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Adaptive Filtering Algorithms for Set-Valued

Observations—Symmetric Measurement Approach

to Unlabeled and Anonymized Data
Vikram Krishnamurthy , Fellow IEEE

Abstract—Suppose L simultaneous independent stochastic sys-
tems generate observations, where the observations from each
system depend on the underlying model parameter of that
system. The observations are unlabeled (anonymized), in the
sense that an analyst does not know which observation came
from which stochastic system. How can the analyst estimate
the underlying model parameters of the L systems? Since the
anonymized observations at each time are an unordered set
of L measurements (rather than a vector), classical stochastic
gradient algorithms cannot be directly used. By using symmetric
polynomials, we formulate a symmetric measurement equation
that maps the observation set to a unique vector. By exploiting
the fact that the algebraic ring of multi-variable polynomials
is a unique factorization domain over the ring of one-variable
polynomials, we construct an adaptive filtering algorithm that
yields a statistically consistent estimate of the underlying param-
eters. We analyze the asymptotic covariance of these estimates to
quantify the effect of anonymization. Finally, we characterize the
anonymity of the observations in terms of the error probability of
the maximum aposteriori Bayesian estimator. Specifically using
Blackwell dominance of mean preserving spreads, we construct a
partial ordering of the noise densities which relates the anonymity
of the observations to the asymptotic covariance of the adaptive
filtering algorithm.

Index Terms—Adaptive filtering, Blackwell dominance, sym-
metric transformation, polynomial ring, algebraic Liapunov
equation, anonymization, unlabeled data.

I. INTRODUCTION

T
HE classical stochastic gradient algorithm operates on a

vector-valued observation process that is inputted to the

algorithm at each time instant. Suppose due to anonymization,

the observation at each time is a set (i.e., the elements are
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Fig. 1. Schematic setup comprising L stochastic systems. Given the se-
quence of anonymized observation sets ({y1(k), . . . , yL(k)}, k = 1, 2, . . .),
the aim is to estimate the underlying parameter set θo = {θo

1
, . . . θo

L
} of the

L systems.

unordered rather than a vector). Given these anonymized ob-

servation sets over time, how to construct a stochastic gradient

algorithm to estimate the underlying model parameter?

Fig. 1 shows the schematic setup comprising L simultane-

ous independent stochastic systems indexed by l = 1, . . . , L,

evolving over discrete time k = 1, 2, . . .. Each stochastic system

l is parametrized by true model θol ∈ R
D and generates observa-

tions yl(k) ∈ R
D given input signal D ×D dimensional matrix

ψ(k):

yl(k) = ψ(k) θol + vl(k), l ∈ [L]
defn
= {1, . . . , L} (1)

We assume that vl(k) ∈ R
D is an iid random sequence with

bounded second moment. We (the analyst) know (or can

choose) the input signal sequence (ψ(k), k = 1, 2, . . .). For con-

venience, assume that elements of (ψ(k), k = 1, 2, . . .) are zero

mean iid sequences of random variables. Thus the output of the

L stochastic systems at time k is the observation matrix

y(k) = [y1(k), . . . , yL(k)]
′ ∈ R

L×D

where a′ denotes transpose of matrix a.

The analyst observes at each time k the anonymized (unla-

beled) observation set

y(k) = σk(y(k)) = {y1(k), . . . , yL(k)} (2)

The anonymization map σk is a permutation over the set

{1, 2, . . . , L}. By anonymization1 we mean that the row indices

l of the matrix y(k) are hidden. Thus y(k) is an unordered

1For now we use anonymization to denote masking the index label l of the
stochastic process. Sec. I-C motivates this in terms of k-anonymity.
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set of L row vectors. The time dependence of σk emphasizes

that the permutation map operating on y(k) changes at each

time k.

Aim. The analyst only sees the anonymized observation set

y(k) at each time k. Given the time sequence of observation

sets (y(k), k = 1, 2, . . .), the aim of the analyst is to estimate

the underlying set of true parameters θo = {θo1, . . . , θoL} of the

L stochastic systems. Note that the analyst aims to estimate the

setθo; due to the anonymization (unknown permutation map),

in general, it is impossible to assign which parameter belongs

to which individual system.

We will discuss several applications of the above anonymized

model in Section I-C.

Remarks: (i) Another way of viewing the estimation objective

is: Given noisy measurements of unknown permutations of the

rows a matrix, how to estimate the elements of the matrix? Our

main result is to propose a symmetric transform framework that

circumvents modeling the permutations σk and is completely

agnostic to the probabilistic structure of σk.

(ii) The assumption that ψ(k) is a D ×D matrix in (1) is

without loss of generality. The classical least means squares

(LMS) algorithm involves scalar valued observations ol(k) =
ψ′(k)θol + el(k) where ψ(k) ∈ R

D is the known regression

vector, and el(k) is a noise process. If we stack D such scalar

observations into the vector yl(k), then we obtain (1).

(iii) The model reflects uncertainty associated with the ori-

gin of the measurements (arbitrary permutation) in addition to

their inaccuracy (additive noise). If we knew which observation

m was associated with which stochastic system l, then we can

estimate each θ∗l independently as the solution of the follow-

ing stochastic optimization problem: θ∗l = argminθE{(yl(k)−
ψ(k)θl)

2}. Then the classical LMS algorithm can be applied to

estimate each θ∗l recursively as:

θl(k + 1) = θl(k) + ε ψ(k)
(

yl(k)− ψ(k) θl(k)
)

(3)

where the fixed step size ε > 0 is a small positive constant.

(iv) Since the ordering of the elements of the set

{y1(k), . . . , yL(k)} is arbitrary, we cannot use the LMS

algorithm (3). If we naively choose a random permutation

of the set y(k) as the observation vector, and feed this

L-dimensional observation vector into L LMS algorithms

(3), then the estimates will not in general converge to θol ,

l = 1, . . . , L.

(v) Finally, the above formulation only makes sense in the

stochastic case. The deterministic case is trivial. If the noise

vl(k) = 0 and input matrix ψ(k) is invertible, then we need only

one observation y to completely determine the parameter set θo,

regardless of the permutation σk.

Stochastic Optimization With Anonymized Observations.

Circumventing Data Association

Broadly, there are two classes of methods for dealing with

unlabeled observation model (1), (2). One class of methods is

based on data association [2], [3], [4]. Data association deals

with the question: How can the observations from multiple

simultaneous processes be assigned to specific processes when

there is uncertainty about which observation came from which

process? Since the observations are anonymized wrt to the index

label l of the random processes, one approach is to construct a

classifier that assigns at each time k the observation yl(k) to a

specific process m. Because the number of process/observation

pairs grows combinatorially with the number of processes and

observations, a brute force approach to the data association

problem is computationally prohibitive. Data association is

studied extensively in Bayesian filtering for target tracking. In

this paper we are dealing with stochastic optimization instead

of Bayesian estimation, where we wish to preserve the convex

structure of the problem.

The second class of methods bypasses data association, i.e.,

labels are no longer estimated (assigned) to the anonymized ob-

servations. This paper focuses on using symmetric transforms

to bypass data association, as discussed next.

A. Main Idea. Symmetric Transforms & Adaptive Filtering

Since the assignment step in data association can destroy

the convexity structure of a stochastic optimization problem, a

natural question is: Can data association be circumvented in a

stochastic optimization problem? A novel approach developed

in the 1990s by Kamen and coworkers [5], [6] in the context

of Bayesian estimation, involves using symmetric transforms.

This ingenious idea circumvents data association; see also [7]

and references therein. In this paper we extend this idea of

symmetric transforms to stochastic optimization. Specifically,

we show that the symmetric transform approach preserves con-

vexity. Since [5] deals with Bayesian filtering for estimating

the state, convexity is irrelevant. In comparison, preservation

of convexity is crucial in stochastic optimization problems to

ensure that the estimates of a stochastic gradient algorithm

converge to the global minimum.

To explain our main ideas, suppose there are L= 3
scalar-valued random processes, so each observation yl(k) is

scalar-valued. Further for simplicity assume the input signal

ψ(k) = 1; so the observations are yl(k) = θol + vl(k). Given

the anonymized observation set y(k) = {y1(k), y2(k), y3(k)}
at each time k, how to estimate the parameters θo1, θ

o
2, θ

o
3?

Our main idea is to use the sety(k) to construct a pseudo-

measurement vector z(k) ∈ R
3. Suppressing the time de-

pendency (k) for notational convenience, we construct the

pseudo-measurements z1, z2, z3 via a symmetric transform as

follows:

z1 = S1{y1, y2, y3}= y1 + y2 + y3

z2 = S2{y1, y2, y3}= y1 y2 + y1 y3 + y2 y3

z3 = S3{y1, y2, y3}= y1 y2 y3 (4)

The key point is that the pseudo-observations zl are symmetric

in y1, y2, y3. Any permutation of the elements of {y1, . . . , y3}
does not affect zl. In this way, we have circumvented the data

association problem; there is no need to assign (classify) an

observation to a specific process. But we have introduced a

new problem: estimating θo using the pseudo-observations is no
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longer a convex stochastic optimization problem. To estimate

θo we minimize the second order moments to compute:

θ∗ = argmin
θ

{E{(z1 − (θ1 + θ2 + θ3))
2}

+ E{(z2 − (θ1θ2 + θ1θ3 + θ2θ3))
2}

+ E{(z3 − θ1θ2θ3)
2}} (5)

Clearly the multi-linear objective (5) is non-convex in θ1, θ2, θ3.

However, the problem is convex in the symmetric transformed

variables (denoted as λ below), and the original variables θ
can be evaluated by inverting the symmetric transform. We

formalize this as follows:

Result 1: (Informal version of Theorem 1) The global

minimum θ∗ of the non-convex objective (5) can be computed

in three steps:

(i) Given the observations y(k), compute the pseudo-

observations z(k) using (4).

(ii) Using these pseudo-observations, estimate the pseudo

parameters λ1 = θ1 + θ2 + θ3, λ2 = θ1θ2 + θ1θ3 + θ2θ3, λ3 =
θ1θ2θ3. Clearly (5) is a stochastic convex optimization prob-

lem in pseudo-parameters λ1, λ2, λ3. Let λ∗
1, λ

∗
2, λ

∗
3 denote the

estimates.

(iii) Finally, solve the polynomial equation s3 + λ∗
1s

2 +
λ∗
2s+ λ∗

3 = 0. Then the roots2 are θ∗. Computing the roots of

a polynomial is equivalent to computing the eigenvalues of the

corresponding companion matrix (Matlab command roots).

Put simply the above result says that while (5) is non-convex

in the roots of a polynomial, it is convex (quadratic) in the

coefficients of the polynomial! To explain Step (ii), clearly (5) is

convex in the pseudo-parameters λ1, λ2, λ3. We can straightfor-

wardly compute the global minimum in terms of these pseudo

parameters as λ∗
1 = E{z1}, λ∗

2 = E{z2}, λ∗
3 = E{z3}.

To explain Step (iii) of the above result, we use a crucial

property of symmetric functions. The reader van verify that the

following monic polynomial in variable s satisfies

(s+ θ1)(s+ θ2)(s+ θ3) = s3 + λ1s
2 + λ2s+ λ3

The above equation states that a monic polynomial with

pseudo-parameters λ1, λ2, λ3 as coefficients has the parame-

ters θ1, θ2, θ3 as roots of the polynomial. By the fundamental

theorem of algebra, there is a unique invertible map between

the coefficients of a monic polynomial and the set of roots of

the polynomial. As a result, we can first compute the global

minimum λ∗ of the above objective (5) (since it is convex in λ),

and then compute the unique parameter set θ∗, which is the set

of roots of the corresponding polynomial. Thus we have com-

puted the global minimum θ∗ of the non-convex objective (5).

To summarize, Result 1 gives a constructive method to estimate

the true parameter set θo given anonymized observations (albeit

in an extremely simplified setting).

B. Main Results and Organization

1) Our first main result in Section II, extends the above

simplistic formulation to a random input process ψ(k)
rather than a constant. To achieve this, Theorem 1

exploits the homogeneous property of the symmetric

2Strictly speaking θ1, θ2, θ3 are factors. The root is the negative of a factor.

transform S to construct a consistent estimator for θo.

In Theorem 1, we will construct a stochastic gradient

algorithm that generates a sequence of estimates λ(k)
that provably converges to λ∗ (since the problem is

convex). The roots of the corresponding polynomial

converge to θ∗.

2) Section III extends this symmetric transform approach

to the case where each anonymized observation yl(k) is

a vector in R
D where D ≥ 2 in (1). For this vector case,

three issues need to be resolved:

a) It is not possible to use the scalar symmetric

transform (4) element-wise on vector observations.

Naively applying the scalar symmetric transforms

element wise yields “ghost” parameters estimates

that are jumbled across the various stochastic

systems (see Section III-A.)

b) Since a scalar symmetric transform (or equivalently,

the one variable polynomial transform) is not useful,

we will use a two-variable polynomial transform

inspired by [8]. However, a new issue arises. In the

scalar observation case, we use the fundamental

theorem of algebra to construct a unique mapping

between the roots of a polynomial and the

coefficients of the polynomial. Unfortunately, in

general the fundamental theorem of algebra does

not extend to polynomials in two variables. The

key point we will exploit below is that the ring of

two-variable polynomials is a unique factorization

domain over the ring of one-variable polynomials.

This gives us a constructive method to extend

Theorem 1 to sets of vector observations (D ≥ 2).

This is the content of our main result Theorem 2.

c) The final issue is that of homogeneity of the sym-

metric transform. In the scalar case, the homogene-

ity property is crucial in the proof of Theorem 1. We

construct a suitable multidimensional generaliza-

tion for the vector case in order to prove Theorem 2.

3) Asymptotic Covariance of Adaptive Filtering Algorithm:

Section III-D analyzes the convergence and asymptotic

covariance of the adaptive filtering algorithm (28). In

the stochastic approximation literature [9], [10], the

asymptotic rate of convergence is specified in terms of

the asymptotic covariance of the estimates. We study the

asymptotic efficiency of the proposed adaptive filtering

algorithm. Specifically Section III-E addresses the

question:How much larger is the asymptotic covariance

due to use of the symmetric transform to circumvent

anonymization, compared to the classical LMS algorithm

when there is no anonymization? Section III-F compares

the asymptotic variance of the adaptive filter vs that

using sum of powers symmetric polynomials. Finally,

Section III-G analyzes how well the adaptive filtering

algorithm can track a time evolving true parameter

modeled as a Markov chain hyper-parameter.

4) Mixture Model for Noisy Matrix Permutations: We can

assign a probability law to the permutation process σ in

the anonymized observation model (1), (2) as follows:

y(k)
L×D

= σ(x(k))
L×L

θo

L×D

ψ(k)
D×D

+ σ(x(k)) v(k)
L×D

(6)
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Here σ(x(k)) denotes a randomly chosen L× L per-

mutation matrix that evolves according to some random

process x. So (6) is a probabilistic mixture model. The

matrix valued observations y(k) are random permutations

of the rows of matrix θoψ(k) corrupted by noise. Given

these observations, the aim is to estimate the matrix θo.

Note that there are L! possible permutation matrices σ.

In the context of mixture models, Sections IV and IV-C

present two results:

(i) Mean-preserving Blackwell dominance and

Anonymity of permutation process: Section IV

uses the error probability of the Bayesian posterior

estimate of the random permutation state x(k) in

(6) as a measure of anonymity. This is in line with

[11] where anonymity is studied in the context of

mutual information and error probabilities. We will

then use Blackwell dominance and a novel result in

mean preserving spreads to relate this anonymity

to the covariance of our proposed adaptive filtering

algorithms.

(ii) Recursive Maximum likelihood estimation of θo:

In Section IV-C, we discuss a recursive maximum

likelihood estimation (MLE) algorithm for the

parameters θo. This requires knowing the density of

v and the mixture probabilities (of course these can

be estimated, but given theL! state space dimension,

this becomes intractable). A more serious issue is

that the likelihood is not necessarily concave in θ.

In comparison, our symmetric function approach

yields a convex stochastic optimization problem.

C. Related Work & Applications

We already mentioned [5], [6], [7], [8] that use symmetric

polynomials for Bayesian state estimation to bypass data

association. The symmetric polynomials used in this paper

(see (4)) are called elementary symmetric polynomials [12]

and involve sums of products. There are an infinite number of

choices of symmetric polynomials; but the fundamental theo-

rem of symmetric polynomials states that any such symmetric

polynomial can be expressed as a polynomial function of

elementary symmetric polynomials [12], [13]. In the context

of approximate Bayesian state estimation, it has been shown

empirically [6] that using elementary symmetric polynomials

outperform other choices of symmetric polynomials such as

sum of powers symmetric polynomials, e.g. y1 + y2 + y3,

y21 + y22 + y23 , y31 + y32 + y33 . For the case of stochastic

optimization considered in this paper, proving what constitutes

the best symmetric transform (in terms of the asymptotic

covariance of the parameter estimate) is difficult. In Section

III-F we compare the asymptotic variance of an adaptive filter

using the sum of powers symmetric polynomials versus that

using elementary symmetric polynomials. Contrary to [6], we

prove that for certain parameter values, using the sum of powers

symmetric polynomials yields a smaller asymptotic variance.

The rest of this section discusses applications of observa-

tion model (1), (2). We classify these applications into two

types: (i) Due to sensing limitations, the sensor provides noisy

measurements from multiple processes, and there is uncertainty

as to which measurement came from which process and (ii)

examples where the identities of the processes generating the

measurements are purposefully hidden to preserve anonymity.

1. Sensing/Tracking Multiple Processes with Unlabeled Ob-

servations: The classical observation model comprises a sensor

(e.g. radar) that generates noisy measurements where, due to

sensing limitations, there is uncertainty in the origin of the mea-

surements. The observations are unlabeled and not assigned to

a specific target process [2], [14]. In this context, estimating the

underlying parameter θo of the target processes is identical to

our estimation objective. As mentioned earlier, data association

is widely studied in Bayesian estimation for target tracking. In

this paper we focus on stochastic optimization with anonymized

observations. For example, to estimate the underlying parame-

ters, or more generally adaptively optimize a stochastic system

comprising L parallel process.

Two related papers are [15], [16]. [15] constructs maximum

likelihood (ML) estimation algorithms for the signal amplitude

given unlabeled binary quantized samples, while [16] constructs

ML based localization algorithms in R
2. These papers compute

ML estimates of the permutation matrix σ and parameter θ.

Since the space of permutation matrices σ grows factorially

with L, [15] also discusses the novel idea of relaxing the

combinatorial optimization over σ to the continuous space of

doubly stochastic matrices. We use the symmetric transform

to bypass estimation of the permutation (label) and construct

adaptive filtering algorithms to estimate the parameters. Similar

to [15], [16], in Section IV-C, we construct recursive maxi-

mum likelihood algorithms to benchmark the performance of

our proposed adaptive filtering algorithms. We view our paper

as complementary to [15], [16]: ML estimation is statistically

efficient but suffers from the twin curses of modeling (the noise

density family is required to be known) and dimensionality

(number of permutation matrices grow factorially with L), In

contrast, the symmetric transform based algorithms we propose

are second order method of moment estimators (so not statis-

tically efficient) but are provably consistent with polynomial

(in L) computation cost.

2. Adaptive Estimation with k-Anonymity and l-diversity:

We now discuss examples where the labels (identities) of the

L processes are purposefully hidden. Anonymization of tra-

jectories arises in several applications including health care

where wearable monitors generate time series of data uniquely

matched to an individual, and connected vehicles, where loca-

tion traces are recorded over time.

The concept of k-anonymity3 (we will call this L-anonymity

since we use k for time) was proposed by [17]. It guarantees

that there are at least L identical records in a data set that are

indistinguishable. In our formulation, due to the anonymiza-

tion step (2), the identities (indexes) l of the L processes are

indistinguishable. More generally, in the model (1), (2), the

3Data anonymity is mainly studied under two categories: k-anonymity and
differential privacy. Differential privacy methods add noise to trajectory data
providing a provable privacy guarantee for the data set. Even though our
model has additive noise v (e.g. Laplacian noise in the numerical studies)
and this can be motivated in terms of differential privacy; we will not discuss
differential privacy in this paper.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2024 at 18:25:27 UTC from IEEE Xplore.  Restrictions apply. 



2764 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

identity l of each target itself can be a categorical vector

[l1, . . . , lN ]. For example if each process models GPS data

trajectories of individuals, the categorical data ψl(k) records

discrete-valued variables such as individuals identity, specific

locations visited, etc. To ensure L-anonymity, these categorical

vectors are all allocated a single vector, thereby maintaining

anonymity of the categorical data. Thus the analyst only sees

the anonymized observation set y(k).
Note that L-anonymity hides identity l but discloses attribute

information, namely the noisy observation set y(k). To enhance

L-anonymity, the attributes in L-anonymized data are often

M -diversified4 [18]: each equivalence class is constructed so

that there are at least M distinct parameters. In our notation,

if at least M processes have distinct parameter vectors θl,
l = 1, . . . ,M , then M -diversity of the attribute data is achieved.

In our formulation, the input signal matrices ψ(k) are the

same for all L processes. Thus the input matrices also preserve

L-anonymity. If the analyst could specify a different input

signal ψl to each system l, then the analyst can straightfor-

wardly estimate θol for each target process l, thereby breaking

anonymity; see Remark 6 after Theorem 1 below.

3. Product Sentiment given Anonymized Ratings: Reputation

agencies such as Yelp post anonymized ratings or products.

Market analysts aim to estimate the true sentiment of the group

of users given these anonymized ratings [19].

4. Evaluating Effectiveness of Teaching Strategy given

Anonymized Responses: A teacher instructs L students with

input signal ψ(k). Each student l has prior knowledge θol .

and responds to the teaching input with answer yl(k). The

identity l of the student is hidden from the teacher. Based on

these anonymous responses, the teacher aims to estimate the

students prior knowledge θo. See also [20] for other examples.

Anonymized trials are also used in evaluating the effectiveness

of drugs vs placebo.

II. ADAPTIVE FILTERING WITH SCALAR ANONYMIZED

OBSERVATIONS

For ease of exposition, we first discuss the problem of esti-

mating the true parameter θo when the observation yl(k) of each

process l is a scalar; so D = 1 in (1) and ψ(k) is a scalar. Since

there are L independent scalar processes in (1), the parameters

generating these L processes is θo = {θo1, . . . , θoL}.

Given the anonymized observation set y(k) = {y1(k),
. . . , yL(k)} at each time k defined in (2), our main idea

is to construct a pseudo-measurement vector z(k) ∈ R
L.

Suppressing the time dependency (k) for notational conve-

nience, we construct the L pseudo-measurements zl, l ∈ [L]
via a symmetric transform5 [12] as follows:

z = S{y} ⇐⇒ zl = Sl{y1, . . . , yL}
defn
=

∑

i1<i2<···<il

yi1 yi2 · · · yil , l ∈ [L] (7)

4The terminology used in the literature is “l-diversified”; but we use l for
the index of the target process.

5By symmetric transform Sl, we mean Sl{y1, . . . , yL}= Sl{P ·
{y1, . . . , yL}} for any permutation P of {y1, . . . , yL}. Thus while the
elements {y1, . . . , yL} are arbitrarily ordered, the value of Sl{·} is unique.
Eq. (8) gives a systematic construction of such symmetric transforms that is
uniquely invertible, see (14).

Recall our notation [L] = {1, . . . , L}. It is easily shown us-

ing the classical Vieta’s formulas [13], that the pseudo-

measurements zl, l ∈ [L] in (7) are the coefficients of the

following L-order polynomial in variable s:

S{y}(s) defn
=

L
∏

l=1

(s+ yl) = sL +
L
∑

l=1

zl s
L−l (8)

As an example, consider L= 3 independent scalar processes.

Then the pseudo-observations using (7) are given by (4). The

reader can verify that the pseudo-observations z1, z2, z3 are the

coefficients of the polynomial (s+ y1)(s+ y2)(s+ y3).
Note that each zl is permutation invariant: any permutation

of the elements of {y1, . . . , yL} does not affect zl. That is why

our notation above involves the set {y1, y2, . . . , yL}.

Remark: It is easily verified from (7) that the symmetric

transforms Sl is homogeneous of degree l: for any c ∈ R,

Sl{c θ1, . . . , c θL}= cl Sl{θ1, . . . , θL}, l ∈ [L] (9)

A. Symmetric Transform and Estimation Objective

Given the set valued sequence of anonymized observations,

y(1), y(2), . . . y(k), . . . generated by (1), our aim is to estimate

the true parameter set θo = {θo1, . . . , θoL}. To do so, we first

construct the pseudo measurement vectors z(1), z(2), . . . , z(k)
via (7). Denoting θ = {θ1, . . . , θL}, our objective is to estimate

the set θ∗ = {θ∗1 , . . . , θ∗L} that minimizes:

θ∗ = argmin
θ

∑

l∈[L]

E |zl − Sl

{

ψ θ1, ψ θ2, . . . , ψ θL
}

|2

where zl = Sl

{

ψ θo1 + v1, . . . , ψ θoL + vL
}

(10)

Recall the symmetric transform Sl is defined in (7). Finally,

define the symmetric transforms on the model parameters as

λ= S{θ} ⇐⇒ λl = Sl{θ1, . . . , θL}, l ∈ [L]. (11)

Note that λ= [λ1, . . . , λL]
′ is an L-dimension vector whereas

θ is a set with L (unordered) elements.

From (10), we see that θ∗ is a second order method of

moments estimate of θo wrt pseudo observations. Importantly,

this estimate is independent of the anonymization map σ.

B. Main Result. Consistent Estimator for θo

We are now ready to state our main result, namely an adap-

tive filtering algorithm to estimate θo given anonymized scalar

observations. The result says that while objective (10) is non-

convex in θ, we can reformulate it as a convex optimization

problem in terms of λ defined in (11). The intuition is that

the objective (10) is non-convex in the roots of the polynomial

(namely, θ), but is convex in the coefficients of the polynomial

(namely, λ); and by the fundamental theorem of algebra there

is a one-to-one map from the coefficients λ to the roots θ.

Therefore, by mapping observations to pseudo observations

(coefficients of the symmetric polynomial), we can construct

a globally optimal estimate of (10).

Theorem 1: Consider the sequence of anonymized obser-

vation sets (y(k), k ≥ 1) generated by (1) and (2), where ψ(k)
is a known iid scalar sequence. Then
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1) The objective (10) can be expressed as L decoupled con-

vex optimization problems in terms of λ defined in (11):

min
λl

E|zl − ψlλl|2 where

zl(k) =
(

ψ(k)
)l
λo
l + wl(k) (12)

The process w(k) is defined explicitly in (1) below.

2) The global minimizer θ∗ of objective (10) is consistent

in the sense that θ∗ = θo.

3) With pseudo observations z(k) = S{y(k)} defined in (7),

consider the following bank of L decoupled adaptive fil-

tering algorithms operating on z(k): Choose λ(0) ∈ R
L.

Then for l ∈ [L], update as

λl(k + 1) = λl(k) + ε ψl(k)
(

zl(k)− ψl(k)λl(k)
)

θ(k + 1) =Re
(

S−1(λ(k + 1))
)

(13)

Here S−1 is defined in (14) and Re denotes the real part

of the complex vector. The estimates θ(k) converge in

probability and mean square to θ∗ (see Theorem 3).

Discussion: 1. Theorem 1 gives a tractable and consis-

tent method for estimating the parameter set θo of the L
stochastic systems given set valued anonymized observations

y(1), y(2), . . .. Statement 1 shows that the estimator is equiva-

lent to solving L decoupled convex optimization problems. We

emphasize that since the observations y(k) are sets (rather than

vectors), the ordering of the elements of θo cannot be recovered;

Statement 2 asserts that the set-valued estimate θ∗ converges to

θo. Statement 3 gives an adaptive filtering algorithm (13) that

operates on the pseudo observation vector z(k). Applying S−1

to the estimates λ(k) generated by (13) yields estimates θ(k)
that converge to the global minimum θ∗. Since by assumption

θo ∈ R
L, the second step of (13) chooses the real part of the

possibly complex valued roots.

2. An important property of the symmetric operator S is

that it is uniquely invertible since any L-th degree polynomial

has a unique set of at most L roots. Indeed, given λ= S{θ},

θ = S−1(λ) are the unique set of roots {θ1, . . . , θL} of the

polynomial with coefficients λl, l ∈ [L], that is,

θ = S−1(λ) ⇐⇒ sL +

L
∑

l=1

λl s
l−1 =

L
∏

l=1

(s+ θl) (14)

Note that S−1(·) maps the vector λ to unique set θ. Recall that

S{·} maps set θ to unique vector λ. Computing the roots of a

polynomial is equivalent to computing the eigenvalues of the

companion matrix e.g., Matlab command roots.

3. Typically the roots of a polynomial can be a sensitive

function of the coefficients. However, this does not affect al-

gorithm (13) since it operates on the coefficients only. The

roots are not fed back iteratively into algorithm (13). In Section

III-D and Theorem 1 of the supplementary document, we will

quantify this sensitivity in terms of the asymptotic covariance

of algorithm (13).

4. The adaptive filtering algorithm (13) uses a constant step

size; hence it converges weakly (in distribution) to the true

parameter θo [10]. Since we assumed θo is a constant, weak

convergence is equivalent to convergence in probability. Later

we will analyze the tracking capabilities of the algorithm when

θo evolves in time according to a hyper-parameter.

5. A stochastic gradient algorithm operating directly on

objective (10) is

θ(k + 1) = θ(k)− ε∇θ

∑

l∈[L]

∣

∣zl(k)

− Sl

{

ψ(k) θ1(k), . . . , ψ(k) θL(k)
}
∣

∣

2
(15)

We show via numerical examples in Section V that objec-

tive (10) has local minima and stochastic gradient algorithm

(15) can get stuck at these local minima. In comparison, the

formulation involving pseudo-measurements yields a convex

(quadratic) objective and algorithm (13) provably converges

to the global minimum. There is also another problem with

(15). If the initial condition θ(0) is chosen with equal elements,

then since the gradient ∇θ is symmetric (wrt y and θ), all the

elements of the estimate θ(k) have equal elements at each time

k, regardless of the choice of θo, and so algorithm (15) will not

converge to θo.

6. Anonymization of input signal ψ(k): We assumed that

the input signal matrices ψ(k) are the same for all L pro-

cesses. If the analyst can specify a different input signal ψl

to each system l, then the analyst can estimate θol for each

target process l via classical least squares, thereby breaking

anonymity as follows: Minimizing E{
∑

l∈[L] yl − ψlθl}2 =
E{z1 −

∑

l∈[L] ψlθl}2 wrt θl yields the classical least squares

estimator. Thus the analyst only needs the pseudo observations

z1(k) =
∑

l yl(k) to estimate θol and thereby break anonymity.

In our formulation, since the regression input signals ψl are

identical, minimizing E{z1 − ψ
∑

l∈[L] θl}2 only estimates the

sum of parameters, namely
∑

l θ
o
l ; the individual parameters

are not identifiable. This is why we require pseudo-observations

z1, . . . , zL to estimate the elements θol , l ∈ [L].

III. ADAPTIVE FILTERING GIVEN VECTOR ANONYMIZED

OBSERVATIONS

We now consider the case D ≥ 2, namely, for each process

l ∈ [L], the observation yl(k) in (1) is a D-dimensional vector.

We observe the (unordered) set y(k) = {y1(k), . . . , yL(k)} at

each time k. That is, we do not know which observation vec-

tor yl(k) came from which process l. Given the anonymized

observation set (2), the aim is to estimate θo ∈ R
L×D.

Remark. For each observation vector yl ∈ R
D, let yli denote

the i-th component. Note that the elements of each vector yl
are ordered, namely yl = [yl1, . . . , ylD]′, but the first index l
(identity of process) is anonymized yielding the observation set

y = {y1, . . . , yL}.

As mentioned in Section I, for this vector case, three issues

need to be resolved: First, naively applying the scalar symmetric

transforms element wise yields “ghost” parameter estimates that

are jumbled across the various stochastic systems. (We discuss

this in more detail below.) Second, we need a systematic way

to encode the observation vectors via a symmetric transform

that is invertible. We will use a two-variable polynomial trans-

form. However, a new issue arises; in general the fundamental

theorem of algebra, namely that an L-th degree polynomial has
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up to L complex valued roots, does not extend to polynomials

in two variables. We will construct an invertible map for two-

variable polynomials. This gives us a constructive method to

extend Theorem 1 to vector observations D ≥ 2. The final issue

is that of homogeneity of the symmetric transform. Recall in

the scalar case, the homogeneity property (9) was crucial in the

proof of Theorem 1. We need to generalize this to the vector

case. The main result (Theorem 2 below) addresses these three

issues.

A. Symmetric Transform for Vector Observations

This section constructs the symmetric transform S for vector

observations. The construction involves a polynomial in two

variables, s and t. It is convenient to first define the symmetric

transform for an arbitrary set α= {α1, . . . , αL} where αl ∈
R

D. The symmetric transform is defined as

S{α}(s, t) =
L
∏

l=1

(

s+

D
∑

i=1

αli t
i−1

)

= sL +
L
∑

l=1

Ml
∑

m=1

Slm{α} sl−1 tm−1

where Ml
defn
= (L− l)(D − 1) +D (16)

So the symmetric transform is the array of polynomial coeffi-

cients Slm{α} of the above two variable polynomial. We write

this notationally as

S{α}= [Slm{α}, m= 1, . . . ,Ml, l ∈ [L]]

When D = 1, we see that the symmetric transform (16) special-

izes to (7).

Another equivalent way of expressing the above symmetric

transform involves convolutions: The Ml dimensional vector

Sl{α}= [Sl1{α}, . . . , SlMl
{α}]′ satisfies

Sl{α}=
∑

i1<i2<···<il

αi1 ⊗ αi2 ⊗ · · · ⊗ αil , l ∈ [L] (17)

where ⊗ denotes convolution. Eq. (17) serves as a constructive

computational method to compute the symmetric transform of

a set α.

With the above definition of the symmetric transform, con-

sider the observation set y(k) = {y1(k), . . . , yL(k)} at each

time k. We define the pseudo-observations as

z(k) = S{y(k)} (18)

Example. To illustrate the polynomial S{y}(s, t), consider

L= 2 independent processes each of dimension D = 2. Then

with y1 = [y11, y12]
′, y2 = [y21, y22]

′, the symmetric polyno-

mial (16) in variables s, t is

S{y}(s, t) = (s+ y11 + y12t) (s+ y21 + y22t) (19)

Then the pseudo observations zlm specified by the RHS of (16)

are the coefficients of this polynomial, namely

z11 = y11 y21, z12 = y11 y22 + y12 y21, z13 = y12 y22,

z21 = y11 + y21, z22 = y12 + y22 (20)

In the convolution notation (17), the pseudo-observations are

z1 = [z11, z12, z13]
′ = y1 ⊗ y2, z2 = [z21, z22]

′ = y1 + y2

We see from this example that the pseudo-observations (20)

generated by the vector symmetric transform (16) is a superset

of the scalar symmetric transforms applied to each component

of the vector observation. Specifically pseudo-observations for

the first elements of y1 and y2, namely y11, y21 are z11, z21.

Similarly pseudo-observations or the second elements of y1
and y2, namely y12, y22 are z13, z22. But z12 in (20) is the

extra pseudo-observation that cannot be obtained by simply

constructing symmetric transforms of each individual element.

In Section III-A below, we will discuss the importance of the

above vector symmetric transform compared to a naive appli-

cation of scalar symmetric transform element-wise.

Why a Naive Element-Wise Symmetric Transform Is not

Useful: Instead of the vector symmetric transform defined in

(16), why not perform the scalar symmetric transform on each

of the D components separately? To make this more precise,

let us define the naive vector symmetric transform which uses

the scalar symmetric transform Sl, l ∈ [L] in (8) as follows:

z̄lj = S̄lj{y}= Sl{y1j , . . . , yLj}, j ∈ {1, . . . , D} (21)

This is simply the scalar symmetric transform S{y1j , . . . , yLj}
applied separately to each component j = 1, . . . , D.

In analogy to (10), we can define the estimation objective in

terms of the naive vector transform as

θ̄∗ = argmin
θ

∑

l∈[L]

D
∑

j=1

E|z̄lj − S̄lj{ψθ1, ψθ2, . . . , ψθL}|2

(22)

The naive symmetric transform S̄ in (21), (22) loses or-

dering information of the vector elements; for example given

two processes (L= 2) each of dimension D = 2, S̄ does not

distinguish between observation set {[y11, y12], [y21, y22]} and

the observation set {[y11, y22], [y21, y12]}. It follows that θ̄∗

in (22) is not a consistent estimator for θo; see remark fol-

lowing proof of Statement 4 of Theorem 2. Specifically, if

the true parameters are θo = {[θo11, θo12], [θo21, θo22]}, then the

estimates can converge to the parameters of the “ghost pro-

cesses” {[θo11, θo22], [θo21, θo12]}. That is, the parameter estimates

get jumbled between the stochastic systems. Such “ghost” target

estimates are common in data association in target tracking, and

we will demonstrate a similar phenomenon in numerical exam-

ples of Section V when using the naive symmetric transform

on anonymized vector observations.

In comparison, the vector symmetric transform (16) system-

atically encodes the observations with no information loss. For

example in the D = 2, L= 2 case, the extra pseudo-observation

z12 in (19) allows to distinguish between these observation

sets. (See the Appendix, available online, for the example

D = 3, L= 3.) To summarize, the vector symmetric transform

is fundamentally different to the scalar symmetric transform.

We will use the vector symmetric transform as a consistent

estimator for θo below.
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B. Main Result. Consistent Estimator for θo

We first formalize our estimation objective based on the

anonymized observations. Then we present the main result.

Denoting θ = {θ1, . . . , θL}, our objective is to estimate the

set θ∗ = {θ∗1 , . . . , θ∗L} that minimizes the following expected

cost (where ‖ · ‖F denotes the Frobenius norm): Compute

θ∗ = argmin
θ

E‖S{y1, . . . , yL} − S{ψ θ1, ψ θ2, . . . , ψ θL}
∥

∥

2

F

(23)

Recall that θl ∈ R
D for each l ∈ [L]. For notational convenience

we use {ψθ} to denote the set {ψ θ1, ψ θ2, . . . , ψ θL
}

. Also y =
{y1, . . . , yL} is the (anonymized) observation set.

Remark. As in the scalar case, we note that θ∗ in (23) is a

second order method of moments estimate of θo wrt pseudo

observations, independent of anonymization map σ.

We are now ready to state our main result, namely an adap-

tive filtering algorithm to estimate θo given the anonymized

observation vectors. As in the scalar case, the main idea is

that we have a convex optimization problem in the symmetric

transform variables (denoted as λ below), and the variables θ
can be evaluated by inverting the symmetric transform.

Theorem 2: Consider the sequence of anonymized observa-

tion sets, (y(k), k ≥ 1) generated by (1), (2), where ψ(k), k ≥ 1
is a known iid sequence of D ×D matrices. Then

1) The symmetric transform polynomial S{y}(s, t) in (16)

can be decomposed into signal and noise polynomials as

S{y}(s, t) = S{ψθo}(s, t) + w(s, t) (24)

where w(s, t) is a noise polynomial whose coefficients

are zero mean. (We define w(s, t) in (5) of the supple-

mentary document.)

2) The symmetric transform S has the following homogene-

ity property: With λlm
defn
= Slm{θ}, then

Slm{ψθ}=
∑

n∈Ml

λln Sln{ψl,m}, l ∈ [L] (25)

Here for λln =
∑

i1≤i2≤···≤il
θ1i1 θ2i2 · · · θlil , n ∈Ml

where Ml is defined in (16), we construct ψ,m as

the following D × l matrix of elements from input

matrix ψ:

ψl,m defn
=

⎡

⎢

⎢

⎢

⎣

ψi11 ψi21 · · ·ψil1

ψi12 ψi22 · · ·ψil2

...
... · · ·

...

ψi1D ψi2D · · ·ψilD

⎤

⎥

⎥

⎥

⎦

(26)

3) With pseudo observations z = S{y} defined in (7) and

ψl,m defined in (26), the objective (23) can be expressed

as L decoupled convex optimization problems:

[λ∗
l1, . . . , λ

∗
lMl

] = argmin
λl1,...,λlMl

∑

m∈Ml

E|zlm

−
∑

n∈Ml

λln Sln{ψl,m}|2 l ∈ [L]

θ∗ = S−1(λ∗) (27)

4) The global minimizer θ∗ of objective (23) is consistent

in the sense that θ∗ = θo.

5) With pseudo-observations z(k) = S{y(k)} computed by

(17), consider the following L decoupled adaptive fil-

tering algorithms operating on quadratic objective (27):

Choose initial condition λlm(0) ∈ R arbitrarily. Update

each element of λlm, m ∈Ml, l ∈ [L] as

λlm(k + 1) = λlm(k) + ε Slm(ψl,m(k))

×
∑

m∈Ml

(

zlm(k)

−
∑

n∈Ml

λln(k)Sln{ψl,m(k)}
)

,

θ(k + 1) =Re
(

S−1(λ(k + 1))
)

(28)

Here ε > 0 is the algorithm step size, S−1 is evaluated

via (31), (32), ψl,m is constructed in (26), and Sln{·} is

computed in (17). Then the estimates θ(k) converge in

probability and mean square to θ∗ (see Theorem 3).

C. Discussion of Theorem 2

Despite the complex notation, the important takeaway from

(25) is that Slm{ψθ} is a linear function of λln = Slm{θ}.

Therefore the objective (23) becomes a convex (quadratic) op-

timization problem (27). Thus, similar to the scalar case in

Theorem 1, we have converted a non-convex problem in the

roots of a two-dimensional polynomial to a convex problem in

the coefficients of the polynomial. Since the map between the

set of roots and vector of coefficients roots is uniquely invert-

ible, the optimization objectives (23) and (27) are equivalent.

Homogeneity of Symmetric Transform: The fundamental

theorem of symmetric functions states that any symmetric poly-

nomial can be expressed as a polynomial in terms of elementary

symmetric functions [21], Theorem 4.3.7. However, Theorem 2

exploits the linear map ψθ to obtain the specific result (25),

namely Slm{ψθ}=∑

n∈Ml
Sln{θ}Sln{ψl,m}. This qualifies

as a vector version of the homogeneity property (9) in the scalar

case. The scale factor is Sln{ψl,m}.

As a simple example of evaluating the matrix ψl,m in (26),

suppose L= 3, D = 3. Then since λ11 = θ11θ21θ31, it follows

from (26) and (16) that

ψ1,1 =

⎡

⎣

ψ11 ψ11 ψ11

ψ12 ψ12 ψ12

ψ13 ψ13 ψ13

⎤

⎦, S11{ψ1,1}= ψ3
11, (29)

S12{ψ1,1}= 3ψ2
11ψ12. Also, since λ12 = θ11θ21θ32 +

θ11θ22θ31 + θ12θ21θ31, it follows from that

ψ1,2 =

⎡

⎣

ψ11 ψ11 ψ21

ψ12 ψ12 ψ22

ψ13 ψ13 ψ23

⎤

⎦, S11{ψ1,2}= ψ2
11 ψ21,

S12{ψ2,1}= ψ2
11ψ12 + ψ11ψ12ψ21 + ψ12ψ11ψ21 (30)

S Is Uniquely Invertible: The fundamental theorem of al-

gebra, namely that an L-th degree polynomial has up to L
complex valued roots, does not, in general, extend to polyno-

mials in two variables. However, the above special construction
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which encodes the observations as coefficients of powers of t,
ensures that S is a uniquely invertible transform between the

set of observations and matrix of polynomial coefficients. This

is because the ring F (s, t) of two-variable polynomials is a

unique factorization domain over the ring F (s) of one-variable

polynomials [13], Theorem 2.25.

Evaluating S−1: Given the observations y, the transform

S{y} computes the pseudo-observations via convolution (17).

We now discuss how to compute θ = S−1(λ) given λ. This is

required in (27) to compute θ∗ and also in the adaptive filtering

algorithm (28).

As in the scalar case (8), given λ11, . . . , λL1, we first com-

pute θ11, . . . , θL1 by solving for the roots of the polynomial:

L
∏

l=1

(s+ θl1) = sL +

L
∑

l=1

λl1 s
L−l (31)

Next, solve for the remaining elements of θlm iteratively over

m= 2, 3, . . . , D. For each m≥ 2, given λ1m, . . . , λLm and

{θ1n, . . . , θLn}, n= 1, . . . ,m− 1, we solve the following lin-

ear system of equations6 for θ1m, . . . , θLm:

S1m{θ1m, . . . , θLm}= λ1m

S2m{θ1m, . . . , θLm}= λ2m

...

SLm{θ1m, . . . , θLm}= λLm (32)

By the property of elementary symmetric polynomials, the lin-

ear system (32) has full rank.

To summarize, computing S−1 for the vector case requires

solving a single polynomial equation (as in the scalar case) and

then solving D − 1 additional linear algebraic equations.

D. Convergence of Adaptive Filtering Algorithm and Asymp-

totic Efficiency

This section analyzes the convergence and asymptotic covari-

ance of the adaptive filtering algorithm (28). The convergence is

typically studied via two approaches: mean square convergence

and weak convergence (since θo is assumed to be a constant,

weak convergence to θo is equivalent to convergence in prob-

ability). We refer to the comprehensive books [9], [10], [22]

for details. Below we state the main convergence result (which

follows directly from these references). More importantly, we

then discuss the asymptotic efficiency of the adaptive filtering

algorithm (28). Specifically we address the question: How much

larger is the asymptotic covariance with the symmetric trans-

form and anonymized observations, compared to the classical

LMS algorithm with no anonymization?

The algorithm (28) can be represented abstractly as

λ(k + 1) = λ(k) + εΨ(k)
(

z(k)−Ψ(k)λ(k)
)

(33)

where Ψ(k) is the block diagonal matrix diag(Slm, l ∈ [L],
m ∈Ml).

6It follows from the definition that Sim is linear in θ1m, . . . , θLm with
linear coefficients specified by {θ1n, . . . , θLn}, n= 1, . . . ,m− 1.

Thus far we assumed that Ψ(n) and v(n) are iid processes.

The assumption below significantly generalizes this to mixing

and martingale processes. Let Fk be the σ-algebra generated

by {Ψ(n), v(n), n < k, λ(n), n≤ k}, and Ek denote the con-

ditional expectation wrt Fk. We assume:

(A) The signal {Ψ(k), v(k)} is independent of {λ(k)}.

{Ψ(k), v(k)} is a sequence of bounded signals and there

is a symmetric positive definite matrix Q such that

Q=E[Ψ(k)Ψ′(k)],

∣

∣

∞
∑

n=k

Ek[Ψ(n)Ψ′(n)−Q]
∣

∣≤K,

∣

∣

∞
∑

n=k

EkΨ(k)v(n)
∣

∣≤K, (34)

Alternatively instead of boundedness, we can

assume {Ψ(k), v(k)} is a sequence of martingale

difference signals satisfying E|Ψ(k)|4+∆ <∞ and

E|Ψ(k)v(k)|2+∆ <∞ for some ∆> 0.

Assumption A includes correlated mixing processes [23],

p.345 where the remote past and distant future are asymp-

totically independent. The boundedness is a mild restriction,

for example, one may consider truncated processes. Practical

implementations of stochastic gradient algorithms use a projec-

tion: when the estimates are outside a bounded set H , they are

projected back to the constrained set H . [10] has extensively

discusses such projection algorithms. For unbounded signals,

(A) allows for martingale difference sequences which includes

iid signals as a special case.

Theorem 3: ([9], [10]). Consider the adaptive filtering

algorithm (33). Assume (A). Then

1) (Mean Squared convergence). For sufficiently large k, the

estimates λ(k) from adaptive filtering algorithm (28) have

mean square error E{‖λ(k)− λo‖2}=O(ε).
2) (Convergence in probability) limε↓0 P (supt≤T |λε(t)−

λo|> η) = 0 as T →∞ for all η > 0. Here λε(t) =
λ(k), t ∈ [εk, (ε+ 1)k) denotes the continuous-time in-

terpolated process constructed from λ(k).
3) (Asymptotic Normality). As k →∞, for small ε, the es-

timates λ(k) from algorithm (28) satisfy the central limit

theorem (where
D−→ denotes convergence in distribution)

ε−1/2
(

λ(k)− λo
) D−→N

(

0,Σ
)

(35)

Here the asymptotic covariance Σ satisfies the algebraic

Lyapunov equation [[9], pp107]

QΣ+ ΣQ=R

where R
defn
=

∞
∑

k=−∞

Cov(Ψ(k)w(k),Ψ(0)w(0)) (36)

where w is defined in (24), (5).

4) (Asymptotic Covariance of Estimates). Therefore, the

estimates θ(k) = S−1(λ(k)) satisfy

ε−1/2
(

θ(k)− θo
) D−→N(0, Σ̄),

Σ̄ =
(

∇S−1(λo)
)′
Σ∇S−1(λo). (37)
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Remarks. (i) Statements 1,2 and 3 of the above result are

well known [10]. The expression for Σ̄ in (37) follows from

the “delta-method” for asymptotic normality [24]. The delta-

method requires that S−1 is continuously differentiable. This

holds since the solutions of a polynomial equation are contin-

uously differentiable in the coefficients of the polynomial.

(ii) Recall θ(k) = S−1(λ(k)) is a set (and not a vector). The

estimated sets θ(k) = S−1(λ(k)) inherit the convergence prop-

erties of Statements 1 and 2 of vector λ(k). That is, σk(θ(k))
converges to θo in mean square and in probability, for some

sequence of permutations σk on {1, . . . , L}. Similarly, we in-

terpret (37) after ordering the elements of θ(k) in some specific

way. In the scalar case, we can impose that the elements are

ascending ordered, namely, θ1 ≤ θ2 · · · ≤ θL. For the vector

case, θ can be ordered such that the first elements of the

parameter vector of the L processes are in ascending order,

θ11 ≤ θ21 ≤ · · · ≤ θL1.

(iii) In the stochastic approximation literature [9], [10], the

asymptotic rate of convergence is specified in terms of the

asymptotic covariance of the estimates, namely Σ in (35) and

Σ̄ in (37). We will focus on evaluating Σ and Σ̄ below.

E. Loss in Efficiency due to Anonymity

We now evaluate the asymptotic covariance matrices Σ in

(35) and Σ̄ in (37) to quantify the asymptotic rate of conver-

gence of adaptive filtering algorithm (28). To obtain insight,

we consider the scalar observation case D = 1. So Σ and Σ̄
are L× L covariance matrices. (Recall there are L anonymized

processes.) We assume that the zero mean noise process v(k) is

iid across the L processes with Var{vl(k)}= σ2, and choose

the regression input matrix as ψ(k)∼N(0, 1) in (1). We em-

phasize that these assumptions are not required for convergence,

but only to obtain a closed form expression for the asymptotic

covariance. Using (13)

Q= diag[Qll, l ∈ [L]],

where Qll =Cov(ψ2l) = (2l − 1)(2l − 3) · · · 1 (38)

Next define the scalar Rl =Cov[ψl(k)(zl(k)− ψl(k)λl)] eval-

uated at λo
l . We have

Rl =Cov(ψl(ψl(λo
l − λl) + wl))|λ=λo =Cov(ψlwl) (39)

These can be evaluated using the expression for w in (1) of the

supplementary document.

Finally from Theorem 1 in the Appendix (available online),

the sensitivity of the l-th polynomial root θl wrt m-th coefficient

λm is

∇S−1(λ) =

[

dθl
dλm

]

, where
dθl
dλm

=
(−1)m+1 (−θl)

L−m

dS{θ}(−θ)
dθ |θ=θl

(40)

The above formula assumes that the polynomial does not

have repeated roots; otherwise the sensitivity is infinite since

dS(−θ)/dθ = 0 at a repeated root.

With the above characterization of Q,R,∇S−1(λ), we now

evaluate Σ and Σ̄ explicitly for L= 2.

Lemma 1: Consider the anonymized model (1), (2) with

D = 1, L= 2. Assume the zero mean noise process v(k) is

iid across the L processes with Var{vl(k)}= σ2, and ψ(k)∼
N(0, IL×L). Then the asymptotic covariance Σ̄ (see (37)) of

the estimates θ(k) generated by algorithm (13) satisfies

Tr(Σ̄) =
σ2

(

2σ2 + 9 (θo1
2 + θo2

2)− 6 θo1 θ
o
2

)

2 (θo1 − θo2)
2 (41)

Remark. We now compare (41) with the classical LMS algo-

rithm operating on observations that are not anonymized. The

non-anonymized case is equivalent to 2 independent LMS algo-

rithms each estimating a scalar parameter with noise variance

σ2. The asymptotic covariance of the LMS algorithm for L= 2
is Tr(Cov(LMS)) = σ2. So for L= 2, at best, the adaptive

filtering algorithm (13) with anonymized observations is 4.5

times less efficient than LMS. This is because the effective noise

process w (24) due to the symmetric transform results in higher

covariance (R in (42) below) compared to the noise covariance

σ2I2×2 assumed in the LMS algorithm.

Proof: From (38), Q=

[

1 0
0 3

]

. Also (39) yields

R=Cov

[

ψ(v1 + v2)
ψ2(ψv2θ

o
1 + ψv1θ

o
2 + v1v2)

]

(42)

Finally (40) yields ∇S−1(λ) =

[

θo
1

θo
1
−θo

2

θo
2

θo
2
−θo

1

1
θo
2
−θo

1

1
θo
1
−θo

2

]

. Then evalu-

ating Σ= 1
2Q

−1 R, and Σ̄ using (37) yields (41).

F. Asymptotic Variance. Elementary Symmetric vs Sum of

Powers Symmetric Polynomials

The symmetric transforms used in this paper to bypass data

association are based on elementary symmetric polynomials.

For example, for L= 2, the pseudo-observations (7) gener-

ated by the elementary symmetric polynomials are y1 + y2 and

y1y2. Naturally, other choices of symmetric polynomials can

be used; for example, sum of powers. For L= 2, the pseudo-

observations generated by the sum of powers symmetric poly-

nomials are y1 + y2 and y21 + y22 . For Bayesian state estima-

tion [6] shows empirically that using elementary symmetric

polynomials for the symmetric transform yields more accurate

estimates than sum of power symmetric polynomials. Below we

show that for stochastic optimization (adaptive filtering), this

claim is not true: for certain parameter values, using the sum

of powers symmetric polynomials yields a smaller asymptotic

variance.

Lemma 2: Consider the anonymized model (1), (2) with

D = 1, L= 2. Assume the zero mean noise process v(k) is

iid across the L processes with Var{vl(k)}= σ2, and ψ(k)∼
N(0, IL×L). Then the asymptotic covariance Σ̄p of the esti-

mates θ(k) generated by an adaptive filtering algorithm with

sum-of-powers pseudo-observations satisfies

Tr(Σ̄p) =
σ2

(

4σ2 + 8 (θo1
2 + θo2

2)− 8 θo1 θ
o
2

)

2 (θo1 − θo2)
2 (43)

Recall (Theorem 3) that the asymptotic variance (trace of

covariance) measures the asymptotic convergence rate of an
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adaptive filtering algorithm. Comparing (41) with (43), we see

that the asymptotic variance of the adaptive filter using the

sum-of-powers polynomials is smaller than that of elementary

polynomials if |θo1 + θo2|>
√
2σ.

The fundamental theorem of symmetric polynomials [12]

states that any symmetric polynomial (e.g. sum of powers) can

be expressed as a polynomial function of elementary symmetric

polynomials. This is why we use elementary symmetric poly-

nomials in this paper for maximum generality. Determining the

class of symmetric polynomials that yield the smallest asymp-

totic variance is an open problem.

G. Analysis for Tracking a Markov Hyper-Parameter

So far we assumed that the true parameter θo is constant.

An important property of a constant step size adaptive filtering

algorithm (28) is the ability to track a time evolving true param-

eter. Suppose the true parameter θo(k) evolves according to a

slow Markov chain with unknown transition matrix. How well

does the adaptive filtering algorithm track (estimate) θo(k)? Our

aim is to quantify the mean squared tracking error.

(B) Suppose that exists a small parameter μ > 0 and θo(k) is

a discrete-time Markov chain, whose state space is

Ml = {a1, . . . , am}, ai ∈ R
L×D, i= 1, . . . ,m, (44)

and whose transition probability matrix Pμ = I + μQ.

where I is an R
m×m identity matrix and Q= (qij) ∈

R
m×m is an irreducible generator (i.e., Q satisfies qij ≥ 0

for i �= j and
∑m

j=1 qij = 0 for each i= 1, . . . ,m) of a

continuous-time Markov chain.

The time evolving parameter θo(k) is called a hyperparam-

eter. Although the dynamics of the hyperparameter θo(k) are

used in our analysis below, the implementation of the adaptive

filtering algorithm (13), does not use this information.

Define the tracking error of the adaptive filtering algorithm

(28) as λ̃(k)
defn
= λ(k)− λo(k) and θ̃(k)

defn
= θ(k)− θo(k) The

aim is to determine mean squared bounds on the tracking error

λ̃(k) and therefore θ̃(k).
Theorem 4: Under (A), (B), for sufficiently large k,

E|λ̃(k)|2 =O(ε+ μ+ μ2/ε) (45)

Therefore, choosing μ=O(ε), the mean squared-tracking error

is E|λ̃(k)|2 =O(ε) and so E|θ̃(k)|2 =O(ε)
The proof follows from [25]. The theorem implies that even

if the hyperparameter θo evolves on the same time scale (speed)

as the adaptive filtering algorithm, the algorithm can track the

hyperparameter with mean squared error O(ε).

IV. MIXTURE MODEL FOR ANONYMIZATION

This section uses a Bayesian interpretation of the anonymity

map σ in (2) to present a performance analysis of the adaptive

filtering algorithm (28). Thus far we have assumed nothing

about the permutation (anonymization) process σ in (2). The

symmetric transform based algorithms proposed in Sections

II and III are oblivious to any assumptions on σ. Below we

formulate a probabilistic model for the permutation process σ.

Based on this probabilistic model, we address two questions:

1) How do noisy observations of the permutation process

affect anonymity of the identity of the target processes?

We will consider the expected error probability of the

maximum posterior estimate of the permutation process

as a measure of the anonymity of the permutation process.

This is in line with [11] where the error probability of

an estimator (and also mutual information) is used as a

measure of anonymity.

2) How does anonymity of process σ in terms of Bayesian

error probabilities relate to the asymptotic covariance of

the adaptive filtering algorithm (28)? Our main result be-

low (Theorem 5) shows that if the observation likelihood

of noise process one Blackwell dominates that of noise

process two, then anonymity of the permutation process

two is higher than that of one; and also the asymptotic

covariance of the parameter estimates of the adaptive

filtering algorithm (28) is higher.

From a probabilistic point of view, the anonymized observa-

tion model (1), (2) can be constructed as the following random

permutation mixture model of the rows of matrix θo:

y(k)
L×D

= σ(x(k))y(k) = σ(x(k))
L×L

θo

L×D

ψ(k)
D×D

+ σ(x(k)) v(k)
L×D

(46)

Here σ(x(k)) denotes a randomly chosen L× L permutation

matrix that evolves according to a random process

x ∈ X , X ⊆ {1, 2, . . . , X} where X = L!

since there are L! possible permutations. Also

y(k) = [y1(k), . . . , yL(k)]
′ where each yl(k) ∈ R

D.

Recall that ψ(k) is a known input (regression) matrix

and v(k) = [v1(k), . . . , vL(k)]
′ is a L×D matrix valued

noise process whose elements are zero mean. As previously,

we assume for simplicity that vl(k) and vm(k), l �=m are iid

vectors in R
D.

A. Anonymity of Permutation Process x and Asymptotic

Covariance of Adaptive Filtering Algorithm

This section characterizes the anonymity of the permutation

process x in terms of average error probability of the maximum

aposteriori (MAP) state estimate. Our assumptions are:

1) The permutation process x is iid with known probabilities

π(i)
defn
= P (x(k) = i).

2) The regression matrix ψ(k) = I . From a Bayesian point

of view, this is without loss of generality since ψ(k) is

known and invertible. So we can post-multiply (46) by

ψ−1(k) to obtain an equivalent observation process.

Given the observation model (46), define the L×D-variate

observation likelihood given state x(k) = i as

Biy = p(y(k) = y |x(k) = i)∝ pv
(

y − qi
)

,

where qi
defn
= σ(i) θo ∈ R

L×D (47)

Here pv denotes the L×D-variate density of noise process v.

Since the L noise processes are independent, with yl = y′ el
where el ∈ R

L is the unit vector with 1 in the l-th position,
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Biy =

L
∏

l=1

Biyl
, Biyl

=

D
∏

m=1

Biyl,m
, Biyl,m

= pvlm
(ylm − θolm)

(48)

The anonymity of the x depends on the prior π of the per-

mutation process x and the observation likelihood B.

Perfect Anonymity. If all X permutations are equi-probable,

i.e., π(i) = 1/X , then clearly P (x(k) = i|y(k)) = 1/X . So the

probability of error of the maximum aposteriori estimate x̂k

is P (x̂(k) �= x(k)) = (X − 1)/X which is the largest possible

value. So for discrete uniform prior on the permutation process,

perfect anonymity of the identities of the L processes holds

(even with no measurement noise).

Zero Anonymity. If π(x) = 1 for some state x= i∗, then the

error probability is zero and there is no anonymity.

Anonymity of Permutation Process x wrt Observation Like-

lihood: In the rest of this section, we analyze the anonymity of

a Bayesian estimator of the permutation process x in terms of

the observation likelihood B, or equivalently, the noise v(k).
We start with Bayes formula for the posterior of permutation

state x(k) given observation y(k). Define the diagonal matrix

By = diag[B1y, . . . , BXy]. Then given the prior π and ob-

servation y(k), the posterior π(k) = [π1(k), . . . πX(k)]′ where

πi(k) = p(x(k) = i | y(k)) is given by Bayes formula:

π(k)=T (π, y(k))
defn
=

By(k)π

σ(π, y(k))
, where σ(π, y)= 1′By(k)π

(49)

Finally, given the posterior computed by (49), define the max-

imum aposteriori (MAP) permutation state estimate as

x̂(k) = argmaxiπi(k)

Lemma 3: The expected error probability of the MAP state

estimate is (where Y below denotes the observation space)

Pe(π;B) = Ey{P (x(k) �= x̂(k)|y)}= 1−
∑

Y

max
i

e′iBy πdy

where el ∈ R
X is the unit vector with 1 in the i-th position.

We normalize the expected error probability by defining the

anonymity of permutation process x as

A(π,B) = Pe(π;B)
X

X − 1
∈ [0, 1] (50)

So the anonymity A= 0 when Pe(π;B) = 0, and A= 1 when

Pe(π;B) = X−1
X .

B. Blackwell Dominance and Main Result

We now use Blackwell dominance of mean preserving

spreads to relate the anonymity A in (50) to the asymptotic

covariance of adaptive filtering algorithm (28).

Definition 1: (Blackwell ordering of stochastic kernels).

The observation likelihood B Blackwell dominates likelihood

B̄, i.e., B ≥B B̄ if B̄ =BM where M is a stochastic kernel.

That is,
∑

Y Mȳy dy = 1 and Mȳy ≥ 0, where Y denotes the

observation space.

From the definition, intuitively B̄ is noisier than B. Thus

observation y with conditional distribution B is said to be

more informative (in Blackwell sense) than observation ȳ with

conditional distribution B̄; see [26] for several applications.

When y belongs to a finite set, it is well known [27] that B≥B
B̄

implies that B̄ has smaller Shannon capacity than B.

Main Result: First we list the main assumptions:

(A1) B ≥B B̄
(A2)

∑

Y Biy y = qi and
∑

Y B̄iy y = qi (zero mean noise)

Recall qi is defined in (47).

Since the observations of the L processes are independent,

Blackwell dominance of the l individual likelihoods Biyl
≥B

B̄iyl
, l ∈ [L] is sufficient for 1. The mean preserving spread

assumption 2 on B and B̄ implies that the observation noise is

zero mean. This is a classical assumption for the convergence

of the stochastic gradient algorithm (28).

We are now ready to state the main result. Theorem 5 shows

that Blackwell ordering of observation likelihoods yields an

ordering for error probabilities (anonymity) and also a partial

ordering on the asymptotic covariance matrices of the adaptive

filtering algorithm (28). So the more the anonymity of the per-

mutation process, the higher the asymptotic covariance of the

adaptive filtering algorithm (28). To the best of our knowledge,

this result is new.

Theorem 5: Consider observations y(k) generated by (46).

1) CovB(y)� CovB̄(y) implies CovB(S{y})� CovB̄
(S{y}) for the symmetric transform S.

2) Assume (A1). Then the average error probabilities

defined in Lemma 3 satisfy Pe(π;B)≤ Pe(π; B̄),
and therefore the anonymity (50) satisfies A(π,B)
≤A(π, B̄).

3) Assume (A1), (A2). Then CovB(y)� CovB̄(y). There-

fore, the asymptotic covariance of λ(k) in (35) gener-

ated by the adaptive filtering algorithm satisfies Σ(B)≤
Σ(B̄). Also the asymptotic covariance of θ(k) in (37)

satisfies Σ̄(B)≤ Σ̄(B̄).
The proof in the appendix (available online) uses mean-

preserving convex dominance from Blackwell’s classic paper

[28]. Note that Theorem 5 does not require the noise to be

Gaussian; for example, the noise can be finite valued random

variables.

To summarize, we have linked anonymity of the observations

(error probability of the Bayesian MAP estimate) to the asymp-

totic covariance (convergence rate) of the adaptive filtering

algorithm (28).

C. Maximum Likelihood Estimation

This section discusses maximum likelihood (ML) estimation

of θo given observations generated by (1), (2). The results of this

section are not new - they are used to benchmark the symmetric

transform based algorithms derived in the paper.

To give some context, it is clear that given an observation

set y (instead of a vector), feeding it in an arbitrary order into

a bank of LMS algorithms will not converge to θo in general.

A more sophisticated approach is to order the elements of the

observation set at each time based on an estimate of the permu-

tation map σk. We can interpret the recursive MLE algorithm

below as computing the posterior of σk and then feeding it
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into a stochastic gradient algorithm. This posterior constitutes

a Bayesian (soft) data association estimate.

Before proceeding it is worthwhile to summarize the disad-

vantages of the MLE approach of this section:

1) The density function of the noise process v in (1) and

the probability law of the random process x in (46) need

to be known. For example if x was an iid process, the

in principle one can recursively estimate the probabilities

of x. However if x is an arbitrary non-stationary process,

then the MLE approach is not useful.

2) The state space dimension of x is L!, i.e., factorial in the

number of processes L. In comparison, for the symmet-

ric function approach, the number of coefficients of the

symmetric transform polynomial is O(L2), see (16).

3) The likelihood is not necessarily concave in θ and so

computing the global maximum of the likelihood can be

intractable. However, when v in (1) is Gaussian, then (46),

(51), imply that the likelihood is concave in θ.

4) Why not use the MLE approach together with the sym-

metric transform? This is not tractable since after apply-

ing the symmetric transform, the noise distribution has

complicated form (5) that is not amenable to MLE.

We assume that the permutation process x in (46) is an L!
Markov chain with known transition matrix

P (x(k + 1) = j |x(k) = i) = Pij , i, j ∈ X (51)

Then (46) is a hidden Markov model (HMM) or dynamic mix-

ture model. Notice that the matrix valued observations y(k) are

generated as random (Markovian) permutations of the rows of

matrix θoψ(k) corrupted by noise. Given these observations,

the aim is to estimate the matrix θo.

In this section, our aim is to compute the MLE for

θo. Given N data points, the MLE is defined as θ̂ =
arg supθ∈Θ log p(y(1), . . . y(N); θ). We assume that Θ is a

compact subset of RL×D and so the MLE is

θ̂ = argmaxθ∈Θ log pθ(y(1:N)),

where y(1:N)
defn
= (y(1), . . . , y(N)) (52)

Under quite general conditions the MLE θ̂ of a HMM is strongly

consistent (converges w.p.1 to θo) and efficient (achieves the

Cramer-Rao lower bound), see [29].

Remark. With suitable abuse of notation, note that y(k) in

(46) is a matrix, whereas y(k) in (2) is a set. In the probabilistic

setting that we now consider, this distinction is irrelevant. For

example, we could have denoted the anonymization operation

(2) as choosing amongst the permutation matrices with equal

probability 1/L!. In the symmetric transform formulation in

previous sections, we did not impose assumptions on how the

elements of the observation set are permuted; the algorithm

(28) was agnostic to the order of the elements in the set y(k).
In comparison, in this section we postulate that the Markov

process x permutes the observations.

Expectation Maximization (EM) Algorithm: The process x
is the latent (unobserved) data that permutes the observations

from the L processes yielding the matrix y(k) in (46). The

Expectation Maximization (EM) algorithm is a convenient nu-

merical method for computing the MLE when there is latent

data. Starting with an initial estimate θ0, the EM algorithm

iteratively generates a sequence of estimates θi, where each

iteration i= 1, 2, . . . comprises two steps: Step 1. Expectation

step: Compute the auxiliary likelihood

Q(θ, θi)
defn
= E{log pθ(y(1:N), x(1:N)|y(1:N), θi}

y(1:N) = (y(1), . . . , y(N)), x(1:N) = (x(1), . . . , x(N))
(53)

In our case, from (1), (46), (51), imply

Q(θ, θi) =
N
∑

k=1

X
∑

i=1

πi(k|N) log pv
(

y(k)− σ(i)ψ(k) θ
)

(54)

The smoothed probabilities πi(k|N) are computed using a for-

ward backward algorithm [26]; we omit details here. Step 2.

Maximization step: Compute θi+1 = argmaxθQ(θ, θi).
Under mild continuity conditions of Q(θ, θi) wrt θ, it is well

known that the EM algorithm climbs the likelihood surface and

converges to a local stationary point θ∗ of the log likelihood

log p(y(1) . . . , y(N); θ).
Recursive EM Algorithm for Anonymized Observations —

IID Permutations: We are interested in sequential (on-line)

estimation that generates a sequence of estimates θ(k) over time

k. So we formulate a recursive (on-line) EM algorithm. In the

numerical examples presented in Section V, we consider the

case where permuting process x is iid with π(i)
defn
= P (x(k) =

i), rather than a more general Markov chain. (Recursive EM

algorithms can also be developed for HMMs [29], but the con-

vergence proof is more technical.)

Since x and y are iid processes, assuming |Eθo{E{log
pθ(y(k), x(k))|y(k), θ̄}}|<∞, it follows from Kolmogorov’s

strong law of large numbers that

lim
N→∞

1

N
Q(θ, θ̄)= lim

N→∞

1

N

N
∑

k=1

E{log pθ(y(k), x(k))|y(k), θ̄}

=Eθo{E{log pθ(y, x)|y, θ̄}} w.p.1 (55)

The recursive EM algorithm is a stochastic gradient ascent

algorithm that operates on the above objective:

θ(k + 1) = θ(k) + ε∇θE{log pθ(y, x)|y, θ(k)}
∣

∣

θ=θ(k)
(56)

where ε > 0 is a constant step size. Then starting with initial

estimate θ(0), the recursive EM algorithm generates estimates

θ(k), k = 1, 2 . . . , as follows:

θ(k + 1) = θ(k) + ε
∑

i∈X

πi(k)∇θ

[

log pv
(

y(k)

− σ(i)ψ(k) θ(k)
)]

πi(k)∝ π0(i) pv
(

y(k)− σ(i)ψ(k)θ(k)
)

(57)

So (57) uses a weighted combination of the posterior proba-

bility of all possible permutations to scale the gradient of the

auxiliary likelihood Q; and these scaled gradients are used in

the stochastic gradient ascent algorithm.
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Fig. 2. Anonymized estimation problem in Example 1 of Sec V. The initial
condition is θ(0) = {1, 2, 3} and the true parameter is θo = {−2, 5, 8}. (a)
Parameter estimates (set-valued) generated by Algorithm (13) converge to
θo. (b) Parameter estimates generated by stochastic gradient algorithm (15)
operating on (10) do not converge to θo.

V. NUMERICAL EXAMPLES

A. Example 1: Symmetric Transform for Scalar Case D = 1

The aim of this example is to show that objective (10) has lo-

cal minima wrt θ; and therefore the classical stochastic gradient

algorithm (15) gets stuck in a local minimum. In comparison,

the objective (12) in terms of pseudo-measurements is convex

(quadratic) wrt λ and therefore the adaptive filtering algorithm

(13) converges to the global minimum θ∗.

We consider L= 3 independent scalar processes (D = 1)

with anonymized observations generated as in (2). The true

model that generates the observations is θo = {−2, 5, 8}. The

regression signal ψ(k)∼N(0, σ2) where σ = 1. The noise er-

ror v(k)∼N(0, σ2
v) where σv = 10−2.

We ran the adaptive filtering algorithm (13) on a sample

path of 2× 105 anonymized observations generated by the

above model with step size ε= 10−4. For initial condition

θ(0) = {1, 2, 3}, Fig. 2(a) shows that the estimates generated

by Algorithm (13) converges to θo. As can be seen from

Fig. 2(a), the sample path of the estimates initially are coa-

lesced, and then split. This is because the estimates of two of

the elements of θ(k) are initially complex conjugates; since we

plot their real parts, the estimates are identical.

We also ran the classical stochastic gradient algorithm (15)

on the anonymized observations. Recall this algorithm mini-

mizes (10) directly. The step size chosen was ε= 10−7 (larger

step sizes led to instability). For initial condition θ(0) =
{1, 2, 3}, Fig. 2(b) shows that the estimates converge to a local

stationary point {−2.02, 6.12, 6.45} which is not θo. On the

other hand for initial condition θ(0) = {3, 6, 9}, we found that

the estimates converged to θo. This provides numerical verifica-

tion that objective (10) is non-convex. Besides the non-convex

objective, another problem with the algorithm (15) is that if we

choose θ(0) = {c, c, c} for any c ∈ R, then all elements of θ(k)
are identical, regardless of θo.

There are two takeaways from this numerical example. First,

despite the anonymization, one can still consistently estimate

the true parameter set θo. Second, the objective (10) is non-

convex in θ but convex - so a classical stochastic gradient

algorithm can get stuck in a local minimum. But since the

objective is convex in the polynomial coefficients λ, which

are constructed as pseudo-observations via the symmetric

Fig. 3. Recursive Expectation Maximization algorithm vs symmetric
transform based adaptive filtering algorithm. Both algorithms operate on
anonymized observations (1), (2) corrupted by Laplacian noise. The true
parameter is θo = {4, 5}. The recursive EM shows a significant bias in the
mis-specified case; in comparison the symmetric transform based algorithm
converges to the true parameter value but the convergence is slower. The
parameters are specified in Example 2. (a) Recursive EM algorithm (57). (b)
Adaptive filtering algorithm (13).

transform, algorithm (13) converges to the global minimum.

Recall the estimate θ(k) at time k is a set and not a vector.

B. Example 2: Recursive Maximum Likelihood vs Symmetric

Transform

The recursive EM algorithm (57) (REM) requires knowl-

edge of the noise distribution and probabilities of permutation

process x. When these are known, REM performs extremely

well. But in the mis-specified case, where the assumed noise

distribution is different to the actual distribution, REM can yield

a significant bias in the estimates.

We simulated anonymized observations (1), (2) for D = 1,

L= 2 with zero mean iid Laplacian noise v with standard

deviation 2. The true parameter is θo = {4, 5} for k ≤ 3× 105

time points and then changes to {1, 3}. We ran REM (57)

assuming unit variance Gaussian noise. The step size ε= 5×
10−5 and initial estimate θ(0) = {1, 2}′. Fig. 3(a) shows that

the algorithm yields a significant bias in the estimate for θo;

the estimates θ(k) converge to {3.5590, 5.4559} for the first

3× 105 points and then to {0.7405, 3.2658}.

We then computed the pseudo-observations (7) using the

scalar symmetric transform (11) and ran the adaptive filtering

algorithm (13) with step size ε= 2× 10−5 and initial condi-

tion θ(0) = {1, 2}. Fig. 3(b) displays the sample path estimates

θ(k). We see empirically that the convergence rate of the adap-

tive filtering algorithm is slower than REM, but the estimates

converge to the true parameter θo (with no bias).

C. Example 3: Symmetric Transform for Vector Case

We consider L= 2 independent processes each of dimension

D = 2 with anonymized observations generated by (2). The true

models that generate the observations for the two independent

processes via (1) are θo1 = [−2, 6]′, θo2 = [4, 5]′. The 2× 2
input regression matrix in (1) was chosen with iid elements

ψij(k)∼N(0, 1). The 2-dimensional noise error vector v(k)
has iid elements N(0, σ2

v) where σv = 10−1.

Given the anonymized observations, we constructed the

pseudo-observations using the vector symmetric transform (16).

We ran the adaptive filtering algorithm (28) with step size
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Fig. 4. Anonymized estimation problem in Example 3 of Section V. (a)
Algorithm (28) operating on vector symmetric trans[1]forms converges to
global optimum θ◦. (b) Algorithm (28) operating on pseudo-observations
generated by the naive symmetric transform (21) converges to the ghost
process parameters {[–2, 5]′, [4, 6]′} instead of the true model set {[–2, 6]′,
[4, 5]′}.

ε= 10−4 on these pseudo-observations. Fig. 4(a) shows that the

estimates converge to the true model set θo.

Next we constructed the naive pseudo observations from the

anonymized observations by using the naive transform S̄ (21).

We then ran the adaptive filtering algorithm (28) with step

size ε= 10−5 on these naive pseudo-observations. We see from

Fig. 4(b) that the estimates converge to {[−2, 5]′, [4, 6]′} in-

stead of the true model set {[−2, 6]′, [4, 5]′}. So naively ap-

plying the scalar symmetric transform element-wise can result

in estimates that swap the elements of θo. In comparison, the

vector symmetric transform together with algorithm (28) yield

consistent estimates of θo.

D. Example 4. Noisy Matrix Permutation

The aim of this section is to provide a medium-sized nu-

merical example of estimating θo with the vector symmetric

transform and adaptive filtering algorithm (28). We also show

that the naive symmetric transform (21) element wise (instead

of vector symmetric transform) loses order information.

Consider L= 4 processes each of dimension D = 10 with

θo =

⎡

⎢

⎢

⎣

1 3 4 5 7 9 10 11 12 13
2 4 5 10 8 7 1 8 9 10
3 1 2 7 6 5 4 5 7 9
6 12 18 24 36 43 50 10 1 3

⎤

⎥

⎥

⎦

The regression matrix ψ(k) was chosen as I10×10. The

anonymized L×D dimension observation matrix was gener-

ated according to (1), (2) at each time k.

The pseudo observation vectors are constructed at each

time k using (17) as z1 = y1 + y2 + y3 + y4, z2 = y1 ⊗
y2 + y1 ⊗ y3 + y1 ⊗ y4 + y2 ⊗ y3 + y2 ⊗ y4 + y3 ⊗ y4, z3 =
y1 ⊗ y2 ⊗ y3 + y1 ⊗ y2 ⊗ y4 + y1 ⊗ y3 ⊗ y4 + y2 ⊗ y3 ⊗ y4,

z4 = y1 ⊗ y2 ⊗ y3 ⊗ y4 where ⊗ denotes the convolution

operator and each yi(k) ∈ R
D, i= 1, . . . , 4.

We ran 100 independent trials of the adaptive filtering algo-

rithm (28) on 100 independent pseudo observation sequences.

The relative error of the average estimate θavg(k) over the 100

trials at time k = 50, 000 is |θavg
ij (k)− θoij |/θoij ≤ 7× 10−4.

Thus algorithm (28), based on the vector symmetric transform,

successfully estimates the parameters.

Next, we ran adaptive filtering algorithm using the naive

symmetric transform (21). We see from the estimate θ(k) at

k = 50, 000 below, that all order information is lost (the boxes

indicate the nearest estimates to the first row of θo):

⎡

⎢

⎢

⎣

1.0052 1.0053 1.9923 5.0129 6.0105

2.0041 2.9971 4.0048 7.0028 6.9913

3.0023 4.0016 4.9988 9.9934 8.0095
5.9997 12.0000 17.9965 24.0002 36.0066

5.0033 0.9939 4.9955 1.0032 2.9986
7.0086 3.9995 7.9970 6.9999 8.9985

9.0024 9.9936 9.9942 8.9969 10.0001

43.0028 50.0024 10.9959 12.0031 12.9960

⎤

⎥

⎥

⎦

We found in numerical examples that when rows of θo are

different from each other, the naive transform can estimate the

parameters; but when the elements of two rows are close, then

the estimate switches rows resulting in ghost estimates.

E. Example 5. Effect of L and D on RMSE

The asymptotic covariance of the adaptive filtering algorithm

is specified by the solution of the algebraic Liapunov equa-

tion (36). But it is difficult to characterize analytically how

this covariance behaves vs number of parallel processes L and

observation dimension D. Below we use numerical examples

to explore the effect of L and D on the root mean square error

(RMSE) of the adaptive filtering algorithm.

We chose the true L×D parameter matrix as

θo =

⎡

⎢

⎢

⎢

⎣

1 2 3 · · · D
circular shift of row 1 by 1

...

circular shift of row 1 by L− 1

⎤

⎥

⎥

⎥

⎦

(58)

where circular shift of [1, . . . , D] = [D, 1, 2, . . . , D − 1], etc.

That way, for fixed D and noise variance of v(k) in (1), the

range of the parameter vector 1 to D is invariant to L. So the

signal to noise power does not vary as we change L, thereby

ensuring a meaningful comparison of RMSE vs L. Also to

ensure a meaningful comparison of the RMSE vs D, we scaled

the noise standard deviation of vl(k) as D/10 in (1). (Otherwise

higher values of D in θo would have lower noise making the

comparison vs RMSE meaningless.)

We chose θo in (58) by specifying D ∈ {10, . . . , 30} and L=
2, 3, 4. For each choice of θo, we ran 100 independent trials

of the adaptive filtering algorithm each with 105 observations.

Based on the numerical results displayed in Fig. 5, we observe

that the RMSE increases with D and L. This is intuitive since

the dimension of the noise polynomial w(s, t) in (24) increases

with L and D and therefore so does the variance of w.

F. Example 6. Effect of Noise Standard Deviation σ on

Asymptotic Standard Deviation of Adaptive Filtering

Algorithm

This is discussed in the supplementary document.
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Fig. 5. Effect of number of processes L and observation dimension D on
RMSE error of adaptive filter.

VI. CONCLUSIONS

We proposed a symmetric transform based adaptive filtering

algorithm for parameter estimation when the observations are a

set (unordered) rather than a vector. Such observation sets arise

due to uncertainty in sensing or deliberate anonymization of

data. By exploiting the uniqueness of factorization over polyno-

mial rings, Theorems 1 and 2 showed that the adaptive filtering

algorithms converge to the true parameter (global minimum).

Lemma 1 characterized the loss in efficiency due to anonymiza-

tion by evaluating the asymptotic covariance of the algorithm

via the algebraic Liapunov equation. Theorem 4 characterized

the mean squared error when the underlying true parameter

evolves over time according to an unknown Markov chain.

Finally Theorem 5 related the asymptotic covariance (conver-

gence rate) of the adaptive filtering algorithm to a Bayesian

interpretation of anonymity of the observations via mean pre-

serving Blackwell dominance.

The tools used in this paper, namely symmetric transforms

to circumvent data association, polynomial rings to charac-

terize the attraction points of an adaptive filtering (stochas-

tic gradient) algorithm, and Blackwell dominance to relate a

Bayesian interpretation of anonymity to the convergence rate

of the adaptive filtering algorithm, can be extended to other

formulations.
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