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Abstract

Predicting future walking joint kinematics is crucial
for assistive device control, especially in variable
walking environments.  Traditional optical motion
capture systems provide kinematics data but require
laborious post-processing, whereas IMU based systems
provide direct calculations but add delays due to
data collection and algorithmic processes. Predicting
future kinematics helps to compensate for these delays,
enabling the system real-time. Furthermore, these
predicted kinematics could serve as target trajectories
for assistive devices such as exoskeletal robots and
lower limb prostheses. However, given the complexity
of human mobility and environmental factors, this
prediction remains to be challenging. To address this
challenge, we propose the Dual-ED-Attention-FAM-Net,
a deep learning model utilizing two encoders, two
decoders, a temporal attention module, and a feature
attention module. Our model outperforms the
state-of-the-art LSTM model. Specifically, for Dataset
A, using IMUs and a combination of IMUs and videos,
RMSE values decrease from 4.45° to 4.22° and from
4.52° to 4.15° respectively. For Dataset B, IMUs
and IMUs combined with pressure insoles result in
RMSE reductions from 7.09° to 6.66° and from 7.20°
to 6.77° respectively.  Additionally, incorporating
other modalities alongside IMUs helps improve the
performance of the model.

Keywords: Future Kinematics Prediction, Deep
learning, Multi-modal Fusion, Wearable Sensors

1. Introduction

Gait motion analysis is a quantitative method for
assessing a person’s kinesiological health. It can assist
in determining the severity, prognosis, and course of
an illness or injury. Additionally, it is possible to
infer appropriate lower limb assistive device control
by predicting the motion of a person’s gait based
on previous movement data. Therefore, the ability
to evaluate gait motion facilitates patient monitoring,
hastens rehabilitation, and also allows for prosthesis
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control.

In traditional measuring techniques for gait analysis,
trajectories of reflective markers are measured by 3D
infrared motion capture cameras. To compute joint
angles, the obtained data is then processed using
dynamic analysis software (OpenSimDelp et al., 2007,
Visual3D (C-Motion, USA), Vicon Nexus (Oxford,
UK)]. Despite the fact that this method is regarded as
the gold standard for measuring the dynamic function
of human motion (gait), it requires manual marker
trajectory processing with expertise, and the data
collection is limited to a specific setup. Thus, this
method limits the application where kinematics has to
be estimated or predicted outside the lab environment
in real-time. To address these issues, a single in-depth
camera or two or more conventional video cameras
detect joint centers with an algorithm (Z. Zhang, 2012,
Cao et al., 2021) to measure joint motions. However,
they still require a specific capture volume, and since
the level of accuracy is heavily influenced by the type of
fabric and the participant’s BMI, the outcomes are not
as accurate as a 3D infrared motion capture camera.

Some of the drawbacks of the current approaches
for evaluating the dynamic function of human motion
may be solved by the use of Inertial Measurement
Unit (IMU) sensors. Researchers can measure human
movements outside of the laboratory by substituting
wearable IMU sensors for conventional motion capture
cameras. Potential long-term use and integrated daily
monitoring applications are also made possible by these
techniques. Although IMU-based motion estimation
systems such as Xsens (Schepers et al., 2018) are
commercially available, kinematics computation from
IMU can lead to time delay due to data collection and
algorithm process (X. Zhang et al., 2023), limiting use
for assistive device control. As a result, a deep learning
approach can be a viable option to anticipate future
joint kinematics, which can compensate for the delay
for real-time assistive device control.

It is essential to anticipate future motion when
controlling the lower limb assistive devices. For
example, the majority of prosthetic device controls
consider three-level hierarchical architecture (Tucker
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et al., 2015), with the highest level being activity mode
such as stair, flat, or ground, the mid-level being a
controller, which progresses through a gait phase within
a mode, and the low level being a controller to supply
torque or position information to the hardware for
achieving desired state. Numerous studies are currently
attempting to achieve continuous control by translating
predicted kinematics to appropriate prosthesis control,
without the use of separate controllers for various gait
phases (Eslamy et al., 2020) or activities (Rai and
Rombokas, 2019).

Currently, there are some ongoing works for the
future prediction of joint kinematics. In (Sharma and
Rombokas, 2022), egocentric vision data and joint angle
data from IMUs are used to predict future joint angles
using the Long Short Term Memory (LSTM) based
model. In (Rai and Rombokas, 2019), joint angle data
from Xsens IMU-based motion data is used to predict
ankle joint angle using the LSTM layer-based deep
learning model. In (Sharma and Rombokas, 2022),
an out-of-the-lab dataset is used to train the model,
while in (Rai and Rombokas, 2019), Comprehensive
High-Level Activity Mobility Predictor (CHAMP) and
an obstacle course are introduced in the trial. Although
both of the approaches showed promising directions for
kinematics prediction in highly variable gait patterns,
the use of a generic LSTM-based deep learning model
may limit the prediction performance. Moreover, their
algorithm is validated only on a single dataset, how their
approach will perform on a new dataset with different
walking conditions, remains unknown. To address these
limitations, we are proposing a novel deep-learning
model Dual-ED-Attention-FAM-Net to predict future
joint angles in two different datasets, and our proposed
model is performing better than LSTM or other generic
approaches for both datasets.

Contribution. To predict future kinematics of sagittal
plane hip, knee, and ankle angle for both legs in lab
environments and outside of the lab, this study proposes
a novel encoder-decoder-based deep learning model
Dual-Encoder Decoder-attention-Feature ~ Attention
Module-Net (Dual-ED-Attention-FAM-Net). We use
two datasets (Dataset A (self-collected), and Dataset
B (Losing and Hasenjdger, 2022)) to implement the
model. Dataset A contains different activities in the lab
environment, while Dataset B contains walking trials
outside the lab in three separate walking courses. We
use additional modalities such as video or pressure data
from insoles in addition to IMUs to improve future joint
kinematics prediction. The main contributions of this
study are: (i) We propose a novel deep-learning model
Dual-ED-Attention-FAM-Net to predict future joint
kinematics; In Dual-ED-Attention-FAM-Net, we utilize

both Bi-directional LSTM and Gated Recurrent Unit
(GRU) layer to enhance the performance of the model.
We also add a temporal attention module to improve
the prediction. Finally, we propose a feature attention
module to weigh the input of decoder architecture to
further improve the kinematics prediction performance;
(i) we demonstrate the better generalization capability
of our model for both datasets; (iii) we propose
multi-modal data fusion to improve the prediction
performance compared to using only IMUs; (iv) we
present comprehensive model ablation to prove that our
model outperforms generic deep learning models for
both datasets.

2. Proposed Approach

In this section, we will outline the problem
statement, present our proposed model, and provide
a description of other models which will be used for
performance comparison.

2.1. Problem Statement

This paper predicts 0.1 seconds of sagittal plane hip,
knee, and ankle joint angles of the left and right leg in
different walking scenarios encountered in daily living.
To implement the algorithm, we utilize two different
datasets (Dataset A (self-collected), and Dataset B
(Losing and Hasenjidger (2022)). As the datasets
are collected with different sensor configurations and
modalities, we use the available modalities for the
respective dataset to train the model.

For Dataset A, we use IMUs and processed features
from video data to predict joint kinematics whereas
in Dataset B, we use IMU and pressure data from
footwear pressure insoles. Specifically, when we have
accelerometer and gyroscope data of “Acf%% =[I§°c,
..... Ifuee] € RATEEXDELM ™ and 1907 <[V,

imu

gyr gyr | qyr .
..... T8 1 € RATmu X Dimu MP for a specific

window length of ATZ ATV, and processed

features from other modalities (video features/insole
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pressure data) Q" {J"I/s=[011” fins O CZL;] €
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, then joint kinematics prediction for window length

of AT‘prediction’ KATP,.edictwn=[K17 ~~~~~ aKATp
€ RATprediction XD can be realized by Equation 1.
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video/foot pressure features for each leg, M“*““ and
M99 is the number of IMU sensors, and N is the total
number of the video camera/pressure sensor insoles.

For Dataset A, AT = ATV = 45, AT /™ =

other
o _ ace  _ gyr _ vid/ins
15, ATPTEdZthn =9, DinLu - D?mu =3, Dother

=18, M = M9" =8, and N = 2. For Dataset B,
ATEC=AT" = 30, AT =30, AT)cdiction =

imu other
acc _NH9Yr _ vid/ins _ acc _ qyr —
6, Dace =DIV" =3, pUid/ins _ 95 prace = provr =17,

and N =2.
2.2. Proposed Model

Our proposed Dual-ED-Attention-FAM-Net (Figure
1) builds with Bi-LSTM and Bi-GRU layer-based dual
encoders and dual decoders, a Temporal Attention
Module (TAM), a Feature Attention Module (FAM),
and a Fully Connected (FC) layer. Each component is
described in the following subsection.
2.2.1. Bi-LSTM Encoder: In the Bi-LSTM
encoder, two bi-directional LSTM layers are stacked
together to encode multiple input modalities separately.
A dropout layer is added after each Bi-LSTM layer to
tackle the problem of overfitting. A batch normalizat-
ion layer is applied to the input of each modality
separately to perform an operation similar to the
standard normalization of the input (Li et al., 2020).
The cell and hidden state of the three encoders are
concatenated together to get a single vector of the cell
and hidden state. These cells and hidden state vectors
are passed to the Bi-LSTM layer of the decoder stage.
If the batch normalized features from accelerometer and
gyroscope of IMU are 145, € RATImw X Pl M™

imu

gyr gyr A rgyr
Hg?ﬂ“gyre RAT' X D¢ M

imu imu

AT ’

imu

and other modality

vid/ins
Avid/ins

other

(video features/insole pressure data) is O €

vid/ins vid/ins .
RATother *Powner N respectively, then output from
the Bi-LSTM encoder can be derived using Equation 2,
3, and 4.
acc,bi—lstm acc,bi—lstm j acc,bi—lstm
X arace (et hy )

imu

= Bi— LSTM (I .. )
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where, are the

encoded accelerometer and gyroscope features for
a window length of AT and AT?Y", respectively.

imu imu’
vid/ins,bi—lstm
ATv'id/ins

other

is the encoded features of video

and insole data for a window length of AT:tL,ile/Tmé
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h;fd/ ins;bi=lstm e final hidden states from three

encoders.

2.2.2. Bi-GRU Encoder: In the Bi-GRU encoder,
two bidirectional GRU are stacked together and a
dropout layer is used after each layer to avoid overfitting.
Batch normalization is applied to each input modality
separately before inputting to the encoder. The hidden
state from each encoder is concatenated together to form
a single tensor and used as the hidden state for the
decoder Bi-GRU layer. Output features and hidden state
from the Bi-GRU Encoder can be represented by the
Equation 5, 6, and 7.

c,bi— cc,bi— .
Xgcebizgre pacebi=ari _ Bi _ GRU(I&Guc)  (5)

imu

r,bi—gru yr,bi—gru . r
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encoded accelerometer and gyroscope features for
a window length of AT?¢ and AT?Y" respectively.

imu imu
vid/ins,bi—gru
XATvid/'ins

other

is the encoder features of vid/ins

Tvid/ins

hacc,bifgru
other T

data for a window length of A

hIYTPImIT and B4/ PO are final hidden states
from three encoders.

2.2.3. Bi-LSTM Bi-GRU Decoder: We utilize two
decoders to predict future joint kinematics. Future
joint kinematics prediction can be represented by the
Equation 8.

Y; _ FC([Xtdecoder,biflstm’X;iecoder,bifgru])v
t= 1, 23 ceeey ATprediction (8)

where X;iecoder,biflstm, Xtdecoder,bifgru are the

output features from Bi-LSTM and Bi-GRU decoder
respectively. The output features can be derived with
Equation 9 and 10.
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Figure 1. Entire structure of Dual-ED-Attention-FAM-Net. It has a Temporal Attention Module (TAM),
Feature Attention Module (FAM), and Fully Connected (FC) layer. For Dataset A, we use video data from legs,
where in Dataset B, we utilize pressure data from foot insoles.

X;lecoder,biflstm 7 (c;lecodenbiflstm ’ hglecodenbiflstm)

o . features concat,bi—lstm

= Bi LSTM( weighted,t—1" (thl ’
concat,bi—lstm
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t ) It

_ BZ _ GRU((Cfeatures h;:i'ricat,bifgru)’

weighted,t—1°

t= 1, 27 ceeey ATprediction
(10

features . .
where Cweighted,t_l is the weighted concatenated

features of the TAM module and prediction of a single
time step. Specifically, encoded output features from
each modality are passed to TAM to generate a context
vector separately. Context vectors from each of the
modalities from Bi-LSTM and Bi-GRU encoders and
the prediction from the single time step are then
concatenated together to build initial features (Equation
11).

(Cfeatures

concat.t—1 — [COTLteJZtconcat COnt@.’L‘tconcat Kt—l],

bi—lstm> bi—gru>

t= 1, 2, ceeey ATprediction
an

These initially concatenated features are weighted
by passing through FAM to create Cﬁ‘;;ﬁz;t_l. Then
the weighted features are passed to both Bi-LSTM and
Bi-GRU decoders. To get the prediction of the first time

step, we initialize Ko = 0.

In Equation 12’ cziecoder,bz—l.s751w7 hfecoder,bz—lstm

. decoder,bi—lstm | decoder,bi—lst
is current cell and ¢} 7 T preeen I

is previous cell. Both cells are hidden state of
Bi-LSTM decoder. On the other hand, in Equation
13’ hfecoder,bi—gru and htdicloder,bi—gru are the current
and previous hidden state of Bi-GRU decoder. For the
first time step, concatenated cell state, hidden state from
multiple Bi-LSTM encoders, and concatenated hidden
state from multiple Bi-GRU encoders are used as the
initial cell, hidden state for Bi-LSTM decoder and initial
hidden state for Bi-GRU decoder, respectively. We can
derive the initial cell, the hidden state of the Bi-LSTM
decoder, and the hidden state of the Bi-GRU decoder
utilizing the following equations.

( concat,bi—lstm hconcat,bi—lstm>
Cr » g

o acc,bi—lstm 1 acc,bi—lstm gyr,bi—lstm
- [(CT ’ h’T )7 (CT ’

,bi—l[st vid/ins,bi—lstm 5 vid/ins,bi—lstm
pgrrtt (e g )] (12)

)

oncat,bi—gru ace,bi—gru
thrL({l 5 — [h )
T T

h%yr,bi—gru’ hij}jd/ins,bi—gTU] (13)

concat,bi—lstm hconcambiflstm
b)

0 0
___concat,bi—lstm hconcat,bi—lstm 14
= Crp s e ( )

hgoncat,bifgru _ h;ﬂoncat,bifgru (15)

Temporal Attention Module (TAM): Output features
of each modality from the encoders are passed through
TAM separately to create separate context vectors. At
first, output features are passed to two fully connected
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layers. A hyperbolic tangent activation is used after
the first fully connected layer. After these two fully
connected layers, the softmax activation function is
applied to calculate the attention score for each time step
(Equation 16, 17, and 18).

AttngS ) m = Softmaw(fc(XZ%fi;f;{lStm)) (16)
Attnd?", = Softmax(fc(XX%‘;Z?,TZSt7'L)) (17)

At )70 = Softmaz(fe(X 1O T) (18)

other
Weighted summation is taken over the sequence
length to generate a context vector, which is later used

as the features of input of the decoder (Equation 19, 20,
and 21).

AT
contextyse, o, = g AN gpm, i
i=1

@X;Lcc,bi—lstm (19)

AT,
qyr _ qgyr
contextbi—lstm - 2 : Attn(}i—l??tmvi
=1
yr,bi—lstm
X (20)
id/ins
AT
vid/ins vid/ins
contexty, /- = E Attng; gim.i
=1

@X;;id/ins,bi—lstm 1)

Contexts from all the modalities are concatenated
together to build a single tensor and passed to the input
of the decoder (Equation 22).

concat

contexty?™ 4 = [contextysS cim,

vid/ins (22)
bi—lstm]

context]?", . context

Similarly, we can apply the same method to Bi-GRU

Encoder to obtain the overall context vector from the

encoder and later use it as the input features for the
decoder (Equation 23).

concat __ acc
contexty" = [contextyi® .,
" (23)
aqyr VU ms
contexty]” ., contexty,” T ]

Feature Attention Module (FAM): Concatenated
features of TAM modules for Bi-LSTM and Bi-GRU
encoders are concatenated with the kinematics

prediction of a single time step to create input features
for Bi-LSTM and Bi-GRU decoders. Concatenated
features are passed to the FAM module to put weight
on each features ensuring its proper importance. A
fully connected layer with a sigmoid function is used to
calculate attention weights. The calculated weights are
multiplied with the concatenated features to produce
attention-weighted features. If concatenated features
from TAM modules and the prediction layer are

features 1xf . .
Cioncatt € R and the attention score vector is

wieatures ¢ [0, 1)1/ where f is the total number of
concatenated features, then attention weighted features
can be realized by Equation 24.

(Cfeatures _ Wtfeatures o Cfeatures (24)

weighted,t concat,t

ﬁ,i?;;,:ﬁf“ is used as the input for both the

Bi-LSTM and Bi-GRU layers of the decoder.

2.3. Models for Comparison

We categorize all of our models into three groups for
comparison: the state-of-the-art model, other baseline
models, and intermediate models. The state-of-the-art
model has been previously employed in related studies,
other baseline models are simple models similar to the
state-of-the-art ones, and the intermediate models serve
as the basis for our final proposed model.
2.3.1. State-of-the-art Model
e LSTM-Net (Sharma and Rombokas, 2022, Rai
and Rombokas, 2019): Two LSTM layers are stacked
together to build an encoder, which features from the
accelerometer, gyroscope, and video/pressure insoles
data separately. A dropout layer is added after each
LSTM layer to avoid overfitting.  Then, features
from each of the encoders are concatenated together
and connected to a fully connected layer with linear
activation to predict future kinematics.

2.3.2. Other Baseline Models

* GRU-Net: Two GRU layers are stacked together
to extract features from three input modalities and
concatenated features from these modalities are used for
future kinematics prediction.

¢ Bi-LSTM-Net: LSTM layer of LSTM-Net
is replaced with bi-directional LSTM to create
Bi-LSTM-Net.

* Bi-GRU-Net: GRU layer of GRU-Net is replaced
with bi-directional GRU to create Bi-GRU-Net.

2.3.3. Intermediate Models
e LSTM-LSTM-ED-Net: We use Encoder-Decoder
(ED) architecture in LSTM-LSTM-ED-Net to predict

future joint kinematics. Two LSTM layers are stacked
together to build the encoder. A dropout layer is used
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after each LSTM layer. The cell and hidden state from
the encoder are used as the initial cell and hidden state
of the decoder. Six joint angles (sagittal plane hip, knee,
and ankle angle for both legs) initialized to zero are fed
as the input to the decoder for the first time step. Then,
the prediction of the LSTM layer from the previous step
is used as the input to the current LSTM layer. The cell
state and hidden state of the decoder from the previous
time step are passed to the current time step. To prevent
overfitting, a dropout layer is used after the LSTM layer.

¢ GRU-GRU-ED-Net: In GRU-GRU-ED-Net, we
replace the LSTM layer of LSTM-LSTM-ED-Net with
the GRU layer and only the hidden state is passed to the
next step as no cell state is available for the GRU layer.
* Bi-LSTM-Bi-LSTM-ED-Net: We replace LSTM
layer of LSTM-LSTM-ED-Net with bi-directional
LSTM to create Bi-LSTM-Bi-LSTM-ED-Net.

¢ Bi-GRU-Bi-GRU-ED-Net: GRU layer of GRU-
GRU-ED-Net is replaced with bi-directional GRU to
create Bi-GRU-Bi-GRU-ED-Net.

* Bi-LSTM-Bi-LSTM-ED-Attention-Net: We adapt
Dual-ED-Attention-Net to Bi-LSTM-Bi-LSTM-ED-
Attention-Net by removing FAM and the Bi-GRU
component from the ED.

* Bi-GRU-Bi-GRU-ED-Attention-Net: We remove
FAM and Bi-LSTM components from ED from
Dual-ED-Attention-Net to create Bi-GRU-Bi-GRU-
ED-Attention-Net.

* Dual-ED-Attention-Net: We remove FAM from
Dual-ED-Attention-FAM-Net to create Dual-ED-
Attention-Net.

3. Experiment
3.1. Dataset description

In this paper, we utilize two different datasets. A
brief description of the datasets is discussed in this
subsection.
Dataset A: Ten subjects (6 males, and 4 females,
age: 23.9+2091 years, height: 1.65+0.06 m, weight:
63.41+£6.81 kg) are collected where participants wear
8 IMUs sensors (Avanti wireless EMG/IMU, Delsys,
Boston, MA) on the whole body and a single
GoPro camera (Hero7 black, GoPro Inc., San Mateo,
California) in the middle of the tibia on the longitudinal
direction of each leg. All participants completed a
total of 14 trials. Each participant walks on the
treadmill and overground with slow, normal, fast, and
very fast walking speeds. Two trials each on stairs and
slope (up and down) conditions were also performed.
Furthermore, two more trials, where participants walked
in a round path, and a path with two obstacles for
avoidance were also collected. Joint kinematics and
IMU data are collected with a sampling rate of 100

Table 1. Hyperparameters of the different models.
Values in the first parenthesis is for Dataset B

Model Encoder Decoder FC
Unit: 128, 64, Out_feat:
LSTM-Net Drop: 0.0,0.0 | NA | 5436)
Unit: 128, 64, Out_feat:
GRU-Net Drop: 0.0,00 |  NA | 5436)
. Unit: 128, 64, Out_feat:
BiLSTM-Net | 00,00 | NA | 5436)
. Unit: 128, 64, Out_feat:
Bi-GRU-Net | p50.0,0.0 NA 1754 36)
LSTM-LSTM- Unit: 128, 64, [ Unit: 192, [Out_feat:
ED-Net Drop.: 0.0,0.0 | Drop.: 0.0 | 6(6)

GRU-GRU- Unit:128, 64, | Unit: 192, |Out_feat:
ED-Net Drop.: 0.0,0.0 | Drop.: 0.0 | 6(6)
Bi-LSTM-Bi-LSTM| Unit:128, 64, Unit: 192, [Out_feat:

-ED-Net Drop.: 0.0,0.0 |Drop.: 0.05| 6 (6)
Bi-GRU-Bi-GRU Unit:128, 64, | Unit: 192, |Out_feat:
-ED-Net Drop.: 0.0,0.0 |Drop.: 0.05| 6 (6)

Bi-LSTM-Bi-LSTM| Unit:128, 64, Unit: 128, [Out_feat:
-ED-Attention-Net |Drop.: 0.05, 0.05|Drop.: 0.05| 6 (6)
Bi-GRU-Bi-GRU Unit: 128, 64, Unit: 128, [Out_feat:
-ED-Attention-Net | Drop.: 0.0, 0.0 |Drop.: 0.05| 6 (6)

Unit: 128, 64, Unit: 128, |Out_feat:
Drop.: 0.05, 0.05|Drop.: 0.05| 6 (6)

Unit: 128, 64, | Unit: 128, [Out_feat:
Drop.: 0.05, 0.05|Drop.: 0.05| 6 (6)

Unit: 128, 64, Unit: 128, |Out_feat:
Drop.: 0.05, 0.05|Drop.: 0.05| 6 (6)

Unit: 128, 64, | Unit: 128, [Out_feat:
Drop.: 0.05, 0.05|Drop.: 0.05| 6 (6)

Hz and "148 Hz respectively. Video is collected at 30
fps. Histograms of optical flow features are calculated
from these wearable video data. To synchronize more
efficiently, the IMU and joint kinematics data are
down-sampled to 90 Hz so that one sample from the
histogram of optical flow features will be equivalent to
three samples of IMU and joint angle. We use 0.50
seconds of input data, consisting of 45 IMU samples
and 15 video feature samples, to forecast the subsequent
kinematics of 0.1 seconds, equivalent to 9 samples. We
then shift this input window by 9 samples, obtaining
input features from samples 10 to 54, and predict future
kinematics for the subsequent 0.1 seconds from samples
55 to 63. We apply the same technique to pre-process
the whole dataset.

Dual-ED-
Attention-Net

Dual-ED-
Attention-FAM-Net

Dataset B (Losing and Hasenjiger (2022)): Twenty
healthy participants (5 females, 15 males, age: 18-69
years, height: 178.5+7.64 cm, weight: 72.9+8.7 kg)
wore 17 IMU sensors of Xsens motion capture suit
(Schepers et al., 2018) consisting of the MVN-Link
BIOMECH full-body system and the MVN Link lycra
suit, insoles with eight pressure sensing cells per foot.
Participants completed three different walking courses,
which includes different common walking environments
such as level areas, stairs, flat ramps, steep ramps, etc.
that are encountered in daily life. Pressure, normalized
pressure, and raw pressure value of eight force sensors
for each leg are used as the input features of the deep
learning model. All the modalities in this dataset are
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Table 2. Mean and standard deviation of RMSE and PCC for all the joint angles for all subjects for Dataset A
when different modality is used as the input to the deep learning model.

Model Modality-A Modality-B
(Ace-Gyr) (Acc-Gyr-Videos)
RMSE (°) PCC RMSE () PCC
LSTM-Net 445+046 0964+0.005 | 452+0.40 0.963+0.004
GRU-Net 438+045 0965+0.003 | 434+0.40 0.966 =0.004
Bi-LSTM-Net 433+040 0.967+0.004 | 431+£044 0.967 £0.005
Bi-GRU -Net 434+050 0967 +0.005 | 433+046 0.967 +£0.004
LSTM-LSTM-ED-Net 456+044 0964+0.004 | 445+£0.43 0.964 £0.004
GRU-GRU-ED-Net 436+051 0.965+0.004 | 437+0.50 0.966 = 0.004
Bi-LSTM-Bi-LSTM-ED-Net 435+050 0967 +0.005 | 429+0.48 0.968 +0.004
Bi-GRU-Bi-GRU-ED-Net 426+047 0968 £0.004 | 4.19+£0.50 0.969 +0.004
Bi-LSTM-Bi-LSTM-ED-Attention-Net | 4.32+0.48  0.967 £0.005 | 4.22+0.48 0.968 + 0.004
Bi-GRU-Bi-GRU-ED-Attention-Net 422+048 0968 £0.004 | 4.17+0.49 0.969 +0.004
Dual-ED-Attention-Net 427+054 0969 +0.004 | 4.18+0.47 0.969 +0.004
Dual-ED-Attention-FAM-Net [ 422£046 0969 +£0.004 | 415047  0.969 £ 0.003

Table 3. Mean and standard deviation of RMSE and PCC for all the joint angles for all subjects for Dataset B
when different modality is used as the input to the deep learning model.

Model Modality-A Modality-B

ode (Acc-Gyr) (Acc-Gyr-Insoles)

RMSE (°) PCC RMSE (°) PCC
LSTM-Net 7.09+1.88 0.931+0.022 | 720+ 1.72 0.933 £ 0.016
GRU-Net 7.16£1.84 0928+0.022 | 728 £ 1.67 0.929+0.016
Bi-LSTM-Net 6.85+1.83 0.936+0.020 | 7.06+1.75 0.939 +0.016
Bi-GRU-Net 6.91+1.85 0.933+0.023 | 7.20+1.83 0.936 £ 0.017
LSTM-LSTM-ED-Net 713+£190 0929%0.023 [ 7.12+1.74 0.938£0.015
GRU-GRU-ED-Net 7.12+1.87 0928+0.021 | 7.09+1.77 0.937 +0.015
Bi-LSTM-Bi-LSTM-ED-Net 6.81+1.78 0.936+0.021 | 691 +1.70 0.941 £0.015
Bi-GRU-Bi-GRU-ED-Net 6.93+£1.83 0.934+0.021 | 700+ 1.76  0.941 £0.015
Bi-LSTM-Bi-LSTM-ED-Attention-Net | 6.81 +1.86 0.937 £0.021 | 6.86 +1.68 0.943 +0.014
Bi-GRU-Bi-GRU-ED-Attention-Net 691+1.82 0934+£0.022 | 6.99+1.65 0.941+0.016
Dual-ED-Attention-Net 6.73+1.84 0940+0.020 | 6.88+1.69 0.945+0.015
Dual-ED-Attention-FAM-Net [ 6.66=1.80 0.940%0.021 [ 6.77 = 1.71  0.946 * 0.015

synchronized with a sampling frequency of 60 Hz. capability. To measure the performance of the

More detailed information on the dataset can be found
in (Losing and Hasenjager, 2022). We utilize 0.50
seconds/30 samples of IMU and pressure sensor data as
input and forecast subsequent 0.1 seconds/6 samples of
kinematics.

3.2. Implementation Details

We train all of our models in Pytorch
with a TITAN Xp GPU (NVIDIA, CA). The
Dual-ED-Attention-FAM-Net is trained with a run
time of approximately 25 minutes per subject for
Dataset A and 51 minutes per subject for Dataset B.
Adam (Kingma and Ba, 2014) is used as the optimizer.
All the models are run for 12 epochs with a batch size
of 64. We utilize Root Mean Square Error (RMSE) as a
loss function to train all the models.

3.3. [Evaluation Procedures

We perform a leave-one-subject-out cross-validation
method, in which test subject data is excluded from the
training set. Exclusion of the test subject data from
training helps to tackle the problem of overfitting of
the model and ensures the model’s proper generalization

model, we utilize two performance metrics: RMSE
and Pearson Correlation Coefficient (PCC). RMSE
calculates the overall offset between the ground truth
and the estimation from the model, while PCC ensures
the correlation between these two.

4. Results

Model Ablation: In Table 2 and 3, we present RMSE
and PCC values of different models when different
modalities are used as input. Although we have modest
improvement compared to intermediate models, larger
improvements are achieved compared to state-of-the-art
and other simple baseline models.

Dual Encoder Decoder: we utilize both Bi-LSTM
and Bi-GRU layers to create dual encoder-decoder
architecture, which helps to improve the performance
compared to single encoder-decoder models (Table 2
and 3).

Feature Attention Module: We utilize a feature
attention module to put weight on the input of the
decoder, which helps to improve the performance in
both datasets.

Temporal Attention Module: Although it makes a
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Figure 2. A sample plot of two gait cycles of hip, knee, and ankle joint angles for Dataset A and Dataset B.
Knee angle is different due to different conventions of ground truth provided in the datasets.

small difference, the temporal attention module does not
substantially improve performance.

Multi-modal effect: In Table 4 and 5, we provide the
analysis when different modalities are used as the input
to Dual-ED-Attention-FAM-Net for both datasets. We
can see a performance improvement when additional
modalities such as video features or pressure data from
insoles are used as input. Although for Dataset A,
both RMSE and PCC are improved, we see degraded
performance for RMSE in Dataset B. However, we
achieve higher PCC when insoles pressure data is used
as an additional modality.

We provide a plot of two gait cycles of ground truth
and prediction from our model in Figure 2 for qualitative

demonstration.
Table 4. Mean and standard deviation of RMSE and

PCC of hip, knee, and ankle joint angles for all the
subjects for Dataset A when different modalities are
used as input .

Angle| Modality |RMSE()| PcC
Hip lzdji‘éihc‘;yyr‘? 4.60 +0.78 |0.975 + 0.008
( Ach(f[_"Gd;rl_‘{%'(}zos) 456 +0.81(0.977 0.007
K Modality-A
nee | (aceGyy | 438045 0,986 £0.002
( ACI\C/I_‘E?;}_‘%BCOS) 4.30 £0.48| 0.987 £ 0.002
Ankle | TG 13.68+050(0.945 +0.008
( Afﬁ‘g;ﬂf{%ﬁos) 3.58 + 0.4 0.945 £ 0.008

5. Discussion

In this study, we propose a novel deep learning
model Dual-ED-Attention-FAM-Net to predict future
joint kinematics of the lower extremities across two

Table 5. Mean and standard deviation of RMSE and

PCC of hip, knee, and ankle joint angles for all the

subjects for Dataset B when different modalities are
used as input.

gg'g'}g Modality |RMSE(°)| PCC

Hip ?gﬂghgyg 6.36 £ 2.50 | 0.968 + 0.015
Modality-B

(Ace-Gyr-Tsoles) | 6:94 £ 2:67| 0.967 + 0,021

Knee ?:gj‘lggr’)* 7.01£2.03(0.970 £0.014
Modality-B

(Act-Gyr-Tnsoles) | 7-00 £ 2.04| 0.973 £ 0.010

Ankle ?ijlgyyr’)* 6.60 337 0.882 + 0.047
Modality-B

(Ace-Gyr-Tsoles) | 6:38 £ 3.07| 0.898 + 0,031

different datasets. We also show that merging different
data types from different measurement modalities can
help to improve the prediction performance further
compared to only IMU-based prediction. In addition
to performance improvement, these modalities can be
used for additional purposes. For example, in Dataset
A, we utilize egocentric vision data from the leg. This
vision data can be used for sensing the environment
in the high-level controller of a prosthesis, where
activity modes such as ground, flat, or stair, etc. are
required(Tschiedel et al., 2020). On the other hand,
foot pressure sensor data in Dataset B can be used to
optimize a wearable assistive device (Jacobson et al.,
2022). Moreover, our model can be modified with
IMUs, cameras, and pressure sensor input modalities
to capture all the aforementioned advantages of the
respective sensor.

Our proposed model Dual-ED-Attention-FAM-Net
outperforms all the models for comparison. We
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carefully design Dual-ED-Attention-FAM-Net with
different modules. We add temporal attention to assign
weights to each time step to put more emphasis on
critical temporal features for the prediction. This
strategy helps to improve the results as additional
contexts are given to the input of decoders in addition
to the kinematics data from the previous time step.
We apply FAM to assign weight to the input features
of the decoder. This helps to put more weight
on the important features and further improves the
predictive performance of the model. In table 2, 5,
Bi-LSTM-Bi-LSTM-ED-Attention-Net provides better
performance than Bi-GRU-Bi-GRU-ED-Attention-Net
in Dataset B, while the opposite performance is seen for
Dataset A. This causes generalization problems across
different datasets. To Tackle this problem, we include
both Bi-LSTM and Bi-GRU layers to construct our
encoder and decoder, which in turn helps to improve the
overall performance for both datasets.

We test our model on a GeForce GTX 1080 Ti
GPU, and it takes approximately 0.2 milliseconds to
predict 0.1 seconds of kinematics into the future using
our proposed model. While data transmission and
processing may add some extra time, it is generally
feasible to handle this time delay with a GPU-based
approach. However, if other low-cost device is used
in the assistive device, which lacks the high computing
power of a GPU, potentially causes delays in prediction.
In the future, it would be worth validating our algorithm
with larger time windows than 0.1 sec for compensating
the delay caused by the prediction of low cost device.

From Table 2 and 3, we find that Dataset A is
providing more accurate results compared to Dataset
B. As Dataset A is collected in a lab environment
with strictly classified walking conditions, it is easier
to predict the kinematics as each walking condition
is repeatable. Dataset B consists of walking trials
from the outdoors, which is substantially more complex
compared to walking in a lab environment. Transitions
from one walking condition to another, such as
from level-ground to a stair or from a stair to
level-ground, require participants to adapt to various
walking techniques for smooth transitions. These
multiple factors contribute to less performance of future
kinematics prediction in Dataset B. Although using
additional input features from video in Dataset A helps
to improve the overall performance of all joint angles,
adding pressure data from the insoles does not reduce
RMSE and increase PCC for all the joint angles.
Specifically, RMSE of hip flexion angle increases when
pressure insoles data is used. Although for the knee
angle, we achieve marginal improvement, there are
noticeable improvements in the ankle angle. A possible

reason behind this is that as pressure insoles data
provides pressures of different regions of the feet, it
provides some essential information about the ankle
angle, which in return improves the prediction accuracy.

In Figure 2, it is evident that most of the
error accumulates due to the shift of the prediction
graph. This is due to the reason that test subject’s
neutral limb alignment may not well represent in
the training data (Rapp et al., 2021). In future,
we can apply passive pseudo-calibration (Rapp et al.,
2021), which may fix the shift and make the
performance better. Another limitation of our proposed
study is the use of a large number of wearable
sensors as input. The number of sensors should be
reduced further for practical implementation and user
comfort as implemented in these studies for human
movement evaluation (Hossain, Dranetz, et al., 2022,
Hossain, Choi, et al., 2022, Hossain, Guo, et al.,
2022). Another limitation of our work is the use of
wearable IMU sensor-based joint angle estimation as
ground truth for Dataset B. Although optical motion
capture is considered the gold-standard method for
motion capture, IMU-based motion capture exhibits
deviation from the optical motion-capture-based motion
estimation system (Robert-Lachaine et al., 2020). This
different ground truth in Dataset B may impact the
prediction performance.

Our proposed model is made publicly available at
(https://github.com/Md-Sanzid-Bin-Hossain/Kinematics
-Prediction-Using-Dual-ED-Attention-FAM-Net). Res-
earcher or clinicians utilize our model directly or
modify it according to their protocol. For Dataset A,
the users need to follow the protocol of this paper.
However, as Dataset B is collected with commercially
available Xsens and foot pressure sensors, the setup
should be the same.

6. Conclusion . .
In this study, we describe a method to improve

future kinematics prediction by incorporating additional
modalities, such as video data or pressure sensor data
from the feet. These additional modalities aid in
providing more information for prostheses control. We
introduce a novel encoder-decoder-based deep learning
model that outperforms different baseline models for
both datasets and demonstrates the generalizability
of our model across diverse datasets with various
modalities.
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