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Abstract—Reconstructing and predicting 3D human
walking poses in unconstrained measurement environ-
ments have the potential to use for health monitoring sys-
tems for people with movement disabilities by assessing
progression after treatments and providing information for
assistive device controls. The latest pose estimation algo-
rithms utilize motion capture systems, which capture data
from IMU sensors and third-person view cameras. However,
third-person views are not always possible for outpatients
alone. Thus, we propose the wearable motion capture prob-
lem of reconstructing and predicting 3D human poses from
the wearable IMU sensors and wearable cameras, which
aids clinicians’ diagnoses on patients out of clinics. To
solve this problem, we introduce a novel Attention-Oriented
Recurrent Neural Network (AttRNet) that contains a sensor-
wise attention-oriented recurrent encoder, a reconstruction
module, and a dynamic temporal attention-oriented recur-
rent decoder, to reconstruct the 3D human pose over time
and predict the 3D human poses at the following time steps.
To evaluate our approach, we collected a new Wearable-
MotionCapture dataset using wearable IMUs and wearable
video cameras, along with the musculoskeletal joint angle
ground truth. The proposed AttRNet shows high accuracy
on the new lower-limb WearableMotionCapture dataset, and
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it also outperforms the state-of-the-art methods on two
public full-body pose datasets: DIP-IMU and TotalCaputre.

Index Terms—3D pose reconstruction, 3d pose predi-
ction, recurrent neural network, wearable sensing.

I. INTRODUCTION

P EOPLE with movement disorders face multiple disadvan-
tages while walking, such as increased strains on the lower

back, increased metabolic cost, and gait asymmetry. Appro-
priately monitoring the progression of walking can mitigate
these disadvantages and prevent secondary issues such as joint
arthritis, risk of falls, and vascular diseases by having timely
follow-up treatments from frequent assessment. Current moni-
toring procedures are only available at the clinical site. However,
due to the absence of feasible technologies, it is extremely
challenging to monitor the progress of the treatments after
outpatient discharge. Thus, there is a need to assess the walking
poses outside the clinic, which will not only significantly save
medical expenditure by preventing unnecessary visits, but also
enable patients to have the appropriate treatments without delay
between regular visits.

Challenges: Most commonly, the motion capture systems [1]
are used to achieve a highly accurate understanding of the human
pose, but the numerous wearable markers and extra setup of
motion capture cameras in the laboratory make this approach
infeasible in an unconstrained daily environment.

Several works [2], [3], [4], [5], [6], [7] focused on the re-
construction of human poses from third-person view RGB or
RGB-D cameras. However, these methods based on third-person
views are not always possible for outpatients alone. Thus, there
is a need to reconstruct and predict human poses from wearable
sensors only, so discharged patients can walk freely in their daily
lives.

Some works relied on numerous IMU sensors (e.g., 17 or
more) to obtain an accurate human pose reconstruction [8], but
wearing many sensors is very uncomfortable and impractical to
use in daily living. Recently, several works [9], [10], [11], [12]
used a reduced set of IMU sesnors for human pose reconstruc-
tion. However, motion capture from sparse inertial sensors is
inherently ambiguous and challenging.
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Fig. 1. Illustration of our proposed approach: (a) Our experimental
setup; (b) Our goal; and (c) Input and output of our proposed Attention-
Oriented Recurrent Neural Network (AttRNet). Note, in contrast to prior
works that require vision data from third-person views for pose re-
construction which are not always possible for outpatients alone, we
propose the on-body camera and IMU sensor solution to reconstruct
and predict walking poses in a daily living environment.

Research question: The above challenges lead to a research
question: When discharged patients walk in their daily lives, how
to design a feasible and effective approach to accurately sense
their poses with a small set of wearable sensors, so clinicians
can access their patients’ walking functions outside clinics and
researchers can design intelligent prosthetic devices to assist
outpatients with real-time optimal control?

Our contributions: As shown in Fig. 1, we propose to han-
dle the wearable motion capture problem with two tasks: (1)
reconstructing 3D human pose outdoors over time for clinical
diagnosis; and (2) predicting 3D human poses at the following
time steps for real-time assistive device controls.

Currently, there is no public dataset that contains both wear-
able IMU and wearable camera data, along with its ground truth
of 3D walking poses. To develop the wearable motion capture
algorithm, we collected a dataset under varying walking condi-
tions (e.g., on the treadmill, on the ground, slope, stairs) from 10
subjects with different walking speeds. Though our collaborative
research projects aim at people with lower limb amputations,
our wearable motion capture can be applied to reconstruct
and predict upper limb and full-body poses too. Hence, we
also compare the performance of our wearable motion capture
method on two related full-body pose datasets: DIP-IMU [13]
(contains IMU-only data for 10 subjects) and TotalCapture [4]
(contains IMU data and videos from third-person view cameras
on 5 subjects).

Our main contributions have four folds:
� We propose to handle the wearable motion capture prob-

lem of reconstructing and predicting 3D human poses
from the wearable IMU sensors and wearable cameras,
which aids clinicians’ diagnoses on people with move-
ment disabilities. Prior works that require vision data
from third-person views for pose reconstruction are not
always possible for outpatients alone, thus we propose to
reconstruct and predict walking poses via on-body camera
and IMU sensors.

� We propose a novel Attention-Oriented Recurrent Neural
Network (AttRNet) that contains a sensor-wise attention-
oriented recurrent encoder, a reconstruction module, and
a dynamic temporal attention-oriented recurrent decoder,
to reconstruct the 3D human pose over time and predict
the 3D human poses at the following few time steps.

� We introduce a new dataset containing data from wearable
IMU and wearable camera sensors with the 3D human
pose ground truth. To our best knowledge, no prior work
was done on 3D human pose reconstruction or prediction
from the fusion of both wearable IMU and wearable
camera sensors. This dataset will be available on1:

� Our approach is able to generalize to both multi-modal and
single-modal sensor input, and it can be applied to both
lower limb pose and full-body pose analysis. Our proposed
approach outperforms the state-of-the-art methods on two
full-body pose datasets [4], [13].

II. RELATED WORKS

IMU-based human motion capture: The wearable IMUs (e.g.,
Xsens [15]) show remarkable stability and accuracy in capturing
human motion [16], [17], [18], [19], [20]. Previously, Roeten-
berg et al. [8] introduced a motion tracking algorithm using IMU
sesnors. Recently, Huang et al. [13] proposed a Recurrent Neural
Network (RNN) based algorithm to reconstruct human poses
from sparse inertial measurements, and also introduced an IMU-
based human motion capture dataset. More recently, Nagaraj et
al. [19] introduced an RNN-ensemble approach for human pose
estimation from IMU sensors. Most of these IMU-sensor-based
algorithms employ straightforward recurrent neural networks to
reconstruct human poses. However, since different sensors on
the human body have different capabilities to capture different
joint movements at a specific time and the feature at the past time
step is highly related to a certain future time step, straightforward
recurrent neural networks might not be sufficient to compute
the discriminative features and predict future poses from the
observed input sequences. Differently, we introduce a novel
Attention-Oriented Recurrent Neural Network (AttRNet), which
contains a sensor-wise attention-oriented recurrent encoder,
a reconstruction module, and a dynamic temporal attention-
oriented recurrent decoder, to reconstruct and predict 3D human
poses by encoding the highly discriminative features from the
observed input sequences.

Vision-based human motion capture: The vision-based human
motion capture can be divided into 2D and 3D pose estimation,
and 3D future pose prediction. The state-of-the-art of 2D human
pose estimation has achieved impressive progresses. Previously,
the heatmap-based approaches [21], [22], [23], [24] and the
regression-based algorithms [25], [26] were developed for 2D
pose estimation. Newell et al. [14] introduced a deep hourglass
model, which was later widely used as a backbone network [27],
[28], [29]. Recently, the research community pays a significant
amount of attention to develop 3D pose estimation. Most of the
methods [30], [31], [32] on 3D pose estimation were originated

1[Online]. Available: https://github.com/MoniruzzamanMd/Wearable-
Motion-Capture
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TABLE I
EXISTING MOTION CAPTURE VS. OUR WEARABLE MOTION CAPTURE

from 2D pose estimation task. Some works [33], [34], [35],
[36], [37] tried to develop multi-view based methods to get more
accurate 3D pose estimation.

Despite the success of 2D/3D pose estimation, 3D pose
prediction is yet under-explored. Previously, some traditional
methods such as the hidden Markov model [38] and the Gaus-
sian model [39] were developed. Recently, some deep-learning-
based algorithms introduced recurrent networks [40], [41], [42],
[43], [44] and feed-forward networks [45], [46], [47] to predict
future 3D poses. However, most of these vision-based pose anal-
ysis tasks rely on video data from third-person view cameras,
which are not always possible for outpatients alone. Thus, there
is a need to reconstruct and predict human poses from wearable
sensors.

Most works with egocentric vision focused on objects and
activities in front of cameras such as the detection of objects [48],
[49], gaze [50], visible hands and arms [51]. Differently, we
are interested in the movement information of the wearable
cameras for reconstructing and predicting 3D walking poses
of the camera-carrying subject.

Hybrid approaches for human motion capture: The hybrid
approach mainly fuses the IMU and the vision modalities to learn
richer features for human motion capture. Previously, Malleson
et al. [3] proposed a real-time optimization approach to fuse
multi-view data and IMU data to perform real-time motion
capture. Recently, Trumble et al. [4] introduced an algorithm
for fusing multi-view videos with IMU sensor data to estimate
3D human poses. Marcard et al. [5] proposed a graph-based
optimization approach that jointly optimizes vision and IMU
data on a SMPL model. More recently, DeepFuse [2] introduced
an IMU-aware network for real-time 3D human pose estima-
tion from multi-view images. Most of these hybrid approaches
require vision data from third-person view cameras. However,
the third-person views for pose reconstruction are not always
possible for patients alone outdoors. Differently, we introduce
our AttRNet to reconstruct the 3D pose over time and predict
the 3D poses at the following time steps from both wearable
IMUs and wearable cameras.

Note that different from the existing motion capture problem,
in our wearable motion capture, both the IMU and camera
sensors are worn on the human body, as shown in Fig. 1 and
summarized in Table I.

III. PROPOSED APPROACH

A. Problem Statement

Suppose that the observed IMU data are I[T−Δ1+1,T ] =
[IT−Δ1+1, . . ., IT ] ∈ R

Δ1×M×DIMU and video data are
V[T−Δ1+1,T ] = [VT−Δ1+1, . . .,VT ] ∈ R

Δ1×N×DV ideo , where

M and N are the number of IMU and camera sensors,
respectively, Δ1 represents the temporal interval in which we
can go back to the past from the current time step T , and DIMU

and DV ideo are the feature dimensions extracted from each
IMU and camera sensor at each time step, respectively. The goal
of our proposed approach is to reconstruct the 3D human pose
over time and predict the 3D human poses at the following time
steps given the observed IMU and video data. Mathematically,
we aim to obtain the following reconstruction and predictions
functions:

Reconstruction: (I[T−Δ1+1,T ],V[T−Δ1+1,T ]) → P̂[T−2,T ]

Prediction: (I[T−Δ1+1,T ],V[T−Δ1+1,T ]) → P̂[T+1,T+Δ2],

where P̂[T−2,T ] = [P̂T−2, P̂T−1, P̂T ] ∈ R
3×J×DJoints de-

notes the reconstructed pose at the current time T
(P̂T ) and the reconstructed poses of the past two time
steps (P̂T−2 and P̂T−1) for pose dynamics calculation.
P̂[T+1,T+Δ2] = [P̂T+1, . . ., P̂T+Δ2

] ∈ R
Δ2×J×DJoints are the

predicted future poses, J is the number of joints in the pose
model, DJoints is the coordinate dimension of each joint, and
Δ2 is the temporal interval in which we aim to predict the future
poses.

B. Method Overview

We propose a novel Attention-Oriented Recurrent Neural
Network (AttRNet) to jointly reconstruct the 3D pose over time
and predict the 3D poses at the following time steps in an
online setting from both wearable IMU sensors and wearable
cameras, as shown in Fig. 2. In our AttRNet, we introduce an
attention-oriented recurrent encoder-decoder and a reconstruc-
tion module. Our attention-oriented recurrent encoder performs
sensor-wise attention at each time step and embeds features
over different time steps of the observed input sequences. On
the other hand, our attention-oriented recurrent decoder outputs
a series of future poses by dynamically computing the rele-
vant information from the encoded observed features using a
dynamic temporal attention module. In our AttRNet, we also
design a reconstruction module that reconstructs the current
pose to support the initial pose prediction of the decoder. In
the following sections, we discuss the IMU and video fea-
tures, our proposed attention-oriented recurrent encoder, recon-
struction module, and attention-oriented recurrent decoder in
details.

C. IMU and Video Features

IMU features: An IMU returns 3-channel acceleration and
3-channel angular velocity from the accelerometer and the gy-
roscope, respectively. We calculate the orientation as a 3× 3
rotation matrix from raw IMU data, which is then flattened
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Fig. 2. Illustration of our proposed Attention-oriented Recurrent Neural Network (AttRNet). The AttRNet contains attention-oriented encoder-
decoder and a reconstruction module. Our attention-oriented recurrent encoder contains Sensor-wise Attention Modules (SAM) to compute sensor-
wise attention scores at each time step and bidirectional GRUs to embed attention-weighted features over different time steps of the observed
sequences. The attention-oriented recurrent decoder is configured with Dynamic Temporal Attention Modules (D-TAM) that output a series of future
poses by dynamically computing the relevant information from the encoded features. The reconstruction module reconstructs the three recent
poses, which are also the initial inputs of the future pose prediction. The three recent poses are used to compute the pose velocity and acceleration.

to a 9-dimensional vector as the orientation feature. Finally,
the 3-channel acceleration, 3-channel angular velocity, and 9-
dimensional orientation features of them-th IMU sensor at time t
are concatenated into the feature representation Imt ∈ R

1×DIMU ,
where DIMU = 15.

Video features: For the videos from wearable cameras on legs,
we compute the histogram of optical flow features, where the
optical flow vectors are quantified into different orientation bins
and the magnitude of a bin is computed from the aggregation of
the magnitudes of the flow vectors inside that bin. Formally, at
time t, the histogram of optical flow feature of the n-th camera
sensor isVn

t ∈ R
1×DV ideo , whereDV ideo is the number of bins.

D. Attention-Oriented Recurrent Encoder

Our attention-oriented recurrent encoder contains sensor-wise
attention modules to compute sensor-wise attention scores at
each time step and recurrent encoders to embed attention-
weighted features over different time steps of the observed input
sequences.

Sensor-wise attention module: Since different sensors on
the human body (e.g., Fig. 1(a)) have different capabilities to
capture different joint movements at a specific time, we are
motivated to compute sensor-wise attentions for both IMU and
video features, i.e., we introduce Sensor-wise Attention Modules
(SAM) to learn attention scores for different sensors and update
the sensor-wise features with those attention scores. Formally,
for a specific time t, the SAM loads the IMU features from

M IMUs It = [I1t ; . . .; I
M
t ] ∈ R

M×DIMU to compute the atten-
tion score vector, uI

t ∈ [0, 1]M×1. The SAM consists of two
fully-connected layers and a ReLU layer located between them.
The second fully-connected layer outputs attention score vector,
which are then passed through a sigmoid function that enforces
the attention scores to be between 0 and 1. The attention-
weighted IMU feature at time t, Iat , is:

Iat = It ⊗ uI
t where Iat ∈ R

M×DIMU (1)

where ⊗ represents the element-wise multiplication, i.e., each
column of the It matrix is multiplied with the column vector
uI
t element-wisely. Similarly, for the video features from N

wearable cameras at time t, we compute the attention weighted
video features features Va

t :

Va
t = Vt ⊗ uV

t where Va
t ∈ R

N×DV ideo (2)

where Vt is the video feature from N camera sensors and uV
t

is the corresponding attention score vector.
Recurrent encoders: The recurrent encoders separately en-

code the attention-weighted IMU and video features of different
time steps and then fuse them into a single vector which will be
used to reconstruct the pose over time and decode poses at the
following time steps. Given the attention-weighted IMU fea-
tures Ia = [IaT−Δ1+1, . . ., I

a
T ] ∈ R

Δ1×M×DIMU , the recurrent
encoder passes these features through a Bidirectional Gated
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Recurrent Unit (B-GRU):

hIMU
t = B-GRU(flatten(Iat ),h

IMU
t−1 ), t = T −Δ1 + 1, . . ., T

(3)
where hIMU

t and hIMU
t−1 are the hidden states for the IMU

features at time t and t− 1, respectively. The hidden state at
T , hIMU

T encodes the observed IMU features.
Similarly, the attention-weighted video features Va =

[Va
T−Δ1+1, . . .,V

a
T ] ∈ R

Δ1×N×DV ideo are encoded as:

hV ideo
t =B-GRU(flatten(Va

t ),h
V ideo
t−1 ), t=T−Δ1+1, . . ., T

(4)
where hV ideo

t and hV ideo
t−1 are the hidden states for the video

features at time t and t− 1, respectively. The hidden state at
time T , hV ideo

T encodes the observed video features. Finally, we
concatenate the last hidden state’s output of two modalities to
get a single encoded vector, he

T = [hIMU
T ,hV ideo

T ], which will
be fed into the reconstruction module and the decoder.

E. Reconstruction Module

We design a reconstruction module to reconstruct the current
pose and the poses in the past two time steps to compute the pose
dynamics. Formally, the reconstruction module loads the en-
coded feature vector he

T and predicts P̂[T−2,T ] ∈ R
3×J×DJoints .

The reconstruction module consists of two fully-connected
layers and a ReLU layer between them. After the final fully
connected layer, the output layer is reshaped to P̂[T−2,T ], which
represents the poses of the last three time steps of the observed
sequences. Since this module reconstructs the current pose and
the poses in the past two-time steps, we call this module as a
reconstruction module.

Note, although both the sensor-wise attention module and the
reconstruction module consist of two fully-connected layers and
a ReLU layer between them, the detailed designs of these two
modules are different since they do not share parameters and
their goals are different.

F. Attention-Oriented Recurrent Decoder

Our attention-oriented recurrent decoder outputs a series of
future poses by dynamically computing the relevant information
from the encoded features of different time steps using the
dynamic temporal attention module.

Recurrent decoder: The recurrent decoder aims to predict the
future 3D poses P̂[T+1,T+Δ2]. More specifically, from the time
step T + 1 to T +Δ2, our recurrent decoder predicts the future
poses over different time steps, i.e., at time step T + 1, our
recurrent decoder predicts the pose P̂T+1; at time step T + 2,
our recurrent decoder predicts the pose P̂T+2; and so on. The
recurrent decoder consists of GRU and the hidden state at each
step is updated using the GRU update rules:

hd
τ = GRU(zτ−1,h

d
τ−1), τ = T + 1, . . ., T +Δ2 (5)

where the input zτ−1 is computed from the output of the dynamic
temporal attention modules, the previous predicted pose, and the
pose dynamics of the previous predicted poses (the details are
explained later shortly). The hidden states hd

τ and hd
τ−1 are the

current and previous hidden states of the decoder, respectively.

Fig. 3. Importance of Dynamic Temporal Attention Module (D-TAM).
The observed poses at different time steps are highly related to different
future poses. The blue arrows indicate that the corresponding poses are
highly related.

During the first step of the decoder, the output of the recurrent
encoder he

T is used as the previous hidden state.
Given the hidden state hd

τ , the pose Pτ is predicted using a
fully-connected layer, as follows:

P̂τ = hd
τw

P
τ (6)

where wP
τ is a trainable parameter. In the following, we discuss

how we compute zτ−1 from the D-TAM and pose dynamics in
details.

Dynamic temporal attention module (D-TAM): The recurrent
encoder encodes the observed input sequences and outputs a
global representation as a single vector (e.g.,hIMU

T as the global
feature representation of all observed IMU data). However, the
global representation of the encoder might not be sufficient
to predict future poses, due to the variations of human poses.
Since humans walk with repetitive patterns, as shown in Fig. 3,
the encoded feature at a past time step is highly related to
a certain future time step. Thus, we configure the recurrent
decoder with a Dynamic Temporal Attention Module (D-TAM)
that dynamically computes the relevant information from the
encoded features to predict future poses at different time steps.
We employ D-TAM for both encoded IMU and video features,
as described below.

Given the hidden state of the decoder hd
τ−1 at time τ − 1

and the encoded IMU features of all the observed time steps
HIMU = [hIMU

T−Δ1+1, . . .,h
IMU
T ], first we generate the query

(qIMU
τ−1 ), the keys (KIMU

τ−1 ) and the values (XIMU
τ−1 ) for the

dynamic temporal attention on the encoded IMU features:

qIMU
τ−1 = hd

τ−1W
q,IMU
τ−1 , whereqIMU

τ−1 ∈ R
1×f (7)

KIMU
τ−1 = HIMUWK,IMU

τ−1 whereKIMU
τ−1 ∈ R

Δ1×f (8)

XIMU
τ−1 = HIMUWX,IMU

τ−1 whereXIMU
τ−1 ∈ R

Δ1×f (9)

where f is the feature dimension. Wq,IMU
τ−1 , WK,IMU

τ−1 and
WX,IMU

τ−1 are the trainable parameters. Then, we compute the
output using a weighted sum of the values:

OIMU
τ−1 =

(
qIMU
τ−1

(
KIMU

τ−1

)�) (
XIMU

τ−1

)
(10)
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TABLE II
EXISTING 3D HUMAN POSE DATASET VS OUR WEARABLEMOTIONCAPTURE DATASET

where OIMU
τ−1 ∈ R

1×f is the output of the D-TAM computed
from the encoded IMU features and the current hidden state of
the decoder.

Similarly, we apply D-TAM on video features and compute
the output using a weighted sum of the values, as follows:

OV ideo
τ−1 =

(
qV ideo
τ−1

(
KV ideo

τ−1

)�) (
XV ideo

τ−1

)
(11)

where OV ideo
τ−1 ∈ R

1×f is the output of the D-TAM computed
from the encoded video features and the current hidden state of
the decoder.

Pose dynamics: Since the first-order and second-order pose
motions such as velocity and acceleration carry important mo-
tion dynamics, we use them in addition to the pose at time τ − 1
to predict the pose at time τ . For the pose dynamics at time
τ − 1, we compute the velocity as Vτ−1 = (P̂τ−2 − P̂τ−1) and
the acceleration as Aτ−1 = (P̂τ−1 − 2P̂τ−2 +Pτ−3). Finally,
we concatenate the output of each D-TAM, the pose, the velocity,
and the acceleration to generate the input for the decoder (i.e.,
zτ−1 in (5)), as follows:

zτ−1 =
[
OIMU

τ−1 ,OV ideo
τ−1 , P̂τ−1,Vτ−1,Aτ−1

]
(12)

G. Loss

The proposed AttRNet is trained with its hidden state output at
each step supervised. The loss function in the proposed AttRNet
is composed of two terms:

LTotal = LReco + LPred

� ||P[T−2,T ] − P̂[T−2,T ]||2
+ ||P[T+1,T+Δ2] − P̂[T+1,T+Δ2]||2 (13)

where LReco and LPred are the reconstruction and pre-
diction loss, respectively. P[T−2,T ] = [PT−2,PT−1,PT ] ∈
R

3×J×DJoints are the ground truth poses at time step T for
the pose reconstruction, P[T+1,T+Δ2] = [PT+1, . . .,PT+Δ2

] ∈
R

Δ2×J×DJoints are the ground truth poses from the time step
T + 1 to T +Δ2 for the future pose prediction, and || · ||2
denotes the l2 norm.

IV. EXPERIMENTS

A. Dataset

We conduct experiments on the wearable IMU+camera
dataset on lower limbs which was collected by us: Wearable-
MotionCapture, and two public full-body pose datasets: DIP-
IMU [13] and TotalCapture [4]. The datasets are summarized in
Table II.

WearableMotionCapture: We recorded data from 10 subjects
(6 male, 4 female, age: 23.9±2.91 years, height: 1.65±0.06 m,

Fig. 4. Walking scenarios of our WearableMotionCapture dataset us-
ing wearable IMU and camera sensors: (a) Treadmill; (b) Round path;
(c) Ground; (d) Stairs; (e) Slope; and (f) Obstacles.

weight: 63.41±6.81 kg) wearing 8 Avanti wireless IMU (Delsys,
Boston, MA) sensors (2 attached on the upper body and 6 on
the lower body), and 2 GoPro video cameras (attached in the
middle of the shank contour of each leg), as shown in Fig. 1(a).
All participants provided informed written consent before par-
ticipating in the experiment. The Institutional Review Board
(IRB) of the University of Central Florida (UCF) approved the
study’s protocol (IRB ID: STUDY00002011). The IMU data
were recorded with a sampling frequency of 148 Hz, while the
video data were collected at 30 fps. We down-sample the IMU
data to have the same fps with the video data. Each subject was
instructed to walk on several scenarios (Fig. 4). Each participant
walked on both treadmill and ground with four different speeds
(slow, normal, fast, and very fast). For each participant, we
also recorded two trials for walking on stairs, and two trails for
walking on slope. Furthermore, we collected two trials for each
participant, where the participant walked on a round path and
walked in a random path while avoiding two obstacles placed
on the walking path. Overall, we collected 14 walking scenarios
for each subject. Thirty-two reflective markers were placed
on the participant based on a modified Helen-Hayes marker
set [52], for ground-truth collection. Three-dimensional marker
trajectories were captured by motion capture cameras. We obtain
the ground truth of joint angles using OpenSim [53], an open
source musculoskeletal analysis tool, on the marker tracking
data from motion capture cameras. We use the musculoskeletal
model to represent the 3D human walking pose (Fig. 1(c)).
Musculoskeletal model is a skeleton model consisting of bones
that are connected by joints. In total, we collected 140 pose
sequences from 10 subjects, which are 327 minutes of IMU data
along with 588 K video frames.
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DIP-IMU [13]: The DIP-IMU dataset consists of 10 subjects
(9 male, 1 female), each performing motions in five different cat-
egories, including controlled motion of the experiments (arms,
legs), locomotion, natural full-body activities (e.g., jumping
jacks, boxing), and interaction tasks with everyday objects.
These motions are recorded from 17 IMU sensors. We follow the
train-test splits provided by the dataset to evaluate our method.

TotalCapture [4]: The TotalCapture dataset consists of 5
subjects (4 male and 1 female), each performing several ac-
tivities such as walking, acting, range of motions and freestyle
motions, which are recorded using 13 wearable IMU sesors and
8 third-person view RGB-cameras. Since we aim to reconstruct
and predict human poses from wearable sensors, we only use the
wearable IMU sensor data for comparisons in our experiment.
We follow the train-test splits provided by the dataset to evaluate
our method.

B. Implementation Details

Our recurrent encoders are constructed using the Bidirec-
tional GRU (B-GRU). The hidden state’s dimension of each
B-GRU is set to 256. The decoder is configured with Dynamic
Temporal Attention Modules (D-TAM) and GRUs with hidden
state of dimension 512. The channel numbers between two
fully-connected layers are set as 64 and 1024 for the sensor-
wise attention and reconstruction modules, respectively. We use
PyTorch to implement our proposed pose reconstruction and
prediction model, and it takes about 60 minutes to train our
network on the WearableMotionCapture dataset on a single Tesla
V100 GPU.

C. Evaluation on WearableMotionCapture

Experimental setup: We consider two evaluation mechanisms:
� Half and half evaluation: We first randomly shuffle the

samples of each subject, and then consider one half of the
dataset to train the model and the other half is kept for the
testing.

� Leave-one-out evaluation: We use the samples from 9 out
of 10 subjects for training, and the samples of the left one
subject are reserved for testing. We repeat this process
10 times for 10 different testing subjects and report the
average.

Evaluation metric: We employ the Mean Absolute Error
(MAE) as the evaluation metric for the pose reconstruction at
the current time T as:

Ereco =
1

Ltest

1

DJoints

Ltest∑
l=1

DJoints∑
j=1

|Pj
T,l − P̂j

T,l| (14)

where Ereco is the MAE of the reconstructed pose, P̂j
T,l is the

predicted angle of joint j at time T from the l-th testing sample
and Pj

T,l is the ground truth. Ltest is the number of testing
samples generated from all pose sequences of the testing data
by sliding temporal windows with stride 1. For example, for
half and half evaluation (i.e., the test set has 294 K time steps
from 70 pose sequences), we generate around Ltest = 294 K −
70× (Δ1 +Δ2) testing samples (i.e., each sample is defined as

observing Δ1 time steps to predict the following Δ2 time steps).
Similarly, we employ the MAE as the evaluation metric for the
future pose prediction of Δ2 time steps as:

Epred =
1

Ltest

1

Δ2

1

DJoints

Ltest∑
l=1

Δ2∑
τ=1

DJoints∑
j=1

|Pj
τ,l − P̂j

τ,l|

(15)
Reconstruction and prediction performances: As summarized
on the first row of Table III, for the pose reconstruction, our
AttRNet achieves MAE of 4.65 ◦ for half and half evaluation,
and 7.49 ◦ for leave-one-out evaluation. On the other hand,
for the future pose prediction, our AttRNet achieves MAE of
4.73 ◦ and 7.58 ◦ for half and half evaluation and leave-one-out
evaluation, respectively, slightly higher than the reconstruction
error.

From Table I, we observe that if a testing subject provides
some calibration dataset, the pose sensing algorithm can perform
better, as shown by the half-half experiment where half of the
data from all subjects are used for training and the rest half is for
testing. On the other hand, if a testing subject exhibits new pose
patterns beyond the current training dataset, the pose sensing
algorithm will have a slightly larger error, as shown by the leave-
one-out experiment where a testing subject does not provide
any calibration dataset, and the training is performed on other
subjects. Since humans have variations on walking patterns,
developing a one-size-fits-all algorithm to sense human poses
could be challenging in real-world applications. To remedy this,
in the future, we plan to investigate the customized sensing
algorithms for individuals, which includes the investigation of
transfer-learning algorithms to adapt a pose sensing algorithm
trained on our dataset to individuals using a small calibration set
of these individuals captured in labs.

Effect of our method on subjects with different body shapes:
Although the kinematics of people tend to differ a lot, there
is no direct relation with the body shape. For example, two
people with the same height and weight will not walk with the
same strategy. The main reason, which will cause the method
to perform differently is the different walking patterns of dif-
ferent subjects. As a result, we see that our model performs
differently when validating with the leave-one-out experiment
compared to the half-and-half experiment. As the testing dataset
is absent during the training, model does not have any prior
knowledge of the walking pattern for the specific test subject.
This causes performance degradation compared to half-and-half
evaluation.

Ablation studies on different modules and modalities: To
systematically evaluate our method and study the contribution
of each algorithm component, we perform a number of ablation
experiments: (i) our AttRNet without Sensor-wise Attention
Module (SAM); (ii) our AttRNet without SAM or Dynamic
Temporal Attention Module (D-TAM); (iii) our AttRNet without
SAM, D-TAM or pose dynamics; (iv) and (v) our AttRNet
with SAM, D-TAM and Pose Dynamics on IMU-only and
Video-only, respectively. As shown in Table III, we can see that
each algorithm component is contributing to our AttRNet to im-
prove the performance for both half and half and leave-one-out
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TABLE III
EVALUATION OF POSE RECONSTRUCTION AND FUTURE POSE PREDICTION, AND THE ABLATION STUDY ON DIFFERENT MODULES OF THE PROPOSED

APPROACH ON OUR WEARABLEMOTIONCAPTURE DATASET FOR BOTH HALF AND HALF, AND LEAVE-ONE-OUT (LOO) EVALUATION

TABLE IV
ABLATION STUDY OF POSE RECONSTRUCTION AND FUTURE POSE PREDICTION ON DIFFERENT WALKING SCENARIOS

TABLE V
PER JOINT RECONSTRUCTION AND PREDICTION PERFORMANCE EVALUATION

evaluations. Our AttRNet achieves the best performance from
the fusion of IMU and video data, compared to the single-sensor
approaches.

Ablation studies on different walking scenarios: The ablation
studies on different walking scenarios are shown in Table IV.
Since the walking patterns on the treadmill are repetitive, the
pose reconstruction and prediction for walking on the treadmill
are relatively easier and the performances are better compared to
other scenarios. The walking motions are continuously changed
when the subjects try to avoid obstacles on the ground, making
the pose reconstruction and prediction more difficult. For exam-
ple, if the obstacle is close, people reduce the step length and
the walking path is going to be more acute. On the other hand,
if the obstacle is far and enough time to deviate the obstacle,
the path is going to be greater and step lengths may be similar
before initiating the dodging the obstacle. However, even though
the walking patterns are continuously changed in most of the
walking scenarios, our AttRNet still reconstructs and predicts the

poses well. Overall scenarios in Table IV, our maximal relative
reconstruction and prediction errors are 9.16/360 = 2.54% and
9.28/360 = 2.58%, respectively.

Per joint evaluation: The pose reconstruction and prediction
errors regarding different joints are as shown in Table V. The
reconstruction and prediction performances for the joint ‘Pelvis
list’ are the best compared to other joints, while we get the
lowest performances for the joint ‘Pelvis rotation’. In our dataset,
the subjects continuously try to rotate or change the walking
direction. Therefore, reconstructing and predicting the joint
angles related to rotation (e.g., ‘Pelvis rotation’, ‘Hip rotation
left’, ‘Hip rotation right’ and ‘Lumber rotation’) become more
difficult.

Parameter analysis: We perform experiments on different
temporal intervals (Δ1 and Δ2) of the observed and future
time steps. In the left side of Table VI, we show the prediction
performance of our method for different temporal intervals Δ1

of the observed sequences. The prediction error decreases with
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TABLE VI
PARAMETER ANALYSIS ON Δ1 AND Δ2. (Δ1,Δ2) MEAN THAT THE

PREDICTION MODELS ARE EVALUATED IN THE ONLINE MODE USING Δ1

OBSERVED TIME STEPS TO PREDICT Δ2 FUTURE TIME STEPS

TABLE VII
COMPARING OUR ATTRNET WITH OTHER BASELINE MODELS ON THE

WEARABLEMOTIONCAPTURE DATASET

the increased number of observed sequences and it saturates
at Δ1 = 50 (we believe the reason is because it covers a few
full cycles of human walking gaits in the recent past, which are
sufficient for the prediction at the following time steps). On the
other hand, the right side of Table VI shows the performance
for different temporal intervals Δ2 in the future, where the
prediction error increases for the far future pose prediction.

Comparison with baseline models: We compare our AttRNet
with some basline models, as shown in Table VII. Since we intro-
duce our AttRNet based on recurrent networks to reconstruct the
pose over time and predict the poses at the following time steps,
we compare our AttRNet with some recurrent network-based
baseline models such as Recurrent Neural Network (RNN), Bidi-
rectional RNN (B-RNN), Long Short-Term Memory (LSTM),
Bidirectional LSTM (B-LSTM), Gated Recurrent Unit (GRU),
and Bidirectional GRU (B-GRU). Our AttRNet achieves supe-
rior performance compared to these recurrent network-based
baseline models. The performance improvement from our At-
tRNet compared to the baseline models validates that our sensor-
wise attention-oriented recurrent encoder can effectively en-
code the most highly discriminative features from the observed
input sequences, and our dynamic temporal attention-oriented
recurrent decoder can dynamically compute the most relevant
information from the encoded observed features.

D. Comparison With the State-of-the-Art

DIP-IMU evaluation: The DIP-IMU is designed to predict 3D
full-body human poses from wearable IMU sensors. Following
the literature [13], [54], we adopt two different modes: (1) the
offline mode where the full sequence is available; and (2) the
online mode where our AttRNet observes past 20 time steps,
and predicts 1 current time step and 5 future time steps in a
sliding window manner. Table VIII shows the comparison results

TABLE VIII
3D HUMAN POSE PREDICTION PERFORMANCE COMPARISON WITH OTHER
STATE-OF-THE-ART METHODS ON THE DIP-IMU DATASET FOR BOTH THE

OFFLINE AND ONLINE MODES

TABLE IX
COMPARISON RESULTS REGARDING MEAN JOINT POSITIONAL ERROR ON

TOTALCAPTURE DATASET. TSP: TEMPORAL SEQUENCE PREDICTION

of our AttRNet with other methods on DIP-IMU dataset [13]
for 3D human pose prediction, where the results are compared
for both the offline and online modes. Over all scenarios, our
method achieves superior performance and establishes the new
state-of-the-art results on DIP-IMU dataset for 3D human pose
prediction.

TotalCapture evaluation: The TotalCapture dataset is de-
signed to reconstruct full-body poses from the wearable IMUs
and multiple third-person view video cameras. Table IX shows
AttRNet outperforms the current best results on the IMU dataset
of TotalCapture [4]. Note, for fair comparison, we only com-
pare on wearable sensors, and TotalCapture only evaluates on
positional errors. We follow the train-test splits provided by the
corresponding dataset to evaluate our method.

E. Qualitative Analysis

We present some qualitative results on the test samples of the
WearableMotionCapture dataset in Fig. 5, where our AttRNet
captures data from wearable IMUs and wearable cameras, and
reconstructs 3D walking poses. It can be seen that the proposed
method can successfully reconstruct different walking poses on
different scenarios (e.g., treadmill, stairs, slope, and ground with
obstacles). The related video demos can be accessed at.2 The
joint angle error of avoiding obstacles is the highest in Table IV,
but the visual evaluation in Fig. 5(b) is not very obvious in
individual time steps.

Though our project focuses on the lower limb which has the
potential to apply to people with movement disabilities such
as stroke survivors, lower limb amputees, and children with
cerebral palsy, the proposed method can also be generalized
to full-body pose reconstruction using wearable sensors. We
present some qualitative results on the test samples of walk-
ing, acting, freestyle and fighting pose sequences from the
TotalCapture dataset, as shown in Fig. 6, where our AttRNet
captures data from wearable IMU sensors and reconstructs

2[Online]. Available: https://github.com/MoniruzzamanMd/Wearable-
Motion-Capture
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Fig. 5. Visualization of our human pose reconstruction over time on test samples of WearableMotionCapture dataset. (a) The subject walks on
a treadmill; (b) The subject walks on stairs; (c) The subject walks on slope; and (d) The subject walks on ground and avoids the obstacles. Our
AttRNet well reconstructs the 3D human poses based on the sensed data from wearable IMUs and wearable cameras.

full-body 3D pose sequences. It can be seen that the proposed
method also shows good performance on the fully-body pose
reconstruction.

V. DISCUSSIONS AND FUTURE WORKS

In our assistive walking project, we aim to create a proactive
prosthetic device that can positively affect the lives of the 1.6
million people with amputation. However, the development of
such a device requires an algorithm to reconstruct and pre-
dict walking poses in an uncontrolled daily-living environment.
Prior works that require vision data from third-person views
for pose reconstruction are not always possible for amputees

alone outdoors, thus we propose the wearable motion capture
problem of reconstructing and predicting 3D human poses from
the wearable IMU sensors and wearable cameras, which aids
the prosthetic device control and clinicians’ diagnoses on am-
putees out of clinics. For this challenging problem, we collected
a new WearableMotionCapture dataset and proposed a novel
Attention-Oriented Recurrent Neural Network (AttRNet) to re-
construct the 3D human pose over time and predict the 3D human
poses at the following time steps.

Although our AttRNet achieves the promising performances
from the fusion of IMU and video data, wearing cameras
might raise privacy concerns from amputees. However, the
usage of IMU sensors does not have any camera-related privacy
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Fig. 6. Visualization of our human pose reconstruction over time on test samples of TotalCapture dataset. The four examples represent the
full-body of ‘walking’, ‘acting’, ‘freestyle,’ and ‘fighting’, pose sequences, respectively. Our AttRNet well reconstructs the full-body 3D human poses
based on the sensed data from wearable IMUs.

concern. Therefore, in the future, we plan to develop a teacher-
student learning-based Knowledge Distillation (KD) mecha-
nism to transfer the knowledge from the multi-modal (wearable
cameras + wearable IMUs) teacher network to the single-modal
(wearable IMUs only) student network. During the test, we only
use the trained single-modal (IMU only) student network for
pose reconstruction and prediction.

VI. CONCLUSION

In this article, we proposed the wearable motion capture prob-
lem of reconstructing and predicting 3D human poses from the
wearable cameras and IMUs. We developed a novel Attention-
Oriented Recurrent Neural Network (AttRNet) to solve the
wearable motion capture problem, which contains a sensor-wise
attention-oriented recurrent encoder, a reconstruction module,
and a dynamic temporal attention-oriented recurrent decoder, to
reconstruct the current pose and predict the future poses. The
extensive experiments on a newly collected WearableMotion-
Capture dataset show the effectiveness of each module of our
AttRNet and the fusion of two sensor modalities. Our AttRNet

also outperforms the current best methods on two full-body pose
datasets [4], [13].
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