Current efforts Practical challenges
2021 | v v’
[115]
2021 | V7 v’
[19]
2021 | V7 v’
[116]
2022 | vV v’
[117]
2022 | V7 v’
[118]
2022 | V7 v’
[119]
2023 | v N
[120]
2020 v’ v’
[121]
2020 v’ v’
[122]
2020 v’ v’
[123]
2021 v’ v’
[124]
2022 v’ v’
[125]
2023 v’ N
[126]
2019 | v~ N Short v’
[127]
2019 | v~ v’ Short v’ Short
[106]
2020 | Vv~ v’ Comprehensive, but | Vv~ Short and only covers
[128] only covers ToT IoT applications
applications
2021 | v~ v’ Short v’ Complete
[119]
2021 | v° v’ Short uncategorized Does not cover
[115] Al for NTN
2021 v’ v’ Comprehensive, but
[129] does not cover the 6G
perspective
2022 | V7 v’ Short v’ Short
[107]
2023 | vV v’ Short
[130]
2023 | v~ v’ Comprehensive, but | v~ Only covers RL
[131] only covers RL
2023 | v v’ Comprehensive, but
[132] does not cover the 6G
perspective

2) Doppler Shift Estimation: As the LEO satellites move transceivers towards some specific direction with some specific
around the Earth typically at a very high speed, both the relative velocity can be given by:
satellite and ground user transceivers experience a large v
Doppler effect due to their relative velocity. If the transmitter of = fox ¢ x cos(0)
moves towards (or away from) the receiver, the emitted signal Here

from the transmitter may take less (or more) time to reach the v = The relative velocity of the transceiver

receiver depending on the direction of the movement, hence 0 = The angle between the direction of the transceiver and
the frequency of the signal increases (or decreases). This shift  the direction of the propagating signal

in signal frequency due to the motion of the transmitter, the For LEO satellites, due to high mobility, This frequency

receiver, or both refers to the Doppler shift. If the original offset is pretty significant (48 kHz with a center frequency of
frequency is fy, the Doppler shift due to the motion of 2GHz [20]). Due to these frequency offsets, UEs tune to some

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 28,2024 at 19:45:29 UTC from IEEE Xplore. Restrictions apply.



MAHBOOB AND LIU: REVOLUTIONIZING FUTURE CONNECTIVITY

AI-NTN

Integration

Fig. 12. Taxonomy of research thrusts.

different carrier frequencies from their originally assigned
carrier frequencies. This may lead to ICI between multiple
UEs as discussed in Section II-E.

There have been significant efforts to characterize the
Doppler effect for LEO satellites since the launching of com-
munication satellites. In [161], an equation for Doppler shift
is derived for the simple case of LEO satellites with circular
orbits in the equatorial plane and ground observing points on
the equator. In [162], the Doppler shift is analytically derived
assuming the trajectory of the satellite with respect to the earth
by a great circle arc and the speed of the satellite as constant.
In [112], the Doppler shift is characterized by considering a
new orbit generator using different orbital parameters through
a rigorous analysis. UEs with Global Navigation Satellite
System (GNSS) can get the global positioning of satellites and
estimate the amount of Doppler shift needed to be addressed
for the next transmission slot [163]. However, this increases
the cost and complexity which may not be feasible for
ground UEs [31]. Additionally, The GNSS signals are weak,
not ubiquitous, and susceptible to interference and spoofing.
Recently, there have been also efforts to estimate the Doppler
shift in LEO satellite systems using various other approaches,
such as stochastic geometry [164], Maximum A Posteriori
(MAP) [165], algebraic solutions [166], two-stage estimators
consisting of time-varying Burg spectral analyzer and alpha-
beta filter [167] etc. In [168], the Doppler shift is estimated
using reference signals in more than one frequency position in
Orthogonal Frequency Division Multiplexing (OFDM) carrier
in a 5G integrated NTN system.

These different theoretical approaches can estimate the
Doppler shift with a certain accuracy in different scenar-
ios. However, the methods are generally very cumbersome
due to the complexity associated with the orbital mechan-
ics of the satellites. Most of these methods come with
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simplifying assumptions to keep the approach feasible for
practical systems, thereby affecting accuracy. Moreover, due
to the constant high-speed movement of LEO satellites, the
wireless environment associated with it becomes time-variant.
The computation complexity increases more to model these
temporal variations using traditional estimation approaches.
Additionally, the UEs may need the ephemeris information
of the satellites to compute the Doppler shift associated with
its motion, which creates large additional overheads in the
communication channels. To characterize this Doppler effect,
ML-based algorithms seem to appear as potential practical
alternatives to the research community.

In wireless communication systems, due to the mobility of
the transceivers, the channel between the transceivers changes
significantly resulting in received signal power variation and
Doppler shift. So, intuitively, the CSI of this channel should
contain information about the Doppler shift. This idea has
been already explored in terrestrial networks to generate
a model using ML [113], [158], [159]. The ground truth
values or the labels are usually generated using the ephemeris
information. Different channel characteristic variables like
Rician K factor, azimuth AoA width, mean azimuth AoA
and channel estimation errors are generated randomly, and
averaged Power Spectral Density (PSD) is used as inputs with
some preprocessing to a multi-layered FCNN to estimate the
Doppler shift in [158]. In [113], RSRP values mapped from
an ambiguity reducer are used to generate the weights for an
MLP. In [159], different time and frequency domain signals
with various modulation schemes, delay profiles, and Signal
to Noise Ratio (SNR) have been used as inputs to a hybrid
CNN-LSTM model to estimate the Doppler shifts. In NTN, the
research in this domain is still at the early stage The estimated
CSI is used as input to a CNN model to estimate the Doppler
shift in [160]. In the future, other potentially efficient SL
models can be also explored to generate the real-time accurate
Doppler shift in an online manner. In Table IV, we summarize
the AI approaches for Doppler shift estimation in NTN. Even
though the DL techniques are found to be useful in estimating
Doppler shift using channel parameters, Doppler shift can
be also estimated by analyzing the predictable trajectory of
the satellites. Complexity analysis is required to justify the
applicability of these DL architectures replacing the state of
art methods in real systems.

3) Security - Physical Layer Authentication: Due to the
new interfaces introduced by satellite-integrated terrestrial
architectures, various spoofing and replay attacks can be
launched using these interfaces. Spoofing attacks involve an
attacker satellite impersonating a legitimate one, while replay
attacks involve the retransmission of previously intercepted
messages to deceive users. Generally, in terrestrial networks,
these kinds of attacks are detected and mitigated by using
standard cryptographic techniques, a concept also investigated
in satellite communications [169], [170]. However, when it
comes to NTN-integrated future 6G networks, these conven-
tional cryptographic methods face several challenges. Firstly,
these techniques are computationally intensive and, thereby
challenging to implement in satellites due to their limited
onboarding capabilities. Secondly, the highly dynamic and
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TABLE IV
SUMMARY OF Al APPROACHES FOR DOPPLER SHIFT ESTIMATION IN SATELLITE-BASED NTN

Reference | Input to the ML model Learning Approach DL Comments on Models
Tool
SL UL RL RL Model DL Model
[158] Averaged PSD N v’ FCNN
[159] Modulation scheme, delay profiles, SNR v’ v’ CNN-LSTM
[113] RSRP v’ v’ FCNN
[160] CSI v’ N CNN

massive scale network topology of NTNs, particularly for
enabling IoT devices, necessitates significant modifications in
network protocol design and introduces overheads that may not
be practical to manage with existing architectures Also, these
cryptographic techniques often assume that attackers lack the
computational resources to break the encryption. However,
with ongoing advances in quantum computing research, these
assumptions may no longer hold in the future, presenting yet
another challenge that needs to be addressed.

Physical layer authentication offers a promising alternative
to these conventional techniques. In [171], Wyner intro-
duced the concept of physical layer authentication where
the message was encoded in such a way that the mutual
information between the legitimate channel and wiretap chan-
nel is maximized. This encoding generally captures the unique
characteristics of the channel between the user and the legiti-
mate transmitter, serving as a means to verify the transmitter’s
identity. This technique has been already explored in terres-
trial networks using the CSI information as radio signatures
for the transmitter devices [172], [173], [174]. However, the
prevalence of Line of Sight (LoS) paths in satellite networks
makes radio fingerprinting using channel fading information
from CSI impractical. Furthermore, due to the high mobility
of NGSO satellites, as discussed in Section II-E, the high
Doppler Shift is introduced in received signals, which can
be used to verify the identity of the legitimate satellites.
In [175], a maximum likelihood estimation and uniform
quantizer are used to obtain the secret key bits from the
Doppler frequency shifts, which is used in the authentication
of legitimate satellites [176] In [177], an orbital information —
time difference of arrival-based authentication mechanism is
introduced providing low false authentication rates.

In the recent past, various DL techniques have shown lofty
promises in the field of extracting features from noisy data,
which is also leveraged in this field using different ML models.
In [178], CNNs and Autoencoders are used to extract the
necessary channel features for physical layer authentication of
legitimate satellites. In [179], [180], [181], both the received
signal power and Doppler shift are used for radio fingerprint-
ing using SVMs providing improved authentication rates.

4) Security - Intrusion Detection: In modern satellite-
terrestrial integrated networks, the majority of satellite
communication systems rely on elementary security threat
detection mechanisms. Typically, these mechanisms operate
by flagging an anomaly if the received signal frequency
deviates from the baseline spectrum by a predetermined
threshold. However, this simplistic approach frequently leads
to a significant number of false positives. On top of that many

anomalies represent unusual behavioral patterns, exhibiting
temporal correlations that escape detection by these simple
detectors. Consequently, these conventional methods often
struggle to effectively identify and respond to sophisticated
security threats.

To address these challenges, DL techniques are explored
to efficiently detect security threats using various innovative
approaches. In the study presented in [182], an ensemble
model combining Random Forest (RF) and MLP is developed
to improve the performance of security threat detection across
diverse datasets for satellite communications. [183] leverages
critical feature selection driven by RF to streamline complexity
and enhance the relevance of features before the detection
phase. These features are then forwarded to different NN
architectures, including LSTM, GRU, RF, and ANN enabling
robust security threat detection. These models are tested on dif-
ferent datasets where GRU-empowered threat detection models
exhibit superior performances by capturing temporal behav-
ioral patterns. In [184], a UL approach using LSTM networks
is explored, which can not only detect unforeseen security
threats but also does not need any labeled data. In another
study as shown in [185], two SL and five UL approaches
are considered for threat detection to show the effectiveness
of ML techniques. In [186], a DDPG-based DRL framework
is considered where the agents decide whether the aerial
platform is malicious or not (actions) based on their behavior
(states) and the system condition (rewards) for threat detection.
Recognizing the computational constraints of satellites and
Internet of Things (IoT) devices, federated learning approaches
are also investigated as detailed in [187], [188], [189] for
threat detection.

5) Security - Anti-Jamming: Satellites are vulnerable to
jamming threats due to their predictable and periodic visibility
in NTNs, so anti-jamming approaches are important to tackle
this challenge. Conventional spread spectrum techniques are
used in anti-jamming for satellite networks. However, they
are not very useful in dealing with new smart jamming
attacks which can adjust their actions based on the network
feedback. Various RL techniques are adopted to tackle these
problems in an efficient manner. In [190], [191], a hierarchical
anti-jamming Stackelberg game is introduced for routing anti-
jamming problems which is later solved by providing fast
anti-jamming decisions using a DRL-based routing algorithm
for satellites. in [192], a DL-based jamming detection algo-
rithm is proposed for satellite navigation systems. In [193],
an anti-jamming coalition game is formed to decrease energy
consumption, and suboptimal jamming policies are obtained
by RL approaches. In [194], ML-aided cognitive anti-jamming
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(b) Scenario 2

(a) Scenario 1

Fig. 13. A simple beam hopping example in satellite-based NTN.

communication is designed, developed, and tested on real
satellite-ground links.

C. Data Link Layer Aspects

1) Beam Hopping: Modern communication satellites form
multiple beams to support a large number of users over a large
area through spatial multiplexing into different NTN cells.
Each satellite can effectively reuse the allocated spectrum
with very low co-channel interference as well as provide
strong signals at the ground user terminals with relatively low
transmission power using beamforming techniques. However,
due to the high cost and low availability of onboard process-
ing computing resources in satellite systems, mostly simple
fixed beam allocation policies are used in traditional satellite
communication. These strategies lack the flexibility to adapt
to the temporal and spatial variation of traffic demands in real
satellite networks. Beam hopping is a technique for allocating
beams in a flexible manner so that these changes can be
addressed efficiently. It refers to a procedure for activating
different beams according to the current demands of an NTN
cell covered by those beams, so effectively hopping the set
of active beams from one combination to another [195].
In Figure 13, a simple beam-hopping scenario is depicted,
where we have different NTN cells with varying demands.
We classify the cells into three different categories, e.g., high,
medium, and low, based on their traffic demands. In the first
scenario, the low-demand NTN cells, e.g. cell 9, have less
number of active beams than high-demand NTN cells, e.g.
cell 6, even lesser than moderate-demand NTN cells, e,g, cell
1, 2, 5 or cell 13. However, due to mobility or change in traffic
patterns, the traffic demand in cell 13 reduces and in cell 5
increases. As a result, we can see the intensity of the beams
also changes accordingly in these two cells at a later time, and
a new beam-hopping pattern emerges.

The key question of beam hopping is to find out which
beams need to be activated when and for how long while
maximizing the network performances given the capac-
ity constraints [202]. This can be effectively formulated
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as an optimization problem considering different network
performance metrics such as system throughput, delay, fair-
ness, etc. as the objective(s) along with power and spectrum
constraints. In [203], a convex optimization framework with
an objective to match the system capacity to traffic demand
along with power allocation constraints is considered. This
yields a close-form solution giving insights into resource
allocation policies for maximizing network performances from
different perspectives. However, from the perspective of real
networks, the convex objective function is not very realistic,
so the results are not applicable to real networks in a
straightforward manner. Assuming the non-convexity of the
problem, obtaining a globally optimal solution with efficient
algorithms gets difficult. In [109], the steepest gradient descent
algorithm is chosen to get the sub-optimal solution using
the optimal set of precoding vectors. Some heuristic iterative
approaches are also proposed in [108], [204], [205] to tackle
these non-convex problems in a practical and feasible manner.
Different meta-heuristic approaches like Genetic Algorithm
(GA) [206], Simulated Annealing (SA) Algorithm [207],
Particle Swarm Optimization (PSO) [208], and combined
metaheuristic approaches like GA-SA [209] have been consid-
ered to generate suboptimal solutions with a reduced amount
of computational complexity.

The main challenge in designing a beam-hopping pattern
in an optimization framework lies in the large search space
associated with an optimal solution. The size of the search
space for finding out an optimal beam hopping pattern scales
exponentially with the number of beams in the satellite
networks. Modern satellites can have hundreds to thousands
of beams depending on their coverage area, so the computa-
tional complexity becomes pretty high, and the computation
time becomes pretty large to find out the exact solutions.
The low-complexity suboptimal solutions using iterative and
metaheuristic approaches achieving satisfactory performances
in real networks are not very abundant. In this context, the
DL approaches turn out to be a suitable alternative for this
problem.

In [110], [111], an SL approach is considered by forming
labeled datasets with beam hopping patterns as outputs and
channel matrix, transmission power, and traffic demand as
inputs. First, a mixed integer linear problem formulation for
matching the offered capacity to traffic demands is reduced
to a simple linear programming problem. A training dataset
is generated using conventional optimization algorithms and
a DL model is trained on this dataset by considering beam
hopping patterns as labels. Furthermore, the optimization
framework can be potentially transformed into an RL problem
to capture the optimal beam-hopping pattern in a learning
environment. In [196], [197] the transmission delay is mini-
mized considering the power and beam allocation constraints
using a DRL approach. The state space consists of the average
transmission delay and the buffer length with beam hopping
pattern as actions and the negative Hadamard product of the
current states, the negative of total queuing delay as the
reward function. In [198], a combined DRL-metaheuristic
approach is considered to optimize both the throughput and
delay fairness while at the same time designing different
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TABLE V
SUMMARY OF Al APPROACHES FOR BEAM-HOPPING IN SATELLITE-BASED NTN
Reference Target Optimization Objectives Learning Approach DL Comments on Models
Tool
Throughput Tx Delay | Delay Capacity- | SL UL RL RL Model DL Model
Fairness Demand
Ratio
[110] v’ v’ v’ FCNN
[111] v’ v’ v’ FCNN
[196] v’ v’ v’ DQN FCNN
[197] v’ v’ v’ DQN CNN
[198) v’ v’ v’ v’ v’ Proximal Policy | FCNN
Optimization
[199] v’ v’ v’ v’ v’ DQN CNN
[200] v’ v’ v’ v’ v’ DQN CNN
[201] v’ v’ v’ v’ DDQN FCNN
reward functions for the two cases. In [199], [200], a network Satellite
consisting of real-time and non-real-time traffic is considered.
A multi-objective problem minimizing the transmission delay

for real-time traffics, maximizing the throughput for non-real-
time traffics as well as overall delay fairness is considered.
Individual reward functions are designed to capture each of
the goals. In [201], a cooperative multi-agent framework is
considered to dynamically allocate the power and bandwidth to
illuminating beams optimizing throughput and delay fairness
using a DDQN. In Table V, we summarize the Al approaches
for beam-hopping in NTN. As traffic demand changes with
time, recursive architectures such as RNN, ESN, etc. should
be also explored to design the NN for DL architectures used
to address beam-hopping issues. Also, distributed learning
architectures can be useful to design efficient beam-hopping
schemes.

2) Spectrum  Sharing: In traditional communication
systems, satellite, and terrestrial cellular networks generally
occupy different frequency bands, so they do not interfere
with each other. However, the satellites in the new integrated
TNTN environment for 6G are expected to use the same S
and Ka-Band as discussed in Section II-D. This improves
the overall spectral efficiency of the integrated networks as
well as provides a better QoE for the users. However, as both
the satellite and the ground network use the same frequency
band, the signals

produced by them interfere with each other, i.e. cause Co-
Channel Interference (CCI) to each other. In Figure 14, a
simple spectrum-sharing scenario in the downlink channel in
an integrated TNTN network is shown. The satellite user is
connected to a satellite and the downlink channel is indicated
using the green link. There are three more terrestrial BSs using
the same channel as the satellite provide CCI to the satellite
user (indicated by red links).

In TNTN, the spectrum-sharing phenomenon needs more
attention because we have a hierarchical network scenario
consisting of non-terrestrial and terrestrial BSs as shown
in Figure 3. To support this complex topology in a single
framework, we need to come up with efficient spectrum-
sharing strategies causing low interference to the users [217].
In conventional spectrum sharing methods, we use efficient
frequency reuse, leveraging directional antennas, adaptive
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Fig. 14. General spectrum sharing scenario in TNTN.

power control, etc. methods to mitigate the effect of CCL
However, traditional four-color frequency reuse can effectively
reduce the level of interference at the expense of more
spectrum. beamforming approach can reduce the interference
greatly, but that too comes at the cost of increasing complexity.
To tackle this situation, a process called spectrum sensing
is introduced in cognitive radio networks, where the unli-
censed users can sense the occupancy status of the target
band using some radio sensing method [218]. The popular
spectrum sensing methods are Energy Detection (ED)[219],
Cyclo-Stationary Detection (CSD) [220], Eigen Value-based
Detection (EVD) [221] etc. However, these methods either are
simple with poor performance in low SNR scenarios (ED)
or provide good performance but with more computational
complexity (CSD and EVD). For these reasons, ML has been
adopted for spectrum sharing to capture the correlation with a
reduced computational complexity which can be extended to
integrated satellite-terrestrial network scenarios [217].
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TABLE VI
SUMMARY OF Al APPROACHES FOR SPECTRUM SHARING IN TNTN

Reference Problem Insight Learning Approach DL Comments on Models
Tool
Spectrum Spectrum Spectrum SL UL RL RL Model DL Model
Sensing Occupancy Access
Prediction
[210] v’ v’ v’ CNN-BILSTM
[211] v’ v’ v’ CNN
[212] v’ v’ v’ CNN-LSTM
[213] v’ v’ v’ v’ CNN-LSTM
[214] v’ v’ Modified Q-
Learning

[215] v’ N v’ v’ SVM-CNN
[216] v’ v’ v’ MADDPG FCNN

Different intelligent learning approaches are adopted to
tackle the spectrum-sharing problem for next-generation
TNTN networks [222]. In [210], a spectrum-sharing strategy
is developed for LEO satellites from the GEO satellite spec-
trum historical occupancy data using a CNN-BiLSTM model.
Here the LEO satellite users are considered as unlicensed
secondary users and the GEO satellite users are considered
as the licensed primary users. In [212], a CNN-LSTM-based
spectrum sensing method is introduced for satellites to capture
the spatial and temporal correlation effectively for spectrum
occupancy of satellite systems. In [213], a CNN-LSTM model
is introduced to predict the frequency assignment for satellites
based on historical data. In [214], a modified Q-Learning
algorithm is used in an RL setup for the adaptive selection
of access and modulation schemes for NGSO satellites in
an NGSO-GEO system. In [215], an SVM model is first
used for low complexity spectrum sensing, then a CNN-
based spectrum prediction model based on historical data is
developed. In [216], a cooperative MADRL framework is
considered for bandwidth management in a game-theoretic
model minimizing inter-beam interference. In [211], a CNN-
based spectrum reconstruction method from incomplete data
is discussed for satellite networks. In Table VI, we summarize
the AI approaches for spectrum sharing in TNTN. However,
these spectrum sensing decisions need to be in real-time
to increase the overall throughput of the secondary users;
this means the conventional LSTM architectures need to be
replaced by efficient low-complexity ESN architectures to
tackle this in an online manner. Furthermore, spatial spectrum
sharing scenarios need to be also considered along with the
state of art temporal spectrum sharing scenarios leveraging the
benefits of future 3D SAGIN networks.

3) Resource Allocation: Power and spectrum are the two
fundamental resources for any type of wireless network, and
NTN is also not an exception. The spectrum allocation is
typically performed by the assignment of carriers with equal
width from the allocated spectrum for that service. Hence, the
number of assigned carriers and their positions are optimized
to achieve good signal quality with the minimum resources.
Often, the carrier assignment is achieved by the orthogonal
splitting of the spectrum resources, which is also known
as frequency reuse. However, the strict orthogonality of the
frequency bands cannot be always achieved to achieve better

spectral efficiency. In case of lack of orthogonality of spectrum
resources used by different transceivers can also introduce
CCI. The interfering signal can be effectively suppressed
by increasing transmission power for the original signals.
However, as power is also a scarce resource, we cannot
increase the transmission power indefinitely and increasing
transmission power will result in a decrease in energy effi-
ciency. For better resource utilization, a more robust radio
resource management needs to be designed by controlling both
power and spectrum resources [231].

Generally, an optimization framework can be considered to
optimize the system performance with bandwidth and power
constraints. In most cases, such optimization problems are
non-linear and non-convex due to objective function nonlin-
earity and complex constraints involving Signal to Interference
and Noise Ratio (SINR) [232]. Furthermore, the carrier
assignment indicator variables result in a mixed-integer pro-
gramming problem [232]. Hence, no optimal solution can be
determined using the known methods of convex optimization
with low computation complexity. Instead, suboptimal and
metaheuristic approaches are proposed, which tackle parts of
the problem separately and then iteratively tune the param-
eters [232]. Different suboptimal approaches are adopted to
optimize resource allocations [233], [234], [235], [236], [237]
for satellite systems. However to reduce computation complex-
ity several heuristic [238] and metaheuristic approaches like
GA [206], PSO [208] are explored to reach the suboptimal
solutions within a shorter computation time.

To tackle this resource allocation issue in real satellite
networks in a practical manner, ML approaches are being
started to be adopted by the research community. A DL
framework is combined with conventional optimization algo-
rithms to overcome the computation complexity issue of
the conventional approach in [229], [230] by reducing the
feature space. A model-free DRL framework is adopted for
power allocation of high throughput satellites in [226]. A
Q-learning-based long-term capacity allocation algorithm in
an RL framework is introduced for a heterogeneous satellite
network in [223]. In [114], an Actor-Critic and Critic Only
based RL framework is considered for optimal resource
allocation for LEO satellite networks. Different advanced
RL frameworks like DRL [224], [225], [239], Multi-objective
DRL [228] and MADRL [227] are also proposed to solve
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TABLE VII

SUMMARY OF Al APPROACHES FOR RESOURCE ALLOCATION IN SATELLITE-BASED NTN

Reference

Target Objective

Learning Approach

Spectral Efficiency

Energy Efficiency

SL

UL

RL

Comments on Models

RL Model

DL Model

[114]

AC

[223]

Q-learning

[224]

v’

DQN

FCNN

[225]

DQN

CNN

[226]

DQN

FCNN

[227]

MARL

[228]

ANANANANANANAN

DQN

Ensembles

of

FCNN

[229]

FCNN

NAERAA R AR

v’ v
[230] v v

NAVERNEANANAN

FCNN

the resource allocation issue for satellites. In Table VII, we
summarize the Al approaches for resource allocation in TNTN.
As both power and spectrum are equally important and scarce
resources for NTNs, new DL architectures need to be explored
to jointly allocate these resources in an efficient manner
for NTNs.

4) Network Slicing: Network slicing refers to the process
of virtually partitioning the physical network into different
network slices corresponding to different service requirements.
The slices are allocated with radio resources as per the
demand of the users belonging to the slices. Slicing is useful
for wireless networks as each slice can share the same
physical network infrastructures while receiving necessary
radio resources for guaranteeing a minimum level of service
to the users. Also, network slicing provides the flexibility
to switch users between slices with different amounts of
allocated resources responding to changes in traffic conditions.
Integrated TNTN networks appear to be an excellent candidate
for applying the concept of network slicing due to their
diversified traffic patterns. In fact, different use cases like
mMTC and eMBB applications can be extensively benefited
through the network slicing in these networks. In Figure 15,
a simple network slicing scenario is shown. Here the network
consists of a satellite and a terrestrial BS which form 3 slices
in a combined manner. Slice 1 is for high-priority users, they
share network resources from the satellite and the terrestrial
BS (depicted by green links). Slice 2 is for users with low
latency requirements, the terrestrial BS provides resources to
the users (shown by red links). Slice 3 is for the remote users
who can only be served by the satellite (shown by blue links).

In a general network slicing framework, a composite
utility function consisting of different network performance
characteristics like average throughput and other costs like
slice reconfiguration cost, resource reservation cost, etc. is
formulated as an objective function that needs to be min-
imized. The constraints are generally the minimum service
level To ensure real-time implementation, simple heuristic
approaches are tested on real platforms [240], [241], [242].
requirements depending on the type of services for particular
slices. In [240], an extensible 5G network slicing framework
in conjunction with satellite networks is discussed to facil-
itate the integration of satellite services into 5G. In [243],
a multi-objective optimization problem comprising latency,

Satellite

(/(«é))

Terrestrial

i

Fig. 15. Network slicing in satellite-terrestrial integrated networks.

computational, and power requirements in an edge-computing
scenario is formulated to find suitable slice scheduling strate-
gies based on numerical methods. However, these approaches
do not guarantee optimal performance guarantee. To tackle
this issue, different Al-based approaches are explored as it is
done in the case of traditional 5G terrestrial networks.

In [244], RL-based network slicing frameworks for satellite-
integrated future 6G networks are discussed along with
experimental results for simple networks. In [245], Al-based
network slicing for space-air-ground integrated vehicular
networks is discussed from the perspective of slice creation,
user association, and resource scheduling. In [246], [247],
satellite-terrestrial network slice resource allocation frame-
works utilizing network function virtualization are presented
which can be leveraged for applying advanced Al-based
methods. In [248], FCNNs are used to train a suitable
set of network parameters that can produce latency similar
to a non-linear optimizer-based network slicer. In [249], a
general Radio Access Network (RAN) slicing problem is
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considered where the objective function is a weighted function
of bandwidth and spectrum consumption satisfying QoS and
inter-slice isolation constraints. In a simple 2-slice satellite-
terrestrial integrated network, different DL architectures are
tested. In [250], an ML approach similar to the meta-heuristic
ACO approach is considered to realize network slicing in
a TNTN environment. An air-ground integrated network is
considered in a DRL framework in [251], later solved by
the DDPG algorithm. Here both the actor and critic networks
are FCNNs consisting of four layers. Distributed learning
architectures can be potentially explored in future works for
real network implementations.

5) Handover Optimization: In order to maintain an orbital
path around the Earth at a lower altitude, an LEO satellite
needs to move at a much higher velocity (around 7.8 km/s)
compared to a GEO satellite. So these satellites orbit around
the Earth typically within 2 hours [20]. Due to the smaller
orbital period, any LEO satellite remains visible to a ground
UE for only several minutes which poses a great challenge
for integrating these satellites into the traditional terrestrial
networks. The UE needs to undergo multiple handovers within
a short span of time interval regardless of its mobility status for
seamless continuation of the data sessions [14]. This frequent
handover phenomenon in LEO satellite networks creates a
lot of overhead in communication channels and results in
overall degradation in network performances. Moreover, due to
lower altitudes, the coverage area of an LEO satellite is much
smaller compared to a GEO satellite. Typically a large number
of LEO satellites are needed to maintain global coverage
across the Earth with complex constellations. In the case of
an ultra-dense constellation of LEO satellites (like Starlink),
each UE is generally covered by multiple satellites, so the UE
can choose the best one from the list of suitable candidate
LEO satellites. This problem can be potentially solved in an
optimization framework jointly considering different handover
decision criteria.

In traditional terrestrial communication networks, a UE
chooses to attach to a BS based on periodic signal power
and quality measurements, such as Reference Signal Received
Power (RSRP), and Reference Signal Received Quality
(RSRQ) for the link between the BS and the UE. Moreover,
load balancing is also important to ensure no BS gets over-
loaded or underloaded as a result of initial attachment or
handover procedures. However, for LEO satellite networks,
choosing a satellite BS merely based on signal measurements
and network load information is not enough due to the limited
visibility time of these satellites. So the UE also needs to
take the potential service time into account before attaching to
a satellite. In Figure 16, a simple general handover scenario
involving multiple LEO satellites and a single UE is shown.
Here initially, the UE is connected to an LEO satellite,
indicated as LEO 2, and it needs an immediate handover
to some other neighboring satellite covering the UE, either
to LEO 1 or LEO 3 as it will soon lose the coverage of
LEO 2. As shown in Figure 16, LEO 2 has more network
load and bad channel condition, but offers more service time;
LEO 3 has less network load, moderate channel condition,
but offers less service time. Furthermore, a new satellite,
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LEO 4 becomes available for providing coverage to the UE
with excellent channel conditions, great service time with
moderate network load. So even for a simple case involving
4 LEO satellites, the handover decision is not straightforward
for a single UE. So finding a suitable handover strategy for
a UE jointly considering all handover criteria becomes a
complicated problem to be solved.

Different simple greedy strategies, like Maximum Service
Time (MST), Maximum Signal Quality (MSQ), or Minimum
Network Load (MNL) [260] are adopted to solve the problem
in a simple heuristic manner but none of these approaches
provide the optimal solution. The satellite handover scenario
can be also modeled as a directed graph between different
satellites for a single user where the weights can be set
by different handover criteria like Quality of Service (QoS),
service time, etc. [261], [262]. A bipartite graph matching
problem between the satellites and the users [263] is also
considered in the literature to provide the optimal handover
decision for satellites. In addition, a network flow-based cost
minimization approach is considered in [264] by weighting
each edge as the QoS perceived by the user. A handover
strategy based on a potential game in a bipartite graph is
considered in [265]. Different heuristic algorithms are also
proposed to solve the problem [266], [267], [268]. A dynamic
optimization problem is considered to be solved based on
forecasting in [269]. Channel reservation is also associated
to design an efficient handover algorithm while balancing the
load for satellites in [270].

An RL framework can be naturally adopted for solving
this problem considering the handover criteria as states and
UEs as agents who act by selecting a suitable LEO satellite
and collecting a reward based on the network performances.
In [252], only the overall signal quality of the network is
maximized using the RL approach without considering any
other criteria. In [253], [255], a multi-objective optimization
problem considering satellite load and signal quality con-
straints is solved using the DRL approach. In real networks, we
have a large number of UEs; the handover decision for one UE
can affect another UE, so the handover problem needs to be
solved in a cooperative manner. In [254], a MARL framework
is considered where multiple UEs cooperatively optimize
the number of handovers in the whole network considering
different handover criteria. In [256], using graph matching, a
database of optimum handover decisions in satellite networks
is produced and later it is used to predict handover decisions
using a CNN model. Advanced DL architectures like Auction
based DL [257], DDQN [258], Successive DQN [259], etc.
are also considered to provide optimal handover decisions. In
Table VIII, we summarize the Al approaches for handover
optimization in NTN involving LEO satellites. However, as
all the system models consider the agents located at the UE
side, it does not comply with the current standards where
the handover decision is generally controlled by the BSs
(satellites in this case). Furthermore, the distributed multi-
agent learning architectures give rise to stability issues in
real implementations. The handover criteria also need to be
carefully investigated to provide the agents with the necessary
information to learn the mobility behavior of the environment.
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Fig. 16. A Typical Handover Scenario in LEO Satellite-Based NTN
TABLE VIII
SUMMARY OF AI APPROACHES FOR HANDOVER OPTIMIZATION IN SATELLITE-BASED NTN
Reference Target Optimization Objectives Learning Approach DL Comments on Models
Tool
Signal Network Service Tx Delay | SL UL RL RL Model DL Model
Quality Load Time

[252] v’ v’ v’ Q-Learning

[253] NG v’ v’ v’ v’ Online Q-
Learning

[254] v’ v’ v’ v’ Multi-Agent Q-
Learning

[255] v’ v’ v’ N v’ DQN CNN

[256] v’ v’ v’ CNN

[257] N v’ v’ Auction based | FCNN
approach
(Game theory)

[258] v’ v’ v’ v’ DDQN FCNN

[259] v’ v’ v’ N Successive FCNN
DQN

These issues need to be resolved in an efficient manner for
future research work in this domain.

6) Multiple Access: Multiple access is a vital technique
that enables multiple users to efficiently share network
resources like spectrum and time. In traditional satellite
networks, orthogonal multiple access schemes like Time
Division Multiple Access (TDMA), Frequency Division
Multiple Access (FDMA), Code Division Multiple Access
(CDMA), and Space Division Multiple Access (SDMA) are
employed. These schemes allocate distinct time slots, spectra,
codes, or spatial divisions to usOers, ensuring their orthog-
onality in resource utilization. However, the performance of
these conventional methods is constrained by the inherent
limitations of these network resources. To meet the extremely
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high data rate and low latency demands of future 6G
networks, innovative and efficient multiple access techniques,
such as Non-Orthogonal Multiple Access (NOMA) and Rate
Splitting Multiple Access (RSMA), have emerged in satellite
network research. These advanced techniques deliver superior
performance, achieving higher spectral efficiency and reduced
latency, thereby paving the way for the evolution of future 6G
networks.

In contrast to other conventional approaches, NOMA allows
multiple users to share the same time-frequency resource
block by allocating different power levels to users based on
their respective channel conditions. The users are assigned
the transmit power levels in an inverse manner with respect
to their channel conditions, i.e. users with poorer channel
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conditions are allotted more transmit power whereas users
with better channel conditions are allotted lower transmit
power. These signals are subsequently encoded, combined
using superposition coding, and transmitted to the receiver.
Then Successive Interference Cancellation (SIC) technique is
employed to decode signals for different users. Starting with
the user granted the highest transmission power, SIC succes-
sively extracts signals while treating others as interference.
This process continues down to the user with the lowest
transmission power, efficiently enabling multiple users to share
the resource block and enhancing spectral efficiency. However,
it’s important to note that SIC’s computational complexity
increases with this approach.

The optimum power allocation problem in NOMA for
NTNs can be formulated as a non-convex problem which
is often difficult to solve using conventional approaches.
In [271], a long-term power allocation scheme for NOMA
in satellite-IoT networks is solved by deriving the optimal
decoding order leveraging DL techniques. A DQN-based
DRL approach is investigated in [272] for optimum power
allocation in satellite-IoT networks under different channel
conditions and delay-QoS requirements of NOMA users. In
another study as discussed in [273], the non-convex problem
involving integer variables is later reformulated as a mixed-
integer convex problem which was later solved by two DL
techniques instead of conventional iterative solutions. Some
studies also focus on the non-convex user selection problem
for given power allocations based on the CSI feedback. Such a
study, [274] used DQN to find out the suitable user pairing for
delay-limited NOMA-based satellite networks considering the
channel conditions and delay constraints as states. k-means UL
approach is also considered to find out the pair of terrestrial
users to be simultaneously served by space and aerial BSs
adopting NOMA in [275]. Q-learning is adopted in [276] to
allocate the time slots and communications channels for IoT-
satellite terrestrial relay networks.

Another significant multiple access method, RSMA, is also
explored in the context of satellite networks to enhance
spectral efficiency. In RSMA, user messages are partitioned
into two segments: common and private. The common signals
are collectively encoded and merged into a unified data stream
intended for all users, while each user linearly precodes
their private messages. On the receiver side, the common
component is extracted while treating the private signals as
noise, employing the SIC technique. Subsequently, each user
extracts their respective private signals. This provides the users
with another way to share the same resource blocks with
an increase in spectral efficiency. Generally maximizing the
sum rate for both parts is a complicated non-convex problem
and can be solved by Weighted MMSE (WMMSE) problem
which is difficult to implement in practical hardware. A suc-
cessive convex approximation as well as KarushKuhnTucker
(KKT) conditions are used to calculate the transmit power
in RSMA power for different beams in satellite networks
in [277]. However, DL techniques can be extremely useful
in modeling the solution framework with low complexity as
shown in [278], [279]. Here a deep unfolding technique is
used to implement the WMMSE algorithm using a deep NN
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and momentum-accelerated Projection Gradient Descent algo-
rithm. A DRL framework using Proximal Policy Optimization
is used to maximize the sum rate in [280]. Here each BS works
as an agent, the channel state information i.e. SINR of the
private and common messages is used as the states, the action
is to find the suitable power allocation whereas the reward is
the achieved sum rate.

D. Upper Layer Aspects

1) Computation Offloading: One of the most important
applications of satellite-terrestrial integrated networks is
enhancing the computation capabilities of existing terrestrial
network architectures leveraging satellites. With traditional ter-
restrial networks, supporting a diverse set of new applications
like AR, VR, etc. with high data processing and extremely
low latency requirement can get very challenging. Generally,
terrestrial BSs are deployed sparsely due to high infrastructure
and maintenance costs. Due to resource constraints, in case
of the high demand for data processing for these types of
applications, the BSs need to offload the computation tasks to
the terrestrial cloud via the satellites [290]. However, due to
longer propagation delay, the latency requirements set by the
applications are difficult to be met [291]. Nevertheless, due
to the emergence of LEO satellites with comparatively low
propagation delay, the overall delay is considerably reduced.
Also instead of acting as relays, the satellite can now also
do the processing works acting as edge-servers. So we can
consider a three-level hierarchical architecture comprising of
ground UEs connected to terrestrial BSs, LEO satellites, and
terrestrial cloud as shown in Figure 17 where the terrestrial
BSs can offload the computational tasks to LEO satellites and
to terrestrial clouds via the LEO satellites.

The main challenges in task offloading problems lie in
meeting the delay constraints for low-latency applications
while minimizing the energy consumption for the satellites.
So this can be formulated as an optimization problem to
come up with an efficient offloading approach for integrated
TNTN architecture. Such an optimization problem is solved
using different conventional approaches like 3D hypergraph
matching [292], game theory [293], stochastic approach [294],
efficient algorithms [295] in the existing literature. In [296], a
joint optimization framework comprising task offloading and
resource allocation is also considered in an integrated satellite-
terrestrial environment. Although these algorithms work well
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TABLE IX
SUMMARY OF AI APPROACHES FOR TASK OFFLOADING IN TNTN

Reference Problem Insight Learning Approach DL Comments on Models
Tool
Energy Tx Delay Computational| SL UL RL RL Model DL Model
Consumption Resources

[281] N v’ v’ v’ DDPG FCNN

[282] v’ v’ v’ v’ Model-Free FCNN

[283] v’ N v’ v’ v’ Value Iteration, | FCNN

DQN, DDON

[283] v’ v’ v’ v’ v’ Dueling DDQN | FCNN

[284] v’ v’ v’ v’ MARL

[285] v’ v’ v’ v’ DQN  based | FCNN

MARL

[286] v’ v’ v’ v’ v’ LSTM

[287] v’ v’ v’ v’ v’ DQN FCNN

[288] v’ v’ v’ v’ Distributed
FCNN (For
solving
Optimization)

[289] v’ v’ v’ v’ v’ Distributed
FCNN (For
solving
Optimization)

in theory for particular scenarios, in real networks, the feasibil-
ity of these algorithms is compromised due to different issues.
Some of these works do not consider the cooperation among
terrestrial cloud and LEO satellite servers which result in sub-
optimal approaches [292], [293]. Also, these approaches are
some predefined models highly dependent on different network
states causing a large overhead in networks. Moreover, they
usually converge to the solutions after a large number of
iterations causing high computational complexity.

To tackle these issues, different ML approaches are
proposed in the literature to solve task offloading problems.
In [282], a DRL-based task offloading framework dependent
on channel state information is proposed. A similar DRL-
based framework is also considered in [297] with additional
consideration of the dynamic queue condition in satellites.
In [283], both DQN and DDQN are explored to solve the
task offloading problem in a decentralized manner. DDPG
algorithm is considered to solve the optimization problem in
a DQN framework in [281] while taking the potential security
issues into account. An LSTM model is used to solve the
task offloading problem while considering channel conditions
and energy dynamics in [286]. A DL-based caching strategy
is considered in satellite edge networks in [287]. As we have
multiple satellites in the real networks, to improve the overall
system performances, different multi-agent architectures are
considered both in a distributed [288] and cooperative envi-
ronment [284], [285]. Distributed architectures for generating
discrete offloading decisions in a supervised manner are
also considered in [289]. In Table IX, we summarize the
Al approaches for task offloading in TNTN. As the delay
constraints vary with network traffic types, the offloading
decisions need to be derived taking network traffic types into
account. Potential research works can show how computational
offloading can be done for various network traffics and show
superior network performances.
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Fig. 18. Network routing in satellite-terrestrial integrated networks.

2) Network Routing: In wireless networks, depending on
the traffic and channel conditions, the network traffics are
routed to different paths among different network nodes so
that the overall network performance can be improved. In any
network with static channel and traffic conditions, this routing
problem can be transformed into the well-known shortest path
problem and solved by Dijkstra’s algorithm [306]. Here the
network nodes can be considered as nodes in the graph and
the edges can represent the links between different nodes.
The weights of the edges can be defined based on the target
network performance metrics like delay, jitter, throughput,
packet loss, etc. However, the topology of the real satellite-
terrestrial integrated networks (shown in Figure 18) are very
complex and dynamic due to hierarchical network architecture
and uncertain channel and traffic conditions, respectively. So
simple Djikstra’s algorithm cannot be directly applied to meet
the performance requirements in these networks.
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TABLE X
SUMMARY OF Al APPROACHES FOR NETWORK ROUTING IN TNTN

Reference Target Optimization Objective Learning Approach DL Comments on Models
Tool
Throughput Tx Error Rate SL UL RL RL Model DL Model
Delay/jitter
[298] v’ v’ v’ v’ Q-Learning
[299] v’ v’ v’ Q-Learning
(300] v’ v’ v’ Distributed Q-
Learning
[301] v’ v’ v’ Fuzzy-CNN
[127] v’ v’ v’ v’ CNN
[302] v’ v’ v’ v’ FCNN
[303] v’ v’ v’ v’ v’ ELM
[304] v’ v’ v’ v’ Graph Neural
Network (GNN)
+ FCNN
[305] v’ v’ v’ v’ DDPG LSTM

In real satellite networks, Asynchronous Transfer Mode
(ATM) routing is introduced in [307]. The well-known Open
Shortest Path First (OSPF) [308] protocol-based Internet
Protocol (IP) routing is also adapted to the dynamic
satellite environment in [309]. However, the dynamics of
satellite-terrestrial networks are very different from traditional
terrestrial networks due to their highly dynamic network
topology, link status, and traffic conditions. Depending on the
instantaneous network topology, a static-dynamic combined
routing scheme is considered in [310]. An ant-colony-
based optimization (ACO) framework is considered in [311].
In [312], a Kalman filter-based Wolf Colony Optimization
algorithm is used to solve the local optimal solution issue
in [311]. An improved ACO framework is considered to find
out the optimal set of links with multiple network constraints
in [313]. A Coordinate Graph (CG) model-based network
routing approach for three-dimensional TNTN is considered
in [314]. In [315], minimum flow maximum residual path-
based network flow algorithm is used to find out the optimal
network routing path for satellites. In [316], a 3-dimensional
network mapping using hyperbolic geometry is considered for
integrated satellite-terrestrial networks.

To cope with the dynamic environment in integrated
satellite-terrestrial networks, different DL architectures are
proposed in the literature. In [301], fuzzy logic is used to
evaluate task requirements to improve the CNN output for
optimal path allocation. The network routing optimization
problem can be put into an RL framework. In [298], a speed-
up Q-learning algorithm is used to find out the optimal routing
strategy for TNTN. A similar Q-learning-based RL framework
is also considered to solve the routing problem for LEO
satellites in [299]. To tackle the complexity issue, a DRL
framework is used to generate optimal routing strategies in
TNTN [305] and LEO satellite networks [299]. FCNN [302],
CNN [127], etc. architectures are used to solve the routing
problem in a supervised manner. Other ML frameworks like
GNN [304] and ELM [303] are also considered to solve
the routing problem in NTNs. In Table X, we summarize
the Al approaches for network routing in TNTN. Recursive
NN architectures need to be also explored for capturing the

temporal behavior in network routing decisions. Furthermore,
the channels are extremely dynamic and time-varying in the
case of TNTNs; the channel conditions can be also considered
in the learning criteria of RL frameworks.

3) Traffic Prediction: Traffic prediction is very critical in
modern communication systems to ensure high-speed low
latency communications. Particularly, in NTNs, accurate traffic
prediction is extremely crucial due to the highly dynamic
network topology as well as diverse user requirements. At
its core, traffic prediction involves forecasting future network
traffic based on past usage patterns. Conventional approaches
such as Auto Regressive Moving Average (ARMA), Auto
Regressive Integrated Moving Average (ARIMA) [317], [318],
etc. are typically used for these predictions. However, the DL
approaches have emerged as more effective alternatives by
providing improved performances in recent times due to their
inherent capability to capture spatial and temporal correlations.

In [319], Radial Basis Functions (RBF) neural network-
based short-term traffic flow forecasting is proposed. In [320],
an LSTM-based architecture is utilized for traffic prediction
due to its temporal characteristics handling capability where
the attention mechanism is used to balance the effect of
inputs on outputs properly. The RNN architectures suffer
from gradient explosion issues. To overcome this issue, GRU
architectures are explored for traffic prediction in [321], [322],
and [323]. In [321], the transfer learning approach and particle
filter online training algorithm are combined to address the
lack of online training data and reduce the training time
complexity. In [322], GNNs are used to extract the spatial
features of the satellite network traffic from the input network
topology, which is later used as an input to a GRU network for
traffic prediction. In [323], on top of the attention mechanism
and GRU models, PSO is used to obtain the best set of
hyperparameters for the network.

Key Takeaways: As evidenced by the above discussion, var-
ious RL techniques are used to examine network optimization
problems such as handover, beam, and resource allocation,
task offloading, network routing, and network slicing, while
SL techniques are employed to tackle estimation problems,
such as Doppler shift, channel state, and spectrum sensing.
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UL techniques have not been extensively covered in the
literature due to the ambiguity and difficulty of applying
them in real networks. To further illustrate the interrelations
between different NTN challenges and Al techniques, we
present Figure 19.

VI. AI-NTN INTEGRATION: CURRENT STATUS

In the previous section, we discuss how Al can be ben-
eficial for us in resolving potential NTN issues for the
next-generation 6G networks. In this section, how Al can be
applied to real systems to resolve the challenges associated
with NTNs. We begin our discussion by discussing the current
ML testbeds for satellites. Then we discuss how Al can be
potentially applied to future 6G networks by utilizing the
RAN Intelligent Controller (RIC) embedded in the Open Radio
Access Network (O-RAN) framework [324] to overcome
the inflexibility of the monolithic cellular networks. Finally,
we provide a discussion on current research efforts toward
realizing the Software Defined Radio (SDR) based 5G-NTN
platform development in the O-RAN framework.

A. ML Testbeds for Satellite Networks

Multl-layer awaRe SDN-based testbed for SAtellite-
Terrestrial networks (MIRSAT) testbed [325] provides a
Software Defined Network (SDN) based experimentation
platform for testing network slicing algorithms on NGSO
constellations. The European Space Agency (ESA) has numer-
ous completed projects focusing on the applicability of Al
techniques in satellite networks such as MLSAT [326] and
SATAI [327]. There are also several other ongoing projects
of ESA focusing on Al-satellite issues like Al integrated 5G-
Satellite testbed [328], Al-based interference detection [329],
Al-based signal processing [330], etc. All these testbeds show
promises for Al to be an integral part of future satellite-
terrestrial integrated networks.

B. AI-NTN Integration Through O-RAN-Based RIC

Traditional 5G networks with little or no reconfiguration
capabilities suffer from a wide variety of challenges to satisfy
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the heterogeneity and variability of the networks and meet the
strict application requirements [331]. Even though there has
been a significant amount of research on addressing different
issues in 5G cellular networks, an open interface for the
deployment of Al algorithms is required. O-RAN offers a
general framework for the deployment of Al algorithms in 5G-
Advanced networks [332]. It achieves this by facilitating an
open interface that enables the exchange of network KPIs and
control information between the RAN and the AI controller.
This integration allows for the implementation of a closed-
loop control framework for the RAN using different Al
approaches [333], [334]. As a potential integral part of future
6G networks, NTNs are expected to be deployed in the O-
RAN framework to leverage Al capabilities effectively.

In 5G, a base station, namely gNB has multiple functional
splits, namely:

1) Central Unit (CU): responsible for higher layers such as

non-real-time link and network layer functionalities.

2) Distributed Unit (DU): responsible for lower layer
such as near real-time link and upper PHY layer
functionalities.

3) Radio Unit (RU): responsible for low PHY layer
functionalities.

A new central controller entity called RIC is introduced in the
O-RAN architecture which can provide network monitoring
and control functionalities in near real-time and non-real-time
through external and internal applications, called xApps and
rApps respectively, for the purpose of network optimization.
Evidently, these xApps and rApps can provide us with an
effective way of deploying Al algorithms extracting network
KPIs, and sending control commands for optimizing network
performance.

To realize the NTN architecture in the O-RAN framework,
the satellites can be used for either transparent or regenerative
payloads as discussed in  Section II-C. In the case of
regenerative payloads, where the NTN platforms work as
BSs, there are multiple options for potential O-RAN-based
NTN deployment. There can be three different architectural
deployments for NTN gNBs in the regenerative architecture:

1) RU in the space/air, CU and DU on the ground,

2) Both RU and DU in the space/air, CU on the ground,

3) CU, DU, and RU in the space/air.

The non-real-time which does not need to consider latency
requirements, is expected to be deployed on the ground con-
sidering power, onboard capability, and mobility constraints.
However, the near real-time RIC needs to be close to DUs
to provide near real-time control functionalities which provide
two different options for its deployments with corresponding
pros and cons. The near real-time RIC should be on the
ground when only RU is in the air, whereas it should be
also in the air in the other two cases. There is a clear trade-
off between the latency and power, mobility, and onboard
capability constraints. If the near-real-time RIC is in the air,
the latency for control commands will be low, whereas the
cost will be high for hosting it in the air. In Figure 20,
the potential framework for Al-Enabled NTN deployment
in O-RAN framework as specified in [324] is illustrated.
Depending on the deployment scenarios of the near-real-time
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Fig. 20. Various architectural deployments for NTN in the O-RAN framework for regenerative payload.

RIC, the xApps can be also deployed also in the air or on the
ground, and so do the Al control algorithms.

C. Current Research Efforts for AI-NTN Integration Through
O-RAN-Based RIC

To facilitate the integration of NTN into 6G networks,
there have been already some technical advancements and
experimental research works towards developing real proto-
types for testing and evaluation of proof-of-concept methods.
OpenAirInterface (OAI) is an open-source 3GPP com-
pliant SDR-based protocol stacks that are widely used
across the research community for experimentation with 5G
networks [335]. As specified in the O-RAN framework, OAI
protocol stacks adopt the notion of RIC by enabling service-
oriented controllers using an efficient Software Development
Kit, called Flexible RIC (FlexRIC) [336]. This RIC provides
an interface for applying Al algorithms in order to optimize
the network performances through xApps as discussed before.
This enables us to perform experiments for testing diverse
Al approaches for optimizing the performances of real 5G
networks.

OAI has been adopted for developing experimental pro-
totypes with 5G-NTN adaptations due to its efficient and
flexible design and structure [337]. Currently, there are sev-
eral research projects on 5G-NTN that are leveraging OAI
protocol stacks to perform experiments with NTN adapta-
tions for both in-lab validation and over-the-satellite testing.
5G Agile and flexible integration of SaTellite And cellu-
laR (5G-ALLSTAR) [338] and 5G New Radio EMUlation
over SATellite (5G-EmuSat) [339] project developed a 5G-
NTN platform with necessary PHY and MAC layer 5G-NR
adaptations on top of OAI 5G protocol stacks and a satellite-
channel emulator for in-lab validation. 5G-EmuSat even has
also demonstrated its over-the-satellite capability by having
direct access to a UE using a satellite channel. 5G Space
Communications lab also has performed in-lab validation
experiments extending OAI-4G protocol stacks for NTN along

with ISL implementation using SDR [340]. Two current
ongoing projects focusing on GEO and LEO satellites, named
5G-GOA [341] and 5G-LEO [342] respectively, are currently
working on implementing necessary 3GPP NTN adaptations
extending from 5G protocol stacks of OAIL Even though cur-
rent implementations are mostly for demonstration purposes,
integration of NTN into OAI 5G protocol stacks paves the way
for deploying Al algorithms through xApps in the future.

Key Takeaways: Currently, there are some deployed ML
testbeds specifically designed for satellite networks. Moreover,
O-RAN is envisioned to unleash the great potential of Al in
enabling the future 6G networks via satellite-based NTNs by
addressing various challenges associated with it. Nevertheless,
both O-RAN and NTN standardization aspects are still in
the development process, and different SDR-based 5G pro-
tocol stacks, such as OAI, are being incorporated with NTN
adaptations.

VII. AI-NTN INTEGRATION: CHALLENGES

NTNs come with an intrinsic set of challenges when it
comes to deploying Al models. Even though there is a signifi-
cant decrease in the launching and maintenance cost of various
NTN platforms, especially satellites, cost optimization is still
one of the major limiting factors of realizing NTNs for 6G
communication on a large scale. With that being the case, these
platforms have limited power, spectrum, and computational
resources which limits the performance of the Al models. The
unavoidable long propagation delay along with the complex
and time-varying nature of the NTN environment introduces
additional challenges for Al models to be trained and deployed
in real-time. In this section, we discuss these open research
issues to get an insight into designing an efficient Al-based
non-terrestrial system with robust and superior performance.

A. Limited Onboard Capability

Advanced Al
Al-capable

applications
embedded chipsets

necessitate  specialized
developed by leading
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technology companies, including NVIDIA, AMD, Intel, and
Qualcomm [343]. Typically, these chipsets feature on-chip
accelerators like CUDA and Tensor, enabling highly efficient
parallel processing of intricate data tasks, especially those
involving extensive matrix operations as utilized in DL
methodologies. The performance of these Al algorithms
highly depends on the availability of the computational
resources and data processing capabilities of the Al hardware
blocks. More computational capability typically means more
power consumption as well as more physical space which
increases the overall maintenance cost for the non-terrestrial
platforms. Most non-terrestrial platforms such as satellites
have a very limited amount of computational resources
due to cost optimization. The efficiency of computing
devices, particularly those used for onboard purposes, is often
quantified by evaluating the ratio of computational power to
the product of power consumption, total mass, and associated
cost. This metric, highlighted in [344], necessitates a notably
high value for onboard computing devices in satellites. All
these Al-capable chipsets must undergo meticulous design
and rigorous testing procedures to ensure they satisfy the
minimum computing efficiency standards mandated for space
platforms. A lot more advancements in miniaturization and
power efficiency are necessary to ensure the adaption of Al
models and algorithms into non-terrestrial platforms with
adequate onboard capabilities as well.

B. Aging of Information

The long propagation delay is a great challenge in the
way of Al-based NTN deployment. Online RL frameworks
are very promising for solving different NTN challenges due
to their inherent capability of adapting to fast time-varying
environments as we show in the previous sections. However,
the performance of these algorithms is highly dependent on
the feedback received from the environment. As the network
changes very rapidly, the feedback has to be real-time or near
real-time to ensure the integrity of the information embedded
in the feedback. For example, the resource allocation for
different network slices and users needs to be near-real-time
(in the order of 1-10 ms) and real-time (less than 1 ms),
respectively. For NTNs, as we know from Section II-D, the
propagation delay is extremely high due to the long distance
between the transmitter and the receiver. Thus the feedback
exchange time intervals are quite high compared to terrestrial
environments which hampers the online training approach
greatly. Furthermore, to adapt to the highly time-varying
environment, Al models usually need to send an appropriate
chain of control commands to the network components. Due
to the rapid channel variations, the channel coherence time
is significantly reduced, leading to potential issues where
both received information and transmitted control commands
may become outdated, resulting in reduced effectiveness for
resource allocation decisions from Al algorithms.

C. Additional Communication Overheads

On top of long propagation delay, non-terrestrial plat-
forms also have limited bandwidth due to the scarcity of
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spectrum resources and ensure no additional interference to
the licensed services. As the generic RL frameworks depend
on the feedback received from the environment, the addi-
tional overhead introduced by the network parameters results
in undesirable network resource consumption. Even though
CSI feedback in 5G networks contains a set of network
parameters, this may not be enough for all different network
problems. For instance, when dealing with the handover
optimization problem, many solution techniques operate under
the assumption that mobility state information for satellites
and users is readily available, which is not typically included
in the CSI feedback. Consequently, this assumption introduces
additional feedback overhead alongside the existing format.
This additional communication overhead puts an additional
burden on the limited spectrum of resources allocated for the
non-terrestrial platforms.

D. Security Aspects

Applying Al in NTNs introduces more vulnerability to
various security attacks by introducing new attack surfaces
and less transparency. Adversarial attacks, data poisoning, and
model evasion involving the manipulation of input data to
Al models can cause degradation in network performance
and reliability [345]. Since this input data is gathered from
the NTN environment, featuring various attack interfaces for
potential attackers, there is a risk that the training data used for
Al models could be compromised by these attackers. Denial-
of-Service (DoS) attacks can cause interruptions in crucial
network operations by overwhelming the network with too
much resource consumption [346]. As an illustrative example
within the context of NTNs, an attacker could conceivably
gain access to one of the network slices. They could then
exploit this access to excessively consume network resources
by setting up extreme requirements, potentially leading to
network congestion and subsequently causing a decline in
overall network performance. As discussed before, the Al
controller and the network environment, especially in the
online setup, needs to exchange control information during
training of the models. While carrying the control information
between the Al controller and the network, an attacker can
intercept and possibly modify this information, which is
known as a Man-in-the-Middle (MiM) attack [347]. This can
often result in a degradation in network performances due to
the compromised control information. Therefore, A security-
constrained framework for deploying Al models needs to be
designed carefully in such a way that they can detect and
mitigate these attacks while maintaining the overall network
performance.

E. Environmental Conditions

NTN platforms, especially satellites are generally deployed
in pretty hostile environments with extreme radiation, extreme
temperatures, and other extreme environmental conditions.
The computational hardware for AI models is very susceptible
to radiation as they are built on customized circuitry [344].
The satellites need to consider both single-event effects caused
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by ionizing particles [348] as well as the effects due to long-
term radiation [349]. These effects may result in bit flips both
in registers and memories introducing errors in the control
logic of their hosting hardware platforms. Also, in space, these
circuitry elements need to withstand extreme temperatures for
a long period of time [350]. To ensure the proper performance
of these models, the hosting hardware components are required
to be more advanced and have rigorous testing to ensure
extreme environmental tolerance, which increases the cost of
the satellite operation.

F. Scalability Issue

RL frameworks can be naturally applied to address a
variety of NTN problems with control objectives as we
discuss in the previous section. However, for large-scale 6G
satellite-terrestrial integrated wireless networks, the complex
network topology entails high dimensional state and action
spaces that can lead to high computational complexity for RL
models [351]. In the case of MARL frameworks, the state
space grows exponentially with the increase in the number
of agents [352], making this approach infeasible for large-
scale real networks. Although DRL approaches can be helpful
in reducing the state space [353], more research is needed
to effectively address this challenge in order to successfully
deploy RL approaches in TNTNSs.

G. Lack of Convergence

An important challenge to be addressed when applying
the distributed RL framework in real networks for solving
various important NTN challenges like handover optimization
is to deal with its uncertainty in convergence [90]. In this
framework, multiple agents try to optimize their goals based
on the rewards received from the environment. In a competitive
environment, when all the agents are attempting to maximize
their long-term returns, they may take conflicting actions,
resulting in a non-stationary environment with no convergence
to an optimum state [352]. As a result, no optimum policy
can be obtained for the system as a whole. As highlighted
in [254], this convergence issue has limited the number of UEs
(agents) that can be considered in the simulation environment,
thus hindering the potential of this approach.

H. Scarcity of Quality Data

All ML approaches are data-driven, so the availability
of suitable training data is of paramount importance for
the improved performance of these methods. However, in
satellite-terrestrial integrated networks, the generation of qual-
ity data can be sometimes very costly and inefficient, even
impossible at times due to spectrum and intermittent con-
nectivity constraints. Due to this inherent data generation
issue, applying different ML approaches can get extremely
challenging. Additionally, the data distribution and character-
istics in non-terrestrial environments may differ significantly
from terrestrial environments, requiring careful consideration
during model training and adaptation. As a result, the training
procedure can be greatly hampered resulting in performance
degradation of these approaches in real networks.
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1. Complicated Hyperparameter Settings

The complexity of satellite-terrestrial networks, such as
their topology and time-varying nature, can make traditional
ML approaches less effective. As a result, DL methods have
become increasingly popular due to their powerful feature
extraction capabilities through NNs. The performance of any
NN is reliant on the hyperparameter settings, such as the
number of layers, activation functions, number of neurons in a
layer, and learning rate. However, there is no way of deriving
an optimal set of these parameters for any given problem to
provide the best performance. In fact, tuning these parameters
to provide satisfactory performance for a particular problem
is not any straightforward process, but rather dependent on
empirical speculations. This means the training process is
not a one-time event, but rather a trial-and-error process that
involves multiple attempts to determine the most suitable
parameters. Moreover, depending on the nature of the problem,
it can be challenging to determine possible candidates for the
parameters to begin with. This results in a very uncertain and
time-consuming training process. For NTNs, these issues are
more severe due to their high network complexity resulting in
a more complex set of hyperparameters.

J. Lack of Generalization

As data-driven ML approaches are used to train ML algo-
rithms, it can be difficult to generalize these algorithms to
different scenarios. Trained models are able to capture the
characteristics of the training data, but this does not always
guarantee successful performance with test data due to the
varying nature of NTNs. A model trained for a specific
scenario may not be successful in another, and may not be
able to adapt to different NTN scenarios. Even if the model
has not encountered certain scenario features during training,
it is desirable to have a model that is generalizable and
performs well in any context. Developing such models is
one of the biggest challenges of the NTN domain due to
their high network complexity. As there are no theoretical
performance bounds for these empirical ML models, unpre-
dictable performance drops can occur while deploying in the
real environment.

Key Takeaways: The cost-limited on-board computation,
highly dynamic environmental conditions, and long propaga-
tion delay introduce a diverse set of challenges to realize
the Al-enabled NTN environment for future 6G networks.
These challenges need to be addressed with efficient solu-
tions to ensure superior network performances in real NTN
deployments.

VIII. INSIGHTS AND POTENTIAL FUTURE STUDIES

In this comprehensive study, we delve into the realm of
NTNs and their relationship with Al techniques, establishing a
solid background for our exploration. We explore the synergy
between NTNs and Al, highlighting how these two domains
intersect and complement each other. Moving forward, we shift
our focus to the current research thrusts in the field, examining
ongoing efforts to bring these concepts to fruition in real-
world networks. While highlighting these advancements, we
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also address the potential challenges that must be overcome
to realize the full potential of NTNs in the context of future
6G networks. Within this section, we provide an in-depth
discussion of valuable insights and potentianl future studies
for leveraging various Al techniques in the context of satellite-
based NTNs.

A. Insights

In this section, we present a summary of the lessons learned
and insights gained from our paper’s discussion. These insights
are intended to serve as valuable guidance and information for
the implementation and integration of Al in shaping the future
landscape of 6G networks.

1) Existing Learning Approaches: Upon examining the
contents presented in Section V, it becomes evident that
SL and RL approaches take center stage in addressing the
diverse array of challenges faced by satellite-based NTNs
in future 6G networks, primarily due to the availability of
real-world data and feedback mechanisms within existing
networks. In the context of SL, having access to well-
labeled data is of utmost importance, especially in scenarios
involving estimation problems like channel estimation and
Doppler Shift estimation. On the contrary, RL shines when
dealing with problems lacking clear labels but featuring a
notion of reward functions. Furthermore, RL techniques are
extremely suitable and efficient for problems where super-
vision is lacking which is usually the case for many NTN
problems such as resource allocation, beam hopping, and
network routing as illustrated in Section V of the paper.
Meanwhile, RL techniques can be effectively employed across
a wide spectrum of problems using general network feedback,
such as CSI, acknowledgments, and more. Consequently, a
significant portion of research efforts tends to leverage RL
frameworks to address their specific challenges.

2) Leveraging Deep Neural Networks: The emergence of
Deep NNs and their effectiveness in addressing intricate
challenges in fields like computer vision and natural language
processing has piqued the interest of the research community
in applying these architectures to network-related issues.
Satellite-based NTNs introduce a unique set of challenges,
characterized by highly dynamic network conditions and
a multitude of variables influencing network performance.
Traditional ML) approaches often fall short in comprehen-
sively addressing these complex problems, frequently limited
to small-scale issues. As a result, DL techniques have gained
significant popularity within the research community, proving
to be a more adept choice for tackling the multifaceted
challenges encountered in satellite-based NTNs, as elaborated
in Section V.

3) Potential Learning Approaches: The nature of UL
approaches presents a unique set of challenges in the context
of highly dynamic and time-varying NTNs. Understanding
and capturing the intrinsic behavioral patterns within such
networks prove to be particularly hard. However, it is impor-
tant to note that UL approaches still hold the potential to
derive the distribution of crucial network parameters that may
not be readily accessible in real networks. These derived
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parameters can play a pivotal role in addressing various NTN
challenges. The distributed learning approaches such as FL
can be also beneficial for future satellite-based NTNs as
the computing capabilities requirements can be reduced to a
minimum enhancing practical feasibility.

4) Enabling O-RAN-Based RIC: Currently, there are some
ongoing research efforts focused on developing SDR-based
prototypes for NTNs with adaptations to OAI 4G and 5G pro-
tocol stacks, as discussed in Section VI-C. However, to fully
unlock the potential of AI in NTN for future 6G networks,
the integration of the RIC into these implementations is
crucial. This integration is particularly important given that the
immense benefits of Al in addressing NTN deployment chal-
lenges for future 6G networks are demonstrated in Section V
but current 5G networks lack a dedicated interface for applying
Al algorithms. By enabling the O-RAN framework with RIC,
the deployment of Al algorithms in real NTN networks can be
efficiently performed, paving the way for advanced capabilities
and improved performance.

5) Practical Implications: The cost limitations on onboard
computation, the extreme environmental conditions, and the
extensive propagation delays form a multifaceted array of
challenges when endeavoring to bring Al-driven NTNs to
fruition in anticipation of the forthcoming 6G network era,
as elaborated in Section VII. These formidable challenges
necessitate the development of innovative, resourceful solu-
tions to ensure superior network performance in practical NTN
deployments. Notably, three key factors come to the fore
when considering the limitations imposed on Al capabilities
for satellites and other NTN platforms: power, bandwidth,
security, and physical space. Advancements in miniaturization,
secured system design, energy-efficient design principles, and
the judicious utilization of available bandwidth resources serve
as the driving forces enabling Al technologies within satellite-
based NTNs.

B. Potential Future Studies

In the preceding sections, we have observed how a multitude
of ML and DL approaches has played an important role in
shaping the trajectory of future NTN-enabled 6G networks.
Nonetheless, we have also encountered certain limitations
that enforce the requirement for exploring alternative, more
efficient methodologies. Furthermore, the integration of Al
into NTNs introduces a set of inherent challenges to be
addressed carefully. In this section, our attention shifts to these
prospective areas of future research, aiming to establish a
resilient framework for the forthcoming era of 6G networks
powered by Al techniques.

1) Interrelated Issues: Section V sheds light on the
interconnected nature of the various issues encountered in
NTNs. It is crucial to recognize that addressing a singu-
lar problem can serve as an initial step toward resolving
larger, more complex challenges inherent in TNTNs. However,
when transitioning these solutions into real-world networks,
it becomes imperative to acknowledge and account for the
intricate interdependencies among various aspects. An illus-
trative example of such interrelations lies in the dynamic
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nature of network load status following a user’s attachment
to a satellite. In this scenario, integrating resource allocation
strategies into the handover decisions can yield enhanced
network performance. MIMO systems can be also beneficial
for the single-user and multi-user cases for NTNs as in LTE-
Advanced [354]. By considering the broader context and
understanding how different aspects influence one another, we
can develop more holistic and effective approaches for real-
world NTN implementations.

2) Recurrent Learning Architectures: Presently, the major-
ity of DL algorithms deployed to tackle the time-varying
nature of NTNs in beam-hopping, resource allocation, network
slicing, etc. rely on feed-forward NNs. While these architec-
tures have proven successful in computer vision applications
such as image detection and classification, they may not
effectively capture the temporal behavior inherent in these
NTN problems. Unlike feed-forward networks, recurrent archi-
tectures possess the ability to capture and process temporal
dependencies within the problem domain. By leveraging
RNNss or other similar architectures, we can effectively model
and solve the corresponding NTN challenges in a more com-
prehensive and accurate manner. In particular, for dynamic
spectrum access and sharing approaches low complexity NN
architectures such as ESNs can be very useful for NTNs as
illustrated in [355], [356].

3) Online Implementation: One major limitation of the
current works in the domain is the limited consideration given
to online implementation and the associated computational
complexity when designing algorithms for various control
operations in NTNs. This oversight poses a significant hurdle
to the practical application of these algorithms in real NTNs as
many control decisions in NTN systems must be made in real-
time, and the use of complex deep feed-forward NNs becomes
impractical. To address this challenge, exploring alternative
options becomes imperative. One such option involves investi-
gating low-complexity architectures such as ESNs and ELMs
or combining them with traditional feedforward-NNs. These
low-complexity architectures offer a more viable solution
for online implementation, enabling the deployment of DL
algorithms in real NTN networks in a timely and efficient
manner.

4) Distributed Learning Models: In the context of inte-
grated satellite-terrestrial networks, the adoption of distributed
learning models can significantly enhance scalability. These
models involve distributing the training and inference
processes of machine learning algorithms across multiple
computing nodes, resulting in accelerated computation and
improved efficiency. Various distributed approaches, such as
data parallelism, model parallelism, ensemble learning, and
federated learning, offer promising solutions to address the
diverse challenges faced by NTNs in extended network envi-
ronments [357]. By leveraging these distributed approaches,
NTN systems can effectively harness the power of parallel
computing and collaborative learning to overcome constraints
and achieve optimal performance.

5) Control Feedback Design: One of the major motivating
factors for implementing feedback-based learning, such as RL
methods, in NTNs, is the inherent feedback system of the
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current cellular networks. CSI information is readily available
for the BSs which can be helpful in network optimization
approaches. However, with the emergence of NTNs, new
challenges arise, necessitating the efficient design of feedback
mechanisms to minimize the overall overhead while improving
network performance. This consideration is crucial, as Al
approaches for addressing various issues may require similar
types of feedback. The utilization of combined feedback can
prove highly beneficial in optimizing network performance
and achieving efficient resource allocation, thus enhancing the
overall effectiveness of Al algorithms in NTNs.

6) Development in Miniaturization: The limited availabil-
ity of computational resources currently poses a challenge to
the onboard capability of satellites, especially when deploying
Al algorithms. However, the miniaturization of satellite com-
ponents and equipment has emerged as a solution to this issue.
By reducing the weight and size of equipment, miniaturization
enables the integration of more powerful processors and
larger memory devices within the limited space available
on satellites. This advancement in computational resources
greatly facilitates the deployment of Al algorithms, unlocking
new possibilities for satellite applications. Achieving miniatur-
ization in satellite technology requires innovations in material
science, efficient Integrated Circuit (IC) design, advance-
ments in IC fabrication technologies, System-on-Chip (SoC)
integration, and Micro-Electro-Mechanical Systems (MEMS)
design, among others. The development of miniaturization
is particularly crucial for NTNs, as it enhances the onboard
capability of satellites and enables the realization of advanced
technologies and functionalities in space-based systems.

7) Energy Efficiency: The launching and maintenance
of satellites require substantial power consumption, which
imposes limitations on the onboard capability of satellites.
Consequently, efficient energy system design becomes a crit-
ical criterion for NTNs. To address this, various aspects need
to be considered, including lightweight component design,
advanced power management techniques, efficient power con-
version, optimized propulsion system design, effective energy
storage systems, etc. By focusing on these factors, satellite
systems can achieve higher energy efficiency, which is essen-
tial for the successful deployment of advanced Al algorithms.
The performance of these algorithms relies on the availability
of computational resources, making energy efficiency a crucial
aspect to maximize the satellite’s capabilities within the given
power constraints.

8) Secured System Design: As highlighted in Section VII,
security concerns in NTNs can be highly significant, intro-
ducing new attack vectors and vulnerabilities. NTNs are
susceptible to a range of security attacks, including adversarial
attacks, data poisoning, DoS attacks, Fuzzy attacks, MiM
attacks, and more. These attacks have the potential to severely
impact network performance and compromise the integrity
and confidentiality of data. To address these challenges, it
is essential to design efficient intrusion detection and pre-
vention systems specifically tailored for secure NTNs. By
continuously monitoring a set of relevant network parameters
and detecting anomalies in the network’s behavioral patterns,
mitigation techniques can be promptly deployed to ensure
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optimal network performance and safeguard against potential
degradation caused by security breaches.

IX. CONCLUSION

NTN is considered the driver of ubiquitous, reliable, and
scalable 6G wireless networks. It adds new dimensions to
the existing traditional terrestrial communication systems by
providing connections to remote and isolated areas subject
to geographical constraints and offloading the primary links
during traffic peaks. However, diverse unique challenges
are accompanied by the deployment of NTN in existing
communication systems. The long propagation delay, high
Doppler effect, spectrum sharing, complicated resource allo-
cation, and fast and frequent handover are the major problems
associated with NTN deployment. Integration to existing
terrestrial networks presents a set of new problems such as
task offloading, network routing, network slicing, etc. to be
addressed in an efficient manner. The convergence of Al and
NTN allows for the building of sustainable Al-based Non-
Terrestrial Networks addressing many of these challenges.
Depending on the characteristics of the problem at hand,
various learning approaches can be employed. When dealing
with prediction and estimation problems, SL techniques appear
to be a more suitable choice. On the other hand, for tasks
involving closed-loop control, RL techniques show greater
promise. By tailoring the learning approach to the specific
problem, we can effectively leverage the strengths of each
technique and achieve optimal results.

However, the integration of Al into NTNs presents certain
challenges that need to be addressed. Both the industry and
research community are collaborating to ensure the success-
ful implementation of Al-based NTNs in next-generation
wireless networks. This includes the establishment of ML
testbeds specifically designed for satellite networks and the
adaptation of SDR-based OAI 4G/5G protocol stacks for
NTN applications. In order to realize satellite-based NTNs
in future 6G networks, several practical challenges must be
overcome. These challenges include addressing the constraints
of cost-limited onboard capabilities, managing the highly
time-varying nature of satellite networks, and mitigating the
effects of long propagation delays. It is important to consider
these interconnected issues and develop joint solutions to
enhance overall network performance. Furthermore, exploring
low-complexity and distributed learning architectures that
incorporate efficient control feedback mechanisms is essential
for enabling real-time, online implementation. Additionally,
ensuring the secure, compact, and energy-efficient design of
NTN platforms is integral to the successful deployment of
satellite-based NTNs in the 6G era.
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