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Abstract

There is a wide range of applications where the local extrema of a function are the
key quantity of interest. However, there is surprisingly little work on methods to infer
local extrema with uncertainty quantification in the presence of noise. By viewing the
function as an infinite-dimensional nuisance parameter, a semiparametric formulation
of this problem poses daunting challenges, both methodologically and theoretically, as
(i) the number of local extrema may be unknown, and (ii) the induced shape con-
straints associated with local extrema are highly irregular. In this article, we build
upon a derivative-constrained Gaussian process prior recently proposed by Yu et al.
(2023) to derive what we call an encompassing approach that indexes possibly multiple
local extrema by a single parameter. We provide closed-form characterization of the
posterior distribution and study its large sample behavior under this unconventional
encompassing regime. We show that the posterior measure converges to a mixture of
Gaussians with the number of components matching the underlying truth, leading to
posterior exploration that accounts for multi-modality. Point and interval estimates
of local extrema with frequentist properties are also provided. The encompassing ap-
proach leads to a remarkably simple, fast semiparametric approach for inference on
local extrema. We illustrate the method through simulations and a real data applica-

tion to event-related potential analysis.
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1 Introduction

Finding localized features of a smooth function, including local maxima and local minima,
plays a pervasive role in statistics, with wide-ranging scientific applications such as in bi-
ology (Raghuraman et al., 2001), microscopy (Egner et al., 2007; Geisler et al., 2007), and
psychology (Luck, 2005). Moreover, localized features provide additional characterizations
of the shape of a function that are useful for visualization and interpretation, and lead to

insights into optimization, particularly when operated on approximations of the function.

There is a rich literature on shape-constrained regression, where the overwhelming emphasis
has been on incorporating restrictions, including monotonicity, convexity, modality, log-
concavity, and piecewise constants, within nonparametric modeling of the underlying surface;
see, for example, Ramsay (1998); Holmes and Heard (2003); Neelon and Dunson (2004);
Meyer (2008); Shively et al. (2009, 2011); Abraham and Khadraoui (2015); Wheeler et al.
(2017); Dasgupta et al. (2021). In this article, we contribute to this growing literature by
focusing on a distinct perspective, namely, the inference on local extrema that form the key
characterization of the shape constraint, while the underlying regression function is less of

interest and can be viewed as a nuisance parameter.

There is surprisingly little work on the inference of local extrema with uncertainty quan-
tification in the presence of noise. Notable exceptions include two-step approaches in the
spirit of “smooth first, then estimation”, where one first employs nonparametric smoothing
techniques, then estimates the local extrema of the smoothed estimate. Along this line, Song
et al. (2006) used kernel smoothing followed by hypothesis testing to find locations at which
the regression function has zero derivatives at a given statistical significance level. Since the
test is performed on all locations, a multiple testing issue emerges, even when there are a
limited number of local extrema. Schwartzman et al. (2011) and Cheng and Schwartzman
(2017) studied false discovery rate control and power consistency for local maxima under a
unimodal true peak assumption. However, uncertainty quantification of the detected local
maxima is not reported. Alternatively to the two-step approach, Davies et al. (2001) pro-

posed to use the taut string method for piecewise monotone functions, and Kovac (2007)



extended the approach to smooth functions for finding point estimates of local extrema.

In this article, we consider a semiparametric Bayesian method for local extrema in situations
where the number of local extrema may be unknown and the associated shape constraints
are highly local. These pose daunting challenges to uncertainty quantification in the pres-
ence of noise, particularly when there is more than one local extremum point. Here, we
build upon a derivative-constrained Gaussian process prior, recently proposed by Yu et al.
(2023) for the location of stationary points in event-related potentials (ERP), to derive what
we call an encompassing approach that indexes possibly multiple local extrema by a single
parameter. We provide a rigorous theoretical investigation of this unconventional approach,
which ensures a proper interpretation of the derived uncertainty quantification in the con-
text of local extrema detection. The encompassing approach is remarkably simple, as it
transforms a varying-dimensional model into one dimension, and thus is particularly well
suited to address the multiplicity challenge posed by local extrema. We note that we use
the Bayes machinery to derive a posterior distribution but employs frequentist properties to

characterize its large sample behavior and justify the obtained point and interval estimates.

In our theoretical investigation, we characterize the posterior distribution of the encompass-
ing approach and show an intrinsic connection to unconstrained nonparametric regression,
enabling fast implementation without complicated sampling. We show that the posterior
measure converges to a mixture of Gaussians with the number of components matching the
underlying truth. This interesting phenomenon not only provides theoretical guarantees for
the inference on local extrema that accounts for multi-modality of the posterior distribution,
but also extends the Bernstein-von Mises (BvM) theorem beyond the traditional semipara-
metric Bayesian literature to the encompassing paradigm. Classic semiparametric Bayesian
BvMs typically assume separable priors on the function and finite-dimensional parameter
with fixed dimension, or rely on the parameter of interest being a bounded functional of
the regression function (Castillo, 2012; Castillo and Rousseau, 2015); we instead study the
limiting posterior distribution under irregular scenarios when the local extrema have un-
known dimension and are embedded in the regression function, hence not separable, and the

derivative at any fixed point, when viewed as a functional of the regression function, is not



bounded. This large sample characterization of the posterior distribution leads to consistent
estimators of the number and location of local extrema. We additionally provide interval

estimation for local extrema with frequentist coverage.

Organization. Section 2 introduces the model, shape-constrained priors, and a closed-
form characterization of the posterior distribution of local extrema. In Section 3 we provide
non-asymptotic bounds for a range of nonparametric quantities related to the posterior dis-
tribution, and establish a local asymptotic normality property and multi-modal limiting
distribution under the encompassing regime. Consistent point estimators and interval es-
timators with frequentist coverage are also provided. In Section 4 we carry out simulation
studies, and in Section 5 we illustrate the proposed method in event-related potential anal-
ysis. Section 6 concludes the paper. All proofs, additional technical results, and additional

numerical experiments can be found in the Supplementary Materials.

2 Methods

2.1 Shape-constrained regression

Suppose we observe independent and identically distributed samples X = {X;,..., X,,} €
X" and y = {y1,...,yn} € R” from a distribution Py on X x R with n being the sample size
and X C R the sample space for the covariate that is compact. Throughout the paper we
focus on one-dimensional sample space for concreteness and ease of notation, and consider
X = [0,1] without loss of generality. We briefly comment on extensions to the multi-

dimensional space in the Discussion section.

We assume a regression model for the input data of the type
yl:f<Xz)+627 2217>n7 (1)

with f: X - R and X S Px, where the measures Py admit a density px with respect to

the Lebesgue measure z on X, and with random noise ¢ ~~ N (0,02).



We make the following assumptions on the true regression function fj.
Assumption Al. f, € C?(X).

Assumption A2. f; has exactly M local extrema for some finite M > 1lat0<t; <--- <

ty < 1.
Assumption A3. f{(t,,) #0form=1,... M.

Assumption A1 trivially implies that fy is bounded since it is continuous on a closed interval.
Assumption A2 means that f, possesses exactly M local extrema, with M > 1 finite but
unknown, and local extrema do not occur at the boundary of X'. Assumptions Al and A2
lead to a necessary condition for ¢,, to be a local extremum: f{(¢,,) =0 for m =1,..., M.
Assumption A3 regularizes the curvature of fy at each local extremum. Assumptions A2
and A3 indicate that we focus on local extrema that can be identified based on the second
derivative test. Unlike some existing work such as Davies et al. (2001), we do not assume that
all stationary points (zeros of f{) are local extrema, and our assumptions do not regularize

stationary points that are not local extrema.

Our goal is to make inference on {¢y,...,t)} when M is unknown, with uncertainty quan-

tification. As such, we next proceed to constrained priors on f accounting for local extrema.

2.2 Shape-constrained prior of f on local extrema

The underlying function f is unknown, and its local extrema are encoded in the function
derivatives. We follow Yu et al. (2023) and adopt a constrained Gaussian process prior under

derivative constraints.

A widely used prior for f is a Gaussian process (GP) with mean 0 and a covariance kernel
that determines its key properties. Starting with a covariance kernel k(-, ) = o?(nA\) K (-, -),
where K : X x X — R is a continuous, symmetric and positive definite bivariate function, we
encode the derivative constraint by conditioning this GP prior on f’(¢) = 0 for an unknown

scalar parameter ¢. Assuming differentiability of K (-,-), let K;(x,2') = 0" K (z,2") /02 02"



for any 7,0 > 0. Then by direct calculation, the conditional GP is also a GP with mean 0
and covariance kernel k;(z,2") = 0?(n\)"HK (x,2') — Koy (2, t) K7 (t, 1) K10(t, ')}, provided
that K7;(¢,t) > 0. The tuning parameter A possibly depends on the sample size n. Later we

will make all assumptions on K (-,-) clear.

Under the constrained prior GP(0, k;), the sample path f(-) satisfies E(f’(¢)) = 0 and

/ Ok} (z, ") 2 -1 -1
Var(f (t)) = ~Xh. a7 =0 (n)\) {Kll(t, t) - Kll(t7t>K11 (t, t)KH(t,t)} = 0.
Hence, it holds that f’(¢) = 0 almost surely. Note that here we employ the differentiability
of sample paths of Gaussian processes with continuously differentiable covariance kernels

and the covariance function of f’ that is induced by differentiating k; (e.g., see Ghosal and

van der Vaart, 2017, Proposition 1.3).

We conclude the specification of all priors by placing a prior 7(¢) on ¢, which is supported on
X. Thus, the marginal prior distribution of f is a mixture of constrained GPs if we integrate

out t with respect to its prior distribution.

Like Yu et al. (2023), we use a univariate ¢ to index all possible local extrema. This en-
compassing strategy eliminates the need to specify the number of local extrema, which is
particularly useful when M is unknown and possibly greater than one. In addition, it enables
unified inference on all local extrema through the Bayes machinery. Although practically
appealing, this unconventional encompassing regime in a semiparametric setting is not well
understood in the literature. Yu et al. (2023), in particular, employ Monte Carlo EM to
conduct an empirical exploration of the posterior of . A specific focus of this article is a
rigorous characterization of the induced posterior distribution, both at finite sample size and
asymptotically, which is critical to interpret and substantiate such a strategy, while providing

insights into how to carry out posterior summary.



2.3 Closed-form posterior distribution of ¢

Integrating out f in Model (1) with respect to its prior GP(0, k;) gives the marginal distri-
bution y|X,t ~ N(0,%;) with

2 =0’ (n\) T H{K(X, X) — Ka(X, ) K;' (¢, 6)K1o(t, X) } + 01
={*(n\) T K(X, X) + 0°I,} — o (nA) ™ Kou (X, ) K73 (¢, £) Ko, X)) (2)

here Ko (X,t) = (Ko (X1,1),..., Ko (X, 1)) is a length n column vector, Kio(t, X) =
(Klo(t, Xl), R ,Klo(t, Xn>> = [KOl(X, t)]T a length n oW vector, K(X, X) = (K(Xz, X ))zg 1
an n by n matrix, and I, the n by n identity matrix. Thus, the marginal likelihood of t,

denoted by ¢(t) = p(y | X,t), is the density function of N(0,3};) evaluated at y

An intriguing observation is that the first term in Equation (2) o?(n\)"'K(X, X) + ¢*I,
does not depend on ¢ and coincides with the covariance matrix under the GP(0, k) prior.
This enables a reformulation of ¢(¢) to relate the posterior distribution of ¢ to unconstrained
nonparametric regression. Before formally presenting this connection in Proposition 1, we

first review standard GP priors without constraints to introduce notation.

Suppose that one uses the unconstrained GP prior f ~ GP(0,0%(n\)"'K) as the prior
on f without shape constraints. In this article, we may omit explicit mention of the de-
pendence on A in most cases, like ¢11,, and ¢11(-), except for a few instances such as
fx and t,,,, which we will introduce later. By conjugacy, the posterior distribution of f
is also a GP: f|X,y ~ GP(fif(-), S4(,-)), where fif(z) = K(z, X)[K(X,X) + nAL,] 'y
and f]f(:p,x’) = o?(n\) " H{K(z,2") — K(z, X)[K(X,X) +nA\lL,| ' K(X,2")} . Moreover, the

derivative f'| X,y is also a GP with mean [y (-) and covariance 5 (o)

(@) = T2 g XU X) 4 AT 3)

andEf/(mx) % o?(nA\) K (z,2') — Kio(z, X)[K(X, X) +n\L,] 'Ky (X, 2")}.



In particular, the marginal posterior variance of the derivative process is

o7(x) = Sz, x) = o2 (nA) H Ky (2, 2) — Kio(z, X)[K(X, X) + nAL]) 'Ky (X, 2)} . (4)

We are now in a position to reformulate the posterior m,(t | X,y) as follows.

Proposition 1. Suppose K € C*(X,X) and 67 (x) > 0 for any x € X. Then it holds that

((t) =C ! exp{ (0 } : (5)
WO/ Kn(t1) 2051

for some constant C' that does not depend on t, where i7,(-) and 7,(-) are defined in Equa-

tions (3) and (4), respectively. Consequently, the posterior distribution of t under the prior

mlt | X, 1) ! exp( “f’(t)> (1), (6)
\/ag, (t)/Ku(t, 1) 2075, (t)

m(t) satisfies

The normalizing constant in 7,(¢ | X,y) can be calculated using routine one-dimensional
numerical integration methods, such as the midpoint or trapezoidal rule. The closed-form
type of formulation for the posterior 7, (¢ | X, y) in Proposition 1 is useful on several fronts.
Computationally, a close inspection of (6) suggests that evaluating 7, (¢ | X, y) in various ¢
only requires inverting an n by n matrix K (X, X) + nAI, once, dramatically reducing the
computation in a naive implementation that directly inverts a varying covariance matrix
induced by k; at each ¢t. Theoretically, Proposition 1 turns inference on ¢ into key quantities
related to posterior inference of f* with the unconstrained GP(0, k) prior, namely 7% (-) and

07 (). We next build on this connection to analyze large sample behavior of 7, (t | X, y).

3 Theoretical results

In this section, we provide theoretical evidence of a multi-modal posterior distribution of

t. Standard Bernstein-von Mises (BvM) theorems state that, under certain conditions, the



posterior distribution is close to a normal distribution. In our encompassing approach which
indexes local extrema by a univariate ¢, a single normal approximation is unlikely to hold. In-
stead, we show that the posterior distribution of ¢ converges to a mixture of Gaussians. This
multi-modal limiting distribution along with a derived local asymptotic property delineate
key differences between the adopted encompassing approach and existing semiparametric

work, and provide support for posterior summary that accounts for such multi-modality.

3.1 Non-asymptotic analysis of key nonparametric quantities

In this section, we derive non-asymptotic error bounds for nonparametric recipes in Propo-
sition 1: fip(-), /J\JZN(-), and their high-order derivatives under the supremum norm. These
error bounds are needed to study large sample behavior of 7,(t | X,y), and might be of

interest in their own right.

To this end, we take an operator-theoretic approach and make extensive use of differentiable
kernels and associated properties. We begin with introducing notation and reviewing a few
well-known properties; see Wahba (1990); Cucker and Zhou (2007) for details. For any
f e L2 _(X), define the following integral operator L (f)(z) = [, K(z,2')f(z')dPx(z'),
where © € X. The integral operator Lk is compact, positive definite, and self-adjoint. The
spectral theorem ensures the existence of countable pairs of eigenvalues and eigenfunctions
(13, i)ien C (0,00) x L2 (X) of Lg such that Lgtp; = pgps, for i > 1, where {1;}32, form

an orthonormal basis of L?DX(X) and pq > pg > --- >0 with lim p; = 0.

i—00
By Moore-Aronszajn Theorem, there is a unique reproducing kernel Hilbert space (RKHS) H
on & for which the Mercer kernel K is the reproducing kernel. This RKHS can be character-
ized by a series representation H = {f € L2 (X) : || fllZ = Yoy f2/1mi < 00, fi = (f,¢i)s}
equipped with the inner product (f,¢)y = D> oy figi/pi for any f = Y7 fih; and g =
Yooy gith; in HL.

We consider a proximate function of fy in H, defined as

o0

= (L + M) 'Licfo =S~
fa= (Lic + M) Licfo ;mHm



where [ is the identity operator.
We make some differentiability assumptions on K (-, -):

Assumption Bl. K(-,-) € C¥X,X), ie, Kj(z,2') = % € C(X,X) for any

7,0 € Ngand j+1 <8.

Define kj; = sup,cy Kjj(z,2) > 0 for 7 = 0,...,4 and write kK = Kkgo. We also define
Koj = SUDP, ey |Koj(w,2")| for j = 1,...,4. Under Assumption B1, a direct application of
Theorem 4.7 in Ferreira and Menegatto (2012) gives that f € C3(X) for any f € H, and
1FP|oo < /Fazll fllm- In particular, we have f, € C*(X) under Assumption B1.

We further define kth order derivatives for fip () and 67 (x) as follows for k =0, 1,2, 3, with

k = 0 corresponding to the original functions:

- d* - .
iy (@) = d kKlo(x XK (X, X) +nAL] "y = Kiao(z, X)[K (X, X) +nAL,] ™'y
53 (x) i= —— (N TH K (2, 2) — Koz, X)[K (X, X) + nAL) Ko (X, 2)}

O : 11 10\ T, ) n 01{A,

= o%(n)" Z( JRECT—E )

1=

i+1,0(@, X)[K (X, X) + nAL] 7 Kopa-i(X, 1‘)} ;

where (7) uses the general Leibniz rule for matrix operation.

The following Lemma 1 establish a range of non-asymptotic error bounds under a high

probability event. Let Kj;.(-) = Kj(x,-) and @ji(x) = (Lx + M) K. ().

Lemma 1. Under Assumption B1, the following bounds for k = 0, 1,2, 3 holds simultaneously
under a high probability event A, with Py(A,) >1—n=10:

A% — D) \/m|’f0"oo\/1010gn+5 (10+ 4f<¢\/1010g7n+5)
Brr = e = N 3V
\/mwm
)

10



K
_2(k _
aff '(z) — o?n! Z

=0

< Zk: (k) [\/ﬂ’ii+l,i+1’io,k+l—i02\/ 10logn +4 <10 N 4v/rk\/101logn + 4)

(k) P @) )

l

ny/nA? 3vnA

The following assumption allows us to simplify the bounds for 8;@@) for k=0,1,2,3.

Assumption B2. Asup,.y |¢ji(z)| is bounded for j,/ > 1 and j +1 < 5.

v/logn

2o (@) oo S LR

Remark 1. Under Assumption B2, Equation (8) yields |67 (z) — o
and ||3J205k)($)||oo < - for k = 1,2,3. Hence, 57 (z) approximates ¢11(x)o?/n with high

~

probability.

We make the following assumption to ease the presentation. The subsequent theory in
Theorems 1 and 2 can be generalized for cases where Assumption B3 does not hold, with

more complicated expressions that involve Kj;(z, x) and its derivatives.
Assumption B3. Kii(x,z) does not depend on x.

Assumption B3 simplifies the posterior m,(t | X,y) in Proposition 1. It holds for any
stationary kernels; this is because if K(x,2’') = g(x — 2’) for some function g¢(-), then

Ky (z,z) = —¢"(0), which does not depend on z.

The following assumption is concerned with the error term f{ — f. This is a deterministic

function as f) does not depend on random draws of covariates and noise.

Assumption C. || f{ — fillcc S A™ and ||fY — f{lllco S A™ for some 0 < 71,79 < 1.

~

Assumption C ensures that f] and f{ converge to fj and f; under the supremum norm,
respectively. The two parameters r; and ry correspond to approximation properties of fy to
the function class that fy belongs to, and such properties in turn depend on the covariance
kernel and smoothness of the function class. Assumption C is typically verifiable via direct

VST
calculation for a given problem. For example, if L, 2 fy € L2 (X) for some 0 < 7' < 3,

11



then the one-dimensional case of Theorem 6 in Liu and Li (2023) gives r, = o = 7’; here

the function class for f; is defined by integral operators.

Assumptions B1-B3 spell out conditions for the kernel and regularization parameter A, while
Assumption C is a generic condition that includes a range of function classes of fy;. In

Section 3.5 we provide examples where Assumptions B1-B3 and C hold.

3.2 LAN property

The following Lemma 2 shows existence of local extrema of fy and jiy within a neighborhood

of t,,, which are respectively denoted by t, ,,, and tmform=1,..., M.

Lemma 2. Under Assumptions A1-A3, B1 and C, for any sufficiently small A\, there exist
{tam :m=1,..., M} such that each ty,, is a local extremum of fx and |tym — tm| S AN

Moreover, under A,,, there exist {fm :m=1,..., M} such that each tm is a local extremum

of iy and |t — tam| < Viogn/(v/nA).

Henceforth we work under the high probability event A, defined in Lemma 1. Let the

1

regularization parameter A\ = n~2(logn)2*® for some 0 < f < 3 and @ > 0. Since

fi(txm) =0, Lemma 1 implies that

Infip (tam)| S (logn) ™, (9)
85 () — A ()] S0P (logn) ™, 1<k <3, (10)
ngif(tx,m) —*p11(tam)| < n%_w(log n)~'e, (11)
65" (tam)| S n 2 P(logn) "3, 1<k <3, (12)

The following Theorem 1 characterizes the marginal likelihood function of ¢ by presenting a

local asymptotic normality (LAN) property at ¢, ,,, generalizing traditional LAN properties

to the considered encompassing semiparametric regime. For m = 1,..., M, we denote by
P11,m = Spll<t)\,m)a 0—;12 = OQ/f(g/(tm)Q' (13)

12



Theorem 1. Suppose Assumptions A1-A3, B1-B3 and C hold. Let A = n~2"?(logn)z*® for
some ;11 < p< % and a > 0. Suppose n%’wgpl—ﬁm 1s bounded form =1,..., M. Then under
event A, as n — oo, for any m = 1,..., M, the marginal likelihood likelihood ((t) satisfies

the LAN property

ﬁ(t/\ m T lﬁ) u? HnmU

log —— P2 = =2t — — =2 ) +o(1 14
g E(tA,m) n @ll,m 20_317'”1 U?L’m O( )7 ( )

’th@T’Ef _ M and 0_2 o n@;l{mail(tk,m)

Hnm = 5 ) nm = T )2
Moreover, letting r = r1 A re, we have

|tnm| S (logn) ™7, (15)
o = Tl SN (16)

Remark 2. The LAN property in Theorem 1 exhibits two differences compared to classical
LAN properties (Section 7, van der Vaart (2000), Kleijn and van der Vaart (2012)), in part
owing to the adopted unconventional encompassing approach along with the semiparametric
problem under consideration. First, the inflation term n!=2% <p1’117m is absent in classical semi-
parametric LAN expansions, pointing to complications in the rate calculation that integrate
properties of K and the choice of A through ¢11,,. Second, our expansion is specific to ty ,,
a local extremum of fy, with varying quantities p, ,,, and thm. As a result, the posterior
distribution cannot be approximated by a Gaussian after a homogeneous rescaling of the
parameter across X’; this reminds us of the localized feature of local extrema, and suggests
localized rescaling within a small interval centered at ¢,,. Unlike existing work in semipara-
metric Bayes where the posterior distribution converges to a single Gaussian, a multi-modal

posterior distribution in the form of a mixture of normal distributions is expected.

3.3 Multi-modal limiting distribution

We make the following mild assumption on the prior 7 (¢):

13



Assumption D. The prior density m(t) satisfies that 7(¢) € C'(X) and has positive density

at local extrema, i.e., there holds 7 (¢,,) > 0 for m =1,..., M.

This assumption on 7(t) is rather flexible and can be satisfied by most continuous distribu-

tions supported on X', such as the beta distribution.

Let I1,,(- | X, y) be the probability measure of 7, (- | X,y), and ®(- | u, 0?) be the cumulative
distribution function of the normal distribution N(u,0?). The following theorem shows that
ma(t | X, vy) is close to a mixture of normal distributions when the sample size is large, where
the component densities are related to the LAN expansion, and the weights are determined

by both prior density and curvature of fj at t¢,,.

Theorem 2. Suppose Assumptions A1-A3, B1-B3, C and D hold, and let A = n_%+5(10g n)%ﬂ
for some % < B < % and a > 0 such that n%"mgol_ﬁm 1s bounded. Then the following results

hold for any z € R:

. . FU )| Y (tm
(i) Letting 7, = Z%l:ol(\fé’zl‘fm)l—(lwztm)’ we have

M
Mot < 2| X,9) = > Tm®(2 | tm, 0 or1m000 )| = 0
m=1

in Po-probability, where p11., and o2 are given by (13).

(i) Letting I, . (- | X, y) be the posterior of | [ 2—(t1y,,(t) —tp +by) where b, =n"logn,
and Iy = [tm — Cm-1,tm + Gn] with (o = t1, Gn = (tme1 —tm)/2 form=1,...,M — 1, and

(v = 1 —ty, we have for any z € R, in Py-probability,

Lt < 2| X,y) = @(2]0,077) = 0.

A few remarks are in order to elucidate the encompassing strategy using Theorem 2.

Remark 3. Part (i) of Theorem 2 shows that the posterior distribution is close to a

mixture of normal distributions. The curvature of f at a local extremum ¢, defined as

14



|f"(8)] /(1 + {f'(t)}?)?/? that reduces to |f”(t)| when f'(t) = 0, directly affects the variation
of the posterior distribution at ¢. Indeed, the standard derivation of the Gaussian component
at ¢ in the limiting distribution is proportional to 1/|f{(¢)|, meaning a large curvature leads
to a more concentrated normal component in the posterior distribution. Interestingly, this
effect of curvature on the component-wise variance is offset by the mixture weight that is

also proportional to 1/|f{(t)|. More specifically, the limiting mixture normal density func-

tion evaluated at each local extremum ¢,,, which is Wm/\/Qﬂn—lgoll,ma;f o T (tm)/\/P1im;
does not depend on the curvature of f at t¢,,. Hence, the multi-modal posterior distribution
of t does not diminish a local extremum with small curvature, at least asymptotically. The
prior weight m(t,,) plays a direct role in driving the posterior distribution, which enables
incorporating prior knowledge. Section 4.1 provides numerical confirmation for these theo-
retical implications using finite sample illustration; see, in particular, Figure 2. The marginal
likelihood function ¢(t), proportional to the posterior density m,(¢t | X,y) with a uniform

prior, also tends to be multi-modal, as observed in Figure 2.

Remark 4. Part (ii) generalizes the BvM phenomenon to the encompassing semiparamet-
ric regime under consideration. In particular, after rescaling and truncation, the posterior
distribution weakly converges to a normal distribution with a bias term b,, that is o(1). BvM
theorems in weak convergence (i.e., convergence in distribution) are common in the litera-
ture (Kim and Lee, 2004; Castillo and Rousseau, 2015; Castillo and Nickl, 2014; Kim, 2006).
Our result is different in that the target distribution is multi-modal with varying mean and
variance at each component, necessitating a localized truncation at I, for weak convergence
to a single normal. Although not typical, approximating the posterior distribution via a mix-
ture of Gaussians has appeared in the literature; for example, see Castillo et al. (2015) on
Bayesian linear regression models. The established results and proofs show other important
differences from the semiparametric literature. Castillo (2012) proposed sufficient condi-
tions for a BvM theorem for separated models, where the model parameter takes the form
n = (0, f). In our case, t is an inherited hyperparameter of f rather than an independent
parameter in a separated model (e.g., parameters in a location-scale family). Castillo and

Rousseau (2015) provided sufficient conditions for a BvM theorem for smooth functionals
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of the parameter in general models. Specifically, they considered a model parameterized by
6 € O, and provided a BvM theorem for 1(6) where ¢ : © — R? is a smooth functional
of interest (see Equation (2.4) in their paper). However, the derivative at any fixed point,
when viewed as a functional of the regression function, is not bounded (Conway, 1994, page
13), and thus local extrema may not be expressed as a functional of the regression function

even when their number is known.

Remark 5. Part (ii) indicates a bias-variance trade-off regarding the rescaled posterior for
estimating t,,. The bias of the centering quantity ¢,, — b, — t,, is bounded above by A",
in view of Lemma 2 and the constraint that }l < pB< % On the other hand, the variance
n~'¢11m is bounded above by (nA)~! in view of Assumption B2. Therefore, a larger A
(or equivalently, a larger [3) corresponds to a smaller variance but a larger bias. An exact
rate calculation for both bias and variance can be obtained by considering the special cases
in Section 3.5. Note that such rates depend on the underlying regularity parameter of the
true function that is typically unknown, impeding their application to parameter tuning. We
propose to use an empirical Bayes approach to select A by maximizing its marginal likelihood

function, which shows competitive performance in our simulations; see Section 4 for details.

Verifying the conditions needed for the preceding theorems often amounts to checking As-
sumptions B1-B3 and Assumption C, which will provide insight into how to choose the kernel

hyperparameters; see Section 3.5 for examples.

3.4 Point and interval estimation

The shape of the posterior distribution characterized in Theorem 2 can be used to construct
estimators with frequentist properties. In particular, the multi-modality of the limiting
posterior distribution provides a basis to overcome the multiplicity challenge of local extrema,
and leads to consistent estimators of t,, through posterior exploration. We additionally

provide interval estimation that achieves frequentist coverage.

Theorem 3. Under the same conditions as in Theorem 2, the following results hold.
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(i) For all § > 0, with Py-probability tending to one, m,(t | X,y) has exactly M local mazima
tiny -y taum, and form =1,.... M there holds |ty , — t,| < 6 for all sufficiently large n.

(i) Let A, () = Kio(-, X)[K(X, X) +n\L,] 7' fo(X). For any a € (0,1), the following is an
asymptotic 1 — v confidence interval for tp, + Ny (tm)/ f§(tm):

o = 20/20\] Ko, X)[K (X, X) + nAL] 2 KaoFms X7/ (),

where z, /5 is the upper a/2 quantile of the standard normal distribution.

In Theorem 3 (ii) the bias term A, (t,,)/f{ (tm) can be shown to be o(1) with Py-probability
tending to one as it is approximating f}(t,,)/fy (tm) = 0. For implementation, we propose to
“plug in” consistent estimators for unknown quantities in A, (,,)/fy (), including 7', (tm)
for f/(tm), tm for tm, and A, (-) = Kio(-, X)[K (X, X) + AL i (X) for A, (), leading to

the following confidence intervals for ¢,,:

R o/ Kro(Fs X)K (X, X) + nAL) 2K 0, X)T
m T =~ /3 + Za/2 ~ /7 (17>
(T 7 ()]

These confidence intervals depend on A, which will be estimated using empirical Bayes,
as discussed in Remark 5. In the context of nonparametric regression, Liu and Li (2022)
have demonstrated that this choice of A tends to adapt to the unknown smoothness level
of the underlying function, especially when combined with an oversmooth kernel. However,
it is worth noting that constructing adaptive confidence intervals with minimax optimal
diameter is a more challenging task, as is typically the case in nonparametric inference; see,
for example, Giné and Nickl (2021) for more details. We assess finite sample performance

of (17) in Section 4, which shows satisfactory coverage.

2

When the error variance o2 is unknown, one may substitute o2 in the original derivative-

constraint GP prior with an estimate 62. The established results in Theorems 1, 2, and 3

n:

2

hold with any estimator 62 that converges to o in mean square. In particular, we can

estimate o2 by the maximum marginal likelihood estimator which has been shown to be
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mean square consistent under various settings (Yoo and Ghosal, 2016; Liu and Li, 2022).
Denote the induced posterior measure of ¢ by II,, 52 (- | X, y), and take Part (i) in Theorem 2
as an example. Let B, be a shrinking neighborhood of ¢? such that Py(62 € B,) — 1.

n

Conditional on B,,, Equation (8) becomes

529 () = (0% + o(1))n~" i (f) Pit1r1-i()]

=0

9

< (kN | VERiriikose1-i(0® + o(1))y/T0Togn + 4 4y/k/10logn + 4
S ik 4 A0
— \i ny/nA 3vVnA

and all the established inequalities in the proof of Theorem 2 hold uniformly over o? € B,,.

Mt <z | X,9) = M 00 ®(2 |ty 011,m072) | = 0

In particular, there holds sup,2c5.

Mos(t<z|X,y)— 27]‘714:1 Tm®@(2 |ty n L 011.m02) | — 0.

in Pyp-probability, yielding

3.5 Applications to special function classes and GP kernels

In this section, we provide examples under which various assumptions and Theorems 1 and 2

hold. We focus on covariance kernels that possess regularized eigenfunctions as follows.

Assumption E. The eigenfunction ; € C*(X) for all i € N and some s € N. Moreover,
there exists a constant C' > 0 such that [|¢)"||e < Ci* for any i € N and Sooe Wi(x)?

diverges for any z € X.
In particular, the Fourier basis satisfies Assumption E for any finite s.

Ezxample 1. Stationary kernels with polynomially decaying eigenvalues. Let K®* be a sta-
tionary covariance kernel whose eigenfunctions satisfy Assumption E and eigenvalues decay

at a polynomial rate, that is, j; =< i2% for i € N and some a > 0.

We assume that the true regression function fy lies in the Holder class:

H(X) = {f € Ly (X) : | fllroqy = D i°Ifil <00, fi= <f,¢i>2}~

=1
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Any function in H*(X) has continuous derivatives up to order |«| and the [« |th derivative
is Lipschitz continuous of order aw — |« |. Using the error bounds for derivatives of f\ — fy in
Lemma 13 of Liu and Li (2023) to verify Assumption C, the following corollary provides an

example for Theorems 1 and 2 to hold.

Theorem 4. Suppose fo € H*(X) and K** is used in the GP prior for « > 9/2 and s > 4.
Then Assumptions B1-B3 and C hold, and Theorems 1 and 2 hold for any 5 € [%, %)

Ezxample 2. Stationary kernels with exponentially decaying eigenvalues. We consider station-
ary kernels K, ; with eigenvalues y; < e=27 for i € N and some v > 0, and eigenfunctions
satisfying Assumption E. The well-known squared exponential kernel can be approximately
viewed as an example of K, 5, with a closed-form eigendecomposition with respect to Gaus-

sian sampling on the real line (Rasmussen and Williams, 2006; Pati and Bhattacharya, 2015).

We assume fy belongs to the analytic-type function class A, (X):

A(X) = {f € Ly (X) : I fIF, 0y = D_ €7 Ifil < oo, fi=(f. Wz}

i=1

We first verify Assumption C in the following Lemma 3.

Lemma 3. Suppose that fy € A(X), and K., ; is used in the GP prior for some vy > % and
s > k. Then there holds ||f§k) — ék)HOO < A2 T3y

This yields another example for our theory to hold using kernels with exponentially decaying

eigenvalues, formulated in the following corollary.

Theorem 5. Suppose fy, € A, (X) and K. 5 is used in the GP prior for v > 2—56 and s > 4.
Then Assumptions B1-B3 and C hold, and Theorems 1 and 2 hold for any (5 € [%, %)
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Simulated Data of Size 100
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f(x)
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Figure 1: Simulated data with n = 100. Observations are marked by “+”. The red curve is
the true regression function, and green lines indicate the location of three local extrema.

4 Simulation

In this section we carry out simulation studies to illustrate the convergence of the posterior
distribution 7, (¢ | X, y) to Gaussian mixtures, and to assess the performance of the proposed

method relative to competing methods.

We use a Doppler-type regression function f(z) = \/MSin (2r/(x 4+ 0.5)) forx € X =
[0, 1], which has three local extrema at ¢; = 0.0863, to = 0.3096 and t3 = 0.7491. We add iid
zero-mean Gaussian noise to f with standard deviation ¢ = 0.1, observed at equal-spaced
{z;}?_, in the unit interval [0, 1]. We vary the sample size n = 100, 500, 1000. Figure 1 shows

one simulated dataset of sample size 100. Each simulation scenario is replicated 100 times.

We use two prior distributions Beta(1, 1) (the uniform distribution) and Beta(2,3) on ¢ to
study the sensitivity of posterior inference to the prior specification. We use the squared
exponential kernel function for K, that is, K(z,2') = exp{—(z — 2/)?/(2h?*)}. For each
simulated dataset, we select parameters other than ¢, which include A, h, and o2, via an
empirical Bayes approach by maximizing the unconstrained marginal likelihood function,
i.e., the multivariate normal density N(0,0%(n\)"'K(X, X) + 02I,) evaluated at y. This

is motivated by the excellent performance of empirical Bayes in a variety of settings (Yoo
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and Ghosal, 2016; Liu and Li, 2022). We use the midpoint rule to calculate the normalizing

constant in m,(t | X, y).

4.1 Finite sample size behavior of the posterior distribution

The proposed method, labeled as DGP, does not require any sampling to obtain the poste-
rior distribution owing to the closed-form expression in Proposition 1. Figure 2 shows the
posterior distribution of ¢ with various sample sizes and the two beta priors, each based
on one simulated dataset. We can see that the posterior distribution possesses three mix-
ture components at all sample sizes and for both beta priors, matching the true number of
local extrema M = 3. At each sample size such as n = 1000, the posterior distribution
tends to have three modes concentrating around (1, to, t3), which aligns with the established

Theorem 2 that deciphers the limiting behavior of the posterior distribution.

The curvature at a local extremum point ¢ is |f”(¢)|, which is (111.04,44.55,11.91) for
(t1,t9,t3), respectively. Figure 2 indicates that the variability of each mixture component
decreases substantially as the curvature increases, confirming Theorem 2 in which we show
that the standard deviation of each Gaussian component in the limiting distribution is in-
versely proportional to the curvature at the corresponding local extremum. For example, ¢,
with the highest curvature exhibits the least variation, while t3 with the lowest curvature

has the most variation in the posterior distribution, as in Figure 2.

As n increases, the mixture components in the posterior distribution are more bell-shaped.
When the sample size is small, such as n = 100, the mixture component may be skewed. This
is particularly the case for the first (left skewed) and the third mixture component (right
skewed) when the Beta(1,1) prior is used. A closer inspection of Figure 2 (a) indicates a
boundary effect when n = 100, that is, there appears to be a small bump near the boundary.
Such boundary effects are reasonable as there are sparser data near the boundary, lacking
information outside the range X, and that the right boundary point ¢ = 1 indeed gives the
largest function value on (t3, 1]. Both skewed mixture components and boundary effects are

much mitigated when the sample size increases to 500 and 1000. In addition, the Beta(2, 3)
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Figure 2: Effect of n on the posterior distribution of ¢ with beta prior distributions. Vertical
dashed lines indicate the true locations of local extrema. The intervals in each plot are
the 95% highest posterior density regions. Each posterior density function is based on one
simulated dataset.

prior tends to zero out the boundary bumps even when the sample size is as small as 100.
The posterior distributions corresponding to the two beta priors have various density values
at their local peaks, which are also suggested by Theorem 2. We remark that, however, an
appropriate posterior summary method such as highest posterior density regions may lead to
interval estimates that are less sensitive to the priors; see the interval estimates in Figure 2,

and the next section, particularly Table 1, for more details about point estimates.

The proposed Bayesian approach has the advantage of allowing users to incorporate any
prior knowledge, if available, about the location of local extrema. For example, one may use
a suitable prior distribution to rule out the possibilities of local extrema near the boundary.
This does not necessarily mean that local extrema are not located near the boundary, but

rather that such local extrema are not desired.

4.2 Comparison with other methods

We use the 95% highest posterior density region (HPDR) of the posterior distribution of

t for posterior summary, which consists of a number of disjoint intervals enclosing local
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modes. We use the number of segments in the HPDR to estimate M, and the corresponding
posterior mode within each segment to estimate local extrema. This posterior summary is a
reasonable strategy according to our asymptotic characterization of the posterior distribution
of t, which approximates a mixture of Gaussians with the number and location of the mixture
components matching the local extrema of the underlying regression function. We expect

this method to estimate M correctly with high probability according to Theorem 3 (i).

For comparison, we implement another three methods: the smoothed taut string (STS)
method proposed by Kovac (2007), the original taut string (T'S) method in Davies et al.
(2001), and the nonparametric kernel smoothing (NKS) method proposed by Song et al.
(2006). STS and TS estimate the number of local extrema by minimizing a loss function of the
corresponding taut string, and do not provide uncertainty quantification about local extrema.
Since STS is an improved version of TS, and we find that these two methods lead to similar
numerical performance in our experiments, in this section we omit the results of TS and use
STS to represent taut string-based methods. NKS first estimates the regression function,
denoted by f(x), then chooses a set of 2s such that the confidence interval of f/(z) contains
zero. Within this set, point estimates of stationary points are obtained by locating those at

M

m_1, which are a subset of {z;}?_; by design.

which f'(z) are closest to zero, denoted by {z*,}
For interval estimation, NKS inverts the lower and upper limits of the 95% confidence band
for f '(x¥). Such intervals may not exist, and if one of the upper or lower bounds can be found,
they further assume asymptotic normality and construct a symmetric interval based on z},
and the available bound. In contrast, interval estimation in the semiparametric Bayesian
approach through HPDRs is computationally more straightforward and conceptually more
coherent. STS and TS are implemented in the R package ftnonpar, and we implement NKS
using the R code provided by the authors of Song et al. (2006). The bandwidth parameter

in NKS is chosen by minimizing asymptotic mean integrated squared error.

4.2.1 Estimation of M

Figure 3 plots the estimated number of local extrema by each method at various sample

sizes. The plot with n = 1000 is similar to the one with n = 500, and is thus omitted here.
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We can see that the semiparametric Bayesian method DGP with both priors and the STS
method tend to capture the true number of local extrema as the sample size increases to
500. When the sample size is 100, DGP with the Beta(2,3) prior gives the largest frequency
at the true number M = 3 among all methods, while STS and DGP with the Beta(1,1)
prior either underestimate or overestimate M in about half of the 100 simulations, although
mostly by one. Figure 3 reinforces that the estimation accuracy of M is greatly improved
by using the Beta(2, 3) prior to remove trivial points around the boundary, which gives the
most accurate estimate of M for both n = 100 and n = 500. It is reassuring that the effect
of prior distributions for DGP is diminished as n increases from 100 to 500. For both DGP
and STS, a sample size over 500 appears large enough to ensure an accurate estimate of
the number of local extrema, at least under the simulation setting. NKS does not exhibit
a clear convergence behavior as DGP and STS do. It overestimates M considerably more
than DGP and STS, and such overestimation persists when the sample size increases to 500
and 1000. This confirms that the presence of multiple local extrema poses challenges to
NKS, as commented by Song et al. (2006), and suggests that multiple testing correction is
particularly needed for the two-step approach, while appealing performance of the unified

approach DGP does not hinge on such a correction.

Additional experiments are included in the supplementary material to investigate the effects
of noise standard deviation and credible levels, which show quite robust performance of the
Beta(2,3) prior in estimating M for a wide range of credible levels. A highly fluctuated

regression function with large M is also considered.

4.2.2 Point estimation of local extrema

We now turn to comparing the estimates ¢; fori =1,.. ., M for each method. Since M might
deviate from M = 3, as suggested in Figure 3, we adopt the following convention to align
the estimated local extrema with the true ¢; for i = 1, 2, 3 for all methods. We consider three
intervals (bg, b1), (b1,b2), and (ba, b3), where by = 0, by = 1, and b; = (¢; +t;41)/2 for i = 1,2.
Then for each method, we collect all estimated local extrema that fall into each interval.

If the ith interval (¢ = 1,2,3) contains more than one estimate, we use the average of all

24



Sample size is 100 Sample size is 500

754
504 Method
. DGP beta(1, 1)
= B ocrbenaiz
B
518
2!
254 ‘
, I 1 . IJ I P .
1 z 3 3 5 & 7 H 3 : H & 7 3

8 1 3 4
MNumber of local extrema Mumber of local extrama

-
W

Count
Count

]

Figure 3: Frequency of the estimated number of local extrema by each method across 100
replicated simulations. Color code: yellow for STS, green for NKS, blue for DGP with the
Beta(2,3) prior, and purple for DGP with the Beta(1, 1) prior. The plot with n = 1000 is
similar to the one with n = 500, and is thus omitted here.

local extrema within the interval as the estimate of ¢;; if an interval contains no estimates,
we put an NA to indicate missingness. Performance of each method in estimating ¢; for
i =1,2,3 is compared by calculating the root mean squared error (RMSE), averaged across
100 simulations excluding NAs. The number of simulations in which a method gives zero or

multiple local extrema within each interval is reported in Table 2.

Table 1 reports the RMSE for estimated local extrema by all methods. The semiparametric
Bayesian method DGP, with the Beta(1,1) or the Beta(2,3) prior, gives the smallest RMSEs
in nearly all cases, with only one exception for ¢3 at n = 100 when ST is slightly better. For
t; and ty, DGP often reduces the RMSEs of STS and NKS by over half or more, consistently
across all sample sizes. For DGP, the two priors yield similar RMSEs in most cases, indicating
that point estimates of local extrema tend to be minimally affected by the prior specification.
Table 2 indicates that NKS produces multiple local extremum estimates in each interval much
more often than DGP and STS, especially for ¢3 with small curvature. When the sample size

is 100, DGP leads to multiple local extrema in 14 (Beta(2,3) prior) and 15 (Beta(1, 1) prior)
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out of 100 simulations, while STS misses estimates within (0, b;) for 50 simulations. Both
DGP and STS estimate local extrema that align well with the true local extrema when n
increases to 500 and 1000. It is worth mentioning that all methods give one local extremum
in the interval (by,by) for almost all simulations (Table 2), which provides a scenario that
eliminates the need to account for zero or multiple estimates; Table 1 shows that in this
scenario that corresponds to estimating ¢, the proposed DGP achieves the smallest RMSEs,

suggesting superior performance of DGP.

Table 1: Comparison of various methods using root mean square error (RMSE). The reported
RMSEs are multiplied by 100 for easy comparison. The smallest and second smallest RMSEs
in each column are marked in bold. All RMSEs are averaged across 100 repeated simulations.

n = 100 n = 500 n = 1000
t1 to ts t1 to ts t to ts

DGP Beta(1,1) 0.67 0.88 4.13 0.29 0.54 2.11 0.25 0.46 1.31
DGP Beta(2,3) 0.65 0.88 3.85 0.30 0.54 2.00 0.24 0.45 1.30
STS 1.65 153 3.14 078 1.22 256 0.75 1.11 1.90
NKS 1.68 146 498 154 1.08 330 190 1.07 225

Method

Table 2: Number of simulations with missing or multiple estimated local extrema in each
interval. The three intervals, indexed by t1, 5, and t3 in the table, are (0, (t; +¢2)/2), ((t1 +
t9)/2, (ta+1t3)/2), ((t2 +t3)/2, 1), respectively. The number of simulations with missingness,
if non-zero, is reported as the second number in a pair; otherwise if there is no missingness,
we only report the number of simulations with multiple estimates.

n = 100 n = 500 n = 1000
t ta t3 t1 ta t3 t1 ta I3

Method

DGPBeta(1,]) 0 0 15 0 0 5 0 0 1
DGPBeta(23) 0 0 14 0 0 1 0 0 0
STS 0,500 0 1 1 0 1 1 0 0
NKS 19 1 47 14 3 45 20 0 40

We note that there are a few noticeable differences in our implementation of the encom-
passing strategy with respect to Yu et al. (2023). In our estimation approach, we fix the
hyperparameters o, 7 and h at the values that maximize the marginal unconstrained likeli-
hood, while in the Monte Carlo Expectation Maximization (MCEM) approach of Yu et al.
(2023) o is sampled in each MC E-step while 7 and h are iteratively updated in the M-step

given their previous values and the samples of ¢t and ¢ drawn in the E-step. Furthermore,
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while we make use of the analytic form of the posterior distribution of ¢, the MCEM approach
of Yu et al. (2023) draws posterior samples of ¢. One clear advantage of our implementation
is that it is computationally much faster than the MCEM method. (Using n = 100 as an
example, our implementation was 100 times faster than MCEM on a regular PC, at a mag-
nitude of 32 seconds versus 3200 seconds for completing 100 simulations.) When applying
the MCEM method to the simulation study, we found overall similar values in the selected
parameters. For example, estimates for o, 7 and h, averaged over 100 simulated datasets,
were 0.10, 0.30 and 0.13, respectively, for our approach and 0.14, 0.37 and 0.13, respectively,
for the MCEM.

4.3 Interval estimation of local extrema

We now assess the proposed interval estimates in (17). Within each HPDR segment under
the Beta(1,1) prior, we estimate #,, by finding the local extremum of fif; if multiple local
extrema are found, then the average is used. We assess the coverage of interval estimators
conditional on M = 3. This conditional event tends to occur with probability one given
the consistency of M and indeed has a high probability in finite sample settings as observed
in Section 4.2.1. We consider three confidence levels 1 — a for € {0.1,0.05,0.1}. In
addition to (marginal) confidence intervals for each t¢;, we also obtain a joint confidence set
for {t1,1ts,t3} using the Bonferroni correction. We compare the empirical coverage of three

marginal confidence intervals and one joint confidence set with the confidence level.

Table 3 shows that the empirical coverage is close to the nominal level when n increases
to 500, for both marginal confidence intervals and joint confidence sets. We observe no
significant derivation of the observed coverage from the confidence level relative to the stan-
dard errors when n € {500, 1000}, indicating satisfactory coverage of the proposed interval
estimates in this finite sample setting. In results not reported here, changing the prior to
Beta(2,3) when deriving HPDR leads to a similar coverage for both marginal confidence

intervals and joint confidence sets.
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Table 3: Coverage of confidence intervals at various confidence levels 1 — a for a €
{0.1,0.05,0.01}. The first three blocks report the coverage of marginal confidence inter-
vals for each local extremum, while the last block is the coverage of joint confidence sets
using the Bonferroni correction. For each of the three rows, the maximum standard errors
are 0.07, 0.04, and 0.04, respectively.

tq to t3 Joint
0.1 005 001 01 0.05 001 0.1 00> 001 01 0.05 o0.01

n=100 0.81 091 098 0.75 0.81 087 0.74 081 0.83 0.66 0.72 0.77
n=500 091 094 1 084 090 099 090 094 1 08 094 1
n=1000 0.86 0.95 099 086 092 099 088 094 099 085 0.93 0.99

5 Real data application

In this section, we show an application of our method to the analysis of event-related poten-
tials (ERP), which represent electroencephalogram (EEG) recorded in response to stimuli.
Primary statistical analyses of an ERP waveform focus on estimating the amplitude (micro-
volts) and latency (milliseconds) of specific peaks and dips, also called ERP components, as
these have been shown to be associated with human sensory and cognitive functions (Luck,
2005). Although ERPs have been extensively used in psychology and the cognitive science
community, research in statistical modeling for latency estimation with uncertainty quantifi-
cation is not mature yet and still under development. Here we show how our methodology
can be applied to derive posterior distributions of ERP component latencies, an important

information when making scientific discoveries based on ERP data (Yu et al., 2023).

We use ERP data publicly available at http://dsenturk.bol.ucla.edu/supplements.
html. The dataset consists of ERP signals of a single subject with autism spectrum disorder
(ASD), evaluated at one electrode, one condition, and 72 trials, each having 250 time points.
Figure 4 shows the time series of all 72 trials and the grand average time course averaged
over all 72 trials. Two ERP components, N1, typically within the window [100, 250] msec,
and P3, typically within the window [190, 350] msec, are the main interest of the study. We

therefore restrict our analysis to the time window [100, 350] msec.

Since EEG signals are typically noisy, traditionally neuroscientists average signals across
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Figure 4: ERP data: 72 time series each corresponding to one single trial and the grand
average time course averaged over all 72 trials. The time epoch between the two vertical
lines defines the search window for components N1 and P3.

trials to obtain an overall or grand average ERP waveform, which they then visually inspect
to determine the amplitude size and latency location of the ERP components. Following such
practice, we first applied our method to the grand average time course. As in the simulations,
empirical Bayes estimates of the parameters other than ¢ were obtained by maximizing the
marginal likelihood, as (o,7,h) = (0.642,6.385,0.053), with a uniform prior on ¢. Curve
fitting and posterior distribution of the latency are shown in Figure 5. We note that the
observations, i.e. the grand average over all trials, and the fitted curve appear to have a
similar smoothness level as in the preceding simulation section; for example, compare Figure 5
(top row) with Figure 1. In addition to generating a smooth fitted ERP curve along with
95% credible intervals for amplitude estimation, our model-based approach provides a full
posterior distribution of latency locations for ERP components. The 95% credible intervals

for the N1 and P3 latencies are [174.58, 178.32] msec and [266.58, 270.93] msec, respectively.

We also investigated the robustness of the results to the smoothness of the ERP waveform.
Indeed, since our model explicitly accounts for errors in the data, some of the excessive
averaging, which is routinely done to obtain smooth curves, can be avoided. When fewer
trials are averaged, we expect posterior distributions with larger variation. As an example,
the left panel of Figure 6 shows the estimated waveform and the posterior density of latency
when only the first 2 trials are averaged. The N1 and P3 latencies are still identified, though,

as expected, with larger uncertainty. In particular, the 95% credible intervals for N1 and P3
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Figure 5: ERP data: Curve fitting and posterior density of the latency of the grand ERP
waveform averaged over 72 trials.
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Figure 6: ERP data: Curve fitting and posterior density of the latency of the ERP waveform
averaged over the first two trials, with a uniform prior (left panel) and a Beta(3,3) prior (right
panel) on the latency.

are [168.99, 180.80] msec and [271.55, 295.17] msec, respectively. Furthermore, as an effect
of the smaller level of averaging, some smaller modes at the extremes of the interval are
now more pronounced. These are spurious effects and can be avoided by utilizing a prior
distribution on the latency that discourages local extrema at the endpoints of the interval.

For example, the right panel of Figure 6 shows the inference using a Beta(3, 3) prior.

6 Discussion

In this article, we have studied an encompasssing semiparametric Bayesian approach for

identifying multiple local extrema of an unknown function. We have shown that the pos-
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terior distribution is connected to unconstrained nonparametric regression in a closed-form
characterization, enabling fast computation. We have established local asymptotic normality
properties and convergence to Gaussian mixtures for this unconventional strategy, indicat-
ing multi-modality of the posterior distribution and substantiating the use of the highest
posterior density region for posterior exploration. Our simulations have suggested superior

performance of this encompassing semiparametric method relative to existing methods.

Although we have focused on Gaussian processes with stationary covariance functions whose
eigenvalues decay at certain rates as special examples, the developed framework of this
article, which bases inference on the multi-modal posterior distribution of ¢ with justified
asymptotic properties, can be extended to other nonparametric priors, including Gaussian
processes with other covariance functions and random series priors. Similar to the flexibility
encoded in covariance kernels of Gaussian processes, the rich menu for basis functions in
random series priors allows flexible shapes of the underlying functions; for example, wavelets
might be better suited for spiky functions in certain applications such as mass spectrometry
(Liu et al., 2020), and B-splines for locally supported functions (Wang et al., 2023). In
these generalizations, one needs to verify the conditions in Theorem 2 for the adopted non-
parametric prior, with technical challenges including deriving the approximate properties of
relevant estimates as in Lemma 1 and Assumption C, and selecting hyperparameters such

as the number of basis functions in the context of local extrema detection.

Throughout the paper we have focused on a one-dimensional sample space. It may be argued
that the encompassing strategy studied in this article generalizes to d-dimensional compact
sample spaces for any d > 1 by using GP prior counterparts supported on d-dimensional
X. However, the main challenges in multivariate settings include the need to theoretically
study multivariate posterior distributions with multi-modality, and develop computationally

efficient algorithms for posterior exploration.

There are several other interesting future directions to pursue. Firstly, Assumption A3 can
be relaxed to allow local extrema based on high-order derivative tests, and we envision the

developed arguments in this article are largely applicable with the LAN expansion extended
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to its higher-order counterpart. Secondly, one may study the encompassing strategy with
potentially different posterior exploration methods when there are many or even a diverging
number of local extrema, and compare its performance with alternative approaches. Finally,
one substantial challenge the proposed method overcomes is the multiplicity of local extrema
with unknown dimensions and locations. With given M, which is a different setting, further
efficiency gain might be possible by incorporating this knowledge into the method. In this
case, it is also interesting to study the optimal rate for estimating the M-dimensional local

extrema, and compare the proposed estimator with the optimal rate.
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Supplementary material for “Semiparametric Bayesian inference for
Yy Y
local extrema of functions in the presence of noise”

In this supplementary material, we present proofs of all results in the main paper, additional

technical lemmas, and additional numerical experiments.

A Proofs

A.1 Proof of Proposition 1

By Bayes’ theorem, it suffices to show that the likelihood takes the form of (5). Recall
that y|X,t ~ N(0,%;), where ¥, = o?(n\)"*(A + B) with A = K(X,X) + nAI, and
B = —Ko (X, ) K7 (t,)K1o(t, X) = —aaT by letting @ = Ko (X, t)K;"/*(t,t). Note that

the condition 7 (t) > 0 for any ¢ ensures Ky;(t,t) > 0 in view of (4).

In view of the Sherman—Morrison formula, we have det (A + B) = (1 —a” A 'a) det(A) and
(A+B) ' = A1 4 A e A soquming 1 — a”A 'a # 0. Substituting these two identities

1—aTA-1la

into the multivariate normal density £(t) yields

0t) = {27?02(71)\)_1}_”/2 det(A + B)_I/2 exp {—myT(A + B)_ly}

2 \\—11-n/2 ~1/2 y'Aly
= {276%(n\) "1} 2 (det(A)) Y exp{—m}
y’Altaa” Ay
" 202(nA)"1(1 — aTA—la)}
yl'AlaK (t,t)a’ Ay
202(nA) 1K (8 t)(1 — aT A a) } ’

-(1—a"A'a) 2 exp {

= C{o*(nA) (1 —a" A a)} 2 exp {

where

C = {27T02(71)\)_1}_”/2(det(A))_l/2 exp {—%} . {02(71)\)_1}1/2

does not depend on t. The proof is completed by noticing that i (t) = K2t t)aT Ay
and 6%, (t) = o*(nA\) 'K (t,t)(1 — a” A~"a). This completes the proof.
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A.2 Proof of Lemma 1

A one-dimensional version of Theorem 4 in Liu and Li (2023) shows that

A% — D) <\/f~€/€k+1,k+1”f0Hoo\/ log(9/6) 10 + 4rk+/log(9/6) (18)
d ’ oo VA 3vVnA
ov/FhRkt1kt104/10g 3/5 0< k<3
VoA =h=s

For any bounded f € L2 (X), we define a bias of estimators of f by matrix and integral

operation as

E(K,X,f)=(Lxx +M) "Lgxf— (Lig+ M) 'Lgf
=K, X)K(X,X)+n\L])  f(X)— (Lg + M) ' Lgf,

which belongs to H. Consider any j,! > 1 and j + [ < 5, taking f = Ky, yields
VE(K, X, Ky.) = Kjo(-, X)[K(X,X) +n\L,) " Kgy(X,2) — & (Lg + M) ' L Ko
Thus,

VE(K, X, Ky.)(z) = Kjo(z, X)[K(X, X) +nA\L,] " Ko(X,x) — & (Lg + M) ' LgKo.(2)
o(x, X)[K(X, X) +n\L) ' Kog(X,2) — (Lg + M) LKy . ()

We write (Lx + M) 'LgKji.(x) = Kj(2) = MLk + M) ' Kji.(x) = Kj(x,z) — Apji(x).
Then, by Theorem 16 in Liu and Li (2023) we have that for any ¢ € (0, 1), with Py-probability
at least 1 — 0 it holds

| Kjo(z, X)[K (X, X) +nAL] " Ko (X, 2) — Ku(z, 2) + Apj()]

mummumfmg@/é ( | 4v/r/105(3/8) 3/5)

VA 3vn\
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\/Wwﬁom/log 3/9) 4\/_\/log 3/0)
N 3v/nA

In view of (7), Eifk) (x) is a linear combination of quadratic forms

Kj(x, ) — Kjo(-, X)[K(X, X) + nAL] ' Ko (X, z).

Therefore, for any 0 < k£ < 3, we have

Aigk)(x) - UQTFIi <lz) Pit1h+1-i(2)] (19)
i( ) [\/mﬁoml i0 W( 4\/_\/W>]
i ny/n? 3vnA

The above (18) and (19) can hold simultaneously with Py-probability 1 — 8. Let 85 = n~1,
and A,, be the corresponding event. We immediately have Py(A,) > 1—n"1 with log(3/§) <
10logn + 4 and log(9/6) < 10logn + 5 in the upper bound. This completes the proof.

A.3 Proof of Lemma 2

First we prove that for any local extremum ¢, of fj, there exists a local extremum ¢y ,, of f
such that ty,, — t,, as A = 0. There exists 6 > 0 such that for any 0 < € < 4, it holds that
fotm —e€) <0, fi(tm+€) >0 and f/(t, +¢€) # 0 without loss of generality. By Assumption

C, we have

it —€) — fo(tm — €)] S A™.

Hence, for sufficiently small A, it holds f{(,, —9/2) < 0. Similarly, we have f}(¢,,+9/2) > 0.
According to the continuity of f, there exists a tx,, € (tn — 6/2,t, + 0/2) such that
fi(trm) = 0. It can also be shown that f{(t) # 0 for any t € (¢, —6/2,t,, + 6/2) and
sufficiently small A\, which implies f{(txm) # 0. Finally, we have ¢, ,, — ¢, as § — 0 and
A — 0.
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Again by Assumption C we can see that

[FA(Eam) = foltam)] S A™.

Since f(txm) =0, in view of the mean value theorem, we have

[fo(tm) + f0 (§) (Eam — tm)[ S A,

where ; lies between and t) ,, and t,,. Since & — t,,, and f{(¢,,,) # 0 by Assumption A, we

obtain

[Exm — tm| S A

Under A,, the existence and convergence rate of £, can be shown similarly by applying (8).

This completes the proof.

A.4 Proof of Theorem 1

The proof is based on the high probability event A, defined in Lemma 1. Conditions of
Theorem 1 imply n%_wgpnm = o(1), yielding 67 (txm) > 0 in view of (11). Invoking the
likelihood function ¢(¢) in (5), which holds at ¢, ,, and in its small neighborhood, we have

0t +At) (1) Af 4+ '(t )6( )

_ g/(t)Q ) .
o)y L) 20(1)2 (At)” + R3(§)(At)”,

A(t, At) = log

where R3(&) = {20'(t)3+0"(&)0(€)* =30/ (£)0"(£)6(€)}/{60(£)3} and & is bewteen ¢ and ¢+ At.
Thus,

Aty % = [_ 3A,2v2/r(75A,m) B ﬁf’(t/)\\7m)ﬁ/f’(t/\,m) ﬁf'(tim)zafci(tx,m) u
n 207/ (tm) 07 (tam) 207 (tam)? n#
1 [a]%:(m,m)? 5% () 2t W (Erin) 5% (Erm)
2 20f,(t>\7m)2 20f,(tA,m) 8]%,(13”)2
 Hp(tam)® + T (B )17 (rm)
o7 (tam)
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1
— T (trm)?
2Mf ( A, ) ( f/(t%m):s Uf/(t,\,m)

1 ud
+ 6R3<5>W

265 (tam)®  GF (tam) \ | u?
n2p

Based on the rates given by (9), (10), (11) and (12), we obtain

g ()| S 0 Pllogn)™?, A% (tam) S 1

~ _ 1 _1
57 (tam)l S s 153 ()| S 172 P (logn) 727,

52/
for 1 < k < 3. Further calculation gives R3(§) < % =0 (n%_ﬁ(logn)_%_“goffm)

Substituting these into the above A(ty ., -5) yields

3

Aty ) = 220 3-4p
(trm, —5) W52 (tam) Qnggaf/@)\ U +o(n> i)
n' Pl () Wy (tam) 2 72P I ()
na\‘?'/ (t)\7m) 2n0f/ (t)\7m)
/7’,/ t/\,m 2y nﬁ/\ (Exm u
{_ f( ) _ Nf(A, ) ) +o(1),

2nS01_11,m6—J2“ (t)wm) n(pl_ll,ma-\]%’ (t/\7m

u? +o(nz Y2 )

1-28 1
=n P11,m

when n%_wgpl—ﬁm =0(1).

Then we study the convergence of i, and o7, . According to (9) and (10), we have

—a

[n° i (tam)| < (logn)~*,

—a

|’a}'<t>‘vm) - ;\/(t)\,m)| 5 n_ﬁ(log n)

In view of Lemma 2, Assumption A2, and Assumption C, we obtain that 1z () ,) converges

), and thus is bounded away from zero and infinity for sufficiently large n. Therefore

to f{/(tm),

—a

nPLip (trm)

ﬂ}/(tx,m) |7’L N’f ( )\,m)| ~ ( Ogn)

|:un,m| =
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From (11) we have

Therefore,

2 o’
Onm — 7n 2 =
’ A (tam)

NP1 0 1 (Eaim) o

1 (trm)? N (tam)?

=S (i) * 011 0 (baim) — B (Erm) 0

A

[ (tm)® = F(tam)*] 0

Utrm)? 0015 () — 0] ‘ ;

a

AN

n2 2 (logn) 9oL, +n P (logn)”

<2 (logn) 2l (20)

On the other hand,

o? o?

T | = ) )l S ) = Bl 21

Since K € C8(X, X), we have f, € C*(X). Then the mean value theorem gives
0 (tm) = S (tam) = o (tm) = S (Em) = F3'(€) (Eam — tm).
By Assumption C and Lemma 2 we have
1o (tm) = [ (Eam)] S A™ 4+ AT < 2X (22)

Combining (20), (21) and (22), we obtain

2
2 O—

n,m 6/(tm)2

o T

~

This completes the proof.
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A.5 Proof of Theorem 2

We first present a technical lemma and leave its proof to Section A.10.

Lemma 4. Suppose Assumption B1 holds and let A = n_%w(log n)%“ for some 411 <p< %

and a > 0. Under event A, there exists C' > 0 such that

< n%’%’(log n)~te

2
1 4 o -1 M C
n"2p2  ltam) | exp | —n' Bt M)
Fhntlon) | o (0 eilu i) - e
For any x > 0, define the error function as

2 x
Erf(z) = —/ e~ dt.
0

By changing of variable, we have

from o) e (2 (252 oo

where a,c, A, B > 0 and b € R.

A.5.1 Proof of (i)

The proof will follow three steps.

Step 1: According to Theorem 1.3 in Devroye et al. (2018) and Lemma 2, we have that for

any z € R,
M M
Z qu)(z ‘ Zf/\,ma nil(pll,mo':f) - Z 7Tm(I)(Z | tma nilQpll,mU;f)
m=1 m=1
M M
S dTV (Z 7rm¢( | t)\7m>n_15011,m0:3)7 Z 7Tm¢( ‘ tman_1¢11,m0:r?>>
m=1 m=1

M
S Tltam — tal SN = 0(1),

m=1

where dry is the total variation distance between two distributions. Thus, we only need to

S7



show

M
Hn(t S z | X7 y) - Z qu)(z ’ t)\,man_lgpll,ma—:—(nz) — 0
m=1
for any z € R in Py-probability.

Step 2: We work under the high probability event A, henceforth in this proof, that is, all

convergence rates and bounding integrals only hold under A,,.

Define a sequence of functions

where

2n~1 ©$11,m0

e (t - t}\ m)2 — — /1’7217771
Dnm(t) = exp < Y p—— n' 2690111,mF :

In this step, we will prove that

'/ dt—/_; Bn(t)dt‘ —0 (25)

for any z € R. That is, ﬁn(t) approximates the unnormalized limit density where each
mixture component is properly rescaled. In line with the LAN condition (14), we expand

fzn(t) at t =ty +u/n’ form=1,..., M, transforming qz;nm(t) to
2 2
_ 1-28 1 u Fonm
V”,m(u) = exp < Spllm <_20_;an + 20_%’m>> :

We consider three cases for z: (1) 2 <0, (2) 0< 2z <1, and (3) z > 1.

Case (1) (2 <0). Since £(t) = 0 in R\[0, 1], the left hand side of (25) becomes

/OO s / C(Eran) D (87 (L)

/ )V (W) (E)du

S

ﬁglﬂi i
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where we let t = ty,, +u/n? and L, ,, = (—o0, (z — ty,n)n”]. By Lemma 4 and (23) , we

have

U2

/ n_ﬁg(tk,m)yn,m(u)ﬂ—(tm)du 5 / 7’L2 nglilim exXp ( Qﬂgpl_llmZ 2) du
k] O-;n

71-0*2

2

R (M)]
vV 2077011,m

< exp ( —(b\m — Z)Z)

~ 2UmSOllm ’

where we use the well known inequality that 1 — Erf(z) < \%

wﬁ\)

. Therefore, there holds
that for z <0,

/Z B (t)dt < M exp < M) —0. (26)

P 40m P11,m

Case (2) (0 < z <1). Now the left hand side of (25) becomes

‘/ ot dt—/oohn(t)dt‘ dt+‘/ 0t dt—/ ﬁn(t)dt’.

Taking z = 0 in (26) gives that fi)oo B (t)dt — 0. We next bound the second term. We divide
[0,1] into M disjoint intervals (up to overlapping endpoints that do not affect estimates of

integrals), each of which centering around ¢y ,,:

M

U Inm; [t)\,m_gn,mflyt)\,m—i_gn,m]? m = 17-~-7M7

m=1
where &,0 = ta1, Sam = (amer —tam)/2 for m =1,..., M — 1, and {p = 1 — ty -
Suppose z € Iy, for some 1 <mg < M and let I, = [txmo — Enmo-1,2]. By the triangle

inequality, we have

‘/ dt_/oz ;Ln(t)dt‘ — Cﬁ: /Inym+/%’m> [E(t)ﬂ(t) —Bn(t)] dt’
sn;: /IW () = L) G () (En)| dt’ (27)

S9



+ z_: /Oz €<t>\,m)q~5n,m(t)7r(tm)dt (28)

m=1 7 10,2\\In,m

¥ / [(0(0) = sm)nnOrtt)] ] (29
) ()T (£ ) 30
¥ /[ IR GO CE T (30)

Again, after changing of variable with ¢ = ¢, ,, + u/n”, each term in (27) becomes

/I 07 = 00 O dt‘

_ / [E(tam + /0P (trm + /1) — Ultrm )V (W) (t)] 1P

- / nfﬂat/\,m) [Zn,m(u)ﬂ(t&m + u/nﬂ) - Vn,m(“)”(tm)} duy,

where Z,, (u) = Uty +u/nP) [ l(tam) and J,m = [-10P&nm1,7°Enm]. Applying the tri-
angle inequality yields an upper bound of the preceding display:

’/nm U(trim) Zngn (W) [T (Erm + u/nP) — 7(ty)]du

+

/ 0Bt Zoon (1) — v ()] (E1n) s

- [1 -+ IQ.
By Lemma 4 and Theorem 1, we have
2 2 2
a5 1 Hom _ (U pnm)” | Pam
Il ~ ’/nm n2 ﬁgollmexp ( ! 2B90111,m20.2’ ) exXp ( - 2ﬁgolllm (_ 20_7217m + 20_%7m)>
[ (tam +u/n?) — 7(t,,)]du

-1 o (U pagm)”
S A - [ (YRR B Y

207
1 1 (Ut pnm)?
S |t>\m_tm|/ n3 ﬁ¢11meXP< - QBQPUIM( 202 ) )du
2
— X u n,m
+ / n2_26g0112muexp (—n1_2ﬁ%01_11m( —+IL; . ) ) du‘
n,m 7 ’ QUn,m
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= I + Lis.

In view of (15), (16), (23) and Lemma 2, it follows that

[11 ~ ’t)\m—tm’ 1/27TO'3LmN ’t)\m—t ’ < )\rl

and
2
_ 153 -1 —28 — u
hm e
2
_1 U
1-28 -1
- H/n,m/ 77’2 9011?771 exp (_n BSDU,WQOQ ) du
[ nm
nB (fn,mflvgn,m) 1 1 /U/2
<nf 2/ nE_BSpll?m“ exp (_”1_26‘p1_11,m—2) du
0 20n7m
1_g -1 L (Ut pam)?
+|/Ln,m’ nz ﬁgoll?m eXp( - 2590111771 ) 2nm du
Jn,m Un,m
1 n 1V 2 /

5 nP 0721 m90121m 1—exp|— (én,m 1 fn,m) n—%-ﬁ-ﬁ + fnm 27T(T721m

; ; 20',217m8011,m 7 7
5 P11,m A n_ﬁ,

n
where J) . = [=nP&nm—1 + s NP & m + fnm). Hence, I} S A A —('91;”" An~# — 0 under

Assumption B2. By Lemma 4 and Theorem 1, we have

2 2 2
_1 _ Hnm _ (u + ,un,m) Hnm
I 5 ‘/ n: B@llmeXp< = 2580111m2—2) {exp( - 2590111m (_ 202 + 202 ))
28 u? o,
— CXp <n1 2ﬁ%pulm (_ P + 202’ T(tm) | du
m

-1 1 (Ut o) v
= ‘/n mn2 ﬁ%lm {GXP( - 2'B‘,Onlm 202 — exXp —n'" 25 111m20*2 du

g 1 (U pm)? IR T
‘/ n: ﬁ‘ﬂ11m [exp (_”1 2’890111m 202 —exp | —n'~ 2’8901117712 2 du

_1 B u? ou
/ n 6<an {GXP( - 2690111m2 2 ) —exp( - 2ﬁ90111m2 *2)] du

- 121 —‘l_ .[22.

_I_
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Without loss of generality we assume fi,,,, > 0. Then, combining (15), (16) and(23) gives

_ 3-8 3 36
Erf gnm ln /Jlnm + Erf 5n,mn2 + ,un,mnz
V202 o1im 207 mP11,m
o2 2 3
_ n,m El‘f gn,;nfln2 + Erf énémn2
2 \/ 20’n7m()011,m \/ 20’n7m()011,m
1 1 3 1
Erf ﬁn,mfﬂ” /Ln,mn2 _ Erf gn,mflﬂﬂ
\ 20.7217m3011,m LV 20’7%7”19011,771
Enm? + flnmn? 0 Enm?
+ | Erf : : — Erf [ ———
( 207, m¥P1l,m V4 20%,m¢11,m

i_p 72L m—1T i_p 72L mT
S /'menz - eXp _2— + /'menz - eXp _2’—
20_n,m9011,m 20_n,m9011,m

that

|y

< efcn(iplill,m
for some ¢ > 0. In view of (16), (23) and Theorem 1, we obtain
fn m—1T fn mn% ]
Erf + Erf | ——=————
' [ ( 202 9011 m V 2072"07m9011,m |

770' gnm 1n £nmn§ _ *2 2
Erf | =20 | + Exf | ——— ‘g\om—anm|§)\’".
2 [ (\/2 m29011,m) (\/20;‘3%011,771)_ ’

Therefore, I — 0.

Similarly, by changing of variable and Lemma 4, each term in (28) becomes
I3 :/ U(trm) P () ()t
0,21\ I,
/ Lty i) Vnm (W) T (t,)du
2 2 2
1 B /,me _ u :u’n,m
/Knm B‘aneXP ( o 2B§0nlm2 2 ) exp < - 25(10111771 (_ 2072 + 252 )) du

n,m
-8 —28,,-1 “2
/ n2 9011 m exXp ( Spll,mz *2> du?
Knom Om

AN
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—nPE 1] U [P m, 0P (2 — tam)]. Tt then follows that

2,8( —t )2

1 — -1 Nz A,

I3 5”6'”2 9011?meXp —n' 2’890111,m—*2 - > 0.
2077

Following the same arguments, we can show that (29) and (30) converge to zero. This
proves (25) for 0 < z < 1.

Case (3) (z > 1). From Case (2) we can see that

‘/_;f(t)w(t)dt—/_l ﬁn(t)dt‘ — 0.

o0

Note that £(t) = 0 in R\[0,1]. Using similar arguments as in Case (1), it holds that
[ ha(t)dt — 0, proving (25) for z > 1.

Step 3: We normalize h,(t) to a density

Note that (25) implies

' (/R f(t)w(t)dt) o (/R En(t)dt) B

Hence, for any z € R, we have

’/Oo Tt | X, y)dt — /OO ho () du

— 0. (31)

< < /R E(t)w(t)dt) B
“f.
0

)

/Oo ((t)m(t)dt — / ﬁn(t)dt‘

- —00

( /R €(t)7r(t)dt>_1 _ ( /R ﬁn@)dt) B

B (t)dt

— (32)

where the last line follows from (25) and (31).
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Rewrite h,,(t) defined in (24) to

M
:unm — *
= Z m(t 2f/\m exXp ( 90111m2 2 ) \/27rn71()011,m0;12¢(t | t)\7m>n 19011,m0—n3)7
=1

which is a linear combination of ¢(t | txm,n " p11.,0:2). Hence, the density function after

normalization is

M
Zﬁnmgh t ’ t)\man Sollmo- 2)

with weights

T (tm ) (tam) exp <n1_2590f1 mgljj-an ) \/27Tn D11,m0 2
2%21 T (tm )l (trm) exp (nkw@ﬂ,mffT’m) \/27m*19011,m0;f
1
Rltm)osnE ot ul(tam) exp (—nt=prt, e )

)
M v -1 3 1-28,,~1 Him
Zm:l (tm)ofn 290117m€(t>\7m)/exp -n 8011,mm
)
(

ﬂ'n’m =

3

() C1f5 (t) | + Ccom
Zr]\r/{:lﬂ— tm)OUN( m)|_1 + Cnm

where the existence of sequences ¢, = O(n%’zﬁ (logn)~'7%) is guaranteed by Lemma 4.

Hence, we arrive at

_ 7 (tm ) £ (t) [~ :

. /
Tn,m = + Cn,m =Ty + Cn,m’

> et Tt | g (1) 1

for some ¢, ,,, = O(nz=28(logn)~'7). It then holds that

Py M
‘ / t)dt _/ Z Tn®(t | Erm, ™ Q11mo )dt

O m=1

25 / T — T Ot | £ 1™ 010 m2)dE = 0. (33)
m=1Y ~>
Combining (32) and (33), we obtain that for any z,

4 z M
Ep, / ot | X, y)dt — / S 6t | a7 P12 )t |14, 5 0.

O m=1
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This together with Ep,(14c) = Po(AS) < n™ 'Y gives that

M
Hn<t <z | X, y) - Z ﬂ-mq)(z ’ tk,manil@ll,mo}f) — 0
m=1
for any z € R in Py-probability. This completes the proof.

A.5.2 Proof of (ii)

Denote (y = t1, Gn = %(th —tm),m=1,....M —1,(yy =1—tp. Then,

0,1] = Ly, I =1[tm—Cu1,tm+Cn], m=1,..., M.

1 Cx

We first bound the unnormalized difference

‘ / )1y, () (t)dt — / ) () Drmn ()T (L )t (34)

—0o0

under A, by considering three cases for z: (1) 2 <t — Gno1, (2) timn — Gt < 2 <ty + Gy
and (3) z >t + Gn.

Case 1 (2 < t, — (n-1). Since z ¢ I, (34) becomes

. X (e—trm)n?
/ U)o (Bt )t — / )V ()7t )

— 0 oo
(z=tam)n® ! u2
1.3 —3 1-28 —1
N / n2 5@11?771 exXp (—n '38011,m 20*2) du
—00 m

[T |y g (VU )
2 V 20—:,7?(7011,771
f§ exp (_n(tkm — gm 1)2) .

20m P11,m

Case 2 (ty, — Gno1 < 2 <ty + (). In this case, we consider

/tz [e(t)w(t) — e(m,m)&n,m(t)w(tm)} dt‘

m_Cm—l
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[ [l + 0/ 5(trn + 0/5) = Ctr (@) (t)] 0~

Hnm

= / _BE (tam) [Zn,m(u)ﬂ(b\m + u/nﬁ) - Vn,m(u)ﬂ(tm)} du

Hnm

IN

/ _56 (txm) Znm (W) [T (trm + u/nﬁ) — 7 (t)]du

H’nm

+ ‘ /nm 0Pt ) [ Zn (1) — Vg (W) () i

where Hy, = [(tm — tam — CGno1)n?, (2 — ta.m)nP]. Following similar arguments as used in

the proof of Part (i), it can be shown that I] < A™ and

(2 —tAm)Qn) .

1
I <u n2_6-exp(
2 o 202 O11m

Case 3 (2 >ty + (). Again, z ¢ I,,, and (34) becomes

(Z_t)\,m)nﬁ

/ )b () () = / )V ()7t )
m~+Cm (

tm—tx,m+Cm)nP

00 2
_1 u

5/ n B@llmeXP( . 2ﬂ901_11m2 *2) du
( g,

tm —t>\,m +Cm)

Ty g [V = bt G
2 \V 20m 9011 m

< ( n(tm - t/\,m + gm) >

Sexp | — .

2
2052011,m

Combining the three cases, we obtain that under A,

(z — t,\7m)2n) '

2
20_n,m9011,m

‘/ (t)1,,, (t)m(t)dt — / é(t,\,m)gz;mm(t)ﬂ(tm)dt‘ <At V28 exp (_

o0

Let II,,,n(- | X,y) be the posterior of t1;,. Following the same arguments as in part (i)

again, we can show that

<)\”\/n2 -8 exp(

(z — tk,m)Zn)

2
20 nm¥1lm

Hn,m(t, S z | Xay) (Z ‘ 2f/\man P11, ma )
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in Pyp-probability.
By Lemma 2, we have |t,, — b, — tym| < n?vIogn Vn?logn = n~?logn. Thus,

(z —tam)*n

/
o (t' < 2 | X, 9) =@ (2 | fn=bp, 0 o11m030 )| S 207 mP11m

< Aypz P -exp ( )\/n_ﬁ log n.

Now we consider the posterior of | /—=H—(t1;,(¢) — tm + b,). By changing of variable, it

follows that

\Hg,ma' <) Xy) — (=] 0,02)

— ’Hn,m < < Sollm Z+ t - bn | X y) (I) ( Soll,mz + tAm - bn|£m - bnan_lﬁoll,maﬁ) ‘
\/ \/ n

w m
) L1 z+t —tam — bn)’n
<n2P.exp 207
n,1 11,m
80 ’ n
<n%_5~ex 11,m \/fm—tm\/bn _
~Y p ( )\, ) 20_%,m(p117m
n,m 11,m
1=28(1ogn
< n%_ﬁ . eXp —g) — 0
~ 2037m9011,m

This completes the proof.

A.6 Proof of Theorem 3
A.6.1 Proof of (i)

Let Fo(2) = IL(t < 2 | X,y) and Gu(2) = M 1,®(2 | ty,n " 011.m072). Note that
G,(-) is a deterministic function, and its derivative G/ () is the density function of a Gaus-
sian mixture. The variance of each component distribution in G, goes to zero in view of
Assumption B2 and conditions in Theorem 2. For sufficiently large n, using the analytical
expression of G} (-) and elementary calculus, we can show that G () has at least M local

modes, denoted by t,, ¢, such that ¢,, ¢ — t,,. On the other hand, G/,(-) cannot have more
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than M local modes in view of Corollary 2.4 in Carreira-Perpinan and Williams (2003);
hence, {ty1,-..,tmc} are the only local modes of G (-). For large enough n and each m,
we consider an interval (¢, ¢ — Om, tm.c + Om) for some 6, > 0 such that G/ (z) > 0 when

2 € (tmg — Omstm) and G (2) < 0 when z € (tm.g, tmc + Om)-

By Theorem 2 (i), we have |F,(z) —G,(z)| — 0 for any z € R in Py-probability. The following
arguments and conclusions in Step 1-4 hold with Py-probability tending to 1 because of this

convergence in Py-probability.

Step 1: We first show that there exists a ¢,, r in the neighborhood of ¢,, s such that
F!'(tmr) =0, for m = 1,..., M. Suppose F(z) # 0 for any z € (tmg — Om,tmc + Om),
Without loss of generality we assume F)'(z) > 0 when z € (¢ — Om,tmc + 0m). Since

Gn(z) is concave on (tm.cs tm.g + Om),

Gn(tmae +6m/2) > (Gp(tme) + Gultme +6m))/2 + €, (35)

for some € > 0. Since F,(z) is convex on (tm.cs tm.c + Om),

Fn(tm,g + 5m/2) < (Fn(tmg) + Fn(tm,G + 5m))/2

For sufficiently large n, it holds that with Py-probability tending to 1 |F,,(2) — G,(2)| < €/2
for z = tim.g, tmc + 0m/2, tm.c + Om. Therefore,

Gn(tmc +0m/2) > (F(tme) + Fn(tma +0m)) /2 +€/2 > F(tma + 0m/2) +€/2,

which is a contradiction. This proves that there exists t,,r € (tm.c — Om,tm.c + Om) such

that F(ty.r) = 0.

Step 2: We show that ¢,  — t,,, in Py-probability. Suppose there exists 6 > 0 such that
|tm.c—tm.r| > ¢ for any sufficiently large n. Without loss of generality we assume t,, ¢ < ty.r
and F)(z) < 0 when 2z € (tpp,tmg + Om) and F/(z) > 0 when z € (ty.¢ — Om, tmr). Thus,

G, is concave on (t,, g, ty,, r) while F, is convex on (¢, ¢, tm,r). This is a contradiction using
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the same argument in Step 1. Combining this with ¢,, s — t,, shows the convergence of

b, F-

Step 3: In this step, we show that ¢,, p must be a local mode of F)(z). Suppose that
F!'(z) > 0 when z € (typ, tmc + 0m) and F(z) < 0 when z € (tm.g — Om, tm.r), yielding

Fo(tmr + 0m/2) < (Fy(tmr) + Fu(tmr + 0m))/2.

For sufficiently large n, it holds with Py-probability tending to 1 that |F,(z) — G,.(z)| < €/4
for =t q, tma + 0m/2, tmc + Om. Invoking (35),

Grltmc + 0m/2) > (Fu(tmc) + Fultma + 0m))/2 + 3€/4.

For sufficiently large n, it holds with Py-probability tending to 1 that |F,(z1) — F,(29)] < €/4
for z1 = timg, 22 = tmp, 21 = timg+0m/2, 20 =t p+0m/2 and 21 = 5, +0m, 22 = by r+0m.

Therefore,

Gt + 0m/2) > (Fultwr) + Faltmr +06m)) /2 + €/2 > Foltmp + 0m/2) + /2.

However,

Gt + 0 /2) < Foltmc + 0 /2) + €/4 < Fy(twr + 0m/2) + €/2,

which is a contradiction. This completes Step 3.

Step 4: In the last step, we show that the number of local modes of F/(z) is exactly
M. We have proven that F(-) has at least M local modes. Suppose that there exists
tmrr € (0,1) and 6,y > 0 such that ¢, p is a local mode of F)(z) and G/ (z) # 0 for
2 € (tpy r — Oy tuw 7 + Oy) for any sufficiently large n. Without loss of generality assume
G(z) > 0 for z € (tys p—Omsy b 40y ). Thus, on (£ p— 0y by =+ 0 ), Gn(2) is convex
while F,,(z) is concave. By similar arguments used in Step 1, we can obtain a contradiction.

Hence, the number of local modes of F) (-) is exactly M.
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This completes the proof.

A.6.2 Proof of (ii)

By Taylor expansion of fis, we obtain

fig () = g (tm) + (¢t = tw) i (€)

for some ¢ between t and t,,. Since {,, is a local extremum of fis, there holds i (,) = 0.

Substituting ¢ = £,, into the expansion above yields

~

i (t) + (i — ) (€) = 0.

Lemma 1 and Assumption C ensure that 11y, (z) L f(z), and Lemma 2 implies that £, 2 t,,.
Therefore, i () L f(t), and thus 1 (§) is bounded away from zero and infinity in view
of Assumption A3. It thus follows that

>

_ﬁf’ (tm>

by — by = — LM
15 (§)

Let A, (1) = Kio(, X)[K(X, X) + nAL,] ! fo(X). Conditioning on X, it holds that

i (tm) = Ko (tm, X)[K(X, X) + nAL] 'y

~ N (Ay(tn), 0 Kig(tm, X)[K(X, X) + nAL,) > Kig(tm, X)") .

Hence,
fig(tm) = A (t)
o/ K1o(tm, X)[K(X, X) +nAL,]2K1o(tm, X)

= X ~ N(0,1),
which implies that

ﬁf’ (tm) — A, (tm)

O’\/Klo(tm, X)[K(X,X) —+ n)\In]_QKlo(tm’X)T ~ N(O, 1)
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By Slutsky’s theorem, we obtain

L i —t,+ 2 (bn) | 4,
Klo(tm,X)[K(X, X) + n/\In]_2K10(tm,X)T ﬁ},(tm)
N (0,07 f§ (tm) %) -

Note that
Kio(tm, X)[K (X, X) + nAL] 2 Kio(tm, X)T
KIO(tma )[ (X,X)‘FTL)\I ] 2K10(tm,X)T
X, X) 4+ nAL] 2 (Ko (t, X)T — Kio(tm, X))

:Klo(fmﬂ )[ ( >
Kiyo(tm, X)[K(X, X) + nAL,]2Kio(tm, X)T
(K10(tm, X)) — Kio(tm, X)) K (X, X) + nAL) 2K 1(tm, X))
Klo(tm,X)[K(X,X) + ’Il)\In]72K10(tm,X)T

Consider the eigendecomposition of K (X, X) = Q,A,,Q, where A, = diag(uy, ..., u,) and

Qg = Q;l. Denote (p1,...,pn) = Kio(tm, X)Qn, likewise (q1,...,¢,) = Klo(fm,X)Qn.
Then

Kio(tm, X)[K(X, X) + 0L 2 Kig(tm, X)T = Kig(tm, X)QuA, 2QF Kig(tm, X)

o0

p?

i=1 (u; +nA)?

By the Cauchy-Schwarz inequality, we have

Since K1g(tm, Xi) — Kio(tm, X;) 2 0 uniformly for 1 < i < n, we have

o0 [e.e]

g P b
% _ PPy
; (u; + n)\)2/; (w; +nA)? ~

521



and
— (¢
; ul—l—n)\ /; ul+n)\ =0,

Hence, it follows that

Kio(tm, X)[K (X, X) + nAL)2(Ko(tm, X)T — Kig(tm, X))

D
= 0.
Kiyo(tm, X)[K(X, X) + nAL,]2Kio(tm, X)T

Similarly, it can be shown that

(K10(tm, X)T — Kio(tm, X)) K (X, X) + nAL]) 2 K10(tm, X)) » 0
Kro(tms XK (X, X) + nM, 2K 1o(t, X )T e

Therefore, R )
KIO(tm; X)[K(X, X) + TL)\In]_QKlo(tm, X)T £> 1
Klo(tm,X)[K<X,X) +n)\In]_2K10<tm’X)T '

Recall that uf,( m) = fY(tm). Therefore, by Slutsky’s theorem again, we arrive at

i (tm
o1y (tn)| [tm it f,”(tm)] 4 N(0,1).
V10 X) K (X, X) + 0L 2K 0(Fy, X)T iy (tm)

Hence, an asymptotic 1 — « confidence interval of ¢,,, + A, (t,)/ f§ (tm) is

o/ Kro(Funs XK (X, X) + 1AL 2Ky (f, X)T

fm + Za/g
|Nf/( m)|
This completes the proof.
A.7 Proof of Theorem 4
For any 5,1 < s, we have
’Ka S x :L_ w(] w(l I Z Z*2a+]+l
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which is finite when o > ”% Thus, Assumption Bl holds when s > 4 and a > 9/2.

According to Lemma 11 in Liu and Li (2023), when o > j+§+l7 we have
- G+l ,
sup ’@Jl(m” = sup Hi 77Z)(] 77D(l /Jfﬂ - 1451:1
TeX TzeX )\ +u

Hence, Assumption B2 is satisfied when a > 3. In view of Lemma 1, Lemma 11 and
Lemma 13 in Liu and Li (2023), when a > k + 1/2, we have

< N3 9.

A7 = fo Moo S

a—1

L, ry = %2 when a > 5/2. Finally, by Assumption

This verifies Assumption C with r; =
E we have ¢11(z) = > -, Vi@ )2 — oo as A — 0. Thus, a sufficient condition for the
boundedness of n%_‘mgou’m in Theorem 1 and 2 is n2~* = O(1), which implies that 3 > S,

This completes the proof.

A.8 Proof of Lemma 3

Let fo =Y., fityi. Then, for any k < s,

(k) _ p(k) _ _
Ko < X+
Hence,
1
00 )\§+267 e~V ik
k k %
11 = 1Pl < 32 5l S A £y N ¢ Ml

=1 i=1

Note that i* < e%, then by Young’s inequality for products, we have

Azt L i < Aztas . e(’”)’ L + L A+ Lk e < N e
2 2ey 2 2ey

Therefore, |]f>(\k) — fék)Hoo < A5 Yoo e fil S A2725 . This completes the proof.
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A.9 Proof of Theorem 5

It is easy to see that K, € C®(X,X) for any v > 0 and s > 4; thus Assumption Bl is
satisfied.

Note that

(J+l)l

‘ 27@Zj+l 672716

Sup |('0]l Z b + 6—272 -\ + e—27i :

Z

By Young’s inequality for products, when 2ey > j 4+ [ we have

Aoy e (1 - j; l) A+ (j; l) e < At e
ey ey

Hence, ¢ < A5 for 2e7y > j+1 and Assumption B2 holds for v > % In view of Lemma 3,

we have Assumption C satisfied with ry = ry =

Finally, since A\ = o(1), we have ¢, = o(1) under Assumption E. Thus, a sufficient

condition for the boundedness of n2~%° <p1’127m is 3> 2. This completes the proof.

A.10 Proof of Lemma 4

The likelihood function (5) gives

_1 3 C ﬁ / t)\,m 2
\/n9011,m‘7,2“(t>\m) f’ Am

C _ Mnm
= = eXp( . 2680111m202 ),
\/n@n,mgf/ (trm)

where fi,m and o, are defined in Theorem 1. Note that

‘ : :
o~ o 1 %
Jueri ) Ho Gl

< (| £3 (tm) 0% = /1810 ()|

=S (tm) o0 — g1y G (tam) |-
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Substituting f{/(t,,)%0* = o2 into the right side yields

m

. 1 o~ 1 o~ 1_ 1
(,)/(tm)QUmQ_n90111,m‘7]2“(t>\,m) = n‘ﬂnl,m%%'(tk,m)_UQ S n? 26(10gn> e

This completes the proof.

B Additional simulation results

B.1 Effect of noise standard derivation and credible level

We carried out additional experiments to investigate the effect of noise standard derivation
and credible levels 1 — . We used the same regression function shown in the paper and
generated more noisy data by increasing the noise standard deviation ¢ from 0.1 to 0.2.
As expected, results worsen, particularly for smaller sample sizes. This is because the GP
tends to produce more wiggly curves. For example, looking at the percentages of correctly
estimating M for a = .05, calculated over 100 replicated datasets, we observed the following
results: for n = 100 we obtained 19% and 85% for Beta (1,1) and Beta(2,3), respectively,
versus 47% and 86% of Figure 3 in the paper; for n = 500 we obtained 52% and 94% for
Beta (1,1) and Beta(2,3), respectively, versus 95% and 99% for o = 0.1. We notice that,
as already shown in the main simulation, the Beta(2,3) prior and larger sample sizes help

identifying the correct number of local extrema.

Next, we used this additional simulation study to investigate the performance of HPDR for
different values of a. Results for sample sizes n = 100, n = 500 and n = 1000 and the two
Beta priors are reported in the two tables below. For each combination of prior and sample

size, we generated 100 simulated datasets.

Beta(1,1) a=0.001 a=0.005 a=001 a=003 a=005 a=0.1

n = 100 56% 53% 51% 18% 19% 35%
n = 500 25% 32% 34% 43% 52% 60%
n=1000 27% 35% 44% 57% 76% 84%

Table 4: Beta(1,1). Percentages of correctly estimated number of #’s. The results are
calculated on 100 simulated data.
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Beta(2,3) a=0.001 a=0.005 a=001 a=0.03 a=0.05 a=0.1

n = 100 87% 88% 88% 86% 85% 7%
n = 500 95% 96% 95% 95% 94% 89%
n=1000  95% 95% 96% 94% 94% 95%

Table 5: Beta(2,3). Percentages of correctly estimated number of t's. The results are
calculated on 100 simulated data.

In this additional study, we observed that increasing values of o did not necessarily cor-
respond to larger estimated numbers of local extrema. This is because situations like the
one shown in Figure 7 can occur. Therefore, larger or smaller o values do not necessarily
imply more or fewer separated HPDR segments. Overall, results confirm the fairly robust

estimation performance of the Beta(2,3) prior in estimating M.

post of t: sig 0.2, beta(2, 3)

90% HPD (4)
=== 95% HPD (5)
97% HPD (4)
= 99% HPD (3)

0.020
1

0.015
1

pitly)

0.010
1

0.005
|

0.000

Figure 7: Effect of o on the estimated number of local extrema. The posterior density

function is based on one simulated dataset with n = 100.
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B.2 Highly fluctuated regression function with large M

Upon suggestion from one of the reviewers, we performed a new simulation using the re-
gression function sin(k7rz) for x € [0,1], and assessed how the estimated number of local
extrema converges to the true M. We considered £ = 10 and k£ = 100 with varying n;
with this regression function, the true number of local extrema is M = k. Other simulation
configurations mirrored the main paper’s setup, including the noise standard deviation, ob-
served x values, and the number of replications. The proposed method is implemented using

the same settings as in the simulation study in the main paper, unless otherwise stated.

We observe that when & = 10, our method is able to correctly estimate M 77% of the time
even with sample size as small as 30. This percentage increases steadily to (93%, 99%, 100%)
as n increases to (200, 300, 500), respectively.

When k = 100, M is correctly estimated only 4% of the time when n = 300 (compared
to 99% when k& = 10), indicating the challenge of large k& = 100. We have looked into
this challenging scenario and found that for this highly fluctuated function, even simpler
tasks such as function estimation become challenging. For example, the model struggles to
distinguish between a highly fluctuated function and a flat function when n = 300, which
is not surprising as indicated in the top plot of Figure 8. This has prompted us to find
an effective strategy for this challenging function in which we incorporate the shape of the
function into guided hyperparameter tuning. If we have prior knowledge that there are many
local extrema, we can confine the hyperparameter searching space, ruling out some basins
of the marginal likelihood that do not result in the regression shape being interested. For
example, setting the upper bound when searching for (h, \) to (0.1, 0.0001) as opposed to
(10000, 10000) used in our default implementation, leads to the results reported in Table 6,
which show a substantially improved estimation of M. For example, the proposed method
can estimate the correct value of M with n = 300 in all 100 simulations. The posterior
distribution of ¢ in one simulation when k£ = 100 is shown in Figure 8. In this simulation,
which is typical across 100 replications, our method correctly identifies the number and

location of 100 local extrema. We acknowledge that prior information on the shape of the
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unknown function might not always be available.

70-79 80-89 90-99 100 > 100
n =200 18 76 6 0 0

n = 225 0 1 14 85 0
n = 250 0 0 0 99 1
n = 300 0 0 0 100 0

Table 6: Frequency of M falling in each interval when k& = 100. Results are based on 100
repeated simulations.

sin(100*pi*x) Size 300
1.0 i it i
0.5

0.0 H N b sl

fx)

-0.5

Posterior of t

0.0030
|

p(t1y)
0.0015
|

0.0000
|

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8: Data (top) and the posterior density of ¢ (bottom) when f(z) = sin(1007z) (red
curve in the top plot). Results are based on one simulated dataset with sample size n = 300.
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