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Adaptive Filtering Algorithms for Set-Valued
Observations—Symmetric Measurement Approach
to Unlabeled and Anonymized Data

Vikram Krishnamurthy

Abstract—Suppose L simultaneous independent stochastic sys-
tems generate observations, where the observations from each
system depend on the underlying model parameter of that
system. The observations are unlabeled (anonymized), in the
sense that an analyst does not know which observation came
from which stochastic system. How can the analyst estimate
the underlying model parameters of the L systems? Since the
anonymized observations at each time are an unordered set
of L measurements (rather than a vector), classical stochastic
gradient algorithms cannot be directly used. By using symmetric
polynomials, we formulate a symmetric measurement equation
that maps the observation set to a unique vector. By exploiting
the fact that the algebraic ring of multi-variable polynomials
is a unique factorization domain over the ring of one-variable
polynomials, we construct an adaptive filtering algorithm that
yields a statistically consistent estimate of the underlying param-
eters. We analyze the asymptotic covariance of these estimates to
quantify the effect of anonymization. Finally, we characterize the
anonymity of the observations in terms of the error probability of
the maximum aposteriori Bayesian estimator. Specifically using
Blackwell dominance of mean preserving spreads, we construct a
partial ordering of the noise densities which relates the anonymity
of the observations to the asymptotic covariance of the adaptive
filtering algorithm.

Index Terms—Adaptive filtering, Blackwell dominance, sym-
metric transformation, polynomial ring, algebraic Liapunov
equation, anonymization, unlabeled data.

1. INTRODUCTION

HE classical stochastic gradient algorithm operates on a
vector-valued observation process that is inputted to the
algorithm at each time instant. Suppose due to anonymization,
the observation at each time is a setr (i.e., the elements are

Manuscript received 14 September 2022; revised 15 March 2023, 29 June
2023; accepted 29 June 2023. Date of publication 10 July 2023; date of
current version 11 August 2023. This work was supported in part by the
National Science Foundation under Grants CCF-2112457 and CCF-2312198,
in part by the U.S. Army Research Office under Grant W911NF-21-1-0093,
and in part by the U.S. Air Force Office of Scientific Research under Grant
FA9550-22-1-0016. A short version of this paper involving Sec.Il (scalar
observations) is published in ICASSP 2023. The associate editor coordinating
the review of this manuscript and approving it for publication was Ketan
Rajawat.

The author is with the Department of Electrical and Computer Engineering,
Cornell University, Ithaca, NY 14853 USA (e-mail: vikramk@cornell.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSP.2023.3292493, provided by the authors.

Digital Object Identifier 10.1109/TSP.2023.3292493

, Fellow IEEE

System 1 y1 (k) T
)
09 N
(0]
Tnput ¥(k) System 2 ya(k) I;I observation set
—
put Y 05 | ) )
: I
System L yo(k) | Z
L)
07 E

Fig. 1. Schematic setup comprising L stochastic systems. Given the se-
quence of anonymized observation sets ({y1(k),...,yr(k)},k=1,2,...),
the aim is to estimate the underlying parameter set 6° = {67,...609 } of the
L systems.

unordered rather than a vector). Given these anonymized ob-
servation sets over time, how to construct a stochastic gradient
algorithm to estimate the underlying model parameter?

Fig. 1 shows the schematic setup comprising L simultane-
ous independent stochastic systems indexed by [ =1,...,L,
evolving over discrete time k = 1, 2, . . .. Each stochastic system
l is parametrized by true model ¢ € R” and generates observa-
tions y; (k) € RP given input signal D x D dimensional matrix

Y(k):
yi(k) = (k) 0] + ui(k),

We assume that v;(k) € R is an iid random sequence with
bounded second moment. We (the analyst) know (or can
choose) the input signal sequence (¢¥(k), k= 1,2, ...). For con-
venience, assume that elements of (¢(k),k =1,2,...) are zero
mean iid sequences of random variables. Thus the output of the
L stochastic systems at time k is the observation matrix

y(k) = [y1(k),...,yL(k)] € REXP

where a’ denotes transpose of matrix a.
The analyst observes at each time k the anonymized (unla-
beled) observation set

y(k) = ox(y (k) = {y1 (), .. .,yr(k)} 2)

The anonymization map oy is a permutation over the set
{1,2,..., L}. By anonymization! we mean that the row indices
I of the matrix y(k) are hidden. Thus y(k) is an unordered

le[L] € {1,...,L}y (1)

"For now we use anonymization to denote masking the index label [ of the
stochastic process. Sec. I-C motivates this in terms of k-anonymity.
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set of L row vectors. The time dependence of o) emphasizes
that the permutation map operating on y(k) changes at each
time k.

Aim. The analyst only sees the anonymized observation set
y(k) at each time k. Given the time sequence of observation
sets (y(k),k=1,2,...), the aim of the analyst is to estimate
the underlying set of true parameters 0° = {65, ...,09} of the
L stochastic systems. Note that the analyst aims to estimate the
setf°; due to the anonymization (unknown permutation map),
in general, it is impossible to assign which parameter belongs
to which individual system.

We will discuss several applications of the above anonymized
model in Section I-C.

Remarks: (i) Another way of viewing the estimation objective
is: Given noisy measurements of unknown permutations of the
rows a matrix, how to estimate the elements of the matrix? Our
main result is to propose a symmetric transform framework that
circumvents modeling the permutations o and is completely
agnostic to the probabilistic structure of oy.

(ii) The assumption that ¥ (k) is a D x D matrix in (1) is
without loss of generality. The classical least means squares
(LMS) algorithm involves scalar valued observations o;(k) =
V' (k)07 + e (k) where (k) € R is the known regression
vector, and ¢;(k) is a noise process. If we stack D such scalar
observations into the vector y;(k), then we obtain (1).

(iii) The model reflects uncertainty associated with the ori-
gin of the measurements (arbitrary permutation) in addition to
their inaccuracy (additive noise). If we knew which observation
m was associated with which stochastic system [, then we can
estimate each ¢ independently as the solution of the follow-
ing stochastic optimization problem: ;" = arg minyE{(y; (k) —
1(k)0;)?}. Then the classical LMS algorithm can be applied to
estimate each ¢ recursively as:

Or(k + 1) = 0y(k) + ep(k) (i (k) — (k) 6i(k))  (3)

where the fixed step size € > 0 is a small positive constant.

(iv) Since the ordering of the elements of the set
{y1(k),...,yr(k)} is arbitrary, we cannot use the LMS
algorithm (3). If we naively choose a random permutation
of the set y(k) as the observation vector, and feed this
L-dimensional observation vector into L LMS algorithms
(3), then the estimates will not in general converge to 67,
l=1,...,L.

(v) Finally, the above formulation only makes sense in the
stochastic case. The deterministic case is trivial. If the noise
vy (k) = 0 and input matrix (k) is invertible, then we need only
one observation y to completely determine the parameter set 6°,
regardless of the permutation oy.

Stochastic  Optimization With Anonymized Observations.
Circumventing Data Association

Broadly, there are two classes of methods for dealing with
unlabeled observation model (1), (2). One class of methods is
based on data association [2], [3], [4]. Data association deals
with the question: How can the observations from multiple
simultaneous processes be assigned to specific processes when
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there is uncertainty about which observation came from which
process? Since the observations are anonymized wrt to the index
label [ of the random processes, one approach is to construct a
classifier that assigns at each time k the observation y; (k) to a
specific process m. Because the number of process/observation
pairs grows combinatorially with the number of processes and
observations, a brute force approach to the data association
problem is computationally prohibitive. Data association is
studied extensively in Bayesian filtering for target tracking. In
this paper we are dealing with stochastic optimization instead
of Bayesian estimation, where we wish to preserve the convex
structure of the problem.

The second class of methods bypasses data association, i.e.,
labels are no longer estimated (assigned) to the anonymized ob-
servations. This paper focuses on using symmetric transforms
to bypass data association, as discussed next.

A. Main Idea. Symmetric Transforms & Adaptive Filtering

Since the assignment step in data association can destroy
the convexity structure of a stochastic optimization problem, a
natural question is: Can data association be circumvented in a
stochastic optimization problem? A novel approach developed
in the 1990s by Kamen and coworkers [5], [6] in the context
of Bayesian estimation, involves using symmetric transforms.
This ingenious idea circumvents data association; see also [7]
and references therein. In this paper we extend this idea of
symmetric transforms to stochastic optimization. Specifically,
we show that the symmetric transform approach preserves con-
vexity. Since [5] deals with Bayesian filtering for estimating
the state, convexity is irrelevant. In comparison, preservation
of convexity is crucial in stochastic optimization problems to
ensure that the estimates of a stochastic gradient algorithm
converge to the global minimum.

To explain our main ideas, suppose there are L =3
scalar-valued random processes, so each observation y; (k) is
scalar-valued. Further for simplicity assume the input signal
(k) = 1; so the observations are y;(k) = 07 + v;(k). Given
the anonymized observation set y(k) = {y1(k), y2(k), y3(k)}
at each time k, how to estimate the parameters 07, 63,05?
Our main idea is to use the sety(k) to construct a pseudo-
measurement vector z(k) € R®. Suppressing the time de-
pendency (k) for notational convenience, we construct the
pseudo-measurements 21, 22, 23 via a symmetric transform as
follows:

21 =S{y1, Y2, ¥3} =1 +y2 + 3
2o = So{y1, Y2, Y3} = v1y2 + Y1 Y3 + Y23
23 =S3{y1, Y2, Y3} = y1 Y2 Y3 4

The key point is that the pseudo-observations z; are symmetric
in y1, Y2, y3. Any permutation of the elements of {y1,...,y3}
does not affect z;. In this way, we have circumvented the data
association problem; there is no need to assign (classify) an
observation to a specific process. But we have introduced a
new problem: estimating #° using the pseudo-observations is no
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longer a convex stochastic optimization problem. To estimate
0° we minimize the second order moments to compute:

0* = arg min{E{(z; — (1 + 02 + 03))*}
0

+E{(22 — (6102 + 0105 + 0203))}
—‘r]E{(Zg, — 919293)2}} (%)

Clearly the multi-linear objective (5) is non-convex in 61, 05, 5.
However, the problem is convex in the symmetric transformed
variables (denoted as A below), and the original variables 6
can be evaluated by inverting the symmetric transform. We
formalize this as follows:

Result 1:  (Informal version of Theorem 1) The global
minimum 6* of the non-convex objective (5) can be computed
in three steps:

(i) Given the observations y(k), compute the pseudo-
observations z(k) using (4).

(i1) Using these pseudo-observations, estimate the pseudo
parameters \; = 61 + 05 + 03, Ao = 0105 + 60105 + 02603, A3 =
010203. Clearly (5) is a stochastic convex optimization prob-
lem in pseudo-parameters A1, Aa, A3. Let A], A5, A3 denote the
estimates.

(iii) Finally, solve the polynomial equation s* + \is? +

55+ A = 0. Then the roots? are *. Computing the roots of
a polynomial is equivalent to computing the eigenvalues of the
corresponding companion matrix (Matlab command roots).

Put simply the above result says that while (5) is non-convex
in the roots of a polynomial, it is convex (quadratic) in the
coefficients of the polynomial! To explain Step (ii), clearly (5) is
convex in the pseudo-parameters A1, A2, A\3. We can straightfor-
wardly compute the global minimum in terms of these pseudo
parameters as A} = E{z1}, A\ =E{z2}, \§ = E{z3}.

To explain Step (iii) of the above result, we use a crucial
property of symmetric functions. The reader van verify that the
following monic polynomial in variable s satisfies

(8 —+ 01)(8 =+ 92)(8 —+ 93) = 83 —+ A182 —+ )\28 —+ )\3

The above equation states that a monic polynomial with
pseudo-parameters A1, A2, A3 as coefficients has the parame-
ters 61,605,605 as roots of the polynomial. By the fundamental
theorem of algebra, there is a unique invertible map between
the coefficients of a monic polynomial and the set of roots of
the polynomial. As a result, we can first compute the global
minimum A\* of the above objective (5) (since it is convex in \),
and then compute the unique parameter set 6%, which is the set
of roots of the corresponding polynomial. Thus we have com-
puted the global minimum 6* of the non-convex objective (5).
To summarize, Result 1 gives a constructive method to estimate
the true parameter set #° given anonymized observations (albeit
in an extremely simplified setting).

B. Main Results and Organization

1) Our first main result in Section II, extends the above
simplistic formulation to a random input process (k)
rather than a constant. To achieve this, Theorem 1
exploits the homogeneous property of the symmetric

2Strictly speaking 61, 02, 03 are factors. The root is the negative of a factor.

2)
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transform S to construct a consistent estimator for 6°.
In Theorem 1, we will construct a stochastic gradient
algorithm that generates a sequence of estimates (k)
that provably converges to A" (since the problem is
convex). The roots of the corresponding polynomial
converge to 6*.

Section III extends this symmetric transform approach
to the case where each anonymized observation y; (k) is
a vector in RP where D > 2 in (1). For this vector case,
three issues need to be resolved:

a) It is not possible to use the scalar symmetric
transform (4) element-wise on vector observations.
Naively applying the scalar symmetric transforms
element wise yields “ghost” parameters estimates
that are jumbled across the various stochastic
systems (see Section III-A.)

b) Since a scalar symmetric transform (or equivalently,
the one variable polynomial transform) is not useful,
we will use a two-variable polynomial transform
inspired by [8]. However, a new issue arises. In the
scalar observation case, we use the fundamental
theorem of algebra to construct a unique mapping
between the roots of a polynomial and the
coefficients of the polynomial. Unfortunately, in
general the fundamental theorem of algebra does
not extend to polynomials in two variables. The
key point we will exploit below is that the ring of
two-variable polynomials is a unique factorization
domain over the ring of one-variable polynomials.
This gives us a constructive method to extend
Theorem 1 to sets of vector observations (D > 2).
This is the content of our main result Theorem 2.

c) The final issue is that of homogeneity of the sym-
metric transform. In the scalar case, the homogene-
ity property is crucial in the proof of Theorem 1. We
construct a suitable multidimensional generaliza-
tion for the vector case in order to prove Theorem 2.

3) Asymptotic Covariance of Adaptive Filtering Algorithm:

4)

Section III-D analyzes the convergence and asymptotic
covariance of the adaptive filtering algorithm (28). In
the stochastic approximation literature [9], [10], the
asymptotic rate of convergence is specified in terms of
the asymptotic covariance of the estimates. We study the
asymptotic efficiency of the proposed adaptive filtering
algorithm. Specifically Section III-E addresses the
question:How much larger is the asymptotic covariance
due to use of the symmetric transform to circumvent
anonymization, compared to the classical LMS algorithm
when there is no anonymization? Section III-F compares
the asymptotic variance of the adaptive filter vs that
using sum of powers symmetric polynomials. Finally,
Section III-G analyzes how well the adaptive filtering
algorithm can track a time evolving true parameter
modeled as a Markov chain hyper-parameter.

Mixture Model for Noisy Matrix Permutations: We can
assign a probability law to the permutation process o in
the anonymized observation model (1), (2) as follows:

y(k) =o(x(k)) 0° (k) +o(z(k))v(k)  (6)
LxD LxL LxD DxD LxD
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Here o(x(k)) denotes a randomly chosen L x L per-
mutation matrix that evolves according to some random
process x. So (6) is a probabilistic mixture model. The
matrix valued observations y(k) are random permutations
of the rows of matrix §°¢ (k) corrupted by noise. Given
these observations, the aim is to estimate the matrix 6°.
Note that there are L! possible permutation matrices o.
In the context of mixture models, Sections IV and IV-C
present two results:

(i) Mean-preserving  Blackwell —dominance and

Anonymity of permutation process: Section IV
uses the error probability of the Bayesian posterior
estimate of the random permutation state x(k) in
(6) as a measure of anonymity. This is in line with
[11] where anonymity is studied in the context of
mutual information and error probabilities. We will
then use Blackwell dominance and a novel result in
mean preserving spreads to relate this anonymity
to the covariance of our proposed adaptive filtering
algorithms.
Recursive Maximum likelihood estimation of 0°:
In Section IV-C, we discuss a recursive maximum
likelihood estimation (MLE) algorithm for the
parameters #°. This requires knowing the density of
v and the mixture probabilities (of course these can
be estimated, but given the L! state space dimension,
this becomes intractable). A more serious issue is
that the likelihood is not necessarily concave in 6.
In comparison, our symmetric function approach
yields a convex stochastic optimization problem.

(ii)

C. Related Work & Applications

We already mentioned [5], [6], [7], [8] that use symmetric
polynomials for Bayesian state estimation to bypass data
association. The symmetric polynomials used in this paper
(see (4)) are called elementary symmetric polynomials [12]
and involve sums of products. There are an infinite number of
choices of symmetric polynomials; but the fundamental theo-
rem of symmetric polynomials states that any such symmetric
polynomial can be expressed as a polynomial function of
elementary symmetric polynomials [12], [13]. In the context
of approximate Bayesian state estimation, it has been shown
empirically [6] that using elementary symmetric polynomials
outperform other choices of symmetric polynomials such as
sum of powers symmetric polynomials, e.g. y1 + y2 + ys,
yi+vy3+y3, vl +ys+vys. For the case of stochastic
optimization considered in this paper, proving what constitutes
the best symmetric transform (in terms of the asymptotic
covariance of the parameter estimate) is difficult. In Section
III-F we compare the asymptotic variance of an adaptive filter
using the sum of powers symmetric polynomials versus that
using elementary symmetric polynomials. Contrary to [6], we
prove that for certain parameter values, using the sum of powers
symmetric polynomials yields a smaller asymptotic variance.

The rest of this section discusses applications of observa-
tion model (1), (2). We classify these applications into two
types: (i) Due to sensing limitations, the sensor provides noisy
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measurements from multiple processes, and there is uncertainty
as to which measurement came from which process and (ii)
examples where the identities of the processes generating the
measurements are purposefully hidden to preserve anonymity.

1. Sensing/Tracking Multiple Processes with Unlabeled Ob-
servations: The classical observation model comprises a sensor
(e.g. radar) that generates noisy measurements where, due to
sensing limitations, there is uncertainty in the origin of the mea-
surements. The observations are unlabeled and not assigned to
a specific target process [2], [14]. In this context, estimating the
underlying parameter 6° of the target processes is identical to
our estimation objective. As mentioned earlier, data association
is widely studied in Bayesian estimation for target tracking. In
this paper we focus on stochastic optimization with anonymized
observations. For example, to estimate the underlying parame-
ters, or more generally adaptively optimize a stochastic system
comprising L parallel process.

Two related papers are [15], [16]. [15] constructs maximum
likelihood (ML) estimation algorithms for the signal amplitude
given unlabeled binary quantized samples, while [16] constructs
ML based localization algorithms in R2. These papers compute
ML estimates of the permutation matrix o and parameter 6.
Since the space of permutation matrices o grows factorially
with L, [15] also discusses the novel idea of relaxing the
combinatorial optimization over ¢ to the continuous space of
doubly stochastic matrices. We use the symmetric transform
to bypass estimation of the permutation (label) and construct
adaptive filtering algorithms to estimate the parameters. Similar
to [15], [16], in Section IV-C, we construct recursive maxi-
mum likelihood algorithms to benchmark the performance of
our proposed adaptive filtering algorithms. We view our paper
as complementary to [15], [16]: ML estimation is statistically
efficient but suffers from the twin curses of modeling (the noise
density family is required to be known) and dimensionality
(number of permutation matrices grow factorially with L), In
contrast, the symmetric transform based algorithms we propose
are second order method of moment estimators (so not statis-
tically efficient) but are provably consistent with polynomial
(in L) computation cost.

2. Adaptive Estimation with k-Anonymity and l-diversity:
We now discuss examples where the labels (identities) of the
L processes are purposefully hidden. Anonymization of tra-
jectories arises in several applications including health care
where wearable monitors generate time series of data uniquely
matched to an individual, and connected vehicles, where loca-
tion traces are recorded over time.

The concept of k-anonymity?® (we will call this L-anonymity
since we use k for time) was proposed by [17]. It guarantees
that there are at least L identical records in a data set that are
indistinguishable. In our formulation, due to the anonymiza-
tion step (2), the identities (indexes) [ of the L processes are
indistinguishable. More generally, in the model (1), (2), the

3Data anonymity is mainly studied under two categories: k-anonymity and
differential privacy. Differential privacy methods add noise to trajectory data
providing a provable privacy guarantee for the data set. Even though our
model has additive noise v (e.g. Laplacian noise in the numerical studies)
and this can be motivated in terms of differential privacy; we will not discuss
differential privacy in this paper.
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identity [ of each target itself can be a categorical vector
[l1,...,ln]. For example if each process models GPS data
trajectories of individuals, the categorical data v;(k) records
discrete-valued variables such as individuals identity, specific
locations visited, etc. To ensure L-anonymity, these categorical
vectors are all allocated a single vector, thereby maintaining
anonymity of the categorical data. Thus the analyst only sees
the anonymized observation set y(k).

Note that L-anonymity hides identity [ but discloses attribute
information, namely the noisy observation set y(k). To enhance
L-anonymity, the attributes in L-anonymized data are often
M-diversified* [18]: each equivalence class is constructed so
that there are at least M distinct parameters. In our notation,
if at least M processes have distinct parameter vectors 6,
l=1,...,M,then M-diversity of the attribute data is achieved.

In our formulation, the input signal matrices (k) are the
same for all L processes. Thus the input matrices also preserve
L-anonymity. If the analyst could specify a different input
signal ; to each system [, then the analyst can straightfor-
wardly estimate 6} for each target process [, thereby breaking
anonymity; see Remark 6 after Theorem 1 below.

3. Product Sentiment given Anonymized Ratings: Reputation
agencies such as Yelp post anonymized ratings or products.
Market analysts aim to estimate the true sentiment of the group
of users given these anonymized ratings [19].

4. Evaluating Effectiveness of Teaching Strategy given
Anonymized Responses: A teacher instructs L students with
input signal ¢ (k). Each student ! has prior knowledge 67.
and responds to the teaching input with answer y;(k). The
identity [ of the student is hidden from the teacher. Based on
these anonymous responses, the teacher aims to estimate the
students prior knowledge 6°. See also [20] for other examples.
Anonymized trials are also used in evaluating the effectiveness
of drugs vs placebo.

II. ADAPTIVE FILTERING WITH SCALAR ANONYMIZED
OBSERVATIONS

For ease of exposition, we first discuss the problem of esti-
mating the true parameter #° when the observation y; (k) of each
process [ is a scalar; so D = 1 in (1) and (k) is a scalar. Since
there are L independent scalar processes in (1), the parameters
generating these L processes is 0° = {09,...,09 }.

Given the anonymized observation set y(k)= {yi(k),

., yr(k)} at each time k defined in (2), our main idea
is to construct a pseudo-measurement vector z(k) € RE.
Suppressing the time dependency (k) for notational conve-
nience, we construct the L pseudo-measurements z;,! € [L]
via a symmetric transform® [12] as follows:

z:S{y} e Zl:Sl{y17~~~

=X

1 <ig<---<iy

7yL}
Yiy Yis ~ " Yiy» le [L] (7)

4The terminology used in the literature is “I-diversified”; but we use [ for
the index of the target process.

SBy symmetric transform S;, we mean S;{yi,...,yr}=S{P-
{y1,...,yr}} for any permutation P of {yi,...,yr}. Thus while the
elements {y1,...,yr,} are arbitrarily ordered, the value of S;{-} is unique.
Eq. (8) gives a systematic construction of such symmetric transforms that is
uniquely invertible, see (14).
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Recall our notation [L] = {1,...,L}. It is easily shown us-
ing the classical Vieta’s formulas [13], that the pseudo-
measurements z;,l € [L] in (7) are the coefficients of the
following L-order polynomial in variable s:

L L
St s +u=s"+3"as""  @®
=1 =1

As an example, consider L. = 3 independent scalar processes.
Then the pseudo-observations using (7) are given by (4). The
reader can verify that the pseudo-observations z1, 22, 23 are the
coefficients of the polynomial (s + y1)(s + y2)(s + y3).

Note that each z; is permutation invariant: any permutation
of the elements of {y1, ...,y } does not affect z;. That is why
our notation above involves the set {y1,y2,...,yr}

Remark: Tt is easily verified from (7) that the symmetric
transforms .5; is homogeneous of degree I: for any c € R,

S{cOy,...,cOLy=c" S {b,....0L}, 1€[L] (9

A. Symmetric Transform and Estimation Objective

Given the set valued sequence of anonymized observations,
y(1),y(2),...y(k),... generated by (1), our aim is to estimate
the true parameter set 6° = {67,...,09}. To do so, we first
construct the pseudo measurement vectors z(1), z(2), ..., z(k)
via (7). Denoting 8 = {01, ..., 0}, our objective is to estimate
the set 0* = {07, ...,05 } that minimizes:

0" =argmin » B |z — Si{y 01,00, ...
le[L]
where z; = Sl{wﬁ‘f + v, ..

71/”9L}‘2

07 +ort (10)

Recall the symmetric transform S; is defined in (7). Finally,
define the symmetric transforms on the model parameters as

A:S{G} — \ :51{01,...,(%}, le [L] (11)

Note that A =[Aq,..., ]’ is an L-dimension vector whereas
0 is a set with L (unordered) elements.

From (10), we see that 6* is a second order method of
moments estimate of §° wrt pseudo observations. Importantly,
this estimate is independent of the anonymization map o.

B. Main Result. Consistent Estimator for 6°

We are now ready to state our main result, namely an adap-
tive filtering algorithm to estimate 0° given anonymized scalar
observations. The result says that while objective (10) is non-
convex in 6, we can reformulate it as a convex optimization
problem in terms of A defined in (11). The intuition is that
the objective (10) is non-convex in the roots of the polynomial
(namely, 6), but is convex in the coefficients of the polynomial
(namely, \); and by the fundamental theorem of algebra there
is a one-to-one map from the coefficients A to the roots 6.
Therefore, by mapping observations to pseudo observations
(coefficients of the symmetric polynomial), we can construct
a globally optimal estimate of (10).

Theorem 1: Consider the sequence of anonymized obser-
vation sets (y(k), k > 1) generated by (1) and (2), where ¢ (k)
is a known iid scalar sequence. Then
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1) The objective (10) can be expressed as L decoupled con-
vex optimization problems in terms of A defined in (11):

n}in]E\zl —'N|>  where
1

a(k) = (¥(k))' A7 + wi(k)

The process w(k) is defined explicitly in (1) below.

2) The global minimizer 0* of objective (10) is consistent
in the sense that §* = 0°.

3) With pseudo observations z(k) = S{y(k)} defined in (7),
consider the following bank of L decoupled adaptive fil-
tering algorithms operating on z(k): Choose A(0) € RL.
Then for | € [L], update as

Mk + 1) = N(k) + e (k) (z(k) = o' (k) \i(k))
0(k+1)=Re(S™'(A(k +1))) (13)

Here S~! is defined in (14) and 93¢ denotes the real part
of the complex vector. The estimates (k) converge in
probability and mean square to 8* (see Theorem 3).

Discussion: 1. Theorem 1 gives a tractable and consis-
tent method for estimating the parameter set 6° of the L
stochastic systems given set valued anonymized observations
y(1),y(2),.... Statement 1 shows that the estimator is equiva-
lent to solving L decoupled convex optimization problems. We
emphasize that since the observations y(k) are sets (rather than
vectors), the ordering of the elements of #° cannot be recovered;
Statement 2 asserts that the set-valued estimate 8* converges to
f°. Statement 3 gives an adaptive filtering algorithm (13) that
operates on the pseudo observation vector z(k). Applying S~!
to the estimates A(k) generated by (13) yields estimates 0(k)
that converge to the global minimum 6*. Since by assumption
0° € RE, the second step of (13) chooses the real part of the
possibly complex valued roots.

2. An important property of the symmetric operator S is
that it is uniquely invertible since any L-th degree polynomial
has a unique set of at most L roots. Indeed, given A = S{6},
6= S~1(\) are the unique set of roots {f1,...,0r} of the
polynomial with coefficients A, 1 € [L], that is,

12)

L
0=S""\) <= s"+) Ns'T' =
=1 i

(S+91)

L

(14)
Note that S~!(-) maps the vector A to unique set #. Recall that
S{-} maps set 0 to unique vector \. Computing the roots of a
polynomial is equivalent to computing the eigenvalues of the
companion matrix e.g., Matlab command roots.

3. Typically the roots of a polynomial can be a sensitive
function of the coefficients. However, this does not affect al-
gorithm (13) since it operates on the coefficients only. The
roots are not fed back iteratively into algorithm (13). In Section
III-D and Theorem 1 of the supplementary document, we will
quantify this sensitivity in terms of the asymptotic covariance
of algorithm (13).

4. The adaptive filtering algorithm (13) uses a constant step
size; hence it converges weakly (in distribution) to the true
parameter 6° [10]. Since we assumed 6° is a constant, weak
convergence is equivalent to convergence in probability. Later
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we will analyze the tracking capabilities of the algorithm when
0° evolves in time according to a hyper-parameter.

5. A stochastic gradient algorithm operating directly on
objective (10) is

Ok +1) =0(k) — eV Y _ |u(k)

lell]
— S {W(k) 01 (k), ..., (k) L (k) } |

We show via numerical examples in Section V that objec-
tive (10) has local minima and stochastic gradient algorithm
(15) can get stuck at these local minima. In comparison, the
formulation involving pseudo-measurements yields a convex
(quadratic) objective and algorithm (13) provably converges
to the global minimum. There is also another problem with
(15). If the initial condition 0(0) is chosen with equal elements,
then since the gradient Vy is symmetric (wrt y and 0), all the
elements of the estimate 6(k) have equal elements at each time
k, regardless of the choice of #°, and so algorithm (15) will not
converge to 6°.

6. Anonymization of input signal (k). We assumed that
the input signal matrices ¢ (k) are the same for all L pro-
cesses. If the analyst can specify a different input signal
to each system [, then the analyst can estimate ¢; for each
target process [ via classical least squares, thereby breaking
anonymity as follows: Minimizing E{} ¢, v — i0}? =
E{z — Ele[ L] 0, }2 wrt 0; yields the classical least squares
estimator. Thus the analyst only needs the pseudo observations
z1(k) = >, yi(k) to estimate 07 and thereby break anonymity.

In our formulation, since the regression input signals ¢; are
identical, minimizing E{z1 — 1 >21c (1 6;}? only estimates the
sum of parameters, namely >, 67; the individual parameters
are not identifiable. This is why we require pseudo-observations
21, ..., 7y to estimate the elements 67,1 € [L].

s)

III. ADAPTIVE FILTERING GIVEN VECTOR ANONYMIZED
OBSERVATIONS

We now consider the case D > 2, namely, for each process
[ € [L], the observation y;(k) in (1) is a D-dimensional vector.
We observe the (unordered) set y(k) = {y1(k),...,yr(k)} at
each time k. That is, we do not know which observation vec-
tor y;(k) came from which process . Given the anonymized
observation set (2), the aim is to estimate #° € REXD,

Remark. For each observation vector y; € RP, let y1; denote
the i-th component. Note that the elements of each vector y;
are ordered, namely y; = [y;1, ..., yp]’, but the first index [
(identity of process) is anonymized yielding the observation set
Y= {yla"'ayL}'

As mentioned in Section I, for this vector case, three issues
need to be resolved: First, naively applying the scalar symmetric
transforms element wise yields “ghost” parameter estimates that
are jumbled across the various stochastic systems. (We discuss
this in more detail below.) Second, we need a systematic way
to encode the observation vectors via a symmetric transform
that is invertible. We will use a two-variable polynomial trans-
form. However, a new issue arises; in general the fundamental
theorem of algebra, namely that an L-th degree polynomial has
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up to L complex valued roots, does not extend to polynomials
in two variables. We will construct an invertible map for two-
variable polynomials. This gives us a constructive method to
extend Theorem 1 to vector observations D > 2. The final issue
is that of homogeneity of the symmetric transform. Recall in
the scalar case, the homogeneity property (9) was crucial in the
proof of Theorem 1. We need to generalize this to the vector
case. The main result (Theorem 2 below) addresses these three
issues.

A. Symmetric Transform for Vector Observations

This section constructs the symmetric transform .S for vector
observations. The construction involves a polynomial in two
variables, s and ¢. It is convenient to first define the symmetric
transform for an arbitrary set o = {aq,...,ar} where a; €
RP. The symmetric transform is defined as

L D
S{a}(s,t) = H (s + Z Qi ti1>
=1 i=1
L M,
=st+ Z Z Sim{a}sttem1
=1 m=1
defn

where M; = (L—1)(D—-1)+D (16)

So the symmetric transform is the array of polynomial coeffi-
cients S, {a} of the above two variable polynomial. We write
this notationally as

S{al = [Spia}, m=1,..., M, L [L]]

When D = 1, we see that the symmetric transform (16) special-
izes to (7).

Another equivalent way of expressing the above symmetric
transform involves convolutions: The M; dimensional vector
Si{a} =[Sn{a},..., S {a}] satisfies

Sfel= >

i <ig <<y

Qi @ QG @ Qg lE[L] (17)
where ® denotes convolution. Eq. (17) serves as a constructive
computational method to compute the symmetric transform of
a set ov.

With the above definition of the symmetric transform, con-
sider the observation set y(k) = {y1(k),...,yr(k)} at each
time k. We define the pseudo-observations as

(k) = S{y(k)} (18)

Example. To illustrate the polynomial S{y}(s,t), consider
L =2 independent processes each of dimension D = 2. Then
with y1 = [y11,¥12]"s Y2 = [y21, Y22]’, the symmetric polyno-
mial (16) in variables s, is

S{y}(s,;t) = (s + y11 + y12t) (s + y21 + Y2at) (19)
Then the pseudo observations z;,, specified by the RHS of (16)
are the coefficients of this polynomial, namely

211 = Y11 Y21, 212 = Y11 Y22 + Y12 Y21, 213 = Y12 Y22,

291 = Y11 + Y21, 222 = Y12 + Y22  (20)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

In the convolution notation (17), the pseudo-observations are

z1 =211, 212, 213) = Y1 @ Yo, 22 = [201, 220) =1 + Y2

We see from this example that the pseudo-observations (20)
generated by the vector symmetric transform (16) is a superset
of the scalar symmetric transforms applied to each component
of the vector observation. Specifically pseudo-observations for
the first elements of y; and yo, namely y11,y21 are 211, 2o1.
Similarly pseudo-observations or the second elements of y;
and Y2, namely Y12, Y22 are zi3, z922. But 212 in (20) is the
extra pseudo-observation that cannot be obtained by simply
constructing symmetric transforms of each individual element.
In Section III-A below, we will discuss the importance of the
above vector symmetric transform compared to a naive appli-
cation of scalar symmetric transform element-wise.

Why a Naive Element-Wise Symmetric Transform Is not
Useful: Instead of the vector symmetric transform defined in
(16), why not perform the scalar symmetric transform on each
of the D components separately? To make this more precise,
let us define the naive vector symmetric transform which uses
the scalar symmetric transform S;, [ € [L] in (8) as follows:

zi; = Si{y} = Si{wjs - -

This is simply the scalar symmetric transform S{y;, ...
applied separately to each component j =1,...,D.

In analogy to (10), we can define the estimation objective in
terms of the naive vector transform as

2YLj}

D
é*zargmin E E E|Elj—Slj{¢91,w92,...,¢9L}|2
4 —
le[L] j=1
(22)

The naive symmetric transform S in (21), (22) loses or-
dering information of the vector elements; for example given
two processes (L = 2) each of dimension D = 2, S does not
distinguish between observation set {[y11, ¥12], [y21, 22} and
the observation set {[y11,y22], [y21, y12]}. It follows that 6*
in (22) is not a consistent estimator for 6°; see remark fol-
lowing proof of Statement 4 of Theorem 2. Specifically, if
the true parameters are 6° ={[09,,0%,],[09;,609,]}, then the
estimates can converge to the parameters of the “ghost pro-
cesses” {[091, 09,], [051,095]}. That is, the parameter estimates
get jumbled between the stochastic systems. Such “ghost” target
estimates are common in data association in target tracking, and
we will demonstrate a similar phenomenon in numerical exam-
ples of Section V when using the naive symmetric transform
on anonymized vector observations.

In comparison, the vector symmetric transform (16) system-
atically encodes the observations with no information loss. For
example inthe D = 2, L. = 2 case, the extra pseudo-observation
z12 in (19) allows to distinguish between these observation
sets. (See the Appendix, available online, for the example
D =3, L = 3.) To summarize, the vector symmetric transform
is fundamentally different to the scalar symmetric transform.
We will use the vector symmetric transform as a consistent
estimator for 6° below.
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B. Main Result. Consistent Estimator for 6°

We first formalize our estimation objective based on the
anonymized observations. Then we present the main result.

Denoting § = {6, ...,01}, our objective is to estimate the
set 0* ={67,...,0;7} that minimizes the following expected
cost (where || - || denotes the Frobenius norm): Compute

7yL} _S{¢917¢927>¢9L}Hi
(23)

0" =argminE||S{y1, ...
o

Recall that §; € R for each [ € [L]. For notational convenience
we use {¢0} to denote the set {1 01,1 05,... ¢ GL}. Alsoy =
{y1,...,yr} is the (anonymized) observation set.

Remark. As in the scalar case, we note that * in (23) is a
second order method of moments estimate of #° wrt pseudo
observations, independent of anonymization map o.

We are now ready to state our main result, namely an adap-
tive filtering algorithm to estimate 6° given the anonymized
observation vectors. As in the scalar case, the main idea is
that we have a convex optimization problem in the symmetric
transform variables (denoted as A below), and the variables 6
can be evaluated by inverting the symmetric transform.

Theorem 2: Consider the sequence of anonymized observa-
tion sets, (y(k), k > 1) generated by (1), (2), where ¢)(k), k > 1
is a known iid sequence of D x D matrices. Then

1) The symmetric transform polynomial S{y}(s,t) in (16)

can be decomposed into signal and noise polynomials as

S{y}(sa t) = S{¢90}(87 t) + w(S’ t)

where w(s,t) is a noise polynomial whose coefficients
are zero mean. (We define w(s,t) in (5) of the supple-
mentary document.)

2) The symmetric transform S has the following homogene-

ity property: With Az, 2" Sim {0}, then

Slm{we} = Z )\ln Sl?b{¢l77n}7 le [L]

neM;

Here for )\, = Zilgiggmgil 014, 02y -+ - 01, m € M,
where M; is defined in (16), we construct ™ as
the following D x| matrix of elements from input
matrix )

(24)

(25)

Yiir Yin
efn | Vinz  Yis2
plma | (26)
Yip Vi,p o YiuD
3) With pseudo observations z = S{y} defined in (7) and
™ defined in (26), the objective (23) can be expressed
as L decoupled convex optimization problems:

[/\Tla ) )‘;‘JV[J = argmin Z ]E|Zlm

AlLse s MMy e
_ Z )‘ln Sln{"/Jl’mHQ = [L]
neM;

0* =51\ (27)
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4) The global minimizer 6* of objective (23) is consistent
in the sense that 8* = 6°.

5) With pseudo-observations z(k) = S{y(k)} computed by
(17), consider the following L decoupled adaptive fil-
tering algorithms operating on quadratic objective (27):
Choose initial condition A, (0) € R arbitrarily. Update
each element of \;,,, m € M;,l € [L] as

A (K 4 1) = A (k) + € St (1 (k)

x> (zim(k)

meM,;

— 37 (k) St (k)}),
neM;

0(k+1)=Re(S™ (A(k +1))) (28)

Here € > 0 is the algorithm step size, S™! is evaluated
via (31), (32), /"™ is constructed in (26), and S;,,{-} is
computed in (17). Then the estimates 6(k) converge in
probability and mean square to 8* (see Theorem 3).

C. Discussion of Theorem 2

Despite the complex notation, the important takeaway from
(25) is that Sj,, {¢0} is a linear function of A\, = S}, {6}.
Therefore the objective (23) becomes a convex (quadratic) op-
timization problem (27). Thus, similar to the scalar case in
Theorem 1, we have converted a non-convex problem in the
roots of a two-dimensional polynomial to a convex problem in
the coefficients of the polynomial. Since the map between the
set of roots and vector of coefficients roots is uniquely invert-
ible, the optimization objectives (23) and (27) are equivalent.

Homogeneity of Symmetric Transform: The fundamental
theorem of symmetric functions states that any symmetric poly-
nomial can be expressed as a polynomial in terms of elementary
symmetric functions [21], Theorem 4.3.7. However, Theorem 2
exploits the linear map 8 to obtain the specific result (25),
namely S, {0} =3, pp Sin{0} Sin{ypb ™). This qualifies
as a vector version of the homogeneity property (9) in the scalar
case. The scale factor is Sj, {y)"™}.

As a simple example of evaluating the matrix ¥)"™ in (26),
suppose L = 3, D = 3. Then since A\1; = 611651031, it follows
from (26) and (16) that

i1 Y Yn
Yl =12 P2 Pra|, Su{vt'} =97, (29)
P13 P13 Y13
S12{¢1’1} = 3¢%1¢12. AISO, since )\12 = 011921932 +

911022031 + 012921931, it follows from that

i Y Yo
Y2 = 1o iz aol|,  Su{Yh?} =97 Yo,
Y13 Y13 a3

S1o{1p® 1} =3 h1a + Yr1viathen + Yrati1thn

S Is Uniquely Invertible: The fundamental theorem of al-
gebra, namely that an L-th degree polynomial has up to L
complex valued roots, does not, in general, extend to polyno-
mials in two variables. However, the above special construction

(30)
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which encodes the observations as coefficients of powers of ¢,
ensures that S is a uniquely invertible transform between the
set of observations and matrix of polynomial coefficients. This
is because the ring F'(s,t) of two-variable polynomials is a
unique factorization domain over the ring F'(s) of one-variable
polynomials [13], Theorem 2.25.

Evaluating S~': Given the observations y, the transform
S{y} computes the pseudo-observations via convolution (17).
We now discuss how to compute 6§ = S~1(\) given \. This is
required in (27) to compute #* and also in the adaptive filtering
algorithm (28).

As in the scalar case (8), given Aq1,...,Ap1, we first com-

pute 611, ...,61 by solving for the roots of the polynomial:
L L
H(S—I—ﬁll)zsL—FZ)\“ sk 31
=1 =1

Next, solve for the remaining elements of 6;,, iteratively over

m=2,3,...,D. For each m > 2, given Ay,,,..., A, and
{01n,---, 0}, n=1,...,m — 1, we solve the following lin-
ear system of equations6 for @1m, ..., 0nm:

Slm{olma s 79Lm} - >\1m

SQm{Hlnu cee 70L7n} = )\Q’m

SL'm{Hlnu cee 70L7n} = )\LT)'L (32)

By the property of elementary symmetric polynomials, the lin-
ear system (32) has full rank.

To summarize, computing S~! for the vector case requires
solving a single polynomial equation (as in the scalar case) and
then solving D — 1 additional linear algebraic equations.

D. Convergence of Adaptive Filtering Algorithm and Asymp-
totic Efficiency

This section analyzes the convergence and asymptotic covari-
ance of the adaptive filtering algorithm (28). The convergence is
typically studied via two approaches: mean square convergence
and weak convergence (since 6 is assumed to be a constant,
weak convergence to 6° is equivalent to convergence in prob-
ability). We refer to the comprehensive books [9], [10], [22]
for details. Below we state the main convergence result (which
follows directly from these references). More importantly, we
then discuss the asymptotic efficiency of the adaptive filtering
algorithm (28). Specifically we address the question: How much
larger is the asymptotic covariance with the symmetric trans-
form and anonymized observations, compared to the classical
LMS algorithm with no anonymization?

The algorithm (28) can be represented abstractly as
Ak +1) = Ak) + e W(k) (2(k) — T(k)A(K))  (33)

where W(k) is the block diagonal matrix diag(Sim,! € [L],
m e Ml).

o1t follows from the definition that S;,, is linear in 01,,, ..
linear coefficients specified by {01, ..

01 with
SOrnt,m=1,...,m—1

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Thus far we assumed that U(n) and v(n) are iid processes.
The assumption below significantly generalizes this to mixing
and martingale processes. Let Fj, be the o-algebra generated
by {¥(n),v(n),n <k, A(n),n <k}, and E; denote the con-
ditional expectation wrt F;. We assume:

(A) The signal {U(k),v(k)} is independent of {A(k)}.
{¥(k),v(k)} is a sequence of bounded signals and there
is a symmetric positive definite matrix @) such that

Q=E[¥(k)¥'(k)],

o0

| ST ELE(n) W (n) - Q]| < K,
n=k

1> EpU(k)o(n)| <K, (34)
n=k
Alternatively instead of boundedness, we can

assume {VU(k),v(k)} is a sequence of martingale
difference signals satisfying E|W(k)[**2 < oo and
E|W (k)v(k)[*+2 < oo for some A > 0.

Assumption A includes correlated mixing processes [23],
p.345 where the remote past and distant future are asymp-
totically independent. The boundedness is a mild restriction,
for example, one may consider truncated processes. Practical
implementations of stochastic gradient algorithms use a projec-
tion: when the estimates are outside a bounded set H, they are
projected back to the constrained set H. [10] has extensively
discusses such projection algorithms. For unbounded signals,
(A) allows for martingale difference sequences which includes
iid signals as a special case.

Theorem 3:  ([9], [10]). Consider the adaptive filtering
algorithm (33). Assume (A). Then

1) (Mean Squared convergence). For sufficiently large k, the
estimates A(k) from adaptive filtering algorithm (28) have
mean square error E{[|A(k) — X\°||?} = O(e).

2) (Convergence in probability) lim. o P(sup,<p |A(¢t) —
N|>n)=0 as T — oo for all n>0. Here \°(t) =
k), t € [ek, (e + 1)k) denotes the continuous-time in-
terpolated process constructed from A(k).

3) (Asymptotic Normality). As k — oo, for small ¢, the es-
timates A(k) from algorithm (28) satisfy the central limit

D e
theorem (where — denotes convergence in distribution)

/2 (A(k) = ) 2 N(0,%) (35)

Here the asymptotic covariance X satisfies the algebraic

Lyapunov equation [[9], pp107]
RYE+XQ=R

> Cov(W(k)w(k), ¥(0)w(0)) (36)
k=—oc0
where w is defined in (24), (5).
4) (Asymptotic Covariance of Estimates). Therefore, the
estimates 0(k) = S—H(A\(k)) satisfy

defn
where R =

12 (0(k) — 0°) 2 N(0,5),

5= (VS 1(x)) £VSs(n). (37)
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Remarks. (i) Statements 1,2 and 3 of the above result are
well known [10]. The expression for Y in (37) follows from
the “delta-method” for asymptotic normality [24]. The delta-
method requires that S~ is continuously differentiable. This
holds since the solutions of a polynomial equation are contin-
uously differentiable in the coefficients of the polynomial.

(ii) Recall (k) = S~1(A(k)) is a set (and not a vector). The
estimated sets 6(k) = S~!(\(k)) inherit the convergence prop-
erties of Statements 1 and 2 of vector A\(k). That is, o (6(k))
converges to 6° in mean square and in probability, for some
sequence of permutations oy, on {1,..., L}. Similarly, we in-
terpret (37) after ordering the elements of (k) in some specific
way. In the scalar case, we can impose that the elements are
ascending ordered, namely, 61 <65 --- <60. For the vector
case, 6 can be ordered such that the first elements of the
parameter vector of the L processes are in ascending order,
011 <03 <---<0p.

(iii) In the stochastic approximation literature [9], [10], the
asymptotic rate of convergence is specified in terms of the
asymptotic covariance of the estimates, namely ¥ in (35) and
¥ in (37). We will focus on evaluating ¥ and 3 below.

E. Loss in Efficiency due to Anonymity

We now evaluate the asymptotic covariance matrices > in
(35) and X in (37) to quantify the asymptotic rate of conver-
gence of adaptive filtering algorithm (28). To obtain insight,
we consider the scalar observation case D =1. So ¥ and ¥
are L x L covariance matrices. (Recall there are L anonymized
processes.) We assume that the zero mean noise process v(k) is
iid across the L processes with Var{v;(k)} = o2, and choose
the regression input matrix as (k) ~ N(0,1) in (1). We em-
phasize that these assumptions are not required for convergence,
but only to obtain a closed form expression for the asymptotic
covariance. Using (13)

Q = diag[Qu,l € [L]],

where Q; = Cov(y?) = (21 —1)(21 = 3)---1  (38)

Next define the scalar R; = Cov[y)! (k) (2 (k) — ' (k)\;)] eval-
uated at \7. We have

Ry = Cov(¢! (' (XY — X)) + w;)) |aere = Cov(lwy)  (39)

These can be evaluated using the expression for w in (1) of the
supplementary document.

Finally from Theorem 1 in the Appendix (available online),
the sensitivity of the [-th polynomial root 6; wrt m-th coefficient
A 1S

do,
d m

del B (71)m+1 (79l)Lfm
} where D ds{il}e(_e)

VS(A) = {
|9:9l
(40)

The above formula assumes that the polynomial does not
have repeated roots; otherwise the sensitivity is infinite since
dS(—0)/df =0 at a repeated root.

With the above characterization of Q, R, VS~!()\), we now
evaluate ¥ and ¥ explicitly for L = 2.
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Lemma 1: Consider the anonymized model (1), (2) with
D =1, L =2. Assume the zero mean noise process v(k) is
iid across the L processes with Var{v;(k)} = o2, and ¢ (k) ~
N(0, I7xz). Then the asymptotic covariance Y. (see (37)) of
the estimates 6(k) generated by algorithm (13) satisfies
) 0% (202 +9(09% + 03%) — 669 63)

2(09 - 03)°

Remark. We now compare (41) with the classical LMS algo-
rithm operating on observations that are not anonymized. The
non-anonymized case is equivalent to 2 independent LMS algo-
rithms each estimating a scalar parameter with noise variance
0. The asymptotic covariance of the LMS algorithm for L = 2
is Tr(Cov(LMS)) = o2. So for L =2, at best, the adaptive
filtering algorithm (13) with anonymized observations is 4.5
times less efficient than LMS. This is because the effective noise
process w (24) due to the symmetric transform results in higher
covariance (R in (42) below) compared to the noise covariance
02155 assumed in the LMS algorithm.

M

Tr( 41)

Proof: From (38), Q = [(1) g} Also (39) yields
Y(v1 + v2)
= 42
fi=Cov [w%wvzef g+ @
7 03
Finally (40) yields VS—1(\) = [ %17% %579 | Then evalu-
_ 03-07  07-03
ating > = %Q*I R, and X using (37) yields (41). O

F. Asymptotic Variance. Elementary Symmetric vs Sum of
Powers Symmetric Polynomials

The symmetric transforms used in this paper to bypass data
association are based on elementary symmetric polynomials.
For example, for L =2, the pseudo-observations (7) gener-
ated by the elementary symmetric polynomials are y; + 2 and
y1y2. Naturally, other choices of symmetric polynomials can
be used; for example, sum of powers. For L = 2, the pseudo-
observations generated by the sum of powers symmetric poly-
nomials are y; + y» and y? + y3. For Bayesian state estima-
tion [6] shows empirically that using elementary symmetric
polynomials for the symmetric transform yields more accurate
estimates than sum of power symmetric polynomials. Below we
show that for stochastic optimization (adaptive filtering), this
claim is not true: for certain parameter values, using the sum
of powers symmetric polynomials yields a smaller asymptotic
variance.

Lemma 2: Consider the anonymized model (1), (2) with
D =1, L =2. Assume the zero mean noise process v(k) is
iid across the L processes with Var{v;(k)} = o2, and ¢ (k) ~
N(0, ILxr). Then the asymptotic covariance E_]p of the esti-
mates 6(k) generated by an adaptive filtering algorithm with
sum-of-powers pseudo-observations satisfies

0% (402 +8(09% + 05°) — 865 63)
2(07 - 03)*

Recall (Theorem 3) that the asymptotic variance (trace of
covariance) measures the asymptotic convergence rate of an

Te(S,) = (43)
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adaptive filtering algorithm. Comparing (41) with (43), we see
that the asymptotic variance of the adaptive filter using the
sum-of-powers polynomials is smaller than that of elementary
polynomials if |6 + 69| > v/20.

The fundamental theorem of symmetric polynomials [12]
states that any symmetric polynomial (e.g. sum of powers) can
be expressed as a polynomial function of elementary symmetric
polynomials. This is why we use elementary symmetric poly-
nomials in this paper for maximum generality. Determining the
class of symmetric polynomials that yield the smallest asymp-
totic variance is an open problem.

G. Analysis for Tracking a Markov Hyper-Parameter

So far we assumed that the true parameter #° is constant.
An important property of a constant step size adaptive filtering
algorithm (28) is the ability to track a time evolving true param-
eter. Suppose the true parameter 6°(k) evolves according to a
slow Markov chain with unknown transition matrix. How well
does the adaptive filtering algorithm track (estimate) 6°(k)? Our
aim is to quantify the mean squared tracking error.

(B) Suppose that exists a small parameter 1 > 0 and 6°(k) is
a discrete-time Markov chain, whose state space is

M;={a1,...,am}, a; eREXP =1, m, (44)

and whose transition probability matrix P* = I + u@.
where [ is an R™*™ identity matrix and @ = (g;;) €
R™>™ is an irreducible generator (i.e., () satisfies qi; >0
fori#jand 377, ¢;; =0 foreach i=1,...,m) of a
continuous-time Markov chain.

The time evolving parameter 6°(k) is called a hyperparam-
eter. Although the dynamics of the hyperparameter 6°(k) are
used in our analysis below, the implementation of the adaptive
filtering algorithm (13), does not use this information.

Define the tracking error of the adaptive filtering algorithm
(28) as A(k) “L" A(k) — X°(k) and O(k) “L" 0(k) — 6°(k) The
aim is to determine mean squared bounds on the tracking error
A(k) and therefore 0(k).

Theorem 4: Under (A), (B), for sufficiently large k,
EA(K)[* = O(e + p+ pi?/e)

Therefore, choosing i = O(€), the mean squared-tracking error
is E|A(K)|? = O(e) and so E|A(k)|? = O(e)

The proof follows from [25]. The theorem implies that even
if the hyperparameter #° evolves on the same time scale (speed)
as the adaptive filtering algorithm, the algorithm can track the
hyperparameter with mean squared error O(e).

(45)

IV. MIXTURE MODEL FOR ANONYMIZATION

This section uses a Bayesian interpretation of the anonymity
map o in (2) to present a performance analysis of the adaptive
filtering algorithm (28). Thus far we have assumed nothing
about the permutation (anonymization) process ¢ in (2). The
symmetric transform based algorithms proposed in Sections
II and III are oblivious to any assumptions on o. Below we
formulate a probabilistic model for the permutation process o.
Based on this probabilistic model, we address two questions:
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1) How do noisy observations of the permutation process
affect anonymity of the identity of the target processes?
We will consider the expected error probability of the
maximum posterior estimate of the permutation process
as a measure of the anonymity of the permutation process.
This is in line with [11] where the error probability of
an estimator (and also mutual information) is used as a
measure of anonymity.

2) How does anonymity of process o in terms of Bayesian
error probabilities relate to the asymptotic covariance of
the adaptive filtering algorithm (28)? Our main result be-
low (Theorem 5) shows that if the observation likelihood
of noise process one Blackwell dominates that of noise
process two, then anonymity of the permutation process
two is higher than that of one; and also the asymptotic
covariance of the parameter estimates of the adaptive
filtering algorithm (28) is higher.

From a probabilistic point of view, the anonymized observa-

tion model (1), (2) can be constructed as the following random
permutation mixture model of the rows of matrix 0°:

y(k) =o(x(k) y(k) = o(x(k)) 6 ¥(k)+o(x(k))v(k)
LxD LxL LxD DxD LxD
(46)

Here o(z(k)) denotes a randomly chosen L x L permutation
matrix that evolves according to a random process

reX, XC{l,2,...,X} where X =L!

since there are L! possible permutations. Also
y(k) = [y (k),...,yr (k)] where each (k) €RP.
Recall that (k) is a known input (regression) matrix
and v(k) =[vi(k),...,vn(k)] is a L x D matrix valued
noise process whose elements are zero mean. As previously,
we assume for simplicity that v;(k) and v, (k), [ # m are iid
vectors in RP.

A. Anonymity of Permutation Process x and Asymptotic
Covariance of Adaptive Filtering Algorithm

This section characterizes the anonymity of the permutation
process z in terms of average error probability of the maximum
aposteriori (MAP) state estimate. Our assumptions are:

1) The permutation process x is iid with known probabilities
.\ defn

(i) = P(x(k) =1).

2) The regression matrix (k) = I. From a Bayesian point
of view, this is without loss of generality since ¥ (k) is
known and invertible. So we can post-multiply (46) by
1~ 1(k) to obtain an equivalent observation process.

Given the observation model (46), define the L x D-variate

observation likelihood given state x(k) =i as

Biy =p(y(k) =y |z(k) = 1) < po(y — @),

where ¢; ‘2" (i) 0° e REXD (47)

Here p, denotes the L x D-variate density of noise process v.
Since the L noise processes are independent, with y; =1/ ¢
where ¢; € R” is the unit vector with 1 in the [-th position,
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L D
Biy = H Biyl ) Biyl = H Biyl‘m,’ Biyl,m :pvlm, (ylm - afm)
=1 m=1

(48)

The anonymity of the x depends on the prior 7 of the per-
mutation process x and the observation likelihood B.

Perfect Anonymity. If all X permutations are equi-probable,
ie., m(i) =1/X, thenclearly P(x(k) =ily(k)) =1/X. So the
probability of error of the maximum aposteriori estimate Iy
is P(&(k) # x(k)) = (X — 1)/ X which is the largest possible
value. So for discrete uniform prior on the permutation process,
perfect anonymity of the identities of the L processes holds
(even with no measurement noise).

Zero Anonymity. If w(x) = 1 for some state x = ¢*, then the
error probability is zero and there is no anonymity.

Anonymity of Permutation Process x wrt Observation Like-
lihood: 1In the rest of this section, we analyze the anonymity of
a Bayesian estimator of the permutation process x in terms of
the observation likelihood B, or equivalently, the noise v (k).
We start with Bayes formula for the posterior of permutation
state x(k) given observation y(k). Define the diagonal matrix
B, =diag[Biy, ..., Bxy|. Then given the prior = and ob-
servation y(k), the posterior w(k) = [m1(k), ... 7x (k)] where
(k) = p(x(k) =1i|y(k)) is given by Bayes formula:

Bymm
o(m, y(k))

defn

(k) =T(m, y(k)) = , where o(m,y) =1'Byym
(49)
Finally, given the posterior computed by (49), define the max-
imum aposteriori (MAP) permutation state estimate as
% (k) = argmax,m; (k)

Lemma 3: The expected error probability of the MAP state
estimate is (where ) below denotes the observation space)

P.(m; B) = By {P(x(k) # #(k)|y)} =1 — 3 max e B, wdy
y

where e; € R¥ is the unit vector with 1 in the i-th position.
We normalize the expected error probability by defining the
anonymity of permutation process x as

X
B)=P.(m;B) —— .1
Alx, B) = P(m; B) 5 € [0,1]
So the anonymity A = 0 when P, (7; B) =0, and A =1 when
P.(m;B) = XL

(50)

B. Blackwell Dominance and Main Result

We now use Blackwell dominance of mean preserving
spreads to relate the anonymity 4 in (50) to the asymptotic
covariance of adaptive filtering algorithm (28).

Definition 1: (Blackwell ordering of stochastic kernels).
The observation likelihood B Blackwell dominates likelihood
B, i.e., B> B if B= BM where M is a stochastic kernel.
That is, Zy My, dy =1 and My, > 0, where ) denotes the
observation space.

From the definition, intuitively B is noisier than B. Thus
observation y with conditional distribution B is said to be
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more informative (in Blackwell sense) than observation y with
conditional distribution B; see [26] for several applications.
When y belongs to a finite set, it is well known [27] that B>, B
implies that B has smaller Shannon capacity than B.

Main Result: First we list the main assumptions:
(Al) B> B
(A2) >y Biyy=giand } Biy y = q; (zero mean noise)

Recall g; is defined in (47).

Since the observations of the L processes are independent,
Blackwell dominance of the [ individual likelihoods B;,, >3
Biy,, L € [L] is sufficient for 1. The mean preserving spread
assumption 2 on B and B implies that the observation noise is
zero mean. This is a classical assumption for the convergence
of the stochastic gradient algorithm (28).

We are now ready to state the main result. Theorem 5 shows
that Blackwell ordering of observation likelihoods yields an
ordering for error probabilities (anonymity) and also a partial
ordering on the asymptotic covariance matrices of the adaptive
filtering algorithm (28). So the more the anonymity of the per-
mutation process, the higher the asymptotic covariance of the
adaptive filtering algorithm (28). To the best of our knowledge,
this result is new.

Theorem 5: Consider observations y(k) generated by (46).

1) Covp(y) X Covg(y) implies Covp(S{y}) < Covg
(S{y}) for the symmetric transform S.

2) Assume (Al). Then the average error probabilities
defined in Lemma 3 satisfy P.(m;B)< P.(m;B),
and therefore the anonymity (50) satisfies A(w, B)
< A(m, B).

3) Assume (Al), (A2). Then Covg(y) < Covg(y). There-
fore, the asymptotic covariance of A(k) in (35) gener-
ated by the adaptive filtering algorithm satisfies 3(B) <
Y(B). Also the asymptotic covariance of (k) in (37)
satisfies 3(B) < X(B).

The proof in the appendix (available online) uses mean-
preserving convex dominance from Blackwell’s classic paper
[28]. Note that Theorem 5 does not require the noise to be
Gaussian; for example, the noise can be finite valued random
variables.

To summarize, we have linked anonymity of the observations
(error probability of the Bayesian MAP estimate) to the asymp-
totic covariance (convergence rate) of the adaptive filtering
algorithm (28).

C. Maximum Likelihood Estimation

This section discusses maximum likelihood (ML) estimation
of ° given observations generated by (1), (2). The results of this
section are not new - they are used to benchmark the symmetric
transform based algorithms derived in the paper.

To give some context, it is clear that given an observation
set y (instead of a vector), feeding it in an arbitrary order into
a bank of LMS algorithms will not converge to #° in general.
A more sophisticated approach is to order the elements of the
observation set at each time based on an estimate of the permu-
tation map oj. We can interpret the recursive MLE algorithm
below as computing the posterior of o, and then feeding it
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into a stochastic gradient algorithm. This posterior constitutes
a Bayesian (soft) data association estimate.

Before proceeding it is worthwhile to summarize the disad-

vantages of the MLE approach of this section:

1) The density function of the noise process v in (1) and
the probability law of the random process x in (46) need
to be known. For example if  was an iid process, the
in principle one can recursively estimate the probabilities
of x. However if z is an arbitrary non-stationary process,
then the MLE approach is not useful.

2) The state space dimension of x is L!, i.e., factorial in the
number of processes L. In comparison, for the symmet-
ric function approach, the number of coefficients of the
symmetric transform polynomial is O(L?), see (16).

3) The likelihood is not necessarily concave in # and so
computing the global maximum of the likelihood can be
intractable. However, when v in (1) is Gaussian, then (46),
(51), imply that the likelihood is concave in 6.

4) Why not use the MLE approach together with the sym-
metric transform? This is not tractable since after apply-
ing the symmetric transform, the noise distribution has
complicated form (5) that is not amenable to MLE.

We assume that the permutation process z in (46) is an L!

Markov chain with known transition matrix

Plx(k+1)=7]x(k)=

Then (46) is a hidden Markov model (HMM) or dynamic mix-
ture model. Notice that the matrix valued observations y(k) are
generated as random (Markovian) permutations of the rows of
matrix 6°1(k) corrupted by noise. Given these observations,
the aim is to estimate the matrix 6°.

In this section, our aim is to compute the MLE for
f°. Given N data points, the MLE is defined as 6=
arg supgee logp(y(1),...y(N);0). We assume that O is a
compact subset of R“*? and so the MLE is

iy=Py, i,jeXx (51

0 = arg maxycg log pe(y(1:N)),

where y(1:N) <" (y(1), ..., y(N)) (52)
Under quite general conditions the MLE 6 of a HMM is strongly
consistent (converges w.p.1 to 6°) and efficient (achieves the
Cramer-Rao lower bound), see [29].

Remark. With suitable abuse of notation, note that y(k) in
(46) is a matrix, whereas y(k) in (2) is a set. In the probabilistic
setting that we now consider, this distinction is irrelevant. For
example, we could have denoted the anonymization operation
(2) as choosing amongst the permutation matrices with equal
probability 1/L!. In the symmetric transform formulation in
previous sections, we did not impose assumptions on how the
elements of the observation set are permuted; the algorithm
(28) was agnostic to the order of the elements in the set y(k).
In comparison, in this section we postulate that the Markov
process x permutes the observations.

Expectation Maximization (EM) Algorithm: The process x
is the latent (unobserved) data that permutes the observations
from the L processes yielding the matrix y(k) in (46). The
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Expectation Maximization (EM) algorithm is a convenient nu-
merical method for computing the MLE when there is latent
data. Starting with an initial estimate §°, the EM algorithm
iteratively generates a sequence of estimates §, where each
iteration ¢ = 1,2, ... comprises two steps: Step 1. Expectation
step: Compute the auxiliary likelihood

Q(0,0") L Eflog pe(y(1:N), 2(1:N)|y(1:N), 6°}
y(L:N) = (y(1),...,y(N)), z(L:N) = (z(1),...,z(N))
(53)
In our case, from (1), (46), (51), imply
N X
Q0,6')=> > mi(k|N) logp, (y(k) — o (i) (k) 6)
k=11i=1
(54)

The smoothed probabilities 7; (k| N') are computed using a for-
ward backward algorithm [26]; we omit details here. Step 2.
Maximization step: Compute 0! = arg max,Q(0, 0°).

Under mild continuity conditions of Q(6, 0%) wrt 0, it is well
known that the EM algorithm climbs the likelihood surface and
converges to a local stationary point 8* of the log likelihood
logp(y(1) ..., y(N);0).

Recursive EM Algorithm for Anonymized Observations —
IID Permutations: We are interested in sequential (on-line)
estimation that generates a sequence of estimates 6(k) over time
k. So we formulate a recursive (on-line) EM algorithm. In the

numerical examples presented in Section V, we consider the
case where permuting process x is iid with 7 (7) defn P(x(k) =

i), rather than a more general Markov chain. (Recursive EM
algorithms can also be developed for HMMs [29], but the con-
vergence proof is more technical.)

Since = and y are iid processes, assuming |[Ego{E{log

po(y(k), z(k))|y(k),0}}| < oo, it follows from Kolmogorov’s
strong law of large numbers that

N
lim 2-Q(6.6)= lim_ ;;E{logm(y(k),x(k)ﬂy(k),o}

N —oc0

=Ego{E{logpo(y,z)|y,0}} w.p.1

The recursive EM algorithm is a stochastic gradient ascent
algorithm that operates on the above objective:

where € > 0 is a constant step size. Then starting with initial
estimate 6(0), the recursive EM algorithm generates estimates

(55)

0(k),k=1,2..., as follows:
Ok +1)= +eZ7rL ) Vo log p, (y(k)
1€EX
—o(i) (k) O(K))]

i (k) oc o (@) po (y(k) — o (i) (k)0 (K))

So (57) uses a weighted combination of the posterior proba-
bility of all possible permutations to scale the gradient of the
auxiliary likelihood @); and these scaled gradients are used in
the stochastic gradient ascent algorithm.

(57)
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Fig. 2. Anonymized estimation problem in Example 1 of Sec V. The initial

condition is 6(0) = {1, 2,3} and the true parameter is 0° = {—2, 5, 8}. (a)
Parameter estimates (set-valued) generated by Algorithm (13) converge to
0°. (b) Parameter estimates generated by stochastic gradient algorithm (15)
operating on (10) do not converge to 6°.

V. NUMERICAL EXAMPLES
A. Example 1: Symmetric Transform for Scalar Case D =1

The aim of this example is to show that objective (10) has lo-
cal minima wrt 0; and therefore the classical stochastic gradient
algorithm (15) gets stuck in a local minimum. In comparison,
the objective (12) in terms of pseudo-measurements is convex
(quadratic) wrt A and therefore the adaptive filtering algorithm
(13) converges to the global minimum 6*.

We consider L =3 independent scalar processes (D =1)
with anonymized observations generated as in (2). The true
model that generates the observations is §° = {—2, 5, 8}. The
regression signal ¢ (k) ~ N(0,0?) where o = 1. The noise er-
ror v(k) ~ N(0,02) where o, = 1072,

We ran the adaptive filtering algorithm (13) on a sample
path of 2 x 105 anonymized observations generated by the
above model with step size e = 10~*. For initial condition
0(0) ={1,2, 3}, Fig. 2(a) shows that the estimates generated
by Algorithm (13) converges to #°. As can be seen from
Fig. 2(a), the sample path of the estimates initially are coa-
lesced, and then split. This is because the estimates of two of
the elements of (k) are initially complex conjugates; since we
plot their real parts, the estimates are identical.

We also ran the classical stochastic gradient algorithm (15)
on the anonymized observations. Recall this algorithm mini-
mizes (10) directly. The step size chosen was € = 10~7 (larger
step sizes led to instability). For initial condition 6(0) =
{1,2, 3}, Fig. 2(b) shows that the estimates converge to a local
stationary point {—2.02,6.12,6.45} which is not 6°. On the
other hand for initial condition 6(0) = {3, 6,9}, we found that
the estimates converged to 0°. This provides numerical verifica-
tion that objective (10) is non-convex. Besides the non-convex
objective, another problem with the algorithm (15) is that if we
choose 0(0) = {¢, ¢, ¢} for any ¢ € R, then all elements of 6(k)
are identical, regardless of 6°.

There are two takeaways from this numerical example. First,
despite the anonymization, one can still consistently estimate
the true parameter set 6°. Second, the objective (10) is non-
convex in € but convex - so a classical stochastic gradient
algorithm can get stuck in a local minimum. But since the
objective is convex in the polynomial coefficients A, which
are constructed as pseudo-observations via the symmetric
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Fig. 3. Recursive Expectation Maximization algorithm vs symmetric

transform based adaptive filtering algorithm. Both algorithms operate on
anonymized observations (1), (2) corrupted by Laplacian noise. The true
parameter is 0° = {4, 5}. The recursive EM shows a significant bias in the
mis-specified case; in comparison the symmetric transform based algorithm
converges to the true parameter value but the convergence is slower. The
parameters are specified in Example 2. (a) Recursive EM algorithm (57). (b)
Adaptive filtering algorithm (13).

transform, algorithm (13) converges to the global minimum.
Recall the estimate (k) at time k is a set and not a vector.

B. Example 2: Recursive Maximum Likelihood vs Symmetric
Transform

The recursive EM algorithm (57) (REM) requires knowl-
edge of the noise distribution and probabilities of permutation
process x. When these are known, REM performs extremely
well. But in the mis-specified case, where the assumed noise
distribution is different to the actual distribution, REM can yield
a significant bias in the estimates.

We simulated anonymized observations (1), (2) for D =1,
L =2 with zero mean iid Laplacian noise v with standard
deviation 2. The true parameter is §° = {4,5} for k < 3 x 10°
time points and then changes to {1,3}. We ran REM (57)
assuming unit variance Gaussian noise. The step size € =5 x
10~° and initial estimate 6(0) = {1,2} . Fig. 3(a) shows that
the algorithm yields a significant bias in the estimate for 6°;
the estimates 0(k) converge to {3.5590,5.4559} for the first
3 x 10° points and then to {0.7405, 3.2658}.

We then computed the pseudo-observations (7) using the
scalar symmetric transform (11) and ran the adaptive filtering
algorithm (13) with step size € =2 x 10~° and initial condi-
tion #(0) = {1, 2}. Fig. 3(b) displays the sample path estimates
0(k). We see empirically that the convergence rate of the adap-
tive filtering algorithm is slower than REM, but the estimates
converge to the true parameter #° (with no bias).

C. Example 3: Symmetric Transform for Vector Case

We consider L = 2 independent processes each of dimension
D = 2 with anonymized observations generated by (2). The true
models that generate the observations for the two independent
processes via (1) are 69 =[—2, 6]', 65 =[4, 5)'. The 2 x 2
input regression matrix in (1) was chosen with iid elements
1;;(k) ~N(0,1). The 2-dimensional noise error vector v(k)
has iid elements N (0, o2) where o, = 1071

Given the anonymized observations, we constructed the
pseudo-observations using the vector symmetric transform (16).
We ran the adaptive filtering algorithm (28) with step size
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Fig. 4. Anonymized estimation problem in Example 3 of Section V. (a)

Algorithm (28) operating on vector symmetric trans[1]forms converges to
global optimum 6°. (b) Algorithm (28) operating on pseudo-observations
generated by the naive symmetric transform (21) converges to the ghost
process parameters {[-2, 51", [4, 6]’} instead of the true model set {[-2, 6]’,
[4, 51}

€ = 10~* on these pseudo-observations. Fig. 4(a) shows that the
estimates converge to the true model set 6°.

Next we constructed the naive pseudo observations from the
anonymized observations by using the naive transform S (21).
We then ran the adaptive filtering algorithm (28) with step
size ¢ = 10~° on these naive pseudo-observations. We see from
Fig. 4(b) that the estimates converge to {[—2, 5|’,[4, 6]’} in-
stead of the true model set {[—2, 6], [4, 5]'}. So naively ap-
plying the scalar symmetric transform element-wise can result
in estimates that swap the elements of 6°. In comparison, the
vector symmetric transform together with algorithm (28) yield
consistent estimates of 6°.

D. Example 4. Noisy Matrix Permutation

The aim of this section is to provide a medium-sized nu-
merical example of estimating 6° with the vector symmetric
transform and adaptive filtering algorithm (28). We also show
that the naive symmetric transform (21) element wise (instead
of vector symmetric transform) loses order information.

Consider L = 4 processes each of dimension D = 10 with

1 3 4 5 7 9 10 11 12 13
0o — 2 4 5 100 8 7 1 8 9 10
3 1.2 7 6 5 4 5 7 9
6 12 18 24 36 43 50 10 1 3

The regression matrix (k) was chosen as Ijgx10. The
anonymized L x D dimension observation matrix was gener-
ated according to (1), (2) at each time k.

The pseudo observation vectors are constructed at each
time k using (17) as z1=y1 +y2 +Yys+vs, 22=91 ®
P+ OYs+ Y1 QYs+Y2QYs + Y2 QYs + Y3 Qya, 23=
NOY2 QY3+ Y1 QY2 QY4 + Y1 D Y3 D Ya + Y2 @ Yz @ ya,
24 =1Y1 Y2 ®ys ®ys where ® denotes the convolution
operator and each y;(k) e RP,i=1,... 4.

We ran 100 independent trials of the adaptive filtering algo-
rithm (28) on 100 independent pseudo observation sequences.
The relative error of the average estimate 6*¢(k) over the 100
trials at time k= 50,000 is [07;%(k) — 62]/67; <7 x 107
Thus algorithm (28), based on the vector symmetric transform,
successfully estimates the parameters.
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Next, we ran adaptive filtering algorithm using the naive
symmetric transform (21). We see from the estimate 0(k) at
k = 50,000 below, that all order information is lost (the boxes
indicate the nearest estimates to the first row of 0°):

1.0052] 1.0053  1.9923 [5.0129] 6.0105
2.0041 [2.9971] [4.0048] 7.0028 [6.9913
3.0023  4.0016 4.9988  9.9934  8.0095
5.9997  12.0000 17.9965 24.0002 36.0066

50033 0.9939  4.9955  1.0032  2.9986

7.0086  3.9995  7.9970  6.9999  8.9985

19.0024] [9.9936] 9.9942 89969  10.0001

43.0028 50.0024 [10.9959] [12.0031] [12.9960

We found in numerical examples that when rows of 0° are
different from each other, the naive transform can estimate the
parameters; but when the elements of two rows are close, then
the estimate switches rows resulting in ghost estimates.

E. Example 5. Effect of L and D on RMSE

The asymptotic covariance of the adaptive filtering algorithm
is specified by the solution of the algebraic Liapunov equa-
tion (36). But it is difficult to characterize analytically how
this covariance behaves vs number of parallel processes L and
observation dimension D. Below we use numerical examples
to explore the effect of L and D on the root mean square error
(RMSE) of the adaptive filtering algorithm.

We chose the true L x D parameter matrix as

1 2 3 e D
circular shift of row 1 by 1
0° = (58)
circular shift of row 1 by L — 1
where circular shift of [1,...,D]=[D,1 ,D — 1], etc.

s Ly 4y

That way, for fixed D and noise variance of v(k) in (1), the
range of the parameter vector 1 to D is invariant to L. So the
signal to noise power does not vary as we change L, thereby
ensuring a meaningful comparison of RMSE vs L. Also to
ensure a meaningful comparison of the RMSE vs D, we scaled
the noise standard deviation of v; (k) as D /10 in (1). (Otherwise
higher values of D in 6° would have lower noise making the
comparison vs RMSE meaningless.)

We chose 6° in (58) by specifying D € {10,...,30} and L =
2,3, 4. For each choice of #°, we ran 100 independent trials
of the adaptive filtering algorithm each with 10° observations.
Based on the numerical results displayed in Fig. 5, we observe
that the RMSE increases with D and L. This is intuitive since
the dimension of the noise polynomial w(s, t) in (24) increases
with L and D and therefore so does the variance of w.

F. Example 6. Effect of Noise Standard Deviation o on
Asymptotic  Standard Deviation of Adaptive Filtering
Algorithm

This is discussed in the supplementary document.
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Fig. 5. Effect of number of processes L and observation dimension D on
RMSE error of adaptive filter.

VI. CONCLUSIONS

We proposed a symmetric transform based adaptive filtering
algorithm for parameter estimation when the observations are a
set (unordered) rather than a vector. Such observation sets arise
due to uncertainty in sensing or deliberate anonymization of
data. By exploiting the uniqueness of factorization over polyno-
mial rings, Theorems 1 and 2 showed that the adaptive filtering
algorithms converge to the true parameter (global minimum).
Lemma 1 characterized the loss in efficiency due to anonymiza-
tion by evaluating the asymptotic covariance of the algorithm
via the algebraic Liapunov equation. Theorem 4 characterized
the mean squared error when the underlying true parameter
evolves over time according to an unknown Markov chain.
Finally Theorem 5 related the asymptotic covariance (conver-
gence rate) of the adaptive filtering algorithm to a Bayesian
interpretation of anonymity of the observations via mean pre-
serving Blackwell dominance.

The tools used in this paper, namely symmetric transforms
to circumvent data association, polynomial rings to charac-
terize the attraction points of an adaptive filtering (stochas-
tic gradient) algorithm, and Blackwell dominance to relate a
Bayesian interpretation of anonymity to the convergence rate
of the adaptive filtering algorithm, can be extended to other
formulations.
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