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ABSTRACT. We describe the structure and different features of Lie algebras in the Verlinde
category, obtained as semisimplification of contragredient Lie algebras in characteristic p
with respect to the adjoint action of a Chevalley generator. In particular, we construct
a root system for these algebras that arises as a parabolic restriction of the known root
system for the classical Lie algebra. This gives a lattice grading with simple homogeneous
components and a triangular decomposition for the semisimplified Lie algebra. We also
obtain a non-degenerate invariant form that behaves well with the lattice grading. As an
application, we exhibit concrete new examples of Lie algebras in the Verlinde category.
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1. INTRODUCTION

In recent times, symmetric tensor categories have attracted significant attention. The
work of Deligne [Del90, Del02] has been a foundational stone for this theory, and it is the
major influence in the modern development of the subject. By Deligne’s results, every
pre-Tannakian category (that is, a symmetric tensor category with objects of finite length)
of moderate growth over an algebraically closed field k of characteristic zero admits a fiber
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functor to sVecy, the category of finite-dimensional super vector spaces. In other words, any
such category is equivalent to the category of representations of a (pro)algebraic supergroup.

Over a field k of characteristic p > 0 the situation is completely different. For example,
the Verlinde category Ver), introduced in [GK92, GM92] as the semisimplification of Rep(Zy),
does not admit a fiber functor to sVecg. In [Ost20], Ostrik initiated the quest of providing
analogs to Deligne’s theorem in positive characteristic. Ostrik’s main result states that, in
characteristic p, any pre-Tannakian category which is fusion (thus, of moderate growth)
admits a fiber functor to Ver,. This result opens the door to different directions of research
concerning pre-Tannakian categories of moderate growth, such as the notion of incompressible
tensor categories [BEO23, CEO23a], necessary and sufficient conditions for such a category
to fiber over Ver, [CEO23b], and the study of affine group schemes in Ver, [Ven22, Cou23].
This work focuses on the latter direction, as we study Lie algebras in Ver,,.

Finite-dimensional Lie superalgebras over fields of characteristic zero were classified by Kac
in the seventies [Kac77]. A distinguished class in the classification is that of contragredient
Lie algebras. These are Lie algebras defined from a matrix by generators and relations,
slightly generalizing the construction of Kac-Moody algebras but still preserving many
desired properties, such as a triangular decomposition [Kac90|. This family includes analogs
of classical Lie algebras as well as special, orthogonal, and symplectic Lie superalgebras,
and some exceptions in low rank. Once again the situation is a bit more complicated for
characteristic p > 0. In this context, the classification of finite-dimensional contragredient
Lie superalgebras was achieved in [BGLO09] and contains several exceptions when p = 3,5,
partially constructed by hand.

A possible explanation for the existence of some of the exceptions comes from the super
magic square [CE07], which generalizes the Freudenthal magic square for Lie algebras.
More recently a different approach was given by Kannan [Kan22], who constructed these
exceptional Lie superalgebras using the modern theory of symmetric tensor categories in
positive characteristic, see also [DGES23] for an explanation of the connection between
these two constructions. More precisely, Kannan showed that all the exotic examples can be
obtained via the semisimplification process. The starting point is the realization of Ver, as the
semisimplication of the representation category for the commutative Hopf algebra k[t]/(¢P),
where t is primitive. Thus, there is a semisimplification functor Rep(k[t]/(tP)) — Ver,
which is symmetric. In this way, one can obtain Lie algebras in Ver, by applying that
semisimplification functor to Lie algebras in Rep(k[t]/(#?)). Now, a Lie algebra in the latter
category is just a pair (g, d), where g is a finite-dimensional Lie algebra and ¢ is a derivation
of g such that P = 0. In characteristic p = 3, we have Verg = sVecy so the process always
gives a Lie superalgebra. For p = 5 (and higher), we have a factorization Vers = sVecy X Vers
as symmetric categories, thus the semisimplification procedure still gives Lie superalgebras
after projecting to sVeck. Applying this construction to particular pairs (g, d), where g is a
classical Lie algebra and ¢ is a certain inner derivation, Kannan recovered all exceptional
examples, which only exist in characteristics 3 and 5.

However, the semisimplification process for general p is, at least in principle, a possible
source of new examples of Lie algebras in Ver,, not necessarily supported in sVecy, which
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are much desired. That idea is the starting point of this work. We study the structure of Lie
algebras in Ver, obtained as the semisimplification of a pair (g, J), where g is a contragredient
Lie algebra and ¢ is an inner derivation associated to a homogeneous element with respect
to the lattice grading. This homogeneity assumption is mild enough to still produce new
examples of Lie algebras in Ver,, yet simultaneously manageable to assure nice features
on these algebras. Most importantly, we obtain a grading by a suitable free abelian group
which resembles that of Lie superalgebras. Indeed, contragredient Lie superalgebras admit
a grading which leads to (generalized) root systems in the sense of [HY08, HS20], see e.g.
[AA17]. In our case, we induce a grading on the semisimplified Lie algebra in Ver, coming
from that on the original Lie algebra g: because of the choice of a homogeneous element, the
root system on the Lie algebra in Ver, is the parabolic restriction (in the sense of [CL17]) of
the original one. One may wonder which other Lie algebras in Ver, have root systems. This
is the content of a forthcoming paper.

The organization of the paper is the following. In §2 we recall the construction of
contragredient Lie superalgebras since they appear along the work in two ways: the particular
case of Lie algebras is a source of examples to being semisimplified, and Lie superalgebras,
mainly in characteristic 3, are the images of the semisimplification functor. In particular,
we recall the notion of root system, some properties, and the parabolic restriction from
[CL17]. Later, in §3, we recall the notions of symmetric tensor categories, Lie algebras on
these categories, the semisimplification functor, and the Verlinde category Ver,. The main
results are part of §4. Here we consider a contragredient Lie algebra g(A) attached to a
matrix A and a homogeneous element x. Up to an isomorphism of g(A), we may assume
that x = e;, a generator of the positive part of g(A). We then study this case in detail, first
by understanding the structure of g(A) as a module over k[t]/(tP), and later by studying
its image under the semisimplification functor. If A is of rank 6, it is known that g(A) is
7Z%-graded. We show that the semisimplification of g(A) is Z%~!-graded, where the grading
comes from the projection which annihilates the i-th entry and gives consequently a grading
coming from the parabolic restriction of the root system of g(A). We finish the paper with
some explicit examples in low rank.

2. CONTRAGREDIENT LIE SUPERALGEBRAS

2.1. Conventions. We denote by N the set of positive integers and Ny = N u {0}. Given
0eN,let Iy ={1,...,0}. If 6 is implicit we just write I = Ip; in this case, we make no
distinction between Z! and Z?. The canonical basis of Z! is (@ )ier; we use the expression
191 ...0% to denote ajoq + - - + agag € Z'. For each f =191 ...0% ¢ Ng, the height of 3 is
ht(5) = a1 + --- + ag € Np.

We work over an algebraically closed field k of characteristic p > 0. We denote by Vecy
(respectively sVecy) the symmetric fusion category of finite dimensional k-vector spaces,
(respectively super vector spaces).

2.2. Root systems and Weyl groupoids. We recall here the notions of root systems and
Weyl groupoids from [HS20, Chapter 9], a generalization of the classical definitions of root
systems and Weyl groups for Lie algebras.
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Fix a natural number 6 and a nonempty set X. A semi-Cartan graph of rank 6 and a set
of points X is a quadruple G == G(I, X, (AX) xcx, (73)ic1), where

o for each i € I, 7; : X — X is a function such that r? = idy;

o AX = (afj{-)meﬂ e 7% is a generalized Cartan matrix [Kac90] for all X € X’;
and the following identities hold:
ri(X)

(2.1) at = ag

i forall X e X,i,j €l

The exchange graph of G is a graph with X" as set of vertices, and an arrow labeled with ¢ € I
between X and 7;(X) if X # r;(X), for each i € [ and X € X. An example of an exchange
graph and semi-Cartan graph for i = 2 and X = {X;, X9, X3} is the following:

1 2 X1 2 —2 Xy 2 —2 X3 2 —4
X X 2 A _[—2 2]’ A _[—1 o | AT 2|

In this example, the reflections r; are given by (1) = 2, 1(2) = 1, r1(3) = 3, r2(1) = 1,
7“2(2) = 3, 7"2(3) = 2.

Given a monoid M, we may consider the small category D(&X', M) whose set of objects is
X and the set of morphisms between any two objects is M. We use the following notation:

Hom(X,Y) ={(Y, f, X)|f € M} for each pair X,Y € X.
The composition is then written as follows:
(Z, f,Y)o(Y,9,X) = (Z, fg,X), for any X,Y,Ze X, f,ge M.

The Weyl groupoid W := W(I, X, (A%)ex, (7i)icr) of the semi-Cartan graph G is defined
as the full subcategory of D(X, GL(Z")) generated by

o = (ri(X),s¥, X), iel,XeX,

7 ]

(X)

where s € GL(Z) is given by s (o) = aj — afg ;. Notice that 0,0 = (X, idx, X)

forallieland X € X, so W is indeed a groupoid.

For a semi-Cartan graph G as above, we define the set of real roots of G at X € X as
AKX = fw(oy) e Zie Y € X, (X, w,Y) € Hompy(X, Y)}.

We say that G is finite if A% is finite for all X € X' (equivalently, for some X € X).
The set of positive and negative real roots are, respectively:

Xre _ AX,re 0 Xyre _ aAXre 0
AT = A AN, A2 = AV A (=Np).

Given X € X, i # j € I, we set mf]( = | A% A (Noay + Noayj)| € N U {0}, We say that a
semi-Cartan graph G is a Cartan graph if in addition the following hold:

o forall X e X, AXre = Af’re V) Ai(’re;

e forall X € X, i # j € [ such that mf](» < o0, we have that (rirj)mfg (X) = (X).
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A root system over G is a family R = (AX) yex of subsets AX < Z% such that
0¢ A%, a; € A%, A¥ e Nj v (-Ng), s (A%) = ant),

for all ¢ € I and all X € X. Positive and negative roots are defined as usual, and R is finite
if every AX is so. Also, R is reduced if Za n AX = {+a} for all a € AX, X € X.

According to the definition, a Cartan graph G might support different root systems over
it. But this is not the case when G is finite.

Theorem 2.2. [HS20, 10.4.7] If G is a finite Cartan graph, then R = (AX™)xcx is the
only reduced root system over G.

Finite root systems are in correspondence with crystallographic arrangements: a subset
of hyperplanes in a finite-dimensional R-vector space satisfying certain properties. We refer
to [CH15,CL17] for the precise definition and the correspondence.

The next result about root systems will be useful throughout the article.

Theorem 2.3. [CH12, Theorem 2.4] Let y1,... v € A)f be linearly independent roots. Then
there exist Y € X, w € Hom(X,Y), and o € Sy such that the support of w(v;) € AY is
contained in {o(1),...,0(i)} for each 1 <i < k. O

In other words, this result allows us to reduce computations on a set of k linearly
independent roots to computations on a root system of rank k, obtained as a subsystem of
another object in the Weyl class. Moreover, notice that

w(y1) = ap) since w(v1) € Zag(1y N AY = {as)}-

There are some standard constructions that produce new finite root systems from old
ones, as described in [CL17]. More relevant for us is the restriction construction; at the
level of arrangements, this process fixes a root and then projects all the hyperplanes in the
arrangement onto its orthogonal component. We are interested in the description of the
associated root system. First, we fix some notation:

e Let i € I5. We denote by 7;: Z¢ — Z%~1 the projection given by
ﬂ-i(al) L) CL@) = (a17 sy Qi—1, Qg 1y - - - ,CL@), a; € L.

e For each B = (bl, s 7b0—1) € Ze_l, let B/ = mﬁ

Lemma 2.4. [CL17, 3.3] Let R = (C, (A%)qea) be a finite root system of rank 0. Fiz a € A
and i € Iy. Then A := {m;(a)'|a € A%} is the set of roots corresponding to the restriction of
the hyperplane arrangement of R to aii. U

The classification of finite root systems was achieved in [CH15]. Roughly speaking, there
exist families of arbitrary rank corresponding to Lie superalgebras and Lie algebras of types
A, B,C, D, infinite examples in rank two corresponding to triangulations of n-agons, and
several exceptions in ranks 3 < 6 < 8. According to [CL17, Theorem 3.7], most of these root
systems come from a classical one by restriction.
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2.3. Contragredient Lie superalgebras. Here we recall the construction of contragredi-

ent Lie superalgebras over k from [AA, BGL09,Kac90] and introduce notation. We fix the

following contragredient data:

(D1) a matrix A = (a;;) € k™%

(D2) a parity vector p = (p;) € G5 where Gy = {£1} is the (multiplicative) group with 2
elements!;

(D3) a k-vector space b of dimension 20 — rank A;

(D4) linearly independent subsets (&;);er © b* and (h;);er € b realizing the matrix A, that
is, fj(hz) = Qjj for all i,j el

The set (h;)ier in (D4) is completed to a basis (h;)1<i<26—rank A Of h. The Lie superalgebra

g := d(A, p) is presented by generators e;, f;, i € I, and b, with parity given by

leil = |fil = |i], i€l |h| = 0, for all h e b,
subject to the relations, for all 7,5 € I, h, h' € b:
(2.5) [h. 1] =0, [h, ei] = &(R)e, [h, fi] = =&(R)fi, les, f3] = dijhi
There is a unique Z-grading g = kGE—)Z gk such that e; € g1, fi € 9-1, b = §o. As usual,

we denote Ny = @ g and n_ = @ gg. The family of Z-homogeneous ideals trivially
k>0 k<0

intersecting h admits a unique maximal ideal v; clearly t splits as a sum of its positive and
negative parts: t =t @r_.

The contragredient Lie superalgebra associated to the pair (A, p) is the Lie superalgebra
quotient g(4, p) := g(A, p)/t. For sake of brevity, set g := g(A, p), still denote by e;, fi, h;
the images in g of the generators for g, and identify b with its image in g. By homogeneity,
the grading of g induces one in g = k®Z gr; thus we have g = ni @ hPn_ as usual.

S

Remark 2.6. The Lie subsuperalgebra g’ = [g,g] admits a complement h~y such that
g =g ®b-g, where h-g is the subspace spanned by all h; with j > . In particular, g = ¢’
if A is non-degenerate.

As in [Kan22], it will be easier to work with g’ rather than g, because the former is
generated by the Chevalley generators. We denote by h<g the subspace of hh spanned by all
hj with j < 6, thus we have g/ = ny @ h<gPn_.

Remark 2.7. Given i € I, denote by g; the Lie subsuperalgebra of g generated by e;, f;
and h;. By [BGL09], if a matrix B is obtained from A by rescaling some rows by non-zero
scalars, then g(A4,p) ~ g(B,p). Following the convention adopted in [HS07], we always
assume that a;; € {0,2}. Hence, for g; we have four possibilities:

O ag =2, p; = 1: as usual, g; ~ sl(2);

& ai; =0, p; = 1: now g; is isomorphic to $3, the Heisenberg algebra;

& ai =2, p; = —1: here g; ~ 0sp(2);

& ai =0, p; = —1: in this case g; is isomorphic to s[(1]1).

Now we recall some features of g extracted from [AA]:

I¥or our formulas it is more suitable to work with G rather than Z/2.
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(i) There exists an involution & of g such that
(28) (:}(61) = _fi7 (:)(fz) = —pi€;, Gz(h) = —h, for all 7 € ]I, he f)

Clearly w(t) = t, so @ gives rise to w : g — g, the Chevalley involution.
(ii) The center ¢ of g coincides with that of g’; we have ¢ = {h € b : £(h) = 0 for all i € I}.
(iii) The unique x € ny (respectively, x € n_) such that [z, f;] = 0 (respectively, [z, e;] = 0)
forallielis z = 0.
(iv) The Lie superalgebra g has a Z'-grading determined by
deg fi = —oy, degh = 0, dege; = o, foralliel, heb.

One can show that v is Z!-homogeneous, hence g=h@® @ ga.
aeZl,a#0

Definition 2.9. The set of roots of (4,p) is VAP := {a e ZI — 0 : g, # 0}. The set of
positive, respectively negative, root is V(f’p) = VAP (iNHO).

Since the Chevalley involution satisfies w(ga) = g_q for any a € Z, we get

(2.10) vip) = yhe)  giie), vir _ _ylde)

Remark 2.11. Given contragredient data (D1)-(D4) and J c I, consider
o Ay = (aij)ijer, Py = (Pi)ier;
e gy the subalgebra of g = g(A, p) generated by b, e;, f;, for i € J;
e fj the subspace of h spanned by h;, for i € J;
e b the maximal subspace of Njejker¢; trivially intersecting by.
By [HS07, Lemma 2.1], there is an isomorphism g(Ay, py) @ b} = gy which identifies the
positive and negative parts of g(Ay, py) with the subalgebras of g(A, p) generated by e;,

respectively f;, for ¢ € J. In particular, we get V(J_FAJ’pJ) = V(f’p) N7
2.4. Root systems for contragredient Lie superalgebras. Next we extract from [AA]
the construction of the Weyl groupoid associated to a contragredient Lie superalgebra. Let
(A,p) as in (D1), (D2). Following [Kac90,BGL09], we assume from now on that A satisfies
(2.12) a;; = 0 if and only if aj; = 0, for all j #iel.

From (A, p), we build:
(1) A matrix C4P) = (cz(j"p)) by AP 9 for each i € I and

igel © ®
(2.13) P = —min{m e Ng : (ad f;)™ 1 f; = 0}, i#jel
Since ad f; is locally nilpotent, C4P) is a well-defined generalized Cartan matrix.
(2) For each i € I, an involution SEAP) e GL(Z") given by
(2.14) AP () = aj — AP, jel

7 ij
(3) For each i € I, the i-th reflection (A, p) := (r;A,ripP) = ((@jk);jker, (Dj)je1), where
(4,p)

e pj=pjp;” ,foralljel;
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o for j =i, let aj, = cg,f’p)aii — a;x, for all k e T
o for j # i with a;; = 0, let @, = aji, for all k € I
o for j # ¢ with a;; # 0, put aj; = aji(cgf’p)aii — a;j), and for all k # 1, j,

~ Ap) (A, A, A,
(2.15) ajk = Cz('j p)CZ(-k p)aﬁ-aii — Cz('j p)aﬁ-aik — Cz('k: p)ajiaij + a0k
Remark 2.16. For each a € F),, @ € Z denotes the unique integer 0 > @ > 1 — p whose class

(A,p)

in Fp is a. By [AA] the integers ¢;;

(a) If a;; = 2 and a;; € ), then

can be explicitly computed as follows.

j, ai; € Fp,p; = 1 or p; = —1,a;; even;
=y G P aij € Fp,pi = —1,a;5 odd;
—pi .
1 —=5"p, aij ¢ Fp.

(A,p)
Cij

(b) If Qg5 = 0, then

4 O, aij = 0;
CZ(]‘ Pl 1-p, a;ij # 0, pi = 1;
-1, ay #0,pi=—1.

Another crucial result of [AA] states that, in this context, we have analogues for Lusztig’s
isomorphisms on quantum groups.

Theorem 2.17. Let A € k™! satisfying (2.12), p € (G2)!, and i € 1. There is a Lie
superalgebra isomorphism TZ-(A’p): g(r;A,rp) — g(A,p) such that

(218) TP (g(riA,mip)g) = 8(A, D) am g, for all 8 & £N;

i
To obtain a reduced root system, we need to disregard roots that are natural multiples of
other roots. Consider

(2.20) AP AP ks ae VAP ke N k> 2).
Now we are ready to state another key result from [AA].

Theorem 2.21. R(Cy, (A(A’p))(A’p)eX) is a reduced root system. O

To fully describe V(4P) we need to take into account all the multiples of roots in A(4:P),

Definition 2.22. We say that a root 8 € A4P) is odd non-degenerate if there exist i € I

and an element (B,q) = 7, --- 13, (A4, p) in the Weyl class of (A, p) with b;; = 2, q; = —1
such that ng,p) .-+ 55, € Hom ((B,q), (A, p)) maps «; to 3. We denote by Agﬁl’g) the set of
all such roots.

The existence of odd non-degenerate roots turns out to be the reason behind the existence
of integer multiples of roots.
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Proposition 2.23. [AA17] Assume that dim g(A,p) < 0. Then
vAap) = Al4P) (2Ag’;’§)> , and dimg(A,p)sg =1, forall 5 e var), O

Example 2.24. We describe all rank two finite-dimensional contragredient Lie superalgebras:

(i) The classical Lie algebras of types A, By and G2, with matrices (31 _21), (32 _21),
(31 _23) (here, p > 3). The root systems are the classical ones.
(i) Similarly, A(0[1), B(0|1) are standard root systems, with Cartan matrices ( 2% '),
(_22 31 ) The root systems have the same roots as Ay and Bs.
(iii) Let p = 3, a € k — F3. The Brown algebra br(2,a) is constructed as follows: Set

2 -1 [ 2 4
A_|:CL 2]’ A_[—l—a 2]’

so C4 and C4 are of type By. We can check that ro(A) = A, r1(A) = A, ri(A') = A,
A4 =AY = {1,12,122,2},

so dimg(A) = 10.
(iv) Again take p = 3: we recall now the definition of the Lie superalgebra btj(2;3). Set

. 0 1 _ . r 0 1 n __ 2 -1 n__ (1 _

In this case,

C(Ap) _ {_21 —22] AP _ {_22 —22] oAD" _ [_21 —24]7
r1(4,p) = (4, p), r2(4,p) = (4", p"), r2(4",p) = (4", p), (A", p") = (A", p"), and
AP (1122 1392 1493 12,2}, AR = (12,122},
AP (1122 1322 12,122, 2}, ANP — (1,12},
AWPY (1 142,132,122, 12, 2}, ALY — (1,122},

Thus sdim g(A, p) = 10|8.
(v) Finally take p = 5. The Lie superalgebra btj(2;5) admits two possible realizations as
contragredient Lie superalgebra. Namely,

12 =3 _ _ |2 -4 I (1 —
In this case,

C(A’p) _ |: 21 —23:| ’ C(Alypl) _ [ 2 —4:| ’
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r2(A,p) = (A, p), r1(4,p) = (4, p), (4, p) = (4, p), and

AP (1,132,122, 152313221428, 12, 2}, AP _ (129 19y,
AP (1 149 132, 1592 122, 1322 12, 2}, ANR) (1 129}

Thus sdim g(A, p) = 10[12.

Remark 2.25. By Proposition 2.23, we can fix bases (eg) gey(ap) for ny and (fB)BGV(A,p)
for n_ such that

o ¢, =¢;and f,, = f;, for all i € I
e cgeggand fgeg_p, forall B e ASFA’p); if B8 = ka; + a; for some i # j and k > 0, we can
take eg = (ade;)*e; and fs = (ad f;)* f;. For small values of k, we denote

eij = (ade;)ey, €iij = (adei)er, eiij = (ad ei)sej,
and use analog notation fi;, fiij, fiiij-
o e = [eg.es] and fog = [f3, f5], for all 5 e AP
Let B =Y qaio; € V&A’p), £ 1= D1 @i& € b*. Then
(2.26) [, es] = Ea(h)es, (7, f5] = =€s(R) f3, for all o € b.

We end this section with a generalization of a well-known result for Lie algebras. The
proof follows as an application of Theorem 2.3.

Lemma 2.27. Assume that A is finite and o, 3 € AP are such that o ¢ Z3.

(a) If n € N is such that § + na € A&A’p), then n < 2p and there exists c € k* such that
(adeq)"es = cegina-

(b) If n € N is such that  — na € ASFA’p), then n < 2p and there exists ¢ € K* such that

(ad eoé)nf,@ = Cfﬁfna-

(Ap

o,nd)' If n is as in any of the items above, then n < p.

(¢) Assume moreover that o ¢ A

Proof. (a), (b) Since a and  are linearly independent, by Theorem 2.3 there exists a pair
(B, p’) with two simple roots 1, 32, and w € Hom((A, p), (B, p’)) such that

w(a) = pi, w(p) e ASFB’p/) N {Nop1 + Nofa}.

So it is enough to verify the claims for (A4, p) of rank 6 = 2, which is easily achieved from a

case-by-case analysis, see Example 2.24.
(B,p') 0

For (c) we can reduce to § = 2 again and use that 1 ¢ A, 3 .

3. LIE ALGEBRAS IN SYMMETRIC TENSOR CATEGORIES

We recall some notions and basic results related to symmetric tensor categories, Lie
algebras in this broad context, and the Verlinde category.
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3.1. Symmetric tensor categories. A symmetric tensor category is an abelian k-linear
category which admits a rigid symmetric monoidal structure such that the tensor product is
bilinear on hom-spaces and the unit object has a one-dimensional endomorphism space.

A pre-Tannakian category is a symmetric tensor category where all objects have finite
length, which then implies that all Hom spaces are finite-dimensional. Notice that we adopt
the terminology of [CEO23b].

The ind-completion C™ of a symmetric tensor category C is defined as the closure of C
under filtered colimits. This completion C! is a k-linear abelian category with an exact
and symmetric tensor product, and there is universal exact symmetric embedding C < C™4,
see [KS06]. We shall refer objects in C'"? as ind-objects of C. When C is moreover fusion,
that is, finite and semisimple, the ind-objects are (possibly infinite) direct sums of simple
objects in C. The genuine objects of C are then recovered as ind-objects of finite length. If
X and Y are ind-objects, we imprecisely write Hom¢ (X, Y') instead of Homgina (X, Y).

3.2. The category Rep(a). Let a denote the Frobenius kernel of the additive group
scheme. This group scheme is represented by the commutative and cocommutative Hopf
algebra k[t]/(t?) where t is primitive. By self-duality, we can safely identify Rep(c,) with
the symmetric tensor category of finite dimensional representations of k[t]/(t?) over k.

Isomorphism classes of indecomposables in Rep(ea,) are represented by nilpotent Jordan
blocks L; of size ¢ with 1 < i < p. Explicitly, L; has an ordered basis {v1,...,v;} such that
vjy1 = tv; for 1 < j < i and tv; = 0. Such a basis is called cyclic; in this situation we write
L; = k{v1,...,v;} = (v1) and say that v; is a cyclic generator. Notice that an element in
Homg, ({v1), V') is determined by its value on v;.

The indecomposable objects are self-dual, and an isotypic decomposition of L; ® L; is
known from [Gre62]. In particular L; is the monoidal unit and L, ® L, ~ pL,,. For later
use, we record an explicit decomposition of some tensor products.

Example 3.1. Assume p > 2. Consider two copies of Ly, with cyclic bases {vi,v2} and
{wy,wy} respectively. Then Ly ® Lo = L1 @ L3 where

L) = {v1 @wa — v2 @ wy), Ly = (v1 @ wy).
Example 3.2. Consider two copies of Ls, with cyclic bases {v1,v2,v3} and {wy, wa, ws}.
e If p> 3, then L3 ® L3 = L1 ® L3 @ L5 where
Li=v1®@uws —n2@ws +v3@w1), Lz={1®ws—1v2@w1), Ls={v1@wr).
o If p= 3, then Ly ® Ls = L’ ® LY @ LY where
L;(;I) = (v2 @ wa), L§2) = (v @ Wz — V2 ® wy), L;(gg) = (v1 @ wy).

Example 3.3. Consider two copies of Ly, with bases {v1,va, v3,v4} and {w1, we, w3, wy}
respectively.
e If p>5,then Ly ® Ly = L1 P L3P L5 ® L7, where

L1 ={(v1 Qws — v2 @ ws + V3 @ wa — v4 @ V1), Ly = (v1 @ wy — v2 @ wn),

Ly = (3v1 @ w3z — dve @ wa + 3vuz @ w1 ), L7 = {v1 @ wy).
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o If p=>5, then Ly ® Ly = L1 ® 3L5, where
Ly = (v @wg — v @ws + v3 Q@ wy — v4 @ v1).

For reasons that will become evident later, we are particularly interested in tensor products
of the form L3z ® L; for j at most 4. Next, we describe explicit direct sum decompositions.

Example 3.4. Consider indecomposables L3 = k{vy, v2,v3} and Lo = k{w;, ws}.
e Assume p > 3. Then L3 ® Lo = Lo @ L4, where

Ly = Qv @ wa — v2 @ wy), Ly = (v ® wr).
e Assume p = 3. Then L3 ® Lo = Lgl) &) L:(f), where
LS = (v @ wy), LY = (v @wy).

Example 3.5. Consider indecomposables L3 = k{vy, v, v3} and Ly = k{w;, wa, w3, wya}.
e Assume p > 5. Then L3 ® Ly = Lo @ L4y @ Lg, where

Ly = (v @wz — 202 @ wa + 3vs @ w1y, L4= Qv @wa—3vaQ@wi), L=< v ®w).
e Assume p =5. Then L3 ® Ly = Lo @ 2L5, where
Ly = <U1 ® w3 — 2v9 Q wo + 3vg ®w1>.

3.3. Semisimplification and the Verlinde category. If C is a symmetric tensor category,
a tensor ideal Z is a collection of subspaces

Z={Z(X,Y) € Hom¢(X,Y)|X,Y objects in C},

which is compatible with compositions and tensor products. The quotient category C of
C by Z is the category whose objects are the same as C and the spaces of morphisms are
Homz(X,Y) := Home(X,Y)/Z(X,Y). Notice that this construction is compatible with the
k-linear monoidal structure and the tensor product of the original category.

As in [EO22], see also the references therein, we may take a spherical category C and
the tensor ideal of negligible objects. The quotient C obtained in this case is known as the
semiasimplification of C since it turns out to be semisimple: The simple objects of C are the
indecomposable objects in C with non-zero categorical dimension.

The Verlinde category Ver), is defined as the semisimplification of the spherical tensor
category Rep(ay,), see [GK92,0st20]. This is a symmetric fusion category equipped with
a symmetric monoidal functor Rep(ay,) — Ver, which fails to be right or left exact. For
instance, since the categorical dimension of L, is p = 0, it is mapped to zero in Ver,. Up to
isomorphism, the simple objects of Ver, are the images L; of the indecomposables L; with
1 <i<p-—1of Rep(ap), and the fusion rules in Ver, are

min{s,j,p—%,p—j}
(3.6) L;®L; = (—D Lji—jl+2k-1-
k=1
Also, the fusion subcategory generated by L; and L,_; is equivalent, as a symmetric tensor
category, to sVecg, see [Ost20, Kan22].
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3.4. Lie algebras in symmetric tensor categories. We recall now different flavors of
Lie algebras in a (strict) symmetric tensor category C following [Etil8]. First, an operadic
Lie algebra is an object g in C equipped with a morphism b: g ® g — g that satisfies the
anti-symmetric and Jacobi identities:

(3.7) bo (idggg +¢ag) =0,  bo (b®idg) o (idyes +(123)4es + (132)ges) = 0,

where the maps (123)e3, (132)40s: g% — g®* are obtained the action of the symmetric
group. We denote by OLie(C) the category of operadic Lie algebras in C. Operadic Lie
algebras are just called Lie algebras in [Ruml3] and other previous papers. However,
especially when working in positive characteristic, one needs to pay special attention to
some details, as explained next.

For a Lie algebra g, consider two quotients of the tensor algebra T(g):

o The universal enveloping algebra U(g) is the quotient by the two-sided ideal generated by
the image of the map

(3.8) (=b,idggg —Cgq): IR — gD g®g < T(g).

o The symmetric algebra S(g) is the quotient of T(g) by the image of idggg —cq,g-

As in the category of vector spaces, there is a natural map 7: S(g) — gr U(g) of ind-algebras
in C, which can fail to be an isomorphism. For example, it is known that for C = Vecy and
p = 2, for ) to be an isomorphism one needs to impose the additional condition b(x ® z) = 0
for all . Also, for C = sVeck and p = 3, we have to assume b(b(z®z) ®x) = 0 for all odd x.

Motivated by this fact, an operadic Lie algebra g is said PBW if the canonical map
n: S(g) — gr U(g) is an isomorphism.

It is not a trivial task to decide whether a given operadic Lie algebra in a symmetric tensor
category is PBW. For C = Ver), Etingof introduced in[Etil18] the p-Jacobi identity for any
p = 5, a degree-p relation that generalizes the conditions b(z®x) = 0 and b(b(z®z)®z) = 0
needed for characteristics 2 and 3, respectively. By [Etil8, Theorem 6.6, Corollary 6.7], an
operadic Lie algebra in Ver, is PBW if and only if it satisfies the p-Jacobi identity. As a
first application, we have the following result:

Lemma 3.9. Contragredient operadic Lie superalgebras satisfy the PBW theorem in any
characteristic. In other words, for any contragredient Lie superalgebra g = g(A,p), the
natural map n: S(g) — grU(g) is an isomorphism.

Proof. By [Etil8, Corollary 4.12], it is enough to show that if p = 2 then [z, z] = 0 for all
x € g and that when p = 3, we have [z, [z, z]] = 0 for all odd z. In any case, we can assume
that = is homogeneous of nonzero degree; moreover, via the Chevalley involution, we reduce
to the case z € n .

When p = 2, it is enough to show that [f;, [z, z]] = 0 for all i € I, which is a consequence
of the Jacobi identity:

Lfi, [, 2]l = [Lfi, 2], ] + [, i, ]] = 2[[fi; 2], 2] = 0.



14 IVAN ANGIONO, JULIA PLAVNIK, AND GUILLERMO SANMARCO

For the case p = 3, we need to show that [f;, [z, [z,z]]] =0 for i € I and any odd = € ny.
When f; is odd, using the Jacobi identity and the fact that [f;, z] is even, we get

Lfi [, [, 2]1] = [[fi, ], [, 2]] = [=, [fi [, 2]
= [[lfi;x], x], ] + [, [[fi, ], 2]] = [, [[fi, 2], 2] = [=, [fi, ]]] = 0.

Similarly, when f; is even, we see that

[fi: [, [z, 2]]] = [Lfis =], [, 2]] + [, [fs, [, 2]]]
= [[[fz,x]7:c],x] - [l’, [[fl’x]’x]] + [SL‘, [[flvxLaj] + [x7 [f“x]]] =0,

as claimed. 0

Fix an operadic Lie algebra g with bracket b in a strict symmetric tensor category C. A
form on g is a map B: g® g — 1 in C. We say that the form is:

o symmetric if it remains unchanged when composed with the braiding g® g — g & g;

e invariant if Bo (b®idg) o (idg®3 +(123)g®3) = 0;

e non-degenerate if its image under the natural adjunction Hom¢(g® g, 1) ~ Home(g, g*) is
an isomorphism.

Lemma 3.10. Let g be an operadic Lie algebra with a form B : g®g — 1. Let B : gRg — 1
denote the form on g induced by B under semisimplification. If B is symmetric, respectively,
invariant, and non-degenerate, then so is B.

Proof. The property of being symmetric (respectively, invariant) is preserved because the
semisimplification functor is additive. Non-degeneracy is also hereditary since the diagram

Home(g ® g, 1) —————— Home(g, g*)

| |

comimutes. U

4. SEMISIMPLIFICATION OF LIE ALGEBRAS WITH A DERIVATION

In this section, we work exclusively in characteristic p > 2. As in [Kan22], if g is a finite
dimensional Lie algebra over k endowed with a derivation ¢ of order at most p, then g
becomes a Lie algebra in Rep(a,) by letting ¢ act via 0. Applying the semisimplification
Rep(a,) — Ver,, we get an operadic Lie algebra in Ver,, since the functor is braided monoidal.

We are interested in understanding the result of this process when the input is a contra-
gredient Lie algebra g = g(A) with an inner derivation ¢ = ad z, for some z € g. If moreover,
z is homogeneous with respect to the grading by A4, using Theorem 2.3, we may assume
that x = e; for some ¢ € I. Let us fix some terminology.

Notation 4.1. We denote by S: Rep(a,) — Ver, the semisimplification functor. If g is a
finite dimensional Lie algebra and z € g is such that ad x has order at most p, then

e (g,z) denotes the Lie algebra in Rep(a,) obtained from g by letting ¢ act via ad z;
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e S(g,x) is the operadic Lie algebra in Ver, obtained from semisimplification of (g, x).

Next we verify that for a finite dimensional contragredient Lie algebra g(A), the Chevalley
generators e;, f; yield suitable derivations.

Lemma 4.2. Let A be such that dim g(A) < 0. Then (ade;)? = (ad f;)P = 0 for all i € Iy.

Proof. By the binomial formula, (ad z)? is a derivation for all = € g. Hence, to show that
(ad ;)P annihilates n,, it is enough to check that (ade;)?e; = 0 for all j € I, which follows
from Remark 2.16. Also, for any = € h = gg, we have (ade;)?r € (ade;)ke; = 0. Thus
(ad e;)P ne@p = 0- Applying the Chevalley involution we get that (ad f;)? n_ap = O-

To show that (ade;)? annihilates n_, consider a nonzero homogeneous x € g_g, where
B e Aﬁ. If 8 = «;, then x € kf;, and since

(ade;) f; = (ad e;)*h; = —asi[ei, e;] = 0,

we also have (ade;)3z = 0. For the case 3 # «;, consider 8’ := 5;(j3) € AQA; we know that,

up to a nonzero scalar, x = T/ ( fgf) Then
~\D ~ ~ A~
(adeiy'e = (ad T (F)) T (o) = T ((ad foy"fi) = o0.

Thus (ad e;)P m_ = 0. Applying the Chevalley involution, we also have (ad f;)?,, =0. O

Iny

These two derivations turn out to yield isomorphic Lie algebras in Rep(a,).

Lemma 4.3. Let A € k%9 such that g = g(A) is finite dimensional, and fix i € Iy. Then
the Chevalley involution w: (g, e;) — (g, —fi) is an isomorphism of Lie algebras in Rep(ap).

Proof. Since w: g — g is an isomorphism of Lie algebras, it is enough to show that
w: (g,ei) = (g, —fi) is a morphism in Rep(eay,), which follows directly from w(e;) = —f;. O

Remark 4.4. Let J € I be the connected component of the Dynkin diagram containing
a fixed index ¢ € Iy, and denote by J the complement of J in I. Then, as explained in
Remark 2.11, we have g = g(A4y) @ g(43), so

(9,€i) = (9(Ar), ei) @ (a(43), €i), S(g,ei) = S(a(A), e) @ S(a(A43), €).

Furthermore, since (ad e¢)|g(AA) = 0, we see that S(g(45),e;) ~ g(A;) is an ordinary Lie
J

algebra in Vecy = Ver, similarly (g(A3),e;) € Veck < Rep(ap).

As a consequence, for most of the arguments in this section, we only need to consider
matrices A with connected Dynkin diagram.

4.1. The structure of the Lie algebra (g/(A4),e;). In this subsection, we fix a finite-
dimensional contragredient Lie algebra g = g(A) and a Chevalley generator ¢;, and we
describe the structure of the Lie algebra (g’,e;) in Rep(ey,), see Remark 2.6.

As a first step, we show that the isotypic decomposition of (¢, e;) € Rep(ex) is determined
by the roots. To describe it, we need to fix some terminology.
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Notation 4.5. Fix i € [y and a matrix A € k?*?. For each j € I, consider
Al ={B# ai|B+ka;e A forall 0< k < jand B — o, B+ joy; ¢ AL}, a; = |AL

If e A+j, we say that {8 + ka;: 0 < k < j} is a maximal «o;-string. We also say that g
generates the string, and that j is the length of the string.
The roots that generate «;-strings of length less than p will play an important role. Let

(46) + min — U AA,]? Aé ,min — Ail min> Aém + min U A* ,min-

]E]Ip 1

7]‘

Remark 4.7. Assume g(A) is finite dimensional and fix i € Iy.

e Fach positive root different from «; belongs to a unique maximal «;-string. In fact, the
existence of such a string follows from Lemma 2.27 (¢) (with @ = «;), and the uniqueness
follows from maximality.

e Given j # ¢, the simple root «; generates a maximal c;-string of length 1 — see (2.13).

U’
Proposition 4.8. Fizi € Iy and a matriz A € k9%% such that g = g(A) is finite dimensional.
(a) ForeachﬁeAJr],

Mpg = ®}_skeskans Np := @k f54kas»
are oy, -submodules of (g',e;), and both are isomorphic to L;.
(b) If a;; = 2, then kf; ® kh; @ ke; is a submodule of (¢',e;) isomorphic to Ls, any
one-dimensional subspace of ker §; N h<g is a submodule isomorphic to L1 and

_ 2a;\ .
(¢ ei) ~ L%alw ! @L§a3+l ® <@je]1p_{173}LjaJ) in Rep(a,).

(c) If ai; = 0 and there exists j such that aj; # 0, then kf; @ kh; is a submodule of (¢, e;)
isomorphic to Lo, there is h € h<p such that kh @ ke; is a submodule isomorphic to
Lo, any one-dimensional subspace of ker & m <o different from kh; is a submodule
isomorphic to L1 and

(6),e) = L2 @ 132 @ (@jer, -1y L)) in Rep(ay).

the subspaces

Proof. (a) Fix jel, and f € Aij. Using that g is Z%-graded, since § — o and 8 + ja; are
not roots, we have

(ad ei)fg = 0, (ad ei)65+(j,1)ai = O;
so Ng and Mg are ay-submodules of g. Using these last computations and Lemma 2.27, it
becomes evident that these submodules are isomorphic to the nilpotent Jordan block L;.

To prove (b) and (c), we first observe that @sq,keg and @pg.q,kfs are a,-submodules
of g. Indeed, by Remark 4.7 we have

Dpra;kes = D (@)ﬁeAﬁr‘ .Mﬁ) > Dprakfs = D (@zmﬁ _N,3> :
Jelp ? jel, ’]
The subspace kf; @ h @ ke; is also an ay,-submodules of g, so
= (Dprakes) ® (Dprakfs) @ (kfi ® hep Dke;)



SEMISIMPLIFICATION OF CONTRAGREDIENT LIE ALGEBRAS 17

as an ay-module. It only remains to compute the isotypic components of kf; @ h<s @ ke;.

First, we assume that a;; = 2. In this case h<p = kh; ® (ker&; N h<p) as vector spaces and
{fi, hi,e;} ~ sly, hence kf; @ kh; @ ke; ~ L3 as an object in Rep(ay,). Also, (ker&;) n by is
a sum of # — 1 copies of L1, so (b) holds.

Now consider a;; = 0. By hypothesis, there is h € h<y such that &(h) = 1. Thus we have
a linear complement h<p = kh @ (ker&; n h<g). Since [h, e;] = e;, the subspace spanned by
h and e; is an ay-submodule of g isomorphic to Ls. Also, since [h;, e;] = 0, the subspace
spanned by h; and f; is an ajp-submodule of g isomorphic to Lo. Finally, any complement
of kh; in ker & n h<p is a sum of  — 2 copies of L; and (c) follows. O

We show next that the submodules Mg, Ng can be Lie-generated by submodules associated
to simple roots.

Proposition 4.9. If 3 is an o;-string generator, then Mg is contained in the Rep(ay)-Lie
subalgebra of (¢, e;) generated by the submodules M,;, where j # 1.

Proof. The proof is by induction in ht(5). The base case ht(3) = 1, i.e. § a simple root, is
clear.

For ht(f) > 1, there exist positive roots a and v such that 8 = a + 7; notice that both
roots have smaller height and are independent with a;. Now, a and v belong to some
ay-string, say o = &+ ca; and v = 7 + day; where @&, ¥ are string generators. By Lemma 2.27,
eg € klea, e4] = [Mg, M5]. Next, using the Jacobi identity, we see that for each 3 + ha; in
the string generated by 3, we also have

€B+ha; € k(ad ei)he/g c k(ad ei)h[ea, ey] © [Ma, M5],
since My and Mj are ad e;-stable. This means that Mg < [My, M5], and now the proposition
follows by induction and the Jacobi identity. ([l

Motivated by Propositions 4.8 and 4.9, we describe how the Lie bracket of (g, ;) behaves
when restricted to tensor products of some simple submodules. We describe the adjoint
action of an element in ker&; as a first step.

Lemma 4.10. Let h € ker§;. If 5 is an a;-string generator, then h acts on Mg by {g(h),
and on Ng by —&g(h).

Proof. We verify first the claim concerning Mg. Let {8 + ka;: 0 < k < d} denote the
a;-string through . By (2.26), [h,eg] = {3(h)eg. We show that [h, egika,] = £5(h)€stka,
for all such k. For k = 1, we write eg1o, = pleg, e;] and, since h € ker §;, we get
[hv eﬁ—&-ai] = :u[[h7 6,3]7 61'] + :UJ[657 [h7 61]] = Nfﬁ(h)[eﬁ¢ e’i] = fﬁ(h)eﬁ-&-ai'
The proof now follows inductively on k using that egra, € k[€i; €4 (k—1)a,]-
The claim regarding the action on Ng follows via the Chevalley involution. O

If M, N are submodules of (g, ¢;), [M, N] denotes the image of [—, *]|M®N: M®N — ¢'.
In the next couple of Lemmas, we describe [, —] € Homg, (M, ® Ny, ,g') for j, k € I,
both different from i. The case j # k is straightforward:

Lemma 4.11. Let j, k € I, both different from i. If j # k, then [Ma;, Na,] = 0.
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Proof. If n,m > 0, then [(ade;)"e;, (ad f;)™ fi] = 0 because (n — m)a; + oj — o, can not
be a root. O

On the other hand, when j = k a more careful analysis is needed.
Notation 4.12. If a € k and n € N we denote (n), = n+a and (n), = (n)a(n —1)g - (1a.

Remark 4.13. Assume that a;; = 2. Let j € Iy different from i. Then the bracket in g(A)
satisfies:

[——1] Jj fij fiij Jiiij
ej hj (ljifi 0 0
€35 —Qji€; aijhj + ajihl- 2(1]'1'(1)(“]. fi 0
€iij 0 —2aji(1)aijei 2(1)%]. (aijhj + 2ajl-hi) 6aji(2)51ij fl
Ciiij 0 0 —6a;i(2)y,, € 6(2),,, (aijh; + 3ajihi)

We fix cyclic generators for the indecomposable submodules from Proposition 4.8 (b).

Notation 4.14. Assume g is finite dimensional. Let i € Iy be such that a; = 2. Let j €y
be different from ¢. Then

My, = {ej) = kiej, (ade;y)ej, ..., (ad e;) ~“e ).

o No, = {(ad f;)~“ f;) which has (non-cyclic) basis {(ad f;)~ f;, (ad f;)' =9 f;, ..., f;}.
S denotes the copy of Lz generated by e;, which has a cyclic basis {f;, h;, —2¢;}.

Write 7@]- = h; if a;; = 0, and 7Lj = 2h; — aj;;h; if a;; # 0. Then %j € ker &; and generates a
copy of L.

For any direct summand X of g’, denote by ¢x: X < g’ the canonical inclusion. If Y is
another object we also denote by ¢tx the composition X @Y — X — ¢'.

To obtain an explicit expression for the cyclic basis of N, one uses the following:
Remark 4.15. Assume that a; = 2. Let j € I different from . Then
lei, fij] = —aujfj, lei, fiij] = —2(1)ay; fij, lei, fiiij] = —3(2)ay; fiij-
Now we can use these bases to explicitly describe [—, —] € Homg, (Ma; ® No,,¢').

Lemma 4.16. Assume g is finite dimensional and a; = 2. Let j € 1 different from i and
assume that a;j € F,. Consider on My; and Ny, the cyclic bases from Notation 4.14.

(a) If cij =0, then [—, —]: My, ® N, — ]]JLJ- is the canonical isomorphism L1 ® L1 — L.
For —1 = ¢;j = —3 we have [My,, No,] = ]kﬁj ®S =Ly ®Ls. Also
(b) Assume c;j = —1 and p > 2. If we identify My; ® No; = L1 ® L3 as in Example 3.1,
then [—, —]: Mo; ® No, — ]kﬁj @S acts as vr, @ ajiLr,.
(c) Assume cij = —2 and p > 3. If we identify Mo, ® No; = L1®L3® L5 as in Evample 3.2,
then [—, —]: My, ® No, — ]k%j @S acts as 6t D4ajitr,.
(d) Assume cij = —3 and p = 5. If we identify My, ® No, = L1 ® 3L5 as in Example 3.3,
then [—, —]: Ma; ® No; — ]kﬁj @ S restricted to Ly acts as T2¢r,.
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(e) Assume cij = =3 and p > 5. If we identify Mo; ® Noy = L1 @ L3 ® L; @ L7 as in
Ezample 3.3, then [—, —]: My, ® No, — ]kzj @S acts as 7T2ur, D 120a;tr, .
Proof. (a) In this case M,; = k{e;}, No, = k{f;}. Since [e}, f;] = hj, the claim follows.

The inclusion [Ma;, No,] S k{2h; — ajihi} @ k{fi, hi, —2e;} = L1 ® L3 follows directly
from Remark 4.13.

(b) The cyclic bases for M, and N,, given by Notation 4.14 are M,; = k{e;,e;;} and
No,; = k{fij, f;}. According to Example 3.1, we have M,, ® No; = L1 @ L3 with cyclic
bases L1 = k{ej ® fj — €ij ® flJ} and L3 = k{ej ® fij, €ij ® fij + € ® fj, 26@' ® fj} Now we
use Remark 4.13 to compute the action of the Lie bracket on these bases

lejs i1 = leij, fij] = hj — aijhj — ajihi = 2h; — ajihi;

lej, fis] = ajifi, leij, fis] + [ej, 5] = aijhy + aji + by = ajihi, 2[eij, fj] = —2aj;e;,
and the claim follows.

(c) The cyclic bases for M,; and N,; given by Notation 4.14 are My, = k{e;, ), €ii;}
and No, = k{fiij,2fij, 4f;}. According to Example 3.2 we have My, ® No; = L1 ® L3 ® Ls
with cyclic generators

Ly = {4e; ® fj — 2€ij ® fij + €iij @ fiij), Lz =<2¢;® fij — €ij ® fiij), Ls ={e;® fiij)-
Next, we use Remark 4.13 to compute the Lie bracket on these generators
4[6]‘, f]] — 2[62‘]‘, fU] + [6“‘]‘, fuj] = 4hj + 4hj — QCL]'ihZ‘ + 4hj — 4aj,-hi = 6(2hj — ajihi),
thus the bracket acts as 67, on L;. Similarly
2[ej, fij] — leijs fuz] = (2a5i + 2a5:) fi = daji f;
so the bracket acts as 4a;; on the fixed basis of L3. Finally
lej, fiij] = 0.
Thus L3 is annihilated by the Lie bracket, and the claim follows.

(e) The indecomposables M, and Ny, have cyclic bases My, = kie;, ej, €iij, eiiij} and
Nao,; = k{fiiij, 3fiij; 12fij, 36 f;}. According to Example 3.3, we can decompose My; ® No, =
L1 ® Ls® Ls ® L7 with cyclic generators

Ly = (36e; ® fj — 12€i; ® fij + 3eiij @ fiij — €iiij ® fiiij)
Ly = (36e; ® fij — 12e;; ® fiij + 3€iij & fiiij),
Ls = (3¢; ® fiij — €ij @ fiiiz),
L7 = {e; ® fiiij)-
Using Remark 4.13, we compute the Lie bracket on the generators. In L; we have
36[ej, fi] — 12[eij, fij] + 3leiij, fiij] — [€iii, fiiig] =
= 36h] — 12(—3hj + ajihi) — 12(—3hj + 2ajihi) — 12(—3h]‘ + 3aﬂhz) = 72(2]1] — ajihi),
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hence [—, —] acts as 72¢ on L; (note that this argument also works for (d)). Similarly, the
action on the generator of Lj is

36[ej, fij] — 12[eqj, fiij] + 3leiij, fiiij] = (36 + 48 + 36)a;; f; = 120ay; f;.
And the generators of Ls and L7 are mapped to zero. O

The assumption a;; € IF,, in Lemma 4.16 assures that a;; is the class of ¢;; modulo p, see
(2.13), and is satisfied for all matrices A such that dim g(A) < o except the Brown algebra
in Example 4.21. Thus we will avoid the case when a;; is not in the prime field.

Next, we describe the adjoint action of S = {f;, h;, —2¢;} ~ L3 on itself and on the
submodules 7Lj, M, Nq,; from Notation 4.14. We will need the following computations:
Remark 4.17. Assume that a; = 2. Let j € I different from . Then

[fire;] =0, [fiseij] = —aijes,  [fiseij] = —2(1)ay €5, [fis €iiig] = —3(2)ay; €4
Lemma 4.18. Assume g is finite dimensional and a; = 2. Let j € 1 different from i and
assume that a;;j € F,. Consider on S, My, and N, the cyclic bases from Notation 4.14.

(a) We have [S,S] =S. If p> 3 and we identify S® S = L1 ® L3 ® L5 as in Ezample 3.2,
then [—,—]: S® S — S acts as 4ip,.
(b) We have [S, ?Lj] =0.
(c) If cij =0, then [S, My;] =[S, No,] = 0.
For —1 = ¢;j > =3, we have [S, My;] = Mo, and [S, No,;] = No;. Also
(d) Assume cij = —1 and p > 3. If we identify S® My, = Lo @ Ly as in Ezample 3.4, then
[——]: S® Ma; — My, acts as 3ip,.
(e) Assume cij = —2 and p > 3. If we identify S® Mo, = L1 ® L3 ® Ls as in Example 3.2,
then [—, —]: S® Ma, — M, acts as dip,.
(f) Assume c;j = =3 and p = 5. If we identify S® Ma; = L2 @ 2L5 as in Ezample 3.5,
then [—, —]: S ® My; — My, vanishes La.
(g) Assume cjj = =3 and p > 5. If we identify S @ Ma; = La® L4 ® Lg as in Evample 3.5,
then [—, —]: S ® My; — M,,; acts as 15¢,.
In (d)-(g), the exact same argument holds for N, in place of My, (with the same scalars).

Proof. (a) According to Example 3.2, we have S® S = L; ® L3 @ Ls with cyclic generators
Ly ={(2fi®ei—hi®hi —26;® f;), L3={fi®hi—hi®fi), Ls={fi® fi).

Now, it is easy to see that [—, —] annihilates the generators of L and Ls, and maps the
generator of L3 to 4f;.
(b) Follows immediately because S is generated by f;, and h; is in ker(¢;) by construction.
(c) In this case, Mo, = k{e;}. Since f;, h;, and e; annihilates e;, we have [S, M,;] = 0.
(d) According to Example 3.4, we have S ® My, = Lo ® L4, where

Ly =2fi®eij —h; ®ej), Ly ={fi®e;j).

Now, we use Remark 4.17 to see that [—, —| annihilates the generator of L, and maps that
of Ly to 3e;.
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(e) From Example 3.2, we get S ® M,; = L1 @ L3 ® L5, with cyclic generators
Li ={fi®eiij —hi@ejj —2e;Qe€;), Lz={fi®e—hi®e;), Ls={fi®Qej).

Now the proof follows as in part (a).
(g) We use Example 3.2 to get S ® L3 = L1 @ L3 @ L5 with cyclic generators

Ly ={(-2fi®ei—hi®hi—2¢;® fi), Li={fi®hi—hi® fi), Le={fi®ei.

A straightforward computation using Remark 4.17 shows that [—, —] annihilates the genera-
tors of Ly and Lg, and it maps the generator of Ly to 15¢;. A similar argument works for
(f). O

4.2. The structure of the Lie algebra S(g'(A4),e;). We work towards a root system asso-
ciated to the semisimplification S(g'(A), e;), where g(A) is a finite dimensional contragredient
Lie algebra, and i € Iy is such that a;; = 2. Recall the sets A% A4 from Notation 4.5.

+,min> min
Let m;: Z? — 7871 be the projection introduced in Lemma 2.4. Consider
S ,€4 i S ,€4 S 1€q
vi(g ei) . (A‘f} mm) ’ vo(sei) .— e (Aénn) _ V+(g €i) U V_(g e)

We will see that V5(9¢) may contain positive multiples of roots. This behavior resembles
that of contragredient Lie superalgebras, as described in Section 2.4. Hence we introduce

A0 = 930 _qngin 22,8 VIO, AS@e) o AS04) ) A3,

Remark 4.19. Recall the notations m; and A4 ‘min {rom the beginning of Section 4.2.
(i) Via 7m;: Z% — Z9~!, we obtain a grading of (g, e;) by Z~!. Explicitly,
g= (—D Gvs where g, = (—B 93-
~ezZf—1 /367";1('7)

(ii) For each S € A+ min» We have Mg € g, 5y and Ng S g_,(3)- Thus S(g’, ¢;) inherits
the 70~ 1—graduat10n of g’. Moreover,

S(glaei) = S(g/aei)O@ @ S(gaei)’y

~eVvS(e.e)

To illustrate the situation, we explicitly compute V(@€) and AS@€) for all finite Cartan
matrices of rank 2. We show that, in all cases, AS(8) = {+q;} where j is the index different
from i; however V3¢ depends on the number of laces of the Dynkin diagram.

Example 4.20. Let g be of type Ao; that is, A = ( ) If we fixi = 1, then V (g.c1) = {2}.
Indeed, g= M2 @S@k{th + hl} @NQ, where M2 = k{eg, 612} ~ Lg, N2 = ﬂ({flg, fg} ~ LQ,
and one can easily verify using the bases from Example 3.1 that [—, —] ’ No@My = 0.

Example 4.21. Let p=3, A = (_21 ‘5), a ¢ F3. Thus g is the Brown Lie algebra bt(2, a).

e Fori=1, Vi(g’el) = @ since g = Mo ® S ®k{2hs + hl}@Ng, where My = k{es, €12, €112},

N2 = k{fﬂg, 2f12,4f2}, and Mz, N2 L3 Here we have |]\/[2<>§]\42 0.
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e For i = 2, we obtain Vi(g’GZ) = {1,1?} since
(g, 62) =M & M122 &) S@k{th + 2h2} ® N D N122,

where M1 = k{el,elg}, M122 = k{eug}, N1 = k{le,fl}, N122 = ﬂ({fng}.
According to Example 3.1, we have M7 ® My ~ L1 @ L3, where the copy of Ly has basis
e1®er —ea®eq so [—,—]: M1 ® My — My29 ~ Ly is 2up,. It is straightforward to see

that [ =0and [, —]

‘M 2,®M; |M122®M122 -

Example 4.22. Let g be of type Bo; that is, A = (_21 32). In this case,

yS@e) _ {{2}, p>3, Stwea) _ (12,

g, p=3;
The proof and the description of the brackets are similar to those of Example 4.21.
Example 4.23. Assume p > 3 and consider g of type Go, that is, A = (_21 _23).
e For i = 1, we obtain V (8.21) = {2,22}. Indeed,
(g,e1) = Mo ® Myspe ® S @k{h1 + 2h2} @ No @ Nysge,
where My = k{ez, €12, €112, e1112}, Mys92 = k{[e112, e12]},
No = k{fi112,3f112,12f12,36 f2}, Nyse2 = k{[f112, f12]}.

Here Mo® Mo ~ L1D L3P Ls@® L7 when p > 5, while for p = 5 we have Mo® My ~ L1P3Ls,
see Example 3.3. In any case, inside Ms® M> there is a copy of L spanned by ea®eq112 —
€12®6112 + 6112@612 - 61112@62. Via M1322 ~ Ll, we see that [—, —] . M1 ®M1 i M1322
is 4¢r,,. We also have [—, —]‘M1322®M2 =0and [—, —]‘M1322®M1322 -

o If i =2, we get Vi(g’ez) = {1,12,13}. In fact, we decompose
(g, 62) - Ml C—B M122 @M132 (‘B S(—Bk{2h1 + 3h2} (‘B N1 (‘BN122 @N132,

where
My = k{er, e12}, Mi29 = k{ei12}, Misy = k{ei112, AMlern2; e12]},
N1 = k{fi2, f1}, Ni2o = k{f112}, Nisy = k{[ f112, fi2], A2 fi112}-

Here M1 ® My ~ L1 ® L3, Mj29 ~ L1, and Mj3y ~ Lo. Using Example 3.1 we see that
[—,—]: M1 ® M; — M2y is 2up,. Also, [—, —]: M1 ® My29 — M3, is 4i1, and the other
brackets between M, ’s are 0.

We give another example, this time for a matrix of rank three.

Example 4.24. Let p = 3. We describe root vectors for semisimplifications of the Lie
algebra br(3) of dimension 29. There are two matrices realizing this Lie algebra, cf. [Skr93]:

2 -1 0 2 -1 0
(4.25) Ay=|-1 2 -1}, Ay=|-2 2 -1
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The corresponding positive roots are
A —{1,12,123,12233% 1223212233, 12231 12334, 1232, 2,232, 23, 3},
A2 —{1,122,12,123%,12°32 12233212232, 123,1223, 2,232, 23, 3}.
As ags = b3z = 0, we consider semisimplifications by e; with i # 3. For g = g(A;) we have:
V3 _ (993 232 9232 9233 2234 233% 3} VS0 — (1,13 123% 132,13% 134 32 3}.
And for g = g(A2) we have:
VS = (2,92 9732 9232 923 232 93,3, V) = (13,1232, 32, 3},
We show details on the computations only for the last case. Notice that
(g,e2) = M1 ® Mi23 @ Mygz2 @ My29332 @ Myze @ M3 D S @ k{2h; + ho}
D k{2h3 — ha} @ N1 @ N123 @ Nyg32 @ Ny29332 @ Nogz @ N3,
where
My =k{e,e12, €192},  Miog = k{e12s, ea123}, Moz = kiesi2s, €23123, €223123},
M29332 = k{[ea123, €123]}, Maz2 = k{essa}, M3 = k{es, e23}.

and the N,’s have analogous descriptions. Here M, Miy32 ~ L3, so these vanish under
the semisimplification functor. Also, Myoz ® Moz ~ L1 @® L3 ~ M3 ® Ms. One can see
that [*, *]: Mi23 @ M2z — Mi29332 1S tf,, [*, *]2 Mz @ Mz — Mys2 is i, and the other
brackets between M, ’s are 0.

Proposition 4.26. Let A be such that dim g(A) < 0 and i € Iy such that a;; = 2.

(1) If the Dynkin diagram of A is simply laced, then V(8 — AS(@ei)
(ii) If A is of type By, then V3(®€) = AS@€) § {20, }.

. . AS(e), i # 0,

(iii) If A is of type Cy, then V(@) — {AS(Q,@Q) G {20015 jely ), i— 6.
AS(@ei), 1=1,2,

(iv) If A is of type Fy, then V3@e) — { AS(@es) {28 : 8 = 2,12}, i=3,
AS(@es) {251 = 23,123,1223}, = 4.

Proof. For (i), it is enough to show that the entries of 7;(/3) are coprime for every 8 e A%
different from «;, which we check case-by-case. In types Ay, Dy and Eg the roots 8 # o
are either a; with j # i or else contain at least two coordinates equal to 1, so m;(3) keeps at
least one coordinate equal to 1.

The same happens for all roots in types F7 and FEg, except for the largest root in type E7
and twelve roots in type Eg. However, these exceptional roots contain one coordinate equal
to 1, another equal to 2 and another equal to 3.

For (ii), at least one entry of the vector m;(/3) equals 1, unless 8 = a;g9 + @ 11¢: in this

S 9,6
case, () = 2a;1 16, and a;y19 € A+( ),
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For (iii), again 7;() has at least one entry equal to one unless i = § and f is of the form
B = ajg + ajg—1, for some j € Iy_q. In that case mg(8) = 2aj9—1, and 91 € Ai(g’e").

Finally, we consider (iv), whence the positive roots are
A4 ={1,12,2,1%2%3,1223,123,2%3,23, 3,1223%4, 122324, 12233%4, 122%3%4,

4.27
(4.27) 122234, 1233%4,1223%4, 1224334212234, 1234, 223%4, 2234, 234, 34, 4}.

If i = 1,2, then m;(5) is not a multiple of another root for all 8 € Aﬁ.

i = 3: The pairs (3, ') such that w3(3) = 23’ are (12223, 12), (223,2). Otherwise m3(3) is
not a multiple of another vector with integer entries.
i = 4: The pairs (3, 3") such that m4(3) = 28" are (12243%4,1223), (1222324,123), (22324, 23).

And it is clear that for i = 3,4, the unique n > 2 such that m;(3) = nf’, for some (3, 3’ in
Ai‘, isn=2. O

Let us push Notation 4.14 to Ver),.

Notation 4.28. Let A € k?*% be such that g = g(A) is finite dimensional, and fix i € Iy

with a; = 2. We set
Li={jellj#i1l—c)<p}

For B’ € Vi(g ) and j € I, consider the following subobjects of S(g, €;):

e &5 = S(Mjg), fz = S(Ng), where 8 € Ay is such that m;(3) = '; both are isomorphic
to Li2. In particular we set €j == S(M,,;), fi= S(Na,); both are isomorphic to L;_ ..

ij
e hj:=5S (kf:j), isomorphic to Lj.
e S :=5(9), isomorphic to Lz, or 0 if p = 3.

Next we summarize the data describing the Lie algebras S(g, €;).

Definition 4.29. We say that a root 3 € A% is i-good if there exist o,y € A% and a

+,min +,min
decomposition 5§ = & + ¥ with & and ¥ in the i-strings of a and ~, respectively.

In other words, 3 is i-good if there exists a decomposition 8 = a + ¥ with @, % € Aﬁ such
that & and 5 do not belong to i-strings of length p.
The existence of roots which are not i-good corresponds to the fact that the Lie algebra

S(g,e;) is not generated by €j, fj, hj. But if all roots are i-good, then we will see that
S(g, ei) is generated by €j, fj, h;.

Example 4.30. Assume that p = 3. Let g be of type Fy and i = 1; the positive roots are
given in (4.27). Then 8 = 123324 is not 1-good since the possible decompositions are

12234, 23, 1234, 223, 123,234, 1223,234, 12,22324, 2,1223%4.

’Here, L, = 0.
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All decompositions have a root in a 1-string of length 3 since
My23 = kegog @ keqgzz @ kej2o23, My234 = kegz3y @ keqg234 @ keq2g234,
M22324 = k€22324 @ k€122324 @ k€1222324.

From here we can deduce that €33325 does not belong to the subalgebra of S(g, e;) generated
by €;. This example corresponds to () in [Kan22, §4.6.5].

Theorem 4.31. Let A be such that dim g(A) < o0, i € Iy such that a;; = 2.
(i) S(g,€;) has a triangular decomposition S(g, e;) = S(g, e;)+ DS(g, €;)oDS(g, e;)—, where

S(g,e))x = P Slg.e)xp, S(g,ei)o = S ® (®jrihy) -
BevS(a:eq)

Moreover the non-trivial homogeneous components are simple.
(ii) S(g,e:) is a Z9'-graded Lie algebra in Ver,.
(iii) S(g,e;) has an invariant non-degenerate symmetric form B such that

— - _ 91
B|5(976¢)a®5(g,6i)5 =0 ifa#—-BeZ’ .

(iv) If every B e A4 is i-good, then S(g,e;) is generated by €;, f;, j € I, and S(g, e;)o-

+,min
(v) If every (5 € Aé,min is i-good, then AS(9%) js the (reduced) root system of the parabolic
restriction orthogonal to ;.

Proof. Notice that (i) follows from the triangular decomposition of g and Proposition 2.23.
(ii) and (iii) follow from the Z’-grading on g and Lemma 3.10.

Next we deal with (iv). It suffices to prove that €z belongs to the subalgebra generated by
gj, jel, for all B’ € V., since the same argument shows that f?v belongs to the subalgebra
generated by f;, j €L, for all 8/ € V. The proof is by induction on the height of 5'. If
has height one, then 3’ = «; for some j € I and the claim now follows by hypothesis. Now
we assume that §’ has height > 1. Let 8 € Aimin be such that 5’ = m;(8). As 3 is i-good,
there exist o,y € Aimin and a decomposition § = & + 4 with & and 74 in the i-strings of «
and 7, respectively. Let o/ = m;(«), 7' = m;i (7).

Claim 1. The map [—,—] : €y ® €5 — €5’ is not zero.

Let a,b, ¢ be the lengths of i-strings of «, 8 and =, respectively. Let j,k = 0 be such
that @ = a + ja; and ¥ = v + ka;: we may assume that j < k up to exchange o and ~.
We look for the possible 5-tuples (a, b, ¢, j, k). By Theorem 2.3, there exists an element
w of the Weyl group(oid) and i1, 42,73 € I such that w(o;) = «a;,, w(a) € Noay, + Noay,,
w(7y) € Noay, +Noa, +Noa,: hence, w(8) = w(a)+w(y)+(j+k)as, € Noai, +Noa, +Noa,
and w sends the i-strings of «, [, v bijectively to the i;-strings of w(«a), w(B), w(vy),
respectively. Thus we have to look for the possible 5-tuples just in rank 3. If the submatrix
of rank 3 is not connected, then the result is straightforward. For connected submatrices of
rank 3 we obtain the following:

e (1,1,1,0,0), for some triples of roots in type C3 (i = 3), and also in type br(3) (i = 1,2);
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e (1,2,2,0,0) or (2,2,1,0,0), for some triples of roots in types Az (i = 1), B3 (i = 1,2), C3
(1 = 1,3), and both matrices of type bt(3) (i = 1,2);

e (2,1,2,0,1), for some triples of roots in types As (i = 2), B3 (i =1,2), C3 (i = 2,3),and
both matrices of type br(3) (i = 1,2);

o (1 0
¢ (2,3,2,0,0), for « = ag, v = ag + az and i = 1 in type Cs;
o (2 0

N e

t—1 t—1

M, = ke, ~ Ly, Mg = Pkegysa; > Ly, My = Pkeyisa, > Ly.
s=0 s=0

By Proposition 4.9 there exists ¢ # 0 such that [eq, e] = ceg. As [e;,eq] = 0, we have that
[6047 €V+804i] = [6047 (ad ei)sev] = (ad 62-)8[60“ 67] = CEB+say
which implies that [—, -] : € ® €57 = L1 ® Ly — € = L; is ¢ times the canonical map.
For (2,1,2,0,1), we have that § = o + v + «; and

M, =ke, ®k(ade;)e, ~ Lo, Mg =keg ~ Ly, M, = ke, ®k(ade;)ey ~ Lo.
By Proposition 4.9, there exists ¢ # 0 such that [e,, (ad e;)ey] = ceg. As the i-string of
has length 1, 8 + a; ¢ Ay, so [e;,e5] = [eq,ey] = 0. Thus

[(ad€;)eq, ey] = —[eq, (ade;)ey] = —ceg,

which implies that [—, -] : €y ® € = Lo ® Ly — €z = L is 2c times the canonical map,
see Example 3.1.
For (2,3,2,0,0), p > 3, we have that § = a + v and
M, = ke, ®k(ade;)eq ~ Lo, Mg = @ k(ade;)’es ~ L3, M, =ke, ®k(ade;)ey ~ Lo.
0<s<2

By Proposition 4.9, there exists ¢ # 0 such that [eq,e,] = ceg. The copy of L3 inside
M, ® M, as in Example 3.1 is spanned by e, ® ey, eq ® (ade;)ey + (ade;)eq ® e, and
2(ad e;)eq @ (ad €;)e,. Using the Jacobi identity and that (ade;)%e, = (ade;)?ey = 0,

c(ade;)eg = (ade;)[eq, ey] = [ea, (ad e;)ey] + [(ad €;)eq, e4],
c(ad 61)28/3 = (ad e@-)Q[ea,ev] = 2[(ad e;)eq, (ad e;)e, ],
so [—,—]: ey ®€y = Ly ®Ly — € = L3 is ¢ times the canonical map.
For (2,2,3,0,1), p > 3, we have that § = a + v + «; and
M, = ke, ®k(ade;)eq ~ Lo, Mg =kesz@k(ade;)eg ~ Ly, M, = (—B k(ade;)’ey ~ Ls.
0<s<2

By Proposition 4.9, there exists ¢ # 0 such that [eq, (ade;)ey] = ceg. The copy of Lo
inside M, ® M, as in Example 3.4 is spanned by e, ® (ade;)ey — 2(ade;)eq ® ey and
ea ® (ade;)?ey — (ade;)eqn ® (ade;)e,. Using the Jacobi identity and that [eq,e,] = 0, we
check that [—, —] : ey ® &7 = Ly ® Ly — ez = Ly is 3¢ times the canonical map.



SEMISIMPLIFICATION OF CONTRAGREDIENT LIE ALGEBRAS 27

Finally (v) follows from Lemma 2.4 and the following claim: if 8 € Z%~! has coprime
entries and m > 2 is such that mj3 € m;(V4), then 8 € 7;(VA). The proof of the claim
follows from Proposition 4.26 and Examples 4.20 to 4.24. ([l

Next we describe explicitly some examples of Lie algebras in Ver, obtained by semisimpli-
fication as in Theorem 4.31. To describe them as objects in Ver,, we use the notation LZ(»n):
a copy of L; in degree n € Z. Also, b: S(g,e;) ®S(g, e;) — S(g, e;) denotes the bracket.

Example 4.32. As in Examples 4.20 and 4.22, we take g of type either Ay or Bs, and

-1 2
being either 1 for type Ay, or a = 2 for By. As an object in Ver,, we have

. C . . .. 2 - .
consider the semisimplification with respect to e;. The Cartan matrix is a>7 with a

So.e) -18h 0 (W eIV oLy, 1l -1 1 -5, 10—k 1) - N

Here, Lgn) =0 if p = 3. By Lemmas 4.10, 4.16 and 4.18,

bl. o +1) = + 4 —a) +1 bl. —1) = 6a lL 0 @ *220‘ lL 0
|L<1 J@Lty ( ) RSk |L; ) ey L{® ( L{ )y
bl. © +1) = (a + 2)e +1 bl. © 0 = b|. (+1 +1) = 0.

‘Lé )®L<(f+1) ( ) Lz<f+1>7 ’Lg )®L:(‘> ) |L¢(17+1)®L¢(f+1)

Example 4.33. Let g be of type B> as in Example 4.22, i = 2. As an object in Ver,,
S(g,e2) =10 @1y’ @ (1 oI ) @1V @1{ .
By Lemmas 4.10, 4.16 and 4.18 and direct computation,

b‘L(lO)®Léil) = izLLéil)7 b’L§O)®Lgi1) = 2LL;i1)’ b‘L(21)®Lé—l) = LL§0) ) (—QLLéo)),
b’LSO)®L§i2) = i4LL§i2>’ b‘Léirl)®Léi1) = 26L§i2)’ b’L§2)®L§72> = 4O

and the remaining brackets bfLm) gLt are Zero.
i j
Example 4.34. Assume p > 3 and consider g of type G2 as in Example 4.23. For i = 1,
s@en) -1 o1’ e (1 o) o1 Ver{ .
By Lemmas 4.10, 4.16 and 4.18 and direct computation,

b|L§O)®Lf1) = iLLgil)’ b‘LéO)®Liil) = 15[’L51i1)’ b}LS)@Li_l) = 72LL§0) @ <_12OLLgO))’
b‘L@@LEiQ) = iQLLgiz), b’Liﬂ)@Liﬂ) = 4LLgi2), b}L§2)®L572) = 3LL§0>’
thogin =um  bleagm = e,

and the remaining brackets b|L<m) @L(tm) are zero.
i j

Set now 7 = 2. As an object in Ver,,

S -1 010 0100 () L) 015 oL 1L,
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By Lemmas 4.10, 4.16 and 4.18 and direct computation,

b’Lgo)®Lg¢1) = iLLéil), b‘L§0)®L§J—’1) = 3LLgil), b’L;1)®Lg—1) = LL§°) ® (—3LL§0)),
b’L§0)®L§i2) = i2LL§i2)’ b‘Léo)®L§J_r3) = 3LLgi3), b’L§2)®L§—2) = 3LL§O)’

b|L§0>®L§i3) = i3bL§i3), b|Lgi1)®L<2i1> = L) b|L§3>®L§’3) = 6LL§0> @® (_GLLéO))’
b’L§i1)®L§i2) = L, b|L§¢2>®L§11> = L,

b‘Léi3)®Lg¥1) = 3LL§i2)7 b’L;ﬂ)@sz) = 6LLgi1),

and the remaining brackets bfLm) gLt are Zero.
i j

Corollary 4.35. Let p = 3, and take A and i as in Theorem 4.31(iv). Then S(g,e;) ~
9(B,p), where
1, aij = O,
e D= (). - p —
P = (Pj) e Py {_17 0s; % 0:
il ;5 = 0
e B=(bjt). ., bin =4 7 J ’
Cir)suet: Oik {_ajk — a5, aij # 0.
Proof. Let g := S(g,¢;). The Z% !-grading of g induces a Z-grading such that [
fi€9_1,j €L, and hy € §y, k # i. By Proposition 4.8 (a), if a;; = 0, then My, ~ Ly ~ N,
so €j, fj are even, while if a;; # 0 and j € [, then M,; ~ Ly ~ N, ; thus the parity of the
g;’s and the f;’s is given by p.
By Theorem 4.31, g is generated by €;, f;, j € L, and hg, k # i, since S = 0. By Lemmas
4.11 and 4.16, [€j, fx] = 6,ih; up to rescale the f;’s. Following Notation 4.14,

~ a;iipe a;; =0
[hj,ek] _ JkCk> i 3
—(ajk + ajiaik)ek, Qij # 0.

Thus [hj,e;] = bjier, for all j,k € I. Analogously, [h;, f] = —bjifx for all j,k e L. As b
is abelian, we also have that [hj, hy] = 0 for all j, k. Thus relations (2.5) hold in g, which
implies that there is a surjective map g(B,p) — g@.

As g(B, p) is the quotient of g(B,p) by the maximal ideal trivially intersecting b, the
map above factorizes through a surjective map m : g — g(B,p). As g has a non-degenerate

invariant symmetric bilinear form by Theorem 4.31, the map 7 is an isomorphism. g

Remark 4.36. This corollary is related with [Kan22, Theorem 3.6.5] when the characteristic
is three. It applies to those examples in loc. cit. where the element of the Lie algebra is
homogeneous.

Example 4.37. We consider semisimplifications of the Lie algebra bt(3), see Example 4.24.
(1) The semisimplification of g(A;) under ad e; is the Lie superalgebra g(Bji, p1), where

01
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(2) The semisimplification of g(A;) under ad ey is the Lie superalgebra g(B2, p2), where

[0 1
-1 92/ P2:(171)-

By =

(3) The semisimplification of g(Az2) under ad e; is the Lie superalgebra g(Bs, ps3), where
o o]
Bs =, BE p3 = (1,0).

(4) The semisimplification of g(Asz) under ad ez does not fit in the context of Corollary 4.35
since f = aj + ag + a3 is not 2-good.

That is, the three possible semisimplifications give the Lie superalgebra btj(2;3): we re-
cover the three possible realizations of btj(2; 3) as a contragredient Lie superalgebra. This
corresponds to the construction given in [Kan22, §4.2].
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