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Abstract

There is a wide range of applications where the local extrema of a function are the

key quantity of interest. However, there is surprisingly little work on methods to infer

local extrema with uncertainty quantification in the presence of noise. By viewing the

function as an infinite-dimensional nuisance parameter, a semiparametric formulation

of this problem poses daunting challenges, both methodologically and theoretically, as

(i) the number of local extrema may be unknown, and (ii) the induced shape con-

straints associated with local extrema are highly irregular. In this article, we build

upon a derivative-constrained Gaussian process prior recently proposed by Yu et al.

(2023) to derive what we call an encompassing approach that indexes possibly multiple

local extrema by a single parameter. We provide closed-form characterization of the

posterior distribution and study its large sample behavior under this unconventional

encompassing regime. We show that the posterior measure converges to a mixture of

Gaussians with the number of components matching the underlying truth, leading to

posterior exploration that accounts for multi-modality. Point and interval estimates

of local extrema with frequentist properties are also provided. The encompassing ap-

proach leads to a remarkably simple, fast semiparametric approach for inference on

local extrema. We illustrate the method through simulations and a real data applica-

tion to event-related potential analysis.

Keywords: Local extrema, Gaussian process, semiparametric, shape-constrained regression,

Bernstein-von Mises theorem
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1 Introduction

Finding localized features of a smooth function, including local maxima and local minima,

plays a pervasive role in statistics, with wide-ranging scientific applications such as in bi-

ology (Raghuraman et al., 2001), microscopy (Egner et al., 2007; Geisler et al., 2007), and

psychology (Luck, 2005). Moreover, localized features provide additional characterizations

of the shape of a function that are useful for visualization and interpretation, and lead to

insights into optimization, particularly when operated on approximations of the function.

There is a rich literature on shape-constrained regression, where the overwhelming emphasis

has been on incorporating restrictions, including monotonicity, convexity, modality, log-

concavity, and piecewise constants, within nonparametric modeling of the underlying surface;

see, for example, Ramsay (1998); Holmes and Heard (2003); Neelon and Dunson (2004);

Meyer (2008); Shively et al. (2009, 2011); Abraham and Khadraoui (2015); Wheeler et al.

(2017); Dasgupta et al. (2021). In this article, we contribute to this growing literature by

focusing on a distinct perspective, namely, the inference on local extrema that form the key

characterization of the shape constraint, while the underlying regression function is less of

interest and can be viewed as a nuisance parameter.

There is surprisingly little work on the inference of local extrema with uncertainty quan-

tification in the presence of noise. Notable exceptions include two-step approaches in the

spirit of “smooth first, then estimation”, where one first employs nonparametric smoothing

techniques, then estimates the local extrema of the smoothed estimate. Along this line, Song

et al. (2006) used kernel smoothing followed by hypothesis testing to find locations at which

the regression function has zero derivatives at a given statistical significance level. Since the

test is performed on all locations, a multiple testing issue emerges, even when there are a

limited number of local extrema. Schwartzman et al. (2011) and Cheng and Schwartzman

(2017) studied false discovery rate control and power consistency for local maxima under a

unimodal true peak assumption. However, uncertainty quantification of the detected local

maxima is not reported. Alternatively to the two-step approach, Davies et al. (2001) pro-

posed to use the taut string method for piecewise monotone functions, and Kovac (2007)
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extended the approach to smooth functions for finding point estimates of local extrema.

In this article, we consider a semiparametric Bayesian method for local extrema in situations

where the number of local extrema may be unknown and the associated shape constraints

are highly local. These pose daunting challenges to uncertainty quantification in the pres-

ence of noise, particularly when there is more than one local extremum point. Here, we

build upon a derivative-constrained Gaussian process prior, recently proposed by Yu et al.

(2023) for the location of stationary points in event-related potentials (ERP), to derive what

we call an encompassing approach that indexes possibly multiple local extrema by a single

parameter. We provide a rigorous theoretical investigation of this unconventional approach,

which ensures a proper interpretation of the derived uncertainty quantification in the con-

text of local extrema detection. The encompassing approach is remarkably simple, as it

transforms a varying-dimensional model into one dimension, and thus is particularly well

suited to address the multiplicity challenge posed by local extrema. We note that we use

the Bayes machinery to derive a posterior distribution but employs frequentist properties to

characterize its large sample behavior and justify the obtained point and interval estimates.

In our theoretical investigation, we characterize the posterior distribution of the encompass-

ing approach and show an intrinsic connection to unconstrained nonparametric regression,

enabling fast implementation without complicated sampling. We show that the posterior

measure converges to a mixture of Gaussians with the number of components matching the

underlying truth. This interesting phenomenon not only provides theoretical guarantees for

the inference on local extrema that accounts for multi-modality of the posterior distribution,

but also extends the Bernstein-von Mises (BvM) theorem beyond the traditional semipara-

metric Bayesian literature to the encompassing paradigm. Classic semiparametric Bayesian

BvMs typically assume separable priors on the function and finite-dimensional parameter

with fixed dimension, or rely on the parameter of interest being a bounded functional of

the regression function (Castillo, 2012; Castillo and Rousseau, 2015); we instead study the

limiting posterior distribution under irregular scenarios when the local extrema have un-

known dimension and are embedded in the regression function, hence not separable, and the

derivative at any fixed point, when viewed as a functional of the regression function, is not
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bounded. This large sample characterization of the posterior distribution leads to consistent

estimators of the number and location of local extrema. We additionally provide interval

estimation for local extrema with frequentist coverage.

Organization. Section 2 introduces the model, shape-constrained priors, and a closed-

form characterization of the posterior distribution of local extrema. In Section 3 we provide

non-asymptotic bounds for a range of nonparametric quantities related to the posterior dis-

tribution, and establish a local asymptotic normality property and multi-modal limiting

distribution under the encompassing regime. Consistent point estimators and interval es-

timators with frequentist coverage are also provided. In Section 4 we carry out simulation

studies, and in Section 5 we illustrate the proposed method in event-related potential anal-

ysis. Section 6 concludes the paper. All proofs, additional technical results, and additional

numerical experiments can be found in the Supplementary Materials.

2 Methods

2.1 Shape-constrained regression

Suppose we observe independent and identically distributed samples X = {X1, . . . , Xn} ∈

X n and y = {y1, . . . , yn} ∈ Rn from a distribution P0 on X ×R with n being the sample size

and X ⊂ R the sample space for the covariate that is compact. Throughout the paper we

focus on one-dimensional sample space for concreteness and ease of notation, and consider

X = [0, 1] without loss of generality. We briefly comment on extensions to the multi-

dimensional space in the Discussion section.

We assume a regression model for the input data of the type

yi = f(Xi) + ϵi, i = 1, . . . , n, (1)

with f : X → R and Xi
iid∼ PX , where the measures PX admit a density pX with respect to

the Lebesgue measure µ on X , and with random noise ϵi
iid∼ N(0, σ2).
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We make the following assumptions on the true regression function f0.

Assumption A1. f0 ∈ C2(X ).

Assumption A2. f0 has exactly M local extrema for some finite M ≥ 1 at 0 < t1 < · · · <

tM < 1.

Assumption A3. f ′′
0 (tm) ̸= 0 for m = 1, . . . ,M .

Assumption A1 trivially implies that f0 is bounded since it is continuous on a closed interval.

Assumption A2 means that f0 possesses exactly M local extrema, with M ≥ 1 finite but

unknown, and local extrema do not occur at the boundary of X . Assumptions A1 and A2

lead to a necessary condition for tm to be a local extremum: f ′
0(tm) = 0 for m = 1, . . . ,M.

Assumption A3 regularizes the curvature of f0 at each local extremum. Assumptions A2

and A3 indicate that we focus on local extrema that can be identified based on the second

derivative test. Unlike some existing work such as Davies et al. (2001), we do not assume that

all stationary points (zeros of f ′
0) are local extrema, and our assumptions do not regularize

stationary points that are not local extrema.

Our goal is to make inference on {t1, . . . , tM} when M is unknown, with uncertainty quan-

tification. As such, we next proceed to constrained priors on f accounting for local extrema.

2.2 Shape-constrained prior of f on local extrema

The underlying function f is unknown, and its local extrema are encoded in the function

derivatives. We follow Yu et al. (2023) and adopt a constrained Gaussian process prior under

derivative constraints.

A widely used prior for f is a Gaussian process (GP) with mean 0 and a covariance kernel

that determines its key properties. Starting with a covariance kernel k(·, ·) = σ2(nλ)−1K(·, ·),

where K : X ×X → R is a continuous, symmetric and positive definite bivariate function, we

encode the derivative constraint by conditioning this GP prior on f ′(t) = 0 for an unknown

scalar parameter t. Assuming differentiability of K(·, ·), let Kjl(x, x
′) = ∂j+lK(x, x′)/∂xj∂x′l
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for any j, l ≥ 0. Then by direct calculation, the conditional GP is also a GP with mean 0

and covariance kernel kt(x, x
′) = σ2(nλ)−1{K(x, x′)−K01(x, t)K

−1
11 (t, t)K10(t, x

′)}, provided

that K11(t, t) > 0. The tuning parameter λ possibly depends on the sample size n. Later we

will make all assumptions on K(·, ·) clear.

Under the constrained prior GP(0, kt), the sample path f(·) satisfies E(f ′(t)) = 0 and

Var(f ′(t)) =
∂k2t (x, x

′)

∂x∂x′

∣∣∣∣
(x,x′)=(t,t)

= σ2(nλ)−1{K11(t, t)−K11(t, t)K
−1
11 (t, t)K11(t, t)} = 0.

Hence, it holds that f ′(t) = 0 almost surely. Note that here we employ the differentiability

of sample paths of Gaussian processes with continuously differentiable covariance kernels

and the covariance function of f ′ that is induced by differentiating kt (e.g., see Ghosal and

van der Vaart, 2017, Proposition I.3).

We conclude the specification of all priors by placing a prior π(t) on t, which is supported on

X . Thus, the marginal prior distribution of f is a mixture of constrained GPs if we integrate

out t with respect to its prior distribution.

Like Yu et al. (2023), we use a univariate t to index all possible local extrema. This en-

compassing strategy eliminates the need to specify the number of local extrema, which is

particularly useful whenM is unknown and possibly greater than one. In addition, it enables

unified inference on all local extrema through the Bayes machinery. Although practically

appealing, this unconventional encompassing regime in a semiparametric setting is not well

understood in the literature. Yu et al. (2023), in particular, employ Monte Carlo EM to

conduct an empirical exploration of the posterior of t. A specific focus of this article is a

rigorous characterization of the induced posterior distribution, both at finite sample size and

asymptotically, which is critical to interpret and substantiate such a strategy, while providing

insights into how to carry out posterior summary.
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2.3 Closed-form posterior distribution of t

Integrating out f in Model (1) with respect to its prior GP(0, kt) gives the marginal distri-

bution y|X, t ∼ N(0,Σt) with

Σt = σ2(nλ)−1
{
K(X,X)−K01(X, t)K

−1
11 (t, t)K10(t,X)

}
+ σ2In

= {σ2(nλ)−1K(X,X) + σ2In} − σ2(nλ)−1K01(X, t)K
−1
11 (t, t)K10(t,X); (2)

here K01(X, t) = (K01(X1, t), . . . , K01(Xn, t))
T is a length n column vector, K10(t,X) =

(K10(t,X1), . . . , K10(t,Xn)) = [K01(X, t)]
T a length n row vector,K(X,X) = (K(Xi, Xj))

n
i,j=1

an n by n matrix, and In the n by n identity matrix. Thus, the marginal likelihood of t,

denoted by ℓ(t) = p(y | X, t), is the density function of N(0,Σt) evaluated at y.

An intriguing observation is that the first term in Equation (2) σ2(nλ)−1K(X,X) + σ2In

does not depend on t and coincides with the covariance matrix under the GP(0, k) prior.

This enables a reformulation of ℓ(t) to relate the posterior distribution of t to unconstrained

nonparametric regression. Before formally presenting this connection in Proposition 1, we

first review standard GP priors without constraints to introduce notation.

Suppose that one uses the unconstrained GP prior f ∼ GP(0, σ2(nλ)−1K) as the prior

on f without shape constraints. In this article, we may omit explicit mention of the de-

pendence on λ in most cases, like ϕ11,m and ϕ11(·), except for a few instances such as

fλ and tλ,m, which we will introduce later. By conjugacy, the posterior distribution of f

is also a GP: f |X,y ∼ GP(µ̂f (·), Σ̂f (·, ·)), where µ̂f (x) = K(x,X)[K(X,X) + nλIn]
−1y

and Σ̂f (x, x
′) = σ2(nλ)−1 {K(x, x′)−K(x,X)[K(X,X) + nλIn]

−1K(X, x′)} . Moreover, the

derivative f ′|X,y is also a GP with mean µ̂f ′(·) and covariance Σ̂f ′(·, ·):

µ̂f ′(x) =
dµ̂f (x)

dx
= K10(x,X)[K(X,X) + nλIn]

−1y, (3)

and Σ̂f ′(x, x′) =
∂2Σ̂f (x,x

′)

∂x∂x′ = σ2(nλ)−1 {K11(x, x
′)−K10(x,X)[K(X,X) + nλIn]

−1K01(X, x
′)} .
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In particular, the marginal posterior variance of the derivative process is

σ̂2
f ′(x) = Σ̂f ′(x, x) = σ2(nλ)−1

{
K11(x, x)−K10(x,X)[K(X,X) + nλIn]

−1K01(X, x)
}
. (4)

We are now in a position to reformulate the posterior πn(t | X,y) as follows.

Proposition 1. Suppose K ∈ C2(X ,X ) and σ̂2
f ′(x) > 0 for any x ∈ X . Then it holds that

ℓ(t) = C
1√

σ̂2
f ′(t)/K11(t, t)

exp

{
−
µ̂2
f ′(t)

2σ̂2
f ′(t)

}
, (5)

for some constant C that does not depend on t, where µ̂2
f ′(·) and σ̂2

f ′(·) are defined in Equa-

tions (3) and (4), respectively. Consequently, the posterior distribution of t under the prior

π(t) satisfies

πn(t | X,y) ∝
1√

σ̂2
f ′(t)/K11(t, t)

exp

(
−
µ̂2
f ′(t)

2σ̂2
f ′(t)

)
· π(t). (6)

The normalizing constant in πn(t | X,y) can be calculated using routine one-dimensional

numerical integration methods, such as the midpoint or trapezoidal rule. The closed-form

type of formulation for the posterior πn(t | X,y) in Proposition 1 is useful on several fronts.

Computationally, a close inspection of (6) suggests that evaluating πn(t | X,y) in various t

only requires inverting an n by n matrix K(X,X) + nλIn once, dramatically reducing the

computation in a naive implementation that directly inverts a varying covariance matrix

induced by kt at each t. Theoretically, Proposition 1 turns inference on t into key quantities

related to posterior inference of f ′ with the unconstrained GP(0, k) prior, namely µ̂2
f ′(·) and

σ̂2
f ′(·). We next build on this connection to analyze large sample behavior of πn(t | X,y).

3 Theoretical results

In this section, we provide theoretical evidence of a multi-modal posterior distribution of

t. Standard Bernstein-von Mises (BvM) theorems state that, under certain conditions, the
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posterior distribution is close to a normal distribution. In our encompassing approach which

indexes local extrema by a univariate t, a single normal approximation is unlikely to hold. In-

stead, we show that the posterior distribution of t converges to a mixture of Gaussians. This

multi-modal limiting distribution along with a derived local asymptotic property delineate

key differences between the adopted encompassing approach and existing semiparametric

work, and provide support for posterior summary that accounts for such multi-modality.

3.1 Non-asymptotic analysis of key nonparametric quantities

In this section, we derive non-asymptotic error bounds for nonparametric recipes in Propo-

sition 1: µ̂f ′(·), σ̂2
f ′(·), and their high-order derivatives under the supremum norm. These

error bounds are needed to study large sample behavior of πn(t | X,y), and might be of

interest in their own right.

To this end, we take an operator-theoretic approach and make extensive use of differentiable

kernels and associated properties. We begin with introducing notation and reviewing a few

well-known properties; see Wahba (1990); Cucker and Zhou (2007) for details. For any

f ∈ L2
pX
(X ), define the following integral operator LK(f)(x) =

∫
X K(x, x′)f(x′)dPX(x

′),

where x ∈ X . The integral operator LK is compact, positive definite, and self-adjoint. The

spectral theorem ensures the existence of countable pairs of eigenvalues and eigenfunctions

(µi, ψi)i∈N ⊂ (0,∞) × L2
pX
(X ) of LK such that LKψi = µiψi, for i ≥ 1, where {ψi}∞i=1 form

an orthonormal basis of L2
pX
(X ) and µ1 ≥ µ2 ≥ · · · > 0 with lim

i→∞
µi = 0.

By Moore-Aronszajn Theorem, there is a unique reproducing kernel Hilbert space (RKHS) H

on X for which the Mercer kernel K is the reproducing kernel. This RKHS can be character-

ized by a series representation H =
{
f ∈ L2

pX
(X ) : ∥f∥2H =

∑∞
i=1 f

2
i /µi <∞, fi = ⟨f, ψi⟩2

}
,

equipped with the inner product ⟨f, g⟩H =
∑∞

i=1 figi/µi for any f =
∑∞

i=1 fiψi and g =∑∞
i=1 giψi in H.

We consider a proximate function of f0 in H, defined as

fλ = (LK + λI)−1LKf0 =
∞∑
i=1

µi

µi + λ
fiψi,
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where I is the identity operator.

We make some differentiability assumptions on K(·, ·):

Assumption B1. K(·, ·) ∈ C8(X ,X ), i.e., Kjl(x, x
′) = ∂j+lK(x,x′)

∂xj∂x′l ∈ C(X ,X ) for any

j, l ∈ N0 and j + l ≤ 8.

Define κjj = supx∈X Kjj(x, x) > 0 for j = 0, . . . , 4 and write κ = κ00. We also define

κ0j = supx,x′∈X |K0j(x, x
′)| for j = 1, . . . , 4. Under Assumption B1, a direct application of

Theorem 4.7 in Ferreira and Menegatto (2012) gives that f ∈ C3(X ) for any f ∈ H, and

∥f (3)∥∞ ≤ √
κ33∥f∥H. In particular, we have fλ ∈ C4(X ) under Assumption B1.

We further define kth order derivatives for µ̂f ′(x) and σ̂2
f ′(x) as follows for k = 0, 1, 2, 3, with

k = 0 corresponding to the original functions:

µ̂
(k)
f ′ (x) :=

dk

dxk
K10(x,X)[K(X,X) + nλIn]

−1y = Kk+1,0(x,X)[K(X,X) + nλIn]
−1y,

σ̂
2(k)
f ′ (x) :=

dk

dxk
σ2(nλ)−1

{
K11(x, x)−K10(x,X)[K(X,X) + nλIn]

−1K01(X, x)
}

= σ2(nλ)−1

k∑
i=0

(
k

i

)
{Ki+1,k+1−i(x, x) (7)

−Ki+1,0(x,X)[K(X,X) + nλIn]
−1K0,k+1−i(X, x)

}
,

where (7) uses the general Leibniz rule for matrix operation.

The following Lemma 1 establish a range of non-asymptotic error bounds under a high

probability event. Let Kjl,x(·) = Kjl(x, ·) and φjl(x) = (LK + λI)−1Kjl,x(x).

Lemma 1. Under Assumption B1, the following bounds for k = 0, 1, 2, 3 holds simultaneously

under a high probability event An with P0(An) ≥ 1− n−10:

∥µ̂(k)
f ′ − f

(k+1)
λ ∥∞ ≤

√
κκk+1,k+1∥f0∥∞

√
10 log n+ 5

√
nλ

(
10 +

4κ
√
10 log n+ 5

3
√
nλ

)
+
C2

√
κκk+1,k+1σ

√
10 log n+ 4

√
nλ

,
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|σ̂2(k)
f ′ (x)− σ2n−1

k∑
i=0

(
k

i

)
φi+1,k+1−i(x)| (8)

≤
k∑

i=0

(
k

i

)[√
κκi+1,i+1κ0,k+1−iσ

2
√
10 log n+ 4

n
√
nλ2

(
10 +

4
√
κ
√
10 log n+ 4

3
√
nλ

)]
.

The following assumption allows us to simplify the bounds for σ̂
2(k)
f ′ (x) for k = 0, 1, 2, 3.

Assumption B2. λ supx∈X |φjl(x)| is bounded for j, l ≥ 1 and j + l ≤ 5.

Remark 1. Under Assumption B2, Equation (8) yields ∥σ̂2
f ′(x) − σ2n−1φ11(x)∥∞ ≲

√
logn

n
√
nλ2

and ∥σ̂2(k)
f ′ (x)∥∞ ≲ 1

nλ
for k = 1, 2, 3. Hence, σ̂2

f ′(x) approximates φ11(x)σ
2/n with high

probability.

We make the following assumption to ease the presentation. The subsequent theory in

Theorems 1 and 2 can be generalized for cases where Assumption B3 does not hold, with

more complicated expressions that involve K11(x, x) and its derivatives.

Assumption B3. K11(x, x) does not depend on x.

Assumption B3 simplifies the posterior πn(t | X,y) in Proposition 1. It holds for any

stationary kernels; this is because if K(x, x′) = g(x − x′) for some function g(·), then

K11(x, x) = −g′′(0), which does not depend on x.

The following assumption is concerned with the error term f ′
λ − f ′

0. This is a deterministic

function as fλ does not depend on random draws of covariates and noise.

Assumption C. ∥f ′
λ − f ′

0∥∞ ≲ λr1 and ∥f ′′
λ − f ′′

0 ∥∞ ≲ λr2 for some 0 < r1, r2 ≤ 1.

Assumption C ensures that f ′
λ and f ′′

λ converge to f ′
0 and f ′′

0 under the supremum norm,

respectively. The two parameters r1 and r2 correspond to approximation properties of fλ to

the function class that f0 belongs to, and such properties in turn depend on the covariance

kernel and smoothness of the function class. Assumption C is typically verifiable via direct

calculation for a given problem. For example, if L
−r′− 1

2
K f0 ∈ L2

pX
(X ) for some 0 < r′ ≤ 1

2
,
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then the one-dimensional case of Theorem 6 in Liu and Li (2023) gives r1 = r2 = r′; here

the function class for f0 is defined by integral operators.

Assumptions B1-B3 spell out conditions for the kernel and regularization parameter λ, while

Assumption C is a generic condition that includes a range of function classes of f0. In

Section 3.5 we provide examples where Assumptions B1-B3 and C hold.

3.2 LAN property

The following Lemma 2 shows existence of local extrema of fλ and µ̂f within a neighborhood

of tm, which are respectively denoted by tλ,m and t̂m for m = 1, . . . ,M .

Lemma 2. Under Assumptions A1-A3, B1 and C, for any sufficiently small λ, there exist

{tλ,m : m = 1, . . . ,M} such that each tλ,m is a local extremum of fλ and |tλ,m − tm| ≲ λr1 .

Moreover, under An, there exist {t̂m : m = 1, . . . ,M} such that each t̂m is a local extremum

of µ̂f and |t̂m − tλ,m| ≲
√
log n/(

√
nλ).

Henceforth we work under the high probability event An defined in Lemma 1. Let the

regularization parameter λ = n− 1
2
+β(log n)

1
2
+a for some 0 < β < 1

2
and a > 0. Since

f ′
λ(tλ,m) = 0, Lemma 1 implies that

|nβµ̂f ′(tλ,m)| ≲ (log n)−a, (9)

|µ̂(k)
f ′ (tλ,m)− f

(k+1)
λ (tλ,m)| ≲ n−β(log n)−a, 1 ≤ k ≤ 3, (10)∣∣∣∣nσ̂2

f ′(tλ,m)− σ2φ11(tλ,m)

∣∣∣∣ ≲ n
1
2
−2β(log n)−1−a, (11)

|σ̂2(k)
f ′ (tλ,m)| ≲ n− 1

2
−β(log n)−

1
2
−a, 1 ≤ k ≤ 3. (12)

The following Theorem 1 characterizes the marginal likelihood function of t by presenting a

local asymptotic normality (LAN) property at tλ,m, generalizing traditional LAN properties

to the considered encompassing semiparametric regime. For m = 1, . . . ,M , we denote by

φ11,m = φ11(tλ,m), σ∗2
m = σ2/f ′′

0 (tm)
2. (13)
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Theorem 1. Suppose Assumptions A1-A3, B1-B3 and C hold. Let λ = n− 1
2
+β(log n)

1
2
+a for

some 1
4
< β < 1

2
and a > 0. Suppose n

3
2
−4βφ−2

11,m is bounded for m = 1, . . . ,M . Then under

event An as n → ∞, for any m = 1, . . . ,M , the marginal likelihood likelihood ℓ(t) satisfies

the LAN property

log
ℓ(tλ,m + u

nβ )

ℓ(tλ,m)
= n1−2βφ−1

11,m

(
− u2

2σ2
n,m

− µn,mu

σ2
n,m

)
+ o(1), (14)

where µn,m =
nβ µ̂f ′ (tλ,m)

µ̂′
f ′ (tλ,m)

and σ2
n,m =

nφ−1
11,mσ̂2

f ′ (tλ,m)

µ̂′
f ′ (tλ,m)2

.

Moreover, letting r = r1 ∧ r2, we have

|µn,m| ≲ (log n)−a, (15)

|σ2
n,m − σ∗2

m | ≲ λr. (16)

Remark 2. The LAN property in Theorem 1 exhibits two differences compared to classical

LAN properties (Section 7, van der Vaart (2000), Kleijn and van der Vaart (2012)), in part

owing to the adopted unconventional encompassing approach along with the semiparametric

problem under consideration. First, the inflation term n1−2βφ−1
11,m is absent in classical semi-

parametric LAN expansions, pointing to complications in the rate calculation that integrate

properties of K and the choice of λ through φ11,m. Second, our expansion is specific to tλ,m,

a local extremum of fλ, with varying quantities µn,m and σ2
n,m. As a result, the posterior

distribution cannot be approximated by a Gaussian after a homogeneous rescaling of the

parameter across X ; this reminds us of the localized feature of local extrema, and suggests

localized rescaling within a small interval centered at tm. Unlike existing work in semipara-

metric Bayes where the posterior distribution converges to a single Gaussian, a multi-modal

posterior distribution in the form of a mixture of normal distributions is expected.

3.3 Multi-modal limiting distribution

We make the following mild assumption on the prior π(t):

13



Assumption D. The prior density π(t) satisfies that π(t) ∈ C(X ) and has positive density

at local extrema, i.e., there holds π(tm) > 0 for m = 1, . . . ,M .

This assumption on π(t) is rather flexible and can be satisfied by most continuous distribu-

tions supported on X , such as the beta distribution.

Let Πn(· | X,y) be the probability measure of πn(· | X,y), and Φ(· | µ, σ2) be the cumulative

distribution function of the normal distribution N(µ, σ2). The following theorem shows that

πn(t | X,y) is close to a mixture of normal distributions when the sample size is large, where

the component densities are related to the LAN expansion, and the weights are determined

by both prior density and curvature of f0 at tm.

Theorem 2. Suppose Assumptions A1-A3, B1-B3, C and D hold, and let λ = n− 1
2
+β(log n)

1
2
+a

for some 1
4
< β < 1

2
and a > 0 such that n

3
2
−4βφ−2

11,m is bounded. Then the following results

hold for any z ∈ R:

(i) Letting πm =
|f ′′

0 (tm)|−1π(tm)∑M
m=1 |f ′′

0 (tm)|−1π(tm)
, we have

∣∣∣∣Πn(t ≤ z | X,y)−
M∑

m=1

πmΦ(z | tm, n−1φ11,mσ
∗2
m )

∣∣∣∣→ 0

in P0-probability, where φ11,m and σ∗2
m are given by (13).

(ii) Letting Π′
n,m(· | X,y) be the posterior of

√
n

φ11,m
(t1Im(t)− t̂m+ bn) where bn = n−β log n,

and Im = [tm − ζm−1, tm + ζm] with ζ0 = t1, ζm = (tm+1 − tm)/2 for m = 1, . . . ,M − 1, and

ζM = 1− tM , we have for any z ∈ R, in P0-probability,∣∣∣∣Π′
n,m(t

′ ≤ z | X,y)− Φ(z | 0, σ∗2
m )

∣∣∣∣→ 0.

A few remarks are in order to elucidate the encompassing strategy using Theorem 2.

Remark 3. Part (i) of Theorem 2 shows that the posterior distribution is close to a

mixture of normal distributions. The curvature of f at a local extremum t, defined as

14



|f ′′(t)|/(1 + {f ′(t)}2)3/2 that reduces to |f ′′(t)| when f ′(t) = 0, directly affects the variation

of the posterior distribution at t. Indeed, the standard derivation of the Gaussian component

at t in the limiting distribution is proportional to 1/|f ′′
0 (t)|, meaning a large curvature leads

to a more concentrated normal component in the posterior distribution. Interestingly, this

effect of curvature on the component-wise variance is offset by the mixture weight that is

also proportional to 1/|f ′′
0 (t)|. More specifically, the limiting mixture normal density func-

tion evaluated at each local extremum tm, which is πm/
√

2πn−1φ11,mσ∗2
m ∝ π(tm)/

√
φ11,m,

does not depend on the curvature of f at tm. Hence, the multi-modal posterior distribution

of t does not diminish a local extremum with small curvature, at least asymptotically. The

prior weight π(tm) plays a direct role in driving the posterior distribution, which enables

incorporating prior knowledge. Section 4.1 provides numerical confirmation for these theo-

retical implications using finite sample illustration; see, in particular, Figure 2. The marginal

likelihood function ℓ(t), proportional to the posterior density πn(t | X,y) with a uniform

prior, also tends to be multi-modal, as observed in Figure 2.

Remark 4. Part (ii) generalizes the BvM phenomenon to the encompassing semiparamet-

ric regime under consideration. In particular, after rescaling and truncation, the posterior

distribution weakly converges to a normal distribution with a bias term bn that is o(1). BvM

theorems in weak convergence (i.e., convergence in distribution) are common in the litera-

ture (Kim and Lee, 2004; Castillo and Rousseau, 2015; Castillo and Nickl, 2014; Kim, 2006).

Our result is different in that the target distribution is multi-modal with varying mean and

variance at each component, necessitating a localized truncation at Im for weak convergence

to a single normal. Although not typical, approximating the posterior distribution via a mix-

ture of Gaussians has appeared in the literature; for example, see Castillo et al. (2015) on

Bayesian linear regression models. The established results and proofs show other important

differences from the semiparametric literature. Castillo (2012) proposed sufficient condi-

tions for a BvM theorem for separated models, where the model parameter takes the form

η = (θ, f). In our case, t is an inherited hyperparameter of f rather than an independent

parameter in a separated model (e.g., parameters in a location-scale family). Castillo and

Rousseau (2015) provided sufficient conditions for a BvM theorem for smooth functionals
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of the parameter in general models. Specifically, they considered a model parameterized by

θ ∈ Θ, and provided a BvM theorem for ψ(θ) where ψ : Θ → Rd is a smooth functional

of interest (see Equation (2.4) in their paper). However, the derivative at any fixed point,

when viewed as a functional of the regression function, is not bounded (Conway, 1994, page

13), and thus local extrema may not be expressed as a functional of the regression function

even when their number is known.

Remark 5. Part (ii) indicates a bias-variance trade-off regarding the rescaled posterior for

estimating tm. The bias of the centering quantity t̂m − bn − tm is bounded above by λr1 ,

in view of Lemma 2 and the constraint that 1
4
< β < 1

2
. On the other hand, the variance

n−1φ11,m is bounded above by (nλ)−1 in view of Assumption B2. Therefore, a larger λ

(or equivalently, a larger β) corresponds to a smaller variance but a larger bias. An exact

rate calculation for both bias and variance can be obtained by considering the special cases

in Section 3.5. Note that such rates depend on the underlying regularity parameter of the

true function that is typically unknown, impeding their application to parameter tuning. We

propose to use an empirical Bayes approach to select λ by maximizing its marginal likelihood

function, which shows competitive performance in our simulations; see Section 4 for details.

Verifying the conditions needed for the preceding theorems often amounts to checking As-

sumptions B1-B3 and Assumption C, which will provide insight into how to choose the kernel

hyperparameters; see Section 3.5 for examples.

3.4 Point and interval estimation

The shape of the posterior distribution characterized in Theorem 2 can be used to construct

estimators with frequentist properties. In particular, the multi-modality of the limiting

posterior distribution provides a basis to overcome the multiplicity challenge of local extrema,

and leads to consistent estimators of tm through posterior exploration. We additionally

provide interval estimation that achieves frequentist coverage.

Theorem 3. Under the same conditions as in Theorem 2, the following results hold.
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(i) For all δ > 0, with P0-probability tending to one, πn(t | X,y) has exactly M local maxima

t1,n, . . . , tM,n, and for m = 1, . . . ,M there holds |tm,n − tm| ≤ δ for all sufficiently large n.

(ii) Let ∆n(·) = K10(·, X)[K(X,X) + nλIn]
−1f0(X). For any α ∈ (0, 1), the following is an

asymptotic 1− α confidence interval for tm +∆n(tm)/f
′′
0 (tm):

t̂m ± zα/2σ

√
K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T/|µ̂′

f ′(t̂m)|,

where zα/2 is the upper α/2 quantile of the standard normal distribution.

In Theorem 3 (ii) the bias term ∆n(tm)/f
′′
0 (tm) can be shown to be o(1) with P0-probability

tending to one as it is approximating f ′
0(tm)/f

′′
0 (tm) = 0. For implementation, we propose to

“plug in” consistent estimators for unknown quantities in ∆n(tm)/f
′′
0 (tm), including µ̂

′
f ′(t̂m)

for f ′′
0 (tm), t̂m for tm, and ∆̂n(·) = K10(·, X)[K(X,X) + nλIn]

−1µ̂f (X) for ∆n(·), leading to

the following confidence intervals for tm:

t̂m +
∆̂n(t̂m)

µ̂′
f ′(t̂m)

± zα/2
σ
√
K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T

|µ̂′
f ′(t̂m)|

. (17)

These confidence intervals depend on λ, which will be estimated using empirical Bayes,

as discussed in Remark 5. In the context of nonparametric regression, Liu and Li (2022)

have demonstrated that this choice of λ tends to adapt to the unknown smoothness level

of the underlying function, especially when combined with an oversmooth kernel. However,

it is worth noting that constructing adaptive confidence intervals with minimax optimal

diameter is a more challenging task, as is typically the case in nonparametric inference; see,

for example, Giné and Nickl (2021) for more details. We assess finite sample performance

of (17) in Section 4, which shows satisfactory coverage.

When the error variance σ2 is unknown, one may substitute σ2 in the original derivative-

constraint GP prior with an estimate σ̂2
n. The established results in Theorems 1, 2, and 3

hold with any estimator σ̂2
n that converges to σ2 in mean square. In particular, we can

estimate σ2 by the maximum marginal likelihood estimator which has been shown to be
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mean square consistent under various settings (Yoo and Ghosal, 2016; Liu and Li, 2022).

Denote the induced posterior measure of t by Πn,σ̂2
n
(· | X,y), and take Part (i) in Theorem 2

as an example. Let Bn be a shrinking neighborhood of σ2 such that P0(σ̂
2
n ∈ Bn) → 1.

Conditional on Bn, Equation (8) becomes

|σ̂2(k)
f ′ (x)− (σ2 + o(1))n−1

k∑
i=0

(
k

i

)
φi+1,k+1−i(x)|

≤
k∑

i=0

(
k

i

)[√
κκi+1,i+1κ0,k+1−i(σ

2 + o(1))
√
10 log n+ 4

n
√
nλ2

(
10 +

4
√
κ
√
10 log n+ 4

3
√
nλ

)]
,

and all the established inequalities in the proof of Theorem 2 hold uniformly over σ2 ∈ Bn.

In particular, there holds supσ2∈Bn

∣∣∣∣Πn(t ≤ z | X,y)−
∑M

m=1 πmΦ(z | tm, n−1φ11,mσ
∗2
m )

∣∣∣∣→ 0

in P0-probability, yielding

∣∣∣∣Πn,σ̂2
n
(t ≤ z | X,y)−

∑M
m=1 πmΦ(z | tm, n−1φ11,mσ

∗2
m )

∣∣∣∣→ 0.

3.5 Applications to special function classes and GP kernels

In this section, we provide examples under which various assumptions and Theorems 1 and 2

hold. We focus on covariance kernels that possess regularized eigenfunctions as follows.

Assumption E. The eigenfunction ψi ∈ Cs(X ) for all i ∈ N and some s ∈ N. Moreover,

there exists a constant C > 0 such that ∥ψ(s)
i ∥∞ ≤ Cis for any i ∈ N and

∑∞
i=1 ψ

′
i(x)

2

diverges for any x ∈ X .

In particular, the Fourier basis satisfies Assumption E for any finite s.

Example 1. Stationary kernels with polynomially decaying eigenvalues. Let Kα,s be a sta-

tionary covariance kernel whose eigenfunctions satisfy Assumption E and eigenvalues decay

at a polynomial rate, that is, µi ≍ i−2α for i ∈ N and some α > 0.

We assume that the true regression function f0 lies in the Hölder class:

Hα(X ) =

{
f ∈ L2

pX
(X ) : ∥f∥2Hα(X ) =

∞∑
i=1

iα|fi| <∞, fi = ⟨f, ψi⟩2

}
.
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Any function in Hα(X ) has continuous derivatives up to order ⌊α⌋ and the ⌊α⌋th derivative

is Lipschitz continuous of order α−⌊α⌋. Using the error bounds for derivatives of fλ − f0 in

Lemma 13 of Liu and Li (2023) to verify Assumption C, the following corollary provides an

example for Theorems 1 and 2 to hold.

Theorem 4. Suppose f0 ∈ Hα(X ) and Kα,s is used in the GP prior for α > 9/2 and s ≥ 4.

Then Assumptions B1-B3 and C hold, and Theorems 1 and 2 hold for any β ∈ [3
8
, 1
2
).

Example 2. Stationary kernels with exponentially decaying eigenvalues. We consider station-

ary kernels Kγ,s with eigenvalues µi ≍ e−2γi for i ∈ N and some γ > 0, and eigenfunctions

satisfying Assumption E. The well-known squared exponential kernel can be approximately

viewed as an example of Kγ,s, with a closed-form eigendecomposition with respect to Gaus-

sian sampling on the real line (Rasmussen and Williams, 2006; Pati and Bhattacharya, 2015).

We assume f0 belongs to the analytic-type function class Aγ(X ):

Aγ(X ) =

{
f ∈ L2

pX
(X ) : ∥f∥2Aγ(X ) =

∞∑
i=1

eγi|fi| <∞, fi = ⟨f, ψi⟩2

}
.

We first verify Assumption C in the following Lemma 3.

Lemma 3. Suppose that f0 ∈ Aγ(X ), and Kγ,s is used in the GP prior for some γ > k
e
and

s ≥ k. Then there holds ∥f (k)
λ − f

(k)
0 ∥∞ ≲ λ

1
2
− k

2eγ .

This yields another example for our theory to hold using kernels with exponentially decaying

eigenvalues, formulated in the following corollary.

Theorem 5. Suppose f0 ∈ Aγ(X ) and Kγ,s is used in the GP prior for γ > 5
2e

and s ≥ 4.

Then Assumptions B1-B3 and C hold, and Theorems 1 and 2 hold for any β ∈ [3
8
, 1
2
).
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Figure 1: Simulated data with n = 100. Observations are marked by “+”. The red curve is
the true regression function, and green lines indicate the location of three local extrema.

4 Simulation

In this section we carry out simulation studies to illustrate the convergence of the posterior

distribution πn(t | X,y) to Gaussian mixtures, and to assess the performance of the proposed

method relative to competing methods.

We use a Doppler-type regression function f(x) =
√
x(1− x) sin (2π/(x+ 0.5)) for x ∈ X =

[0, 1], which has three local extrema at t1 = 0.0863, t2 = 0.3096 and t3 = 0.7491. We add iid

zero-mean Gaussian noise to f with standard deviation σ = 0.1, observed at equal-spaced

{xi}ni=1 in the unit interval [0, 1]. We vary the sample size n = 100, 500, 1000. Figure 1 shows

one simulated dataset of sample size 100. Each simulation scenario is replicated 100 times.

We use two prior distributions Beta(1, 1) (the uniform distribution) and Beta(2,3) on t to

study the sensitivity of posterior inference to the prior specification. We use the squared

exponential kernel function for K, that is, K(x, x′) = exp{−(x − x′)2/(2h2)}. For each

simulated dataset, we select parameters other than t, which include λ, h, and σ2, via an

empirical Bayes approach by maximizing the unconstrained marginal likelihood function,

i.e., the multivariate normal density N(0, σ2(nλ)−1K(X,X) + σ2In) evaluated at y. This

is motivated by the excellent performance of empirical Bayes in a variety of settings (Yoo
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and Ghosal, 2016; Liu and Li, 2022). We use the midpoint rule to calculate the normalizing

constant in πn(t | X,y).

4.1 Finite sample size behavior of the posterior distribution

The proposed method, labeled as DGP, does not require any sampling to obtain the poste-

rior distribution owing to the closed-form expression in Proposition 1. Figure 2 shows the

posterior distribution of t with various sample sizes and the two beta priors, each based

on one simulated dataset. We can see that the posterior distribution possesses three mix-

ture components at all sample sizes and for both beta priors, matching the true number of

local extrema M = 3. At each sample size such as n = 1000, the posterior distribution

tends to have three modes concentrating around (t1, t2, t3), which aligns with the established

Theorem 2 that deciphers the limiting behavior of the posterior distribution.

The curvature at a local extremum point t is |f ′′(t)|, which is (111.04, 44.55, 11.91) for

(t1, t2, t3), respectively. Figure 2 indicates that the variability of each mixture component

decreases substantially as the curvature increases, confirming Theorem 2 in which we show

that the standard deviation of each Gaussian component in the limiting distribution is in-

versely proportional to the curvature at the corresponding local extremum. For example, t1

with the highest curvature exhibits the least variation, while t3 with the lowest curvature

has the most variation in the posterior distribution, as in Figure 2.

As n increases, the mixture components in the posterior distribution are more bell-shaped.

When the sample size is small, such as n = 100, the mixture component may be skewed. This

is particularly the case for the first (left skewed) and the third mixture component (right

skewed) when the Beta(1,1) prior is used. A closer inspection of Figure 2 (a) indicates a

boundary effect when n = 100, that is, there appears to be a small bump near the boundary.

Such boundary effects are reasonable as there are sparser data near the boundary, lacking

information outside the range X , and that the right boundary point t = 1 indeed gives the

largest function value on (t3, 1]. Both skewed mixture components and boundary effects are

much mitigated when the sample size increases to 500 and 1000. In addition, the Beta(2, 3)
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(a) Beta(1, 1) prior (b) Beta(2, 3) prior

Figure 2: Effect of n on the posterior distribution of t with beta prior distributions. Vertical
dashed lines indicate the true locations of local extrema. The intervals in each plot are
the 95% highest posterior density regions. Each posterior density function is based on one
simulated dataset.

prior tends to zero out the boundary bumps even when the sample size is as small as 100.

The posterior distributions corresponding to the two beta priors have various density values

at their local peaks, which are also suggested by Theorem 2. We remark that, however, an

appropriate posterior summary method such as highest posterior density regions may lead to

interval estimates that are less sensitive to the priors; see the interval estimates in Figure 2,

and the next section, particularly Table 1, for more details about point estimates.

The proposed Bayesian approach has the advantage of allowing users to incorporate any

prior knowledge, if available, about the location of local extrema. For example, one may use

a suitable prior distribution to rule out the possibilities of local extrema near the boundary.

This does not necessarily mean that local extrema are not located near the boundary, but

rather that such local extrema are not desired.

4.2 Comparison with other methods

We use the 95% highest posterior density region (HPDR) of the posterior distribution of

t for posterior summary, which consists of a number of disjoint intervals enclosing local
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modes. We use the number of segments in the HPDR to estimate M , and the corresponding

posterior mode within each segment to estimate local extrema. This posterior summary is a

reasonable strategy according to our asymptotic characterization of the posterior distribution

of t, which approximates a mixture of Gaussians with the number and location of the mixture

components matching the local extrema of the underlying regression function. We expect

this method to estimate M correctly with high probability according to Theorem 3 (i).

For comparison, we implement another three methods: the smoothed taut string (STS)

method proposed by Kovac (2007), the original taut string (TS) method in Davies et al.

(2001), and the nonparametric kernel smoothing (NKS) method proposed by Song et al.

(2006). STS and TS estimate the number of local extrema by minimizing a loss function of the

corresponding taut string, and do not provide uncertainty quantification about local extrema.

Since STS is an improved version of TS, and we find that these two methods lead to similar

numerical performance in our experiments, in this section we omit the results of TS and use

STS to represent taut string-based methods. NKS first estimates the regression function,

denoted by f̂(x), then chooses a set of x’s such that the confidence interval of f ′(x) contains

zero. Within this set, point estimates of stationary points are obtained by locating those at

which f̂ ′(x) are closest to zero, denoted by {x∗m}M̂m=1, which are a subset of {xi}ni=1 by design.

For interval estimation, NKS inverts the lower and upper limits of the 95% confidence band

for f̂ ′(x∗m). Such intervals may not exist, and if one of the upper or lower bounds can be found,

they further assume asymptotic normality and construct a symmetric interval based on x∗m

and the available bound. In contrast, interval estimation in the semiparametric Bayesian

approach through HPDRs is computationally more straightforward and conceptually more

coherent. STS and TS are implemented in the R package ftnonpar, and we implement NKS

using the R code provided by the authors of Song et al. (2006). The bandwidth parameter

in NKS is chosen by minimizing asymptotic mean integrated squared error.

4.2.1 Estimation of M

Figure 3 plots the estimated number of local extrema by each method at various sample

sizes. The plot with n = 1000 is similar to the one with n = 500, and is thus omitted here.
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We can see that the semiparametric Bayesian method DGP with both priors and the STS

method tend to capture the true number of local extrema as the sample size increases to

500. When the sample size is 100, DGP with the Beta(2,3) prior gives the largest frequency

at the true number M = 3 among all methods, while STS and DGP with the Beta(1,1)

prior either underestimate or overestimate M in about half of the 100 simulations, although

mostly by one. Figure 3 reinforces that the estimation accuracy of M is greatly improved

by using the Beta(2, 3) prior to remove trivial points around the boundary, which gives the

most accurate estimate of M for both n = 100 and n = 500. It is reassuring that the effect

of prior distributions for DGP is diminished as n increases from 100 to 500. For both DGP

and STS, a sample size over 500 appears large enough to ensure an accurate estimate of

the number of local extrema, at least under the simulation setting. NKS does not exhibit

a clear convergence behavior as DGP and STS do. It overestimates M considerably more

than DGP and STS, and such overestimation persists when the sample size increases to 500

and 1000. This confirms that the presence of multiple local extrema poses challenges to

NKS, as commented by Song et al. (2006), and suggests that multiple testing correction is

particularly needed for the two-step approach, while appealing performance of the unified

approach DGP does not hinge on such a correction.

Additional experiments are included in the supplementary material to investigate the effects

of noise standard deviation and credible levels, which show quite robust performance of the

Beta(2,3) prior in estimating M for a wide range of credible levels. A highly fluctuated

regression function with large M is also considered.

4.2.2 Point estimation of local extrema

We now turn to comparing the estimates t̂i for i = 1, . . . , M̂ for each method. Since M̂ might

deviate from M = 3, as suggested in Figure 3, we adopt the following convention to align

the estimated local extrema with the true ti for i = 1, 2, 3 for all methods. We consider three

intervals (b0, b1), (b1, b2), and (b2, b3), where b0 = 0, b3 = 1, and bi = (ti+ ti+1)/2 for i = 1, 2.

Then for each method, we collect all estimated local extrema that fall into each interval.

If the ith interval (i = 1, 2, 3) contains more than one estimate, we use the average of all
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Figure 3: Frequency of the estimated number of local extrema by each method across 100
replicated simulations. Color code: yellow for STS, green for NKS, blue for DGP with the
Beta(2,3) prior, and purple for DGP with the Beta(1, 1) prior. The plot with n = 1000 is
similar to the one with n = 500, and is thus omitted here.

local extrema within the interval as the estimate of ti; if an interval contains no estimates,

we put an NA to indicate missingness. Performance of each method in estimating ti for

i = 1, 2, 3 is compared by calculating the root mean squared error (RMSE), averaged across

100 simulations excluding NAs. The number of simulations in which a method gives zero or

multiple local extrema within each interval is reported in Table 2.

Table 1 reports the RMSE for estimated local extrema by all methods. The semiparametric

Bayesian method DGP, with the Beta(1,1) or the Beta(2,3) prior, gives the smallest RMSEs

in nearly all cases, with only one exception for t3 at n = 100 when STS is slightly better. For

t1 and t2, DGP often reduces the RMSEs of STS and NKS by over half or more, consistently

across all sample sizes. For DGP, the two priors yield similar RMSEs in most cases, indicating

that point estimates of local extrema tend to be minimally affected by the prior specification.

Table 2 indicates that NKS produces multiple local extremum estimates in each interval much

more often than DGP and STS, especially for t3 with small curvature. When the sample size

is 100, DGP leads to multiple local extrema in 14 (Beta(2,3) prior) and 15 (Beta(1, 1) prior)
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out of 100 simulations, while STS misses estimates within (0, b1) for 50 simulations. Both

DGP and STS estimate local extrema that align well with the true local extrema when n

increases to 500 and 1000. It is worth mentioning that all methods give one local extremum

in the interval (b1, b2) for almost all simulations (Table 2), which provides a scenario that

eliminates the need to account for zero or multiple estimates; Table 1 shows that in this

scenario that corresponds to estimating t2 the proposed DGP achieves the smallest RMSEs,

suggesting superior performance of DGP.

Table 1: Comparison of various methods using root mean square error (RMSE). The reported
RMSEs are multiplied by 100 for easy comparison. The smallest and second smallest RMSEs
in each column are marked in bold. All RMSEs are averaged across 100 repeated simulations.

Method
n = 100 n = 500 n = 1000

t1 t2 t3 t1 t2 t3 t1 t2 t3

DGP Beta(1,1) 0.67 0.88 4.13 0.29 0.54 2.11 0.25 0.46 1.31
DGP Beta(2,3) 0.65 0.88 3.85 0.30 0.54 2.00 0.24 0.45 1.30

STS 1.65 1.53 3.14 0.78 1.22 2.56 0.75 1.11 1.90
NKS 1.68 1.46 4.98 1.54 1.08 3.30 1.90 1.07 2.25

Table 2: Number of simulations with missing or multiple estimated local extrema in each
interval. The three intervals, indexed by t1, t2, and t3 in the table, are (0, (t1 + t2)/2), ((t1 +
t2)/2, (t2 + t3)/2), ((t2 + t3)/2, 1), respectively. The number of simulations with missingness,
if non-zero, is reported as the second number in a pair; otherwise if there is no missingness,
we only report the number of simulations with multiple estimates.

Method
n = 100 n = 500 n = 1000

t1 t2 t3 t1 t2 t3 t1 t2 t3

DGP Beta(1,1) 0 0 15 0 0 5 0 0 1
DGP Beta(2,3) 0 0 14 0 0 1 0 0 0

STS (0, 50) 0 1 1 0 1 1 0 0
NKS 19 1 47 14 3 45 20 0 40

We note that there are a few noticeable differences in our implementation of the encom-

passing strategy with respect to Yu et al. (2023). In our estimation approach, we fix the

hyperparameters σ, τ and h at the values that maximize the marginal unconstrained likeli-

hood, while in the Monte Carlo Expectation Maximization (MCEM) approach of Yu et al.

(2023) σ is sampled in each MC E-step while τ and h are iteratively updated in the M-step

given their previous values and the samples of t and σ drawn in the E-step. Furthermore,
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while we make use of the analytic form of the posterior distribution of t, the MCEM approach

of Yu et al. (2023) draws posterior samples of t. One clear advantage of our implementation

is that it is computationally much faster than the MCEM method. (Using n = 100 as an

example, our implementation was 100 times faster than MCEM on a regular PC, at a mag-

nitude of 32 seconds versus 3200 seconds for completing 100 simulations.) When applying

the MCEM method to the simulation study, we found overall similar values in the selected

parameters. For example, estimates for σ, τ and h, averaged over 100 simulated datasets,

were 0.10, 0.30 and 0.13, respectively, for our approach and 0.14, 0.37 and 0.13, respectively,

for the MCEM.

4.3 Interval estimation of local extrema

We now assess the proposed interval estimates in (17). Within each HPDR segment under

the Beta(1,1) prior, we estimate t̂m by finding the local extremum of µ̂f ; if multiple local

extrema are found, then the average is used. We assess the coverage of interval estimators

conditional on M̂ = 3. This conditional event tends to occur with probability one given

the consistency of M̂ and indeed has a high probability in finite sample settings as observed

in Section 4.2.1. We consider three confidence levels 1 − α for α ∈ {0.1, 0.05, 0.1}. In

addition to (marginal) confidence intervals for each ti, we also obtain a joint confidence set

for {t1, t2, t3} using the Bonferroni correction. We compare the empirical coverage of three

marginal confidence intervals and one joint confidence set with the confidence level.

Table 3 shows that the empirical coverage is close to the nominal level when n increases

to 500, for both marginal confidence intervals and joint confidence sets. We observe no

significant derivation of the observed coverage from the confidence level relative to the stan-

dard errors when n ∈ {500, 1000}, indicating satisfactory coverage of the proposed interval

estimates in this finite sample setting. In results not reported here, changing the prior to

Beta(2,3) when deriving HPDR leads to a similar coverage for both marginal confidence

intervals and joint confidence sets.
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Table 3: Coverage of confidence intervals at various confidence levels 1 − α for α ∈
{0.1, 0.05, 0.01}. The first three blocks report the coverage of marginal confidence inter-
vals for each local extremum, while the last block is the coverage of joint confidence sets
using the Bonferroni correction. For each of the three rows, the maximum standard errors
are 0.07, 0.04, and 0.04, respectively.

t1 t2 t3 Joint

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

n = 100 0.81 0.91 0.98 0.75 0.81 0.87 0.74 0.81 0.83 0.66 0.72 0.77
n = 500 0.91 0.94 1 0.84 0.90 0.99 0.90 0.94 1 0.85 0.94 1
n = 1000 0.86 0.95 0.99 0.86 0.92 0.99 0.88 0.94 0.99 0.85 0.93 0.99

5 Real data application

In this section, we show an application of our method to the analysis of event-related poten-

tials (ERP), which represent electroencephalogram (EEG) recorded in response to stimuli.

Primary statistical analyses of an ERP waveform focus on estimating the amplitude (micro-

volts) and latency (milliseconds) of specific peaks and dips, also called ERP components, as

these have been shown to be associated with human sensory and cognitive functions (Luck,

2005). Although ERPs have been extensively used in psychology and the cognitive science

community, research in statistical modeling for latency estimation with uncertainty quantifi-

cation is not mature yet and still under development. Here we show how our methodology

can be applied to derive posterior distributions of ERP component latencies, an important

information when making scientific discoveries based on ERP data (Yu et al., 2023).

We use ERP data publicly available at http://dsenturk.bol.ucla.edu/supplements.

html. The dataset consists of ERP signals of a single subject with autism spectrum disorder

(ASD), evaluated at one electrode, one condition, and 72 trials, each having 250 time points.

Figure 4 shows the time series of all 72 trials and the grand average time course averaged

over all 72 trials. Two ERP components, N1, typically within the window [100, 250] msec,

and P3, typically within the window [190, 350] msec, are the main interest of the study. We

therefore restrict our analysis to the time window [100, 350] msec.

Since EEG signals are typically noisy, traditionally neuroscientists average signals across
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Figure 4: ERP data: 72 time series each corresponding to one single trial and the grand
average time course averaged over all 72 trials. The time epoch between the two vertical
lines defines the search window for components N1 and P3.

trials to obtain an overall or grand average ERP waveform, which they then visually inspect

to determine the amplitude size and latency location of the ERP components. Following such

practice, we first applied our method to the grand average time course. As in the simulations,

empirical Bayes estimates of the parameters other than t were obtained by maximizing the

marginal likelihood, as (σ, τ, h) = (0.642, 6.385, 0.053), with a uniform prior on t. Curve

fitting and posterior distribution of the latency are shown in Figure 5. We note that the

observations, i.e. the grand average over all trials, and the fitted curve appear to have a

similar smoothness level as in the preceding simulation section; for example, compare Figure 5

(top row) with Figure 1. In addition to generating a smooth fitted ERP curve along with

95% credible intervals for amplitude estimation, our model-based approach provides a full

posterior distribution of latency locations for ERP components. The 95% credible intervals

for the N1 and P3 latencies are [174.58, 178.32] msec and [266.58, 270.93] msec, respectively.

We also investigated the robustness of the results to the smoothness of the ERP waveform.

Indeed, since our model explicitly accounts for errors in the data, some of the excessive

averaging, which is routinely done to obtain smooth curves, can be avoided. When fewer

trials are averaged, we expect posterior distributions with larger variation. As an example,

the left panel of Figure 6 shows the estimated waveform and the posterior density of latency

when only the first 2 trials are averaged. The N1 and P3 latencies are still identified, though,

as expected, with larger uncertainty. In particular, the 95% credible intervals for N1 and P3
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Figure 5: ERP data: Curve fitting and posterior density of the latency of the grand ERP
waveform averaged over 72 trials.

Figure 6: ERP data: Curve fitting and posterior density of the latency of the ERP waveform
averaged over the first two trials, with a uniform prior (left panel) and a Beta(3,3) prior (right
panel) on the latency.

are [168.99, 180.80] msec and [271.55, 295.17] msec, respectively. Furthermore, as an effect

of the smaller level of averaging, some smaller modes at the extremes of the interval are

now more pronounced. These are spurious effects and can be avoided by utilizing a prior

distribution on the latency that discourages local extrema at the endpoints of the interval.

For example, the right panel of Figure 6 shows the inference using a Beta(3, 3) prior.

6 Discussion

In this article, we have studied an encompasssing semiparametric Bayesian approach for

identifying multiple local extrema of an unknown function. We have shown that the pos-
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terior distribution is connected to unconstrained nonparametric regression in a closed-form

characterization, enabling fast computation. We have established local asymptotic normality

properties and convergence to Gaussian mixtures for this unconventional strategy, indicat-

ing multi-modality of the posterior distribution and substantiating the use of the highest

posterior density region for posterior exploration. Our simulations have suggested superior

performance of this encompassing semiparametric method relative to existing methods.

Although we have focused on Gaussian processes with stationary covariance functions whose

eigenvalues decay at certain rates as special examples, the developed framework of this

article, which bases inference on the multi-modal posterior distribution of t with justified

asymptotic properties, can be extended to other nonparametric priors, including Gaussian

processes with other covariance functions and random series priors. Similar to the flexibility

encoded in covariance kernels of Gaussian processes, the rich menu for basis functions in

random series priors allows flexible shapes of the underlying functions; for example, wavelets

might be better suited for spiky functions in certain applications such as mass spectrometry

(Liu et al., 2020), and B-splines for locally supported functions (Wang et al., 2023). In

these generalizations, one needs to verify the conditions in Theorem 2 for the adopted non-

parametric prior, with technical challenges including deriving the approximate properties of

relevant estimates as in Lemma 1 and Assumption C, and selecting hyperparameters such

as the number of basis functions in the context of local extrema detection.

Throughout the paper we have focused on a one-dimensional sample space. It may be argued

that the encompassing strategy studied in this article generalizes to d-dimensional compact

sample spaces for any d ≥ 1 by using GP prior counterparts supported on d-dimensional

X . However, the main challenges in multivariate settings include the need to theoretically

study multivariate posterior distributions with multi-modality, and develop computationally

efficient algorithms for posterior exploration.

There are several other interesting future directions to pursue. Firstly, Assumption A3 can

be relaxed to allow local extrema based on high-order derivative tests, and we envision the

developed arguments in this article are largely applicable with the LAN expansion extended
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to its higher-order counterpart. Secondly, one may study the encompassing strategy with

potentially different posterior exploration methods when there are many or even a diverging

number of local extrema, and compare its performance with alternative approaches. Finally,

one substantial challenge the proposed method overcomes is the multiplicity of local extrema

with unknown dimensions and locations. With given M , which is a different setting, further

efficiency gain might be possible by incorporating this knowledge into the method. In this

case, it is also interesting to study the optimal rate for estimating the M -dimensional local

extrema, and compare the proposed estimator with the optimal rate.
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Supplementary material for “Semiparametric Bayesian inference for

local extrema of functions in the presence of noise”

In this supplementary material, we present proofs of all results in the main paper, additional

technical lemmas, and additional numerical experiments.

A Proofs

A.1 Proof of Proposition 1

By Bayes’ theorem, it suffices to show that the likelihood takes the form of (5). Recall

that y|X, t ∼ N(0,Σt), where Σt = σ2(nλ)−1(A + B) with A = K(X,X) + nλIn and

B = −K01(X, t)K
−1
11 (t, t)K10(t,X) = −aaT by letting a = K01(X, t)K

−1/2
11 (t, t). Note that

the condition σ̂2
f ′(t) > 0 for any t ensures K11(t, t) > 0 in view of (4).

In view of the Sherman–Morrison formula, we have det (A +B) = (1−aTA−1a) det(A) and

(A+B)−1 = A−1 + A−1aaTA−1

1−aTA−1a
, assuming 1− aTA−1a ̸= 0. Substituting these two identities

into the multivariate normal density ℓ(t) yields

ℓ(t) = {2πσ2(nλ)−1}−n/2 det(A+B)−1/2 exp

{
− 1

2σ2(nλ)−1
yT (A+B)−1y

}
= {2πσ2(nλ)−1}−n/2(det(A))−1/2 exp

{
− yTA−1y

2σ2(nλ)−1

}
· (1− aTA−1a)−1/2 exp

{
− yTA−1aaTA−1y

2σ2(nλ)−1(1− aTA−1a)

}
= C{σ2(nλ)−1(1− aTA−1a)}−1/2 exp

{
− yTA−1aK11(t, t)a

TA−1y

2σ2(nλ)−1K11(t, t)(1− aTA−1a)

}
,

where

C = {2πσ2(nλ)−1}−n/2(det(A))−1/2 exp

{
− yTA−1y

2σ2(nλ)−1

}
· {σ2(nλ)−1}1/2

does not depend on t. The proof is completed by noticing that µ̂f ′(t) = K
1/2
11 (t, t)aTA−1y

and σ̂2
f ′(t) = σ2(nλ)−1K11(t, t)(1− aTA−1a). This completes the proof.
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A.2 Proof of Lemma 1

A one-dimensional version of Theorem 4 in Liu and Li (2023) shows that

∥µ̂(k)
f ′ − f

(k+1)
λ ∥∞ ≤

√
κκk+1,k+1∥f0∥∞

√
log(9/δ)

√
nλ

(
10 +

4κ
√
log(9/δ)

3
√
nλ

)
(18)

+
C2

√
κκk+1,k+1σ

√
log(3/δ)

√
nλ

, 0 ≤ k ≤ 3,

For any bounded f ∈ L2
pX
(X ), we define a bias of estimators of f by matrix and integral

operation as

E(K,X, f) = (LK,X + λI)−1LK,Xf − (LK + λI)−1LKf

= K(·, X)[K(X,X) + nλIn]
−1f(X)− (LK + λI)−1LKf,

which belongs to H. Consider any j, l ≥ 1 and j + l ≤ 5, taking f = K0l,x yields

∂jE(K,X,K0l,x) = Kj0(·, X)[K(X,X) + nλIn]
−1K0l(X, x)− ∂j(LK + λI)−1LKK0l,x.

Thus,

∂jE(K,X,K0l,x)(x) = Kj0(x,X)[K(X,X) + nλIn]
−1K0l(X, x)− ∂j(LK + λI)−1LKK0l,x(x)

= Kj0(x,X)[K(X,X) + nλIn]
−1K0l(X, x)− (LK + λI)−1LKKjl,x(x)

We write (LK + λI)−1LKKjl,x(x) = Kjl,x(x)− λ(LK + λI)−1Kjl,x(x) = Kjl(x, x)− λφjl(x).

Then, by Theorem 16 in Liu and Li (2023) we have that for any δ ∈ (0, 1), with P0-probability

at least 1− δ it holds

|Kj0(x,X)[K(X,X) + nλIn]
−1K0l(X, x)−Kjl(x, x) + λφjl(x)|

≤ ∥∂jE(K,X,K0l,x)∥∞

≤
√
κκjj∥K0l,x∥∞

√
log(3/δ)

√
nλ

(
10 +

4
√
κ
√
log(3/δ)

3
√
nλ

)
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=

√
κκjjκ0l

√
log(3/δ)

√
nλ

(
10 +

4
√
κ
√
log(3/δ)

3
√
nλ

)
.

In view of (7), σ̂
2(k)
f ′ (x) is a linear combination of quadratic forms

Kjl(x, x)−Kj0(·, X)[K(X,X) + nλIn]
−1K0l(X, x).

Therefore, for any 0 ≤ k ≤ 3, we have

|σ̂2(k)
f ′ (x)− σ2n−1

k∑
i=0

(
k

i

)
φi+1,k+1−i(x)| (19)

≤
k∑

i=0

(
k

i

)[√
κκi+1,i+1κ0,k+1−iσ

2
√
log(3/δ)

n
√
nλ2

(
10 +

4
√
κ
√
log(3/δ)

3
√
nλ

)]
.

The above (18) and (19) can hold simultaneously with P0-probability 1− 8δ. Let 8δ = n−10,

and An be the corresponding event. We immediately have P0(An) ≥ 1−n−10 with log(3/δ) ≤

10 log n+ 4 and log(9/δ) ≤ 10 log n+ 5 in the upper bound. This completes the proof.

A.3 Proof of Lemma 2

First we prove that for any local extremum tm of f0, there exists a local extremum tλ,m of fλ

such that tλ,m → tm as λ→ 0. There exists δ > 0 such that for any 0 < ϵ < δ, it holds that

f ′
0(tm − ϵ) < 0, f ′

0(tm + ϵ) > 0 and f ′′
0 (tm ± ϵ) ̸= 0 without loss of generality. By Assumption

C, we have

|f ′
λ(tm − ϵ)− f ′

0(tm − ϵ)| ≲ λr1 .

Hence, for sufficiently small λ, it holds f ′
λ(tm−δ/2) < 0. Similarly, we have f ′

λ(tm+δ/2) > 0.

According to the continuity of fλ, there exists a tλ,m ∈ (tm − δ/2, tm + δ/2) such that

f ′
λ(tλ,m) = 0. It can also be shown that f ′′

λ (t) ̸= 0 for any t ∈ (tm − δ/2, tm + δ/2) and

sufficiently small λ, which implies f ′′
λ (tλ,m) ̸= 0. Finally, we have tλ,m → tm as δ → 0 and

λ→ 0.
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Again by Assumption C we can see that

|f ′
λ(tλ,m)− f ′

0(tλ,m)| ≲ λr1 .

Since f ′
λ(tλ,m) = 0, in view of the mean value theorem, we have

|f ′
0(tm) + f ′′

0 (ξ1)(tλ,m − tm)| ≲ λr1 ,

where ξ1 lies between and tλ,m and tm. Since ξ1 → tm and f ′′
0 (tm) ̸= 0 by Assumption A, we

obtain

|tλ,m − tm| ≲ λr1 .

Under An, the existence and convergence rate of t̂m can be shown similarly by applying (8).

This completes the proof.

A.4 Proof of Theorem 1

The proof is based on the high probability event An defined in Lemma 1. Conditions of

Theorem 1 imply n
1
2
−2βφ11,m = o(1), yielding σ̂2

f ′(tλ,m) > 0 in view of (11). Invoking the

likelihood function ℓ(t) in (5), which holds at tλ,m and in its small neighborhood, we have

Λ(t,∆t) = log
ℓ(t+∆t)

ℓ(t)
=
ℓ′(t)

ℓ(t)
∆t+

ℓ′′(t)ℓ(t)− ℓ′(t)2

2ℓ(t)2
(∆t)2 +R3(ξ)(∆t)

3,

where R3(ξ) = {2ℓ′(t)3+ℓ′′′(ξ)ℓ(ξ)2−3ℓ′(ξ)ℓ′′(ξ)ℓ(ξ)}/{6ℓ(ξ)3} and ξ is bewteen t and t+∆t.

Thus,

Λ(tλ,m,
u

nβ
) =

[
−
σ̂2′

f ′(tλ,m)

2σ̂2
f ′(tλ,m)

−
µ̂f ′(tλ,m)µ̂

′
f ′(tλ,m)

σ̂2
f ′(tλ,m)

+
µ̂f ′(tλ,m)

2σ̂2′

f ′(tλ,m)

2σ̂2
f ′(tλ,m)2

]
u

nβ

+
1

2

[
σ̂2′

f ′(tλ,m)
2

2σ̂2
f ′(tλ,m)2

−
σ̂2′′

f ′ (tλ,m)

2σ̂2
f ′(tλ,m)

+
2µ̂f ′(tλ,m)µ̂

′
f ′(tλ,m)σ̂

2′

f ′(tλ,m)

σ̂2
f ′(tλ,m)2

−
µ̂′
f ′(tλ,m)

2 + µ̂f ′(tλ,m)µ̂
′′
f ′(tλ,m)

σ̂2
f ′(tλ,m)
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−1

2
µ̂f ′(tλ,m)

2

(
2σ̂2′

f ′(tλ,m)
2

σ̂2
f ′(tλ,m)3

−
σ̂2′′

f ′ (tλ,m)

σ̂2
f ′(tλ,m)2

)]
u2

n2β

+
1

6
R3(ξ)

u3

n3β
.

Based on the rates given by (9), (10), (11) and (12), we obtain

|µ̂f ′(tλ,m)| ≲ n−β(log n)−a, |µ̂(k)
f ′ (tλ,m)| ≲ 1,

|σ̂2
f ′(tλ,m)| ≲ n−1φ11,m, |σ̂2(k)

f ′ (tλ,m)| ≲ n− 1
2
−β(log n)−

1
2
−a,

for 1 ≤ k ≤ 3. Further calculation gives R3(ξ) ≲
σ̂2′′
f ′ (ξ)

σ̂2
f ′ (ξ)

2 = O
(
n

3
2
−β(log n)−

1
2
−aφ−2

11,m

)
.

Substituting these into the above Λ(tλ,m,
u
nβ ) yields

Λ(tλ,m,
u

nβ
) = −

µ̂f ′(tλ,m)µ̂
′
f ′(tλ,m)

nβσ̂2
f ′(tλ,m)

u−
µ̂′
f ′(tλ,m)

2

2n2βσ̂2
f ′(tλ,m)

u2 + o(n
3
2
−4βφ−2

11,m)

= −
n1−βµ̂f ′(tλ,m)µ̂

′
f ′(tλ,m)

nσ̂2
f ′(tλ,m)

u−
n1−2βµ̂′

f ′(tλ,m)
2

2nσ̂2
f ′(tλ,m)

u2 + o(n
3
2
−4βφ−2

11,m)

= n1−2βφ−1
11,m

{
−

µ̂′
f ′(tλ,m)

2u2

2nφ−1
11,mσ̂

2
f ′(tλ,m)

− nβµ̂f ′(tλ,m)
2u

nφ−1
11,mσ̂

2
f ′(tλ,m)

}
+ o(1),

when n
3
2
−4βφ−2

11,m = O(1).

Then we study the convergence of µn,m and σ2
n,m. According to (9) and (10), we have

|nβµ̂f ′(tλ,m)| ≲ (log n)−a,

|µ̂′
f ′(tλ,m)− f ′′

λ (tλ,m)| ≲ n−β(log n)−a.

In view of Lemma 2, Assumption A2, and Assumption C, we obtain that µ̂′
f ′(tλ,m) converges

to f ′′
0 (tm), and thus is bounded away from zero and infinity for sufficiently large n. Therefore,

|µn,m| =
∣∣∣∣nβµ̂f ′(tλ,m)

µ̂′
f ′(tλ,m)

∣∣∣∣ ≍ |nβµ̂f ′(tλ,m)| ≲ (log n)−a.
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From (11) we have ∣∣∣∣nφ−1
11,mσ̂

2
f ′(tλ,m)− σ2

∣∣∣∣ ≲ n
1
2
−2β(log n)−1−aφ−1

11,m.

Therefore,

∣∣∣∣σ2
n,m − σ2

f ′′
λ (tλ,m)

2

∣∣∣∣ = ∣∣∣∣nφ−1
11,mσ̂

2
f ′(tλ,m)

µ̂′
f ′(tλ,m)2

− σ2

f ′′
λ (tλ,m)

2

∣∣∣∣
≍
∣∣∣∣f ′′

λ (tλ,m)
2nφ−1

11,mσ̂
2
f ′(tλ,m)− µ̂′

f ′(tλ,m)
2σ2

∣∣∣∣
≲

∣∣∣∣f ′′
λ (tλ,m)

2
[
nφ−1

11,mσ̂
2
f ′(tλ,m)− σ2

] ∣∣∣∣+ ∣∣∣∣ [µ̂′
f ′(tλ,m)

2 − f ′′
λ (tλ,m)

2
]
σ2

∣∣∣∣
≲ n

1
2
−2β(log n)−1−aφ−1

11,m + n−β(log n)−a

≲ n
1
2
−2β(log n)−

3
2φ−1

11,m. (20)

On the other hand,∣∣∣∣ σ2

f ′′
λ (tλ,m)

2
− σ2

f ′′
0 (tm)

2

∣∣∣∣ ≍ |f ′′
0 (tm)

2 − f ′′
λ (tλ,m)

2| ≲ [f ′′
0 (tm)− f ′′

λ (tλ,m)] . (21)

Since K ∈ C8(X ,X ), we have fλ ∈ C4(X ). Then the mean value theorem gives

f ′′
0 (tm)− f ′′

λ (tλ,m) = f ′′
0 (tm)− f ′′

λ (tm)− f ′′′
λ (ξ)(tλ,m − tm).

By Assumption C and Lemma 2 we have

|f ′′
0 (tm)− f ′′

λ (tλ,m)| ≲ λr2 + λr1 ≤ 2λr. (22)

Combining (20), (21) and (22), we obtain∣∣∣∣σ2
n,m − σ2

f ′′
0 (tm)

2

∣∣∣∣ ≲ λr.

This completes the proof.
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A.5 Proof of Theorem 2

We first present a technical lemma and leave its proof to Section A.10.

Lemma 4. Suppose Assumption B1 holds and let λ = n− 1
2
+β(log n)

1
2
+a for some 1

4
< β < 1

2

and a > 0. Under event An, there exists C > 0 such that∣∣∣∣∣n− 1
2φ

1
2
11,mℓ(tλ,m)

/
exp

(
−n1−2βφ−1

11,m

µ2
n,m

2σ2
n,m

)
− C

|f ′′
0 (tm)|σ∗

m

∣∣∣∣∣ ≲ n
1
2
−2β(log n)−1−a.

For any x ≥ 0, define the error function as

Erf(x) =
2√
π

∫ x

0

e−t2dt.

By changing of variable, we have

∫ B

−A

a exp

(
−a2 (u+ b)2

c

)
du =

√
πc

2

[
Erf

(
a(A− b)√

c

)
+ Erf

(
a(B + b)√

c

)]
, (23)

where a, c, A,B > 0 and b ∈ R.

A.5.1 Proof of (i)

The proof will follow three steps.

Step 1: According to Theorem 1.3 in Devroye et al. (2018) and Lemma 2, we have that for

any z ∈ R,

∣∣∣∣ M∑
m=1

πmΦ(z | tλ,m, n−1φ11,mσ
∗2
m )−

M∑
m=1

πmΦ(z | tm, n−1φ11,mσ
∗2
m )

∣∣∣∣
≤ dTV

(
M∑

m=1

πmϕ(· | tλ,m, n−1φ11,mσ
∗2
m ),

M∑
m=1

πmϕ(· | tm, n−1φ11,mσ
∗2
m )

)

≲
M∑

m=1

πm|tλ,m − tm| ≲ λr1 = o(1),

where dTV is the total variation distance between two distributions. Thus, we only need to
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show ∣∣∣∣Πn(t ≤ z | X,y)−
M∑

m=1

πmΦ(z | tλ,m, n−1φ11,mσ
∗2
m )

∣∣∣∣→ 0

for any z ∈ R in P0-probability.

Step 2: We work under the high probability event An henceforth in this proof, that is, all

convergence rates and bounding integrals only hold under An.

Define a sequence of functions

h̃n(t) =
M∑

m=1

ℓ(tλ,m)ϕ̃n,m(t)π(tm), (24)

where

ϕ̃n,m(t) = exp

(
− (t− tλ,m)

2

2n−1φ11,mσ∗2
m

+ n1−2βφ−1
11,m

µ2
n,m

2σ2
n,m

)
.

In this step, we will prove that∣∣∣∣ ∫ z

−∞
ℓ(t)π(t)dt−

∫ z

−∞
h̃n(t)dt

∣∣∣∣→ 0 (25)

for any z ∈ R. That is, h̃n(t) approximates the unnormalized limit density where each

mixture component is properly rescaled. In line with the LAN condition (14), we expand

h̃n(t) at t = tλ,m + u/nβ for m = 1, . . . ,M , transforming ϕ̃n,m(t) to

νn,m(u) = exp

(
n1−2βφ−1

11,m

(
− u2

2σ∗2
m

+
µ2
n,m

2σ2
n,m

))
.

We consider three cases for z: (1) z ≤ 0, (2) 0 < z ≤ 1, and (3) z > 1.

Case (1) (z ≤ 0). Since ℓ(t) = 0 in R\[0, 1], the left hand side of (25) becomes

∫ z

−∞
h̃n(t)dt ≤

M∑
m=1

∫ z

−∞
ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt

=
M∑

m=1

∫
Ln,m

n−βℓ(tλ,m)νn,m(u)π(tm)du
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where we let t = tλ,m + u/nβ and Ln,m = (−∞, (z − tλ,m)n
β]. By Lemma 4 and (23) , we

have

∫
Ln,m

n−βℓ(tλ,m)νn,m(u)π(tm)du ≲
∫
Ln,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

u2

2σ∗2
m

)
du

=

√
πσ∗2

m

2

[
1− Erf

(√
n(tλ,m − z)√
2σ∗2

mφ11,m

)]

≲ exp

(
−n(tλ,m − z)2

2σ∗2
mφ11,m

)
,

where we use the well known inequality that 1 − Erf(x) ≤ 2√
π
e−

x2

2 . Therefore, there holds

that for z ≤ 0, ∫ z

−∞
h̃n(t)dt ≲M exp

(
−n(tλ,1 − z)2

4σ∗2
mφ11,m

)
→ 0. (26)

Case (2) (0 < z ≤ 1). Now the left hand side of (25) becomes∣∣∣∣ ∫ z

−∞
ℓ(t)π(t)dt−

∫ z

−∞
h̃n(t)dt

∣∣∣∣ ≤ ∫ 0

−∞
h̃n(t)dt+

∣∣∣∣ ∫ z

0

ℓ(t)π(t)dt−
∫ z

0

h̃n(t)dt

∣∣∣∣.
Taking z = 0 in (26) gives that

∫ 0

−∞ h̃n(t)dt→ 0.We next bound the second term. We divide

[0, 1] into M disjoint intervals (up to overlapping endpoints that do not affect estimates of

integrals), each of which centering around tλ,m:

[0, 1] =
M⋃

m=1

In,m, In,m = [tλ,m − ξn,m−1, tλ,m + ξn,m], m = 1, . . . ,M,

where ξn,0 = tλ,1, ξn,m = (tλ,m+1 − tλ,m)/2 for m = 1, . . . ,M − 1, and ξn,M = 1 − tλ,M .

Suppose z ∈ In,m0 for some 1 ≤ m0 ≤M and let I ′n,m0
= [tλ,m0 − ξn,m0−1, z]. By the triangle

inequality, we have

∣∣∣∣ ∫ z

0

ℓ(t)π(t)dt−
∫ z

0

h̃n(t)dt

∣∣∣∣ =∣∣∣∣
(

m0−1∑
m=1

∫
In,m

+

∫
I′n,m0

)[
ℓ(t)π(t)− h̃n(t)

]
dt

∣∣∣∣
≤

m0−1∑
m=1

∣∣∣∣ ∫
In,m

[
ℓ(t)π(t)− ℓ(tλ,m)ϕ̃n,m(t)π(tm)

]
dt

∣∣∣∣ (27)
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+

m0−1∑
m=1

∫
[0,z]\In,m

ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt (28)

+

∣∣∣∣ ∫
I′n,m0

[
ℓ(t)π(t)− ℓ(tλ,m)ϕ̃n,m(t)π(tm)

]
dt

∣∣∣∣ (29)

+

∫
[0,z]\I′n,m0

ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt. (30)

Again, after changing of variable with t = tλ,m + u/nβ, each term in (27) becomes∣∣∣∣ ∫
In,m

[
ℓ(t)π(t)− ℓ(tλ,m)ϕ̃n,m(t)π(tm)

]
dt

∣∣∣∣
=

∣∣∣∣ ∫
Jn,m

[
ℓ(tλ,m + u/nβ)π(tλ,m + u/nβ)− ℓ(tλ,m)νn,m(u)π(tm)

]
n−βdu

∣∣∣∣
=

∣∣∣∣ ∫
Jn,m

n−βℓ(tλ,m)
[
Zn,m(u)π(tλ,m + u/nβ)− νn,m(u)π(tm)

]
du

∣∣∣∣,
where Zn,m(u) = ℓ(tλ,m + u/nβ)/ℓ(tλ,m) and Jn,m = [−nβξn,m−1, n

βξn,m]. Applying the tri-

angle inequality yields an upper bound of the preceding display:∣∣∣∣ ∫
Jn,m

n−βℓ(tλ,m)Zn,m(u)[π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
+

∣∣∣∣ ∫
Jn,m

n−βℓ(tλ,m)[Zn,m(u)− νn,m(u)]π(tm)du

∣∣∣∣
= I1 + I2.

By Lemma 4 and Theorem 1, we have

I1 ≲

∣∣∣∣ ∫
Jn,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

µ2
n,m

2σ2
n,m

)
exp

(
n1−2βφ−1

11,m

(
−(u+ µn,m)

2

2σ2
n,m

+
µ2
n,m

2σ2
n,m

))
· [π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
≲

∣∣∣∣ ∫
Jn,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

(u+ µn,m)
2

2σ2
n,m

)
[π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
≲ |tλ,m − tm|

∫
Jn,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

(u+ µn,m)
2

2σ2
n,m

)
du

+

∣∣∣∣ ∫
Jn,m

n
1
2
−2βφ

− 1
2

11,mu exp

(
−n1−2βφ−1

11,m

(u+ µn,m)
2

2σ2
n,m

)
du

∣∣∣∣
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= I11 + I12.

In view of (15), (16), (23) and Lemma 2, it follows that

I11 ≲ |tλ,m − tm| ·
√

2πσ2
n,m ≲ |tλ,m − tm| ≲ λr1 ,

and

I12 = n−β

∣∣∣∣ ∫
J ′
n,m

n
1
2
−βφ

− 1
2

11,mu exp

(
−n1−2βφ−1

11,m

u2

2σ2
n,m

)
du

− µn,m

∫
J ′
n,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

u2

2σ2
n,m

)
du

∣∣∣∣
≲ n−β

[
2

∫ nβ(ξn,m−1∨ξn,m)

0

n
1
2
−βφ

− 1
2

11,mu exp

(
−n1−2βφ−1

11,m

u2

2σ2
n,m

)
du

+|µn,m|
∫
Jn,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

(u+ µn,m)
2

2σ2
n,m

)
du

]

≲ n−β

[
σ2
n,mφ

1
2
11,m

(
1− exp

(
−n(ξn,m−1 ∨ ξn,m)2

2σ2
n,mφ11,m

))
n− 1

2
+β + µn,m

√
2πσ2

n,m

]
≲

√
φ11,m

n
∧ n−β,

where J ′
n,m = [−nβξn,m−1 + µn,m, n

βξn,m + µn,m]. Hence, I1 ≲ λr1 ∧
√

φ11,m

n
∧ n−β → 0 under

Assumption B2. By Lemma 4 and Theorem 1, we have

I2 ≲

∣∣∣∣ ∫
Jn,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

µ2
n,m

2σ2
n,m

)[
exp

(
n1−2βφ−1

11,m

(
−(u+ µn,m)

2

2σ2
n,m

+
µ2
n,m

2σ2
n,m

))
− exp

(
n1−2βφ−1

11,m

(
− u2

2σ∗2
m

+
µ2
n,m

2σ2
n,m

))
π(tm)

]
du

∣∣∣∣
=

∣∣∣∣ ∫
Jn,m

n
1
2
−βφ

− 1
2

11,m

[
exp

(
−n1−2βφ−1

11,m

(u+ µn,m)
2

2σ2
n,m

)
− exp

(
−n1−2βφ−1

11,m

u2

2σ∗2
m

)]
du

∣∣∣∣
≤
∣∣∣∣ ∫

Jn,m

n
1
2
−βφ

− 1
2

11,m

[
exp

(
−n1−2βφ−1

11,m

(u+ µn,m)
2

2σ2
n,m

)
− exp

(
−n1−2βφ−1

11,m

u2

2σ2
n,m

)]
du

∣∣∣∣
+

∣∣∣∣ ∫
Jn,m

n
1
2
−βφ

− 1
2

11,m

[
exp

(
−n1−2βφ−1

11,m

u2

2σ2
n,m

)
− exp

(
−n1−2βφ−1

11,m

u2

2σ∗2
m

)]
du

∣∣∣∣
= I21 + I22.
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Without loss of generality we assume µn,m ≥ 0. Then, combining (15), (16) and(23) gives

that

I21 =

∣∣∣∣∣
√
πσ2

n,m

2

[
Erf

(
ξn,m−1n

1
2 − µn,mn

1
2
−β√

2σ2
n,mφ11,m

)
+ Erf

(
ξn,mn

1
2 + µn,mn

1
2
−β√

2σ2
n,mφ11,m

)]

−
√
πσ2

n,m

2

[
Erf

(
ξn,m−1n

1
2√

2σ2
n,mφ11,m

)
+ Erf

(
ξn,mn

1
2√

2σ2
n,mφ11,m

)] ∣∣∣∣∣
≲

∣∣∣∣∣Erf
(
ξn,m−1n

1
2 − µn,mn

1
2
−β√

2σ2
n,mφ11,m

)
− Erf

(
ξn,m−1n

1
2√

2σ2
n,mφ11,m

)∣∣∣∣∣
+

∣∣∣∣∣Erf
(
ξn,mn

1
2 + µn,mn

1
2
−β√

2σ2
n,mφ11,m

)
− Erf

(
ξn,mn

1
2√

2σ2
n,mφ11,m

)∣∣∣∣∣
≤ µn,mn

1
2
−β · exp

(
−

ξ2n,m−1n

2σ2
n,mφ11,m

)
+ µn,mn

1
2
−β · exp

(
−

ξ2n,mn

2σ2
n,mφ11,m

)
≲ e−cnφ−1

11,m

for some c > 0. In view of (16), (23) and Theorem 1, we obtain

I22 =

∣∣∣∣
√
πσ2

n,m

2

[
Erf

(
ξn,m−1n

1
2√

2σ2
n,mφ11,m

)
+ Erf

(
ξn,mn

1
2√

2σ2
n,mφ11,m

)]

−
√
πσ∗2

m

2

[
Erf

(
ξn,m−1n

1
2√

2σ∗2
mφ11,m

)
+ Erf

(
ξn,mn

1
2√

2σ∗2
mφ11,m

)] ∣∣∣∣ ≲ |σ∗2
m − σ2

n,m| ≲ λr.

Therefore, I2 → 0.

Similarly, by changing of variable and Lemma 4, each term in (28) becomes

I3 =

∫
[0,z]\In,m

ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt

=

∫
Kn,m

n−βℓ(tλ,m)νn,m(u)π(tm)du

≲
∫
Kn,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

µ2
n,m

2σ2
n,m

)
exp

(
n1−2βφ−1

11,m

(
− u2

2σ∗2
m

+
µ2
n,m

2σ2
n,m

))
du

=

∫
Kn,m

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

u2

2σ∗2
m

)
du,
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where Kn,m = [−nβtλ,m,−nβξn,m−1] ∪ [nβξn,m, n
β(z − tλ,m)]. It then follows that

I3 ≲ nβ · n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

n2β(z − tλ,m)
2

2σ∗2
m

)
→ 0.

Following the same arguments, we can show that (29) and (30) converge to zero. This

proves (25) for 0 < z ≤ 1.

Case (3) (z > 1). From Case (2) we can see that∣∣∣∣ ∫ 1

−∞
ℓ(t)π(t)dt−

∫ 1

−∞
h̃n(t)dt

∣∣∣∣→ 0.

Note that ℓ(t) = 0 in R\[0, 1]. Using similar arguments as in Case (1), it holds that∫ z

1
h̃n(t)dt→ 0, proving (25) for z > 1.

Step 3: We normalize h̃n(t) to a density

hn(t) =
h̃n(t)∫

R h̃n(t)dt
.

Note that (25) implies

∣∣∣∣ (∫
R
ℓ(t)π(t)dt

)−1

−
(∫

R
h̃n(t)dt

)−1 ∣∣∣∣→ 0. (31)

Hence, for any z ∈ R, we have∣∣∣∣ ∫ z

−∞
πn(t | X,y)dt−

∫ z

−∞
hn(t)du

∣∣∣∣ ≤ (∫
R
ℓ(t)π(t)dt

)−1 ∣∣∣∣ ∫ z

−∞
ℓ(t)π(t)dt−

∫ z

−∞
h̃n(t)dt

∣∣∣∣
+

∫ z

−∞

∣∣∣∣ (∫
R
ℓ(t)π(t)dt

)−1

−
(∫

R
h̃n(t)dt

)−1 ∣∣∣∣h̃n(t)dt
→ 0, (32)

where the last line follows from (25) and (31).
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Rewrite h̃n(t) defined in (24) to

h̃n(t) =
M∑

m=1

π(tm)ℓ(tλ,m) exp

(
n1−2βφ−1

11,m

µ2
n,m

2σ2
n,m

)√
2πn−1φ11,mσ∗2

mϕ(t | tλ,m, n−1φ11,mσ
∗2
m ),

which is a linear combination of ϕ(t | tλ,m, n−1φ11,mσ
∗2
m ). Hence, the density function after

normalization is

hn(t) =
M∑

m=1

π̃n,mϕ(t | tλ,m, n−1φ11,mσ
∗2
m ),

with weights

π̃n,m =
π(tm)ℓ(tλ,m) exp

(
n1−2βφ−1

11,m
µ2
n,m

2σ2
n,m

)√
2πn−1φ11,mσ∗2

m∑M
m=1 π(tm)ℓ(tλ,m) exp

(
n1−2βφ−1

11,m
µ2
n,m

2σ2
n,m

)√
2πn−1φ11,mσ∗2

m

=
π(tm)σ

∗
mn

− 1
2φ

1
2
11,mℓ(tλ,m)/ exp

(
−n1−2βφ−1

11,m
µ2
n,m

2σ2
n,m

)
∑M

m=1 π(tm)σ
∗
mn

− 1
2φ

1
2
11,mℓ(tλ,m)/ exp

(
−n1−2βφ−1

11,m
µ2
n,m

2σ2
n,m

)
=

π(tm)C|f ′′
0 (tm)|−1 + cn,m∑M

m=1 π(tm)C|f ′′
0 (tm)|−1 + cn,m

where the existence of sequences cn,m = O(n
1
2
−2β(log n)−1−a) is guaranteed by Lemma 4.

Hence, we arrive at

π̃n,m =
π(tm)|f ′′

0 (tm)|−1∑M
m=1 π(tm)|f ′′

0 (tm)|−1
+ c′n,m =: πm + c′n,m,

for some c′n,m = O(n
1
2
−2β(log n)−1−a). It then holds that

∣∣∣∣ ∫ z

−∞
hn(t)dt−

∫ z

−∞

M∑
m=1

πmϕ(t | tλ,m, n−1φ11,mσ
∗2
m )dt

∣∣∣∣
≤

M∑
m=1

∫ z

−∞
|π̃n,m − πm|ϕ(t | tλ,m, n−1φ11,mσ

∗2
m )dt→ 0. (33)

Combining (32) and (33), we obtain that for any z,

EP0

∣∣∣∣ ∫ z

−∞
πn(t | X,y)dt−

∫ z

−∞

M∑
m=1

πmϕ(t | tλ,m, n−1φ11,mσ
∗2
m )dt

∣∣∣∣1An → 0.
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This together with EP0(1Ac
n
) = P0(A

c
n) ≤ n−10 gives that

∣∣∣∣Πn(t ≤ z | X,y)−
M∑

m=1

πmΦ(z | tλ,m, n−1φ11,mσ
∗2
m )

∣∣∣∣→ 0

for any z ∈ R in P0-probability. This completes the proof.

A.5.2 Proof of (ii)

Denote ζ0 = t1, ζm = 1
2
(tm+1 − tm), m = 1, . . . ,M − 1, ζM = 1− tM . Then,

[0, 1] =
M⋃

m=1

Im, Im = [tm − ζm−1, tm + ζm], m = 1, . . . ,M.

We first bound the unnormalized difference∣∣∣∣ ∫ z

−∞
ℓ(t)1Im(t)π(t)dt−

∫ z

−∞
ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt

∣∣∣∣ (34)

under An by considering three cases for z: (1) z ≤ tm − ζm−1, (2) tm − ζm−1 < z < tm + ζm,

and (3) z ≥ tm + ζm.

Case 1 (z ≤ tm − ζm−1). Since z /∈ Im, (34) becomes

∫ z

−∞
ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt =

∫ (z−tλ,m)nβ

−∞
ℓ(tλ,m)νn,m(u)π(tm)du

≲
∫ (z−tλ,m)nβ

−∞
n

1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

u2

2σ∗2
m

)
du

=

√
πσ∗2

m

2

[
1− Erf

(√
n(tλ,m − z)√
2σ∗2

mφ11,m

)]

≲ exp

(
−n(tλ,m − tm − ζm−1)

2

2σ∗2
mφ11,m

)
.

Case 2 (tm − ζm−1 < z < tm + ζm). In this case, we consider∣∣∣∣ ∫ z

tm−ζm−1

[
ℓ(t)π(t)− ℓ(tλ,m)ϕ̃n,m(t)π(tm)

]
dt

∣∣∣∣
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=

∣∣∣∣ ∫
Hn,m

[
ℓ(tλ,m + u/nβ)π(tλ,m + u/nβ)− ℓ(tλ,m)νn,m(u)π(tm)

]
n−βdu

∣∣∣∣
=

∣∣∣∣ ∫
Hn,m

n−βℓ(tλ,m)
[
Zn,m(u)π(tλ,m + u/nβ)− νn,m(u)π(tm)

]
du

∣∣∣∣
≤
∣∣∣∣ ∫

Hn,m

n−βℓ(tλ,m)Zn,m(u)[π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
+

∣∣∣∣ ∫
Hn,m

n−βℓ(tλ,m)[Zn,m(u)− νn,m(u)]π(tm)du

∣∣∣∣
= I ′1 + I ′2,

where Hn,m = [(tm − tλ,m − ζm−1)n
β, (z − tλ,m)n

β]. Following similar arguments as used in

the proof of Part (i), it can be shown that I ′1 ≲ λr1 and

I ′2 ≲ µn,mn
1
2
−β · exp

(
−(z − tλ,m)

2n

2σ2
n,mφ11,m

)
.

Case 3 (z ≥ tm + ζm). Again, z /∈ Im and (34) becomes

∫ z

tm+ζm

ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt =

∫ (z−tλ,m)nβ

(tm−tλ,m+ζm)nβ

ℓ(tλ,m)νn,m(u)π(tm)du

≲
∫ ∞

(tm−tλ,m+ζm)nβ

n
1
2
−βφ

− 1
2

11,m exp

(
−n1−2βφ−1

11,m

u2

2σ∗2
m

)
du

=

√
πσ∗2

m

2

[
1− Erf

(√
n(tm − tλ,m + ζm)√

2σ∗2
mφ11,m

)]

≲ exp

(
−n(tm − tλ,m + ζm)

2

2σ∗2
mφ11,m

)
.

Combining the three cases, we obtain that under An,∣∣∣∣ ∫ z

−∞
ℓ(t)1Im(t)π(t)dt−

∫ z

−∞
ℓ(tλ,m)ϕ̃n,m(t)π(tm)dt

∣∣∣∣ ≲ λr1 ∨ n
1
2
−β · exp

(
−(z − tλ,m)

2n

2σ2
n,mφ11,m

)
.

Let Πn,m(· | X,y) be the posterior of t1Im . Following the same arguments as in part (i)

again, we can show that∣∣∣∣Πn,m(t
′ ≤ z | X,y)− Φ(z | tλ,m, n−1φ11,mσ

∗2
m )

∣∣∣∣ ≲ λr1 ∨ n
1
2
−β · exp

(
−(z − tλ,m)

2n

2σ2
n,mφ11,m

)
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in P0-probability.

By Lemma 2, we have |t̂m − bn − tλ,m| ≲ n−β
√
log n ∨ n−β log n = n−β log n. Thus,∣∣∣∣Πn,m(t

′ ≤ z | X,y)−Φ(z | t̂m−bn, n−1φ11,mσ
∗2
m )

∣∣∣∣ ≲ λr1∨n
1
2
−β·exp

(
−(z − tλ,m)

2n

2σ2
n,mφ11,m

)
∨n−β log n.

Now we consider the posterior of
√

n
φ11,m

(t1Im(t) − t̂m + bn). By changing of variable, it

follows that∣∣∣∣Π′
n,m(t

′ ≤ z | X,y)− Φ(z | 0, σ∗2
m )

∣∣∣∣
=

∣∣∣∣Πn,m

(
t′ ≤

√
φ11,m

n
z + t̂m − bn | X,y

)
− Φ

(√
φ11,m

n
z + t̂m − bn|t̂m − bn, n

−1φ11,mσ
∗2
m

) ∣∣∣∣
≲ n

1
2
−β · exp

−
(
√

φ11,m

n
z + t̂m − tλ,m − bn)

2n

2σ2
n,1φ11,m


≲ n

1
2
−β · exp

{
−
(√

φ11,m

n
z ∨ (t̂m − tλ,m) ∨ bn

)2
n

2σ2
n,mφ11,m

}

≲ n
1
2
−β · exp

{
− b2nn

2σ2
n,mφ11,m

}
≲ n

1
2
−β · exp

{
−n

1−2β(log n)2

2σ2
n,mφ11,m

}
→ 0.

This completes the proof.

A.6 Proof of Theorem 3

A.6.1 Proof of (i)

Let Fn(z) = Πn(t ≤ z | X,y) and Gn(z) =
∑M

m=1 πmΦ(z | tm, n−1φ11,mσ
∗2
m ). Note that

Gn(·) is a deterministic function, and its derivative G′
n(·) is the density function of a Gaus-

sian mixture. The variance of each component distribution in Gn goes to zero in view of

Assumption B2 and conditions in Theorem 2. For sufficiently large n, using the analytical

expression of G′
n(·) and elementary calculus, we can show that G′

n(·) has at least M local

modes, denoted by tm,G, such that tm,G → tm. On the other hand, G′
n(·) cannot have more
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than M local modes in view of Corollary 2.4 in Carreira-Perpinán and Williams (2003);

hence, {tm,1, . . . , tM,G} are the only local modes of G′
n(·). For large enough n and each m,

we consider an interval (tm,G − δm, tm,G + δm) for some δm > 0 such that G′′
n(z) > 0 when

z ∈ (tm,G − δm, tm,G) and G
′′
n(z) < 0 when z ∈ (tm,G, tm,G + δm).

By Theorem 2 (i), we have |Fn(z)−Gn(z)| → 0 for any z ∈ R in P0-probability. The following

arguments and conclusions in Step 1–4 hold with P0-probability tending to 1 because of this

convergence in P0-probability.

Step 1: We first show that there exists a tm,F in the neighborhood of tm,G such that

F ′′
n (tm,F ) = 0, for m = 1, . . . ,M . Suppose F ′′

n (z) ̸= 0 for any z ∈ (tm,G − δm, tm,G + δm),

Without loss of generality we assume F ′′
n (z) > 0 when z ∈ (tm,G − δm, tm,G + δm). Since

Gn(z) is concave on (tm,G, tm,G + δm),

Gn(tm,G + δm/2) > (Gn(tm,G) +Gn(tm,G + δm))/2 + ϵ, (35)

for some ϵ > 0. Since Fn(z) is convex on (tm,G, tm,G + δm),

Fn(tm,G + δm/2) < (Fn(tm,G) + Fn(tm,G + δm))/2.

For sufficiently large n, it holds that with P0-probability tending to 1 |Fn(z)−Gn(z)| < ϵ/2

for z = tm,G, tm,G + δm/2, tm,G + δm. Therefore,

Gn(tm,G + δm/2) > (Fn(tm,G) + Fn(tm,G + δm))/2 + ϵ/2 > Fn(tm,G + δm/2) + ϵ/2,

which is a contradiction. This proves that there exists tm,F ∈ (tm,G − δm, tm,G + δm) such

that F ′′
n (tm,F ) = 0.

Step 2: We show that tm,F → tm in P0-probability. Suppose there exists δ > 0 such that

|tm,G−tm,F | > δ for any sufficiently large n. Without loss of generality we assume tm,G < tm,F

and F ′′
n (z) < 0 when z ∈ (tm,F , tm,G + δm) and F

′′
n (z) > 0 when z ∈ (tm,G − δm, tm,F ). Thus,

Gn is concave on (tm,G, tm,F ) while Fn is convex on (tm,G, tm,F ). This is a contradiction using

S18



the same argument in Step 1. Combining this with tm,G → tm shows the convergence of

tm,F .

Step 3: In this step, we show that tm,F must be a local mode of F ′
n(z). Suppose that

F ′′
n (z) > 0 when z ∈ (tm,F , tm,G + δm) and F

′′
n (z) < 0 when z ∈ (tm,G − δm, tm,F ), yielding

Fn(tm,F + δm/2) < (Fn(tm,F ) + Fn(tm,F + δm))/2.

For sufficiently large n, it holds with P0-probability tending to 1 that |Fn(z)−Gn(z)| < ϵ/4

for x = tm,G, tm,G + δm/2, tm,G + δm. Invoking (35),

Gn(tm,G + δm/2) > (Fn(tm,G) + Fn(tm,G + δm))/2 + 3ϵ/4.

For sufficiently large n, it holds with P0-probability tending to 1 that |Fn(z1)−Fn(z2)| < ϵ/4

for z1 = tm,G, z2 = tmF
, z1 = tm,G+δm/2, z2 = tm,F+δm/2 and z1 = tm,G+δm, z2 = tm,F+δm.

Therefore,

Gn(tm,G + δm/2) > (Fn(tm,F ) + Fn(tm,F + δm))/2 + ϵ/2 > Fn(tm,F + δm/2) + ϵ/2.

However,

Gn(tm,G + δm/2) < Fn(tm,G + δm/2) + ϵ/4 < Fn(tm,F + δm/2) + ϵ/2,

which is a contradiction. This completes Step 3.

Step 4: In the last step, we show that the number of local modes of F ′
n(z) is exactly

M . We have proven that F ′
n(·) has at least M local modes. Suppose that there exists

tm′,F ∈ (0, 1) and δm′ > 0 such that tm′,F is a local mode of F ′
n(z) and G′′

n(z) ̸= 0 for

z ∈ (tm′,F − δm′ , tm′,F + δm′) for any sufficiently large n. Without loss of generality assume

G′′
n(z) > 0 for z ∈ (tm′,F −δm′ , tm′,F +δm′). Thus, on (tm′,F −δm′ , tm′,F +δm′), Gn(z) is convex

while Fn(z) is concave. By similar arguments used in Step 1, we can obtain a contradiction.

Hence, the number of local modes of F ′
n(·) is exactly M .
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This completes the proof.

A.6.2 Proof of (ii)

By Taylor expansion of µ̂f ′ , we obtain

µ̂f ′(t) = µ̂f ′(tm) + (t− tm)µ̂
′
f ′(ξ)

for some ξ between t and tm. Since t̂m is a local extremum of µ̂f , there holds µ̂f ′(t̂m) = 0.

Substituting t = t̂m into the expansion above yields

µ̂f ′(tm) + (t̂m − tm)µ̂
′
f ′(ξ) = 0.

Lemma 1 and Assumption C ensure that µ̂′
f ′(x)

p→ f ′′
0 (x), and Lemma 2 implies that t̂m

p→ tm.

Therefore, µ̂′
f ′(ξ)

p→ f ′′
0 (tm), and thus µ̂′

f ′(ξ) is bounded away from zero and infinity in view

of Assumption A3. It thus follows that

t̂m − tm = − µ̂f ′(tm)

µ̂′
f ′(ξ)

.

Let ∆n(·) = K10(·, X)[K(X,X) + nλIn]
−1f0(X). Conditioning on X, it holds that

µ̂f ′(tm) = K10(tm, X)[K(X,X) + nλIn]
−1y

∼ N
(
∆n(tm), σ

2K10(tm, X)[K(X,X) + nλIn]
−2K10(tm, X)T

)
.

Hence,
µ̂f ′(tm)−∆n(tm)

σ
√
K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

∣∣∣∣X ∼ N(0, 1),

which implies that

µ̂f ′(tm)−∆n(tm)

σ
√
K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

∼ N(0, 1).

S20



By Slutsky’s theorem, we obtain√
1

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

[
t̂m − tm +

∆n(tm)

µ̂′
f ′(tm)

]
d→

N
(
0, σ2f ′′

0 (tm)
−2
)
.

Note that

K10(t̂m, X)[K(X,X) + nλIn]
−2K10(t̂m, X)T

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
− 1

=
K10(t̂m, X)[K(X,X) + nλIn]

−2(K10(t̂m, X)T −K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

+
(K10(t̂m, X)T −K10(tm, X))[K(X,X) + nλIn]

−2K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
.

Consider the eigendecomposition of K(X,X) = QnΛnQ
T
n , where Λn = diag(u1, . . . , un) and

QT
n = Q−1

n . Denote (p1, . . . , pn) = K10(tm, X)Qn, likewise (q1, . . . , qn) = K10(t̂m, X)Qn.

Then

K10(tm, X)[K(X,X) + nλIn]
−2K10(tm, X)T = K10(tm, X)QnΛ

−2
n QT

nK10(tm, X)

=
∞∑
i=1

p2i
(ui + nλ)2

.

By the Cauchy–Schwarz inequality, we have

K10(t̂m, X)[K(X,X) + nλIn]
−2(K10(t̂m, X)T −K10(tm, X))

=
∞∑
i=1

qi(qi − pi)

(ui + nλ)2
≤

√√√√ ∞∑
i=1

q2i
(ui + nλ)2

∞∑
i=1

(qi − pi)2

(ui + nλ)2
.

Since K10(t̂m, Xi)−K10(tm, Xi)
p→ 0 uniformly for 1 ≤ i ≤ n, we have

∞∑
i=1

q2i
(ui + nλ)2

/ ∞∑
i=1

p2i
(ui + nλ)2

p→ 1
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and
∞∑
i=1

(qi − pi)
2

(ui + nλ)2

/ ∞∑
i=1

p2i
(ui + nλ)2

p→ 0.

Hence, it follows that

K10(t̂m, X)[K(X,X) + nλIn]
−2(K10(t̂m, X)T −K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
p→ 0.

Similarly, it can be shown that

(K10(t̂m, X)T −K10(tm, X))[K(X,X) + nλIn]
−2K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
p→ 0.

Therefore,
K10(t̂m, X)[K(X,X) + nλIn]

−2K10(t̂m, X)T

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
p→ 1.

Recall that µ̂′
f ′(t̂m)

p→ f ′′
0 (tm). Therefore, by Slutsky’s theorem again, we arrive at

σ|µ̂′
f ′(t̂m)|√

K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T

[
t̂m − tm +

∆n(tm)

µ̂′
f ′(tm)

]
d→ N (0, 1) .

Hence, an asymptotic 1− α confidence interval of tm +∆n(tm)/f
′′
0 (tm) is

t̂m ± zα/2
σ
√
K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T

|µ̂′
f ′(t̂m)|

.

This completes the proof.

A.7 Proof of Theorem 4

For any j, l ≤ s, we have

|Kα,s
jl (x, x′)| =

∣∣∣∣ ∞∑
i=1

µiψ
(j)
i (x)ψ

(l)
i (x′)

∣∣∣∣ ≲ ∞∑
i=1

i−2α+j+l,
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which is finite when α > j+l+1
2

. Thus, Assumption B1 holds when s ≥ 4 and α > 9/2.

According to Lemma 11 in Liu and Li (2023), when α > j+l+1
2

, we have

sup
x∈X

|φjl(x)| = sup
x∈X

∣∣∣∣ ∞∑
i=1

µi

λ+ µi

ψ(j)(x)ψ(l)(x)

∣∣∣∣ ≲ ∞∑
i=1

µii
j+l

µi + λ
≍ λ−

j+l+1
2α .

Hence, Assumption B2 is satisfied when α > 3. In view of Lemma 1, Lemma 11 and

Lemma 13 in Liu and Li (2023), when α > k + 1/2, we have

∥f (k)
λ − f

(k)
0 ∥∞ ≲ λ

1
2
− k

2α .

This verifies Assumption C with r1 =
α−1
2α

, r2 =
α−2
2α

when α > 5/2. Finally, by Assumption

E we have φ11(x) =
∑∞

i=1
µi

λ+µi
ψ′
i(x)

2 → ∞ as λ → 0. Thus, a sufficient condition for the

boundedness of n
3
2
−4βφ−2

11,m in Theorem 1 and 2 is n
3
2
−4β = O(1), which implies that β ≥ 3

8
.

This completes the proof.

A.8 Proof of Lemma 3

Let f0 =
∑∞

i=1 fiψi. Then, for any k ≤ s,

f
(k)
λ − f

(k)
0 = −

∞∑
i=1

λ

λ+ µi

fiψ
(k)
i .

Hence,

∥f (k)
λ − f

(k)
0 ∥∞ ≤

∞∑
i=1

λ

λ+ µi

|fi| · ik ≲ λ
1
2
− k

2eγ

∞∑
i=1

λ
1
2
+ k

2eγ · e−γiik

λ+ e−2γi
eγi|fi|.

Note that ik ≤ e
ki
e , then by Young’s inequality for products, we have

λ
1
2
+ k

2eγ · e−γiik ≤ λ
1
2
+ k

2eγ · e(
k
e
−γ)i ≤

(
1

2
+

k

2eγ

)
λ+

(
1

2
− k

2eγ

)
e−2γi ≤ λ+ e−2γi.

Therefore, ∥f (k)
λ − f

(k)
0 ∥∞ ≲ λ

1
2
− k

2eγ
∑∞

i=1 e
γi|fi| ≲ λ

1
2
− k

2eγ . This completes the proof.
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A.9 Proof of Theorem 5

It is easy to see that Kγ,s ∈ C8(X ,X ) for any γ > 0 and s ≥ 4; thus Assumption B1 is

satisfied.

Note that

sup
x∈X

|φjl(x)| =
∣∣∣∣ ∞∑
i=1

µi

λ+ µi

ψ
(j)
i (x)ψ

(l)
i (x)

∣∣∣∣ ≲ ∞∑
i=1

e−2γiij+l

λ+ e−2γi
≤ e−2γie

(j+l)i
e

λ+ e−2γi
.

By Young’s inequality for products, when 2eγ > j + l we have

λ
j+l
2eγ · e−2γi+

(j+l)i
e ≤

(
1− j + l

2eγ

)
λ+

(
j + l

2eγ

)
e−2γi ≤ λ+ e−2γi.

Hence, φjl ≲ λ−
j+l
2eγ for 2eγ > j+ l and Assumption B2 holds for γ > 5

2e
. In view of Lemma 3,

we have Assumption C satisfied with r1 = r2 =
eγ−2
2eγ

and γ > 2
e
.

Finally, since λ = o(1), we have φ−2
11,m = o(1) under Assumption E. Thus, a sufficient

condition for the boundedness of n
3
2
−4βφ−2

11,m is β ≥ 3
8
. This completes the proof.

A.10 Proof of Lemma 4

The likelihood function (5) gives

n− 1
2φ

1
2
11,mℓ(tλ,m) =

C√
nφ−1

11,mσ̂
2
f ′(tλ,m)

exp

(
− µ̂f ′(tλ,m)

2

2σ̂2
f ′(tλ,m)

)

=
C√

nφ−1
11,mσ̂

2
f ′(tλ,m)

exp

(
−n1−2βφ−1

11,m

µ2
n,m

2σ2
n,m

)
,

where µn,m and σ2
n,m are defined in Theorem 1. Note that

∣∣∣∣ 1√
nφ−1

11,mσ̂
2
f ′(tλ,m)

− 1

|f ′′
0 (tm)|σ∗

m

∣∣∣∣ ≍ ||f ′′
0 (tm)|σ∗

m −
√
nφ−1

11,mσ̂
2
f ′(tλ,m)|

≍ |f ′′
0 (tm)

2σ∗2
m − nφ−1

11,mσ̂
2
f ′(tλ,m)|.
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Substituting f ′′
0 (tm)

2σ∗2
m = σ2 into the right side yields∣∣∣∣f ′′

0 (tm)
2σ∗2

m − nφ−1
11,mσ̂

2
f ′(tλ,m)

∣∣∣∣ = ∣∣∣∣nφ−1
11,mσ̂

2
f ′(tλ,m)− σ2

∣∣∣∣ ≲ n
1
2
−2β(log n)−1−a.

This completes the proof.

B Additional simulation results

B.1 Effect of noise standard derivation and credible level

We carried out additional experiments to investigate the effect of noise standard derivation

and credible levels 1 − α. We used the same regression function shown in the paper and

generated more noisy data by increasing the noise standard deviation σ from 0.1 to 0.2.

As expected, results worsen, particularly for smaller sample sizes. This is because the GP

tends to produce more wiggly curves. For example, looking at the percentages of correctly

estimating M for α = .05, calculated over 100 replicated datasets, we observed the following

results: for n = 100 we obtained 19% and 85% for Beta (1,1) and Beta(2,3), respectively,

versus 47% and 86% of Figure 3 in the paper; for n = 500 we obtained 52% and 94% for

Beta (1,1) and Beta(2,3), respectively, versus 95% and 99% for σ = 0.1. We notice that,

as already shown in the main simulation, the Beta(2, 3) prior and larger sample sizes help

identifying the correct number of local extrema.

Next, we used this additional simulation study to investigate the performance of HPDR for

different values of α. Results for sample sizes n = 100, n = 500 and n = 1000 and the two

Beta priors are reported in the two tables below. For each combination of prior and sample

size, we generated 100 simulated datasets.

Beta(1, 1) α = 0.001 α = 0.005 α = 0.01 α = 0.03 α = 0.05 α = 0.1

n = 100 56% 53% 51% 18% 19% 35%
n = 500 25% 32% 34% 43% 52% 60%
n = 1000 27% 35% 44% 57% 76% 84%

Table 4: Beta(1, 1). Percentages of correctly estimated number of t’s. The results are
calculated on 100 simulated data.
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Beta(2, 3) α = 0.001 α = 0.005 α = 0.01 α = 0.03 α = 0.05 α = 0.1

n = 100 87% 88% 88% 86% 85% 77%
n = 500 95% 96% 95% 95% 94% 89%
n = 1000 95% 95% 96% 94% 94% 95%

Table 5: Beta(2, 3). Percentages of correctly estimated number of t’s. The results are
calculated on 100 simulated data.

In this additional study, we observed that increasing values of α did not necessarily cor-

respond to larger estimated numbers of local extrema. This is because situations like the

one shown in Figure 7 can occur. Therefore, larger or smaller α values do not necessarily

imply more or fewer separated HPDR segments. Overall, results confirm the fairly robust

estimation performance of the Beta(2,3) prior in estimating M .

Figure 7: Effect of α on the estimated number of local extrema. The posterior density

function is based on one simulated dataset with n = 100.
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B.2 Highly fluctuated regression function with large M

Upon suggestion from one of the reviewers, we performed a new simulation using the re-

gression function sin(kπx) for x ∈ [0, 1], and assessed how the estimated number of local

extrema converges to the true M . We considered k = 10 and k = 100 with varying n;

with this regression function, the true number of local extrema is M = k. Other simulation

configurations mirrored the main paper’s setup, including the noise standard deviation, ob-

served x values, and the number of replications. The proposed method is implemented using

the same settings as in the simulation study in the main paper, unless otherwise stated.

We observe that when k = 10, our method is able to correctly estimate M 77% of the time

even with sample size as small as 30. This percentage increases steadily to (93%, 99%, 100%)

as n increases to (200, 300, 500), respectively.

When k = 100, M is correctly estimated only 4% of the time when n = 300 (compared

to 99% when k = 10), indicating the challenge of large k = 100. We have looked into

this challenging scenario and found that for this highly fluctuated function, even simpler

tasks such as function estimation become challenging. For example, the model struggles to

distinguish between a highly fluctuated function and a flat function when n = 300, which

is not surprising as indicated in the top plot of Figure 8. This has prompted us to find

an effective strategy for this challenging function in which we incorporate the shape of the

function into guided hyperparameter tuning. If we have prior knowledge that there are many

local extrema, we can confine the hyperparameter searching space, ruling out some basins

of the marginal likelihood that do not result in the regression shape being interested. For

example, setting the upper bound when searching for (h, λ) to (0.1, 0.0001) as opposed to

(10000, 10000) used in our default implementation, leads to the results reported in Table 6,

which show a substantially improved estimation of M . For example, the proposed method

can estimate the correct value of M with n = 300 in all 100 simulations. The posterior

distribution of t in one simulation when k = 100 is shown in Figure 8. In this simulation,

which is typical across 100 replications, our method correctly identifies the number and

location of 100 local extrema. We acknowledge that prior information on the shape of the
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unknown function might not always be available.

70-79 80-89 90-99 100 > 100
n = 200 18 76 6 0 0
n = 225 0 1 14 85 0
n = 250 0 0 0 99 1
n = 300 0 0 0 100 0

Table 6: Frequency of M̂ falling in each interval when k = 100. Results are based on 100
repeated simulations.

Figure 8: Data (top) and the posterior density of t (bottom) when f(x) = sin(100πx) (red
curve in the top plot). Results are based on one simulated dataset with sample size n = 300.
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