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In this article, we exploit the spiked covariance structure of the
clutter plus noise covariance matrix for radar signal processing. Using
state-of-the-art techniques high dimensional statistics, we propose a
nonlinear shrinkage-based rotation invariant spiked covariance ma-
trix estimator. We state the convergence of the estimated spiked eigen-
values. We use a dataset generated from the high-fidelity, site-specific
physics-based radar simulation software RFView to compare the
proposed algorithm against the existing rank constrained maximum
likelihood (RCML)-expected likelihood (EL) covariance estimation
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algorithm. We demonstrate that the computation time for the estima-
tion by the proposed algorithm is less than the RCML-EL algorithm
with identical Signal to Clutter plus Noise (SCNR) performance. We
show that the proposed algorithm and the RCML-EL-based algorithm
share the same optimization problem in high dimensions. We use
Low-Rank Adaptive Normalized Matched Filter (LR-ANMF) detec-
tor to compute the detection probabilities for different false alarm
probabilities over a range of target signal-to-noise ratios (SNR). We
present preliminary results which demonstrate the robustness of the
detector against contaminating clutter discretes using the challenge
dataset from RF View. Finally, we empirically show that the minimum
variance distortionless beamformer error variance for the proposed
algorithm is identical to the error variance resulting from the true
covariance matrix.

[. INTRODUCTION

Clutter plus noise covariance matrix estimation is an
integral part of radar signal analysis. In a high-dimensional
setting, the sample size is of the same order of magnitude
as the dimension of the covariance matrix. Therefore, the
sample covariance matrix is no longer a reliable estimator
of the clutter plus noise covariance matrix as it becomes
singular.

To mitigate such singular nature of the sample covari-
ance matrix, we exploit the spiked covariance structure for
high-dimensional settings proposed in [1], [2], and [3] to
model the clutter plus noise covariance matrix. The bulk of
the eigenvalues of the spiked covariance matrix are identi-
cal, corresponding to the noise component of the clutter plus
noise covariance matrix. A finite number of spiked eigenval-
ues significantly exceed the bulk eigenvalues in magnitude,
accounting for the clutter component of the clutter plus
noise covariance matrix. We propose a rotation invariant
nonlinear shrinkage-based spiked covariance estimator to
estimate the clutter plus noise covariance matrix.

We use the challenge dataset contaminated with targets
to validate our results. The challenge dataset was con-
structed by ISL' using high-fidelity, physics-based, site-
specific, modeling, and simulation software RFView [4].
RFView uses stochastic transfer function model to simulate
a scenario. It computes the Green’s functions impulse re-
sponse of the clutter and targets and simulates a real time
instantiation of the RF environment. The RFView model
accounts for intrinsic clutter motion encountered in the real
world which existing models cannot address. This has been
extensively vetted using measured data from VHF to X band
with one case documented in [5] demonstrating the match
with measured data. This provides the rationale for using the
challenge dataset. The spiked covariance matrix structure
can be observed in a real-world radar scenario. As an illus-
trative example, consider an airborne radar looking down
on a heterogeneous terrain, consisting of mountains, water
bodies, and foliage simulated by RFView, as shown in Fig. 1.
Fig. 1 displays the relative power of the returned signal from
such heterogeneous terrain in Southern California near San
Diego. We observe that the regions of high-power returns

!Information Systems Laboratory (ISL) is a US based company that gave
us access to the challenge dataset.
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Fig. 1. Clutter returns from the littoral scene with mountains and water
showing shadow regions (dark blue) as well as stronger signal
components (yellow).

-120
Fam
1400 B 1
<
=
=
%
< -160 1
=
o)
=
<
Z -180 1 ]
_gjo Covariance Eigenvalue
M o Clutter Eigenvalue
200 & Noise Eigenvalue

50 100 150
Eigenvalue Index

200

Fig. 2. Clutter plus noise covariance matrix formed by the return signal
given in Fig. 1 gives evidence that most of the components of clutter
(red) are below the noise floor. The first 25 components are above the

noise floor. Therefore, the covariance matrix exhibits a spiked covariance

structure.

have less area compared to the regions of low-power return,
with noise power higher than the low-power returns. This
is evident from the eigenvalue plot of the clutter plus noise
covariance matrix in Fig. 2, computed from the return signal.
A large number of eigenvalues of the clutter covariance
matrix fall below the noise power.

In this article, we use a nonlinear shrinkage-based ro-
tation invariant estimator developed in [3] to estimate the
clutter plus noise covariance matrix in a high-dimensional
setting. In the spiked covariance model, we only need to
estimate the noise power and the spiked components.

We show that for the estimation of covariance matrix
of dimension p, the proposed algorithm performs O(p)
real-valued multiplications for the joint noise power-clutter

JAIN ET AL.: RADAR CLUTTER COVARIANCE ESTIMATION: A NONLINEAR SPECTRAL SHRINKAGE APPROACH

rank estimation as compared to the O(p?) in the RCML-EL?
algorithm with identical SCNR and error variance. The
proposed algorithm is applicable to adaptive radar where
the covariance matrix computation speed up, as given in
Table I, is beneficial during angle-Doppler sweeps over a
region to detect targets. The angle-Doppler sweep requires
repetitive batchwise computations of clutter plus noise co-
variance. The proposed algorithm reduces the clutter plus
noise covariance computation time. Adaptive radars also
have several hierarchical layers for data acquisition, pro-
cessing, and decision-making [8]. The reduced clutter plus
noise covariance computation time is beneficial since it
relaxes time constraints for other hierarchical layers which
include target tracking, beam allocation, pulse shaping [9],
task scheduling, and resource allocation, as stated in [10].

In addition, we state the convergence results for the
estimated eigenvalues and bounds for normalized SCNR for
the proposed estimator. We test the target detection perfor-
mance of the estimator using low-rank adaptive normalized
matched filter (LR-ANMF) detector. We empirically show
the robustness of the detector against contaminating clutter
discretes. We apply the proposed algorithm on the challenge
dataset simulated by RFView software.

A. Related Works

The problem of covariance matrix estimation [11], with
data deficient scenario has received considerable attention
in radar signal processing literature. In the data deficient
scenarios, the sample covariance matrix is no longer a reli-
able estimator as it becomes ill-conditioned. To address such
ill-conditioning, methods like diagonal loading (DL) [12],
[13], [14], [15], [16], [17], [18] and factored space-time
approaches [19] have been proposed. Data dependent tech-
niques include principal components inverse [20], multi-
stage Wiener filter [21], parametric adaptive matched fil-
ter [22], and EigenCanceler [23]. Data independent ap-
proaches include JDL-GLR [24].

In a high-dimensional setting, the properties of covari-
ance matrices are explained by the random matrix theory, as
stated in [25], [26], [27], and [28]. In such high-dimensional
settings, shrinkage estimators have been developed to esti-
mate covariance matrices in signal processing and finance.
Shrinkage estimators have been used in wireless communi-
cations [29] to estimate the channel matrices, in array signal
processing to estimate direction of arrival [30] and in finance
for Markowitz portfolio optimization [31], [32], [33], [34].
Shrinkage methods include Ledoit—Wolf shrinkage estima-
tor [35], regularized PCA [36], Ridge and Lasso shrinkage
estimators [37], and regularized M-estimators [38].

In radar signal processing, the covariance matrices often
contain a low-rank structure corresponding to the clutter.

2RCML-ELrepresents the RCML covariance estimator [6] with the clut-
ter rank and noise power obtained by the expected likelihood (EL) ap-
proach [7].
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The covariance matrices are called clutter plus noise co-
variance matrices. Covariance estimation algorithms devel-
oped in [7], [39], [40], [41], and [42], propose estimation
schemes assuming a rank sparse clutter covariance matrix in
a high-dimensional setting. These papers use the Brennan’s
rule which gives an estimate of the rank depending on the
dominant components of the clutter and the jammers. How-
ever, as demonstrated in [43], [44], and [45], the Brennan’s
rule fails when a plethora of real-world effects, such as
internal clutter motion, mutual coupling between antenna
array elements arise on account of the system and envi-
ronmental factors. In our article, the data generated from
the high fidelity, site-specific, physics-based, radar scenario
simulation software RFview are used where the Brennan
rule does not prevail, as documented in [5].

To address these issues we exploit the spiked covariance
structure, as proposed in [1], [2], [46], and [47], of the clutter
plus noise covariance matrix. We use the nonlinear shrink-
age estimation techniques of [3] to estimate the covariance
matrix. Spiked covariance models have been used to esti-
mate direction of arrival (DOA) in array signal processing,
as demonstrated in [48], and for target detection in [49].
We are using the spiked covariance model to estimate the
clutter plus noise covariance matrix.

B. Main Results and Organization

The main results and organization of this article are as
follows.

1) In Section II-A, we formulate the rotation invariant
estimators. The asymptotic model for large random
matrices and the spiked covariance model for the
clutter plus noise covariance matrix is defined in
Section II-B.

2) In Section III, we present the algorithm proposed
in [3] for spiked covariance matrix estimation. In
Section III-A, Theorem 1 shows a strong law of large
numbers (namely, the estimated spiked eigenvalues
converge almost surely to a constant) and satisfy a
central limit theorem. This is due to the fact that,
even though we are in a high-dimensional setting, the
number of spikes is constant. Empirical verification
of the convergence properties for RFview Challenge
Dataset is provided. We derive the bounds for nor-
malized SCNR p in Section III-B. In Section III-C,
we establish that the proposed algorithm and the
RCML-EL estimation algorithm in high dimensions
have similar performance due to the fact they share a
common optimization problem. In Section III-D, we
employ the LR-ANMEF detector to verify target de-
tection performance when using a rotation invariant
estimator.

3) In Section IV-A, we demonstrate that the proposed
algorithm has identical SCNR compared to the
RCML-EL algorithm for the challenge dataset simu-
lated using RFView. We further show that the compu-
tation time of estimation by the proposed algorithm
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is less than that of the RCML-EL algorithm. In Sec-
tion IV-B, we compute the target detection probabil-
ities for various false alarm probabilities and SCNR,
and empirically show its robustness with respect to
contaminating clutter discretes. In Section IV-C, we
compute the error variance of the minimum variance
distortionless beamformer (MVDR) beamformer for
the proposed algorithm.

[I. ROTATION INVARIANT ESTIMATOR AND SPIKED
COVARIANCE MODEL

This section is organized as follows. Section II-A
presents a general rotation invariant estimator. Section II-B
describes the high-dimensional spiked covariance model.

We use a narrowband baseband equivalent model used
in [5]. The radar transmits a complex-valued waveform s(k)
and receives a complex-valued return y(k) in discrete time

y(k) = hi(k) ® s(k) + he(k) ® sk) +nk). (1)

Here ® is the convolution operator and k denotes discrete
time. &, (k) and h. (k) are the complex valued target impulse
response and complex valued clutter impulse response,
respectively. The noisy measurement n(k), due to thermal
noise, is the additive white Gaussian noise with variance
o? with zero mean. The noise samples are independent,
identically, distributed (i.i.d).
In matrix-vector notation, (1) reads

y=H,s+H.s+ng )

where H;, H, € CP*? are Toeplitz matrices constructed by
the impulse responses A, (k) and h.(k), respectively. y € C?
is a return signal of length p and s € C? is the waveform
of pulse length g. The noise n; € C? is a complex valued
Gaussian distributed vector, where n, ~ N(0, 621) and
has i.i.d samples.

We define the clutter plus noise return as y,

Ye = HC S + ny. (3)

A. Rotation Invariant Estimator

In this subsection, we describe the rotation invariant
estimation for the clutter plus noise covariance matrix.
Rotation invariant estimators have the same eigenvectors
as that of the sample covariance matrix and the eigenvalues
of the estimators are a function of the eigenvalues of the
sample covariance matrix.

The clutter plus noise covariance matrix is given by

R=R.+0’1 4)
where the clutter covariance matrix is
R, := E[H,ss"” H."] (5)

and 0?1 is the noise component. The eigendecomposition
of clutter plus noise covariance is

P
R=> ruu (©6)
i=1
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with eigenvalues A; and eigenvectors u;. The sample covari-
ance matrix R, is

A
Rn = ; Zyc,k yc’Hk (7)
k=1

where y, is the clutter plus noise return defined in (3) which
will be used as training data samples, k is the discrete time,
and n are the number of training data samples. The spectral
decomposition of R, for a given training data size 7 is

p

A A H

Rn = E )"i,nvi,n V,’yn (8)
i=1

where A; , are the eigenvalues and v; , are the eigenvectors
of R,,. The spiked covariance matrix estimate for a given
number of data samples 7 is

P
Rn == Z )_\i,n Vin an (9)
i=1

where 1, are the eigenvalues of R,,, with eigenvectors v, ,
identical to those of the R, in (8). The spiked covariance
estimator is a rotation invariant estimator.

In addition, we use normalized SCNR to compare co-
variance estimation methods. We denote p to define the
normalized SCNR as

" R"y,)?
v/ R7'y)(y/ R-IRR"! YI).

o= (10)
where y, = Ap ® Ay is the Kronecker product of angle
steering vector [Ag]; = exp[—jmisin(d)], 1 <i <N and
the Doppler steering vector [Af]; = exp[—j2mify], 1 <i <
K. N and K are defined in Section IV. The dimension of the
covariance matrix is p = N x K.

In the next section, we will show that X is a nonlinear
function of A, where the nonlinearity depends on the loss
function.

B. Clutter Plus Noise Covariance Matrix Modeling Using
Large Random Matrices

In this subsection, we define the spiked covariance
model and the asymptotic regime for the high-dimensional
setting. We use this framework to model the clutter plus
noise covariance matrix.

DEFINITION 1 A spiked covariance matrix R is a p x
p positive definite Hermitian matrix with eigenvalues
(A1, A2 ..., Ap) such that for a finite r < p, 4| > A, >
Ar>oc%and A, = =4, =0%>0.

We make two assumptions

1) The clutter plus noise covariance matrix has a spiked
covariance structure given in Definition 1. The clut-
ter plus noise covariance matrix is given in (4), where
clutter covariance matrix R, has rank r with eigenval-
ues A; — 02,1 < i < r. The noise covariance matrix
0?1 is diagonal.
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2) There exists a y € (0, 1) such that for given training
data size n with the dimension of the covariance
matrix as p such that

p
==y,
n

p, n— 00, p<n. (11)

Datadisplayed in Figs. 1 and 2 satisfies these conditions.
In Fig. 2, we see that the clutter covariance matrix can be
approximated by a rank r positive semidefinite matrix as
the remaining p — r components are below the noise floor.

We assume that clutter plus noise covariance matrix
is spiked if the rank of the clutter matrix is less than
a fraction x of the clutter plus noise covariance matrix.
For convenience, we choose x = 0.1, since it empirically
fits with the data simulated by RFView. In the classical
statistical setting, this is well studied in terms of penalized
likelihood methods, such as Akaike information criterion
(AIC) [50], minimum description length (MDL) [51], in-
formation theoretic criteria [52], statistical techniques [53],
data dependent techniques [54], and min-max approaches,
such as the embedded exponential families [55].

However, in the high-dimensional setting considered in
this article, estimating the model order (number of spikes)
is a difficult problem and will not be addressed. In [7],
the RCML-EL algorithm uses the Brennan’s rule [11], as
an initial estimate for the rank of the clutter covariance
matrix to determine the model order. RCML-EL algorithm
correctly estimates the rank as compared to the AIC and
MDL techniques. In Section III-C, since the proposed algo-
rithm and RCML-EL algorithm share similar optimization
problem, the proposed algorithm correctly estimates the
model order.

The spiked covariance property helps us to deal with the
clutter plus noise covariance matrices in high dimensions,
which is frequently encountered in radar signal processing.
With this knowledge, we define the nonlinear shrinkage-
based rotation invariant estimator.

[lI.  NONLINEAR SHRINKAGE ESTIMATION

In this section, we propose the rotation invariant esti-
mator using nonlinear shrinkage of the eigenvalues of the
sample covariance matrix. We state the convergence of the
estimated eigenvalues in Theorem 1 in Section III-A. Note
that we use the terms spiked eigenvalues and the leading r
eigenvalues of the covariance matrix interchangeably for a
fixed clutter covariance matrix with rank ». We outline the
computation cost of the proposed algorithm. We propose
bounds for the normalized SCNR(p) in Section III-B. We
show the similarity of SCNR performance between the
proposed algorithm and the RCML-EL algorithm in high
dimensions in Section III-C. We conclude this section by
stating the ANMEF for target detection for the proposed
algorithm in Section III-D.

The spiked covariance matrix R is stated in Definition 1.
Estimation of the spiked covariance matrix R,, as defined in
(9), consists of two subproblems: estimation of the spiked
eigenvalues and the estimation of the noise power o2.
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1) The estimate of the noise power is given, as stated
in [3], is

~

)\med
O’2 =

= (12)
Mmed
where Aneq is the median of the eigenvalues of the
sample covariance matrix R,, and [t peq is the median
of the Marchenko—Pastur distribution with parame-
ter y stated in (11). The proof of the consistency of
the noise power estimator is given in [3, Sec. 9].
2) The shrinkage function n*(-), as stated in [3], is

n(fO)) k> 1+ J7)
1 i<+ 7))
where A; = A;/62, A; are the eigenvalues of the sam-

ple covariance matrix R and 62 is defined in (12).
The function f(-) given by?

n*(h) = (13)

x+1l—y+J/x+1—y)—dx
2

and n(-) for Stein loss, as stated in [3], L% =
(R~ R — ) — logdet(R~' R), is given by

15)

f) =

X

St
=— 16
n ) c(x)? 4+ s(x)*x (16)
where c(-) is given by
1-y/(x—1)
coy = W ¥ VY g
0 x <1+ v

s(-)> =1 —c(-)* and y is given in (11).
The eigenvalues A; , of the estimator R, are given by

Ain =620 (p) (18)
where 62 is given in (12) and n* (k) is given in (13).
The proof of optimality of this estimator is given
in [3, Sec. 6].

A pseudo-code to compute the estimator is stated in
Algorithm 1.

A. Convergence of Eigenvalues of the Proposed Estima-
tor

Although we deal with finite p and n, in Theorem 1 we
state that the spiked eigenvalues converge almost surely to
a constant and satisfy a central limit theorem when both
p, n — 00, given that the number of spikes r is fixed.

We assume the following for a covariance matrix R with
dimension p.

31t is to be noted that (15) is the inverse mapping for

x+5 x40y

(14)
I+ 7?2 1<x=<1+/y

gx) =

when x > (1 + /v )2, it is the relationship between the A and A and has
been explained in [3].
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Algorithm 1: Nonlinear Shrinkage Algorithm for
Spiked Covariance Matrix Estimation.

1: Evaluate the eigenvalue decomposition of sample
covariance matrix R, as done in (8) for a given
number of data samples n.

2: Compute the noise power 62 by (12).

3: Compute the eigenvalues A; , of the estimator as in
(18).

4: Using eigenvalues computed in Step 3, the
estimated covariance matrix R, is given by (9).

Al. Leading r distinct eigenvalues A;, A, ..., A, with
multiplicity 1 and lower bounded by 1 + ,/y.
A2 Eigenvalues A,y =1,...,1,=1.

THEOREM 1 Consider the estimator R, of dimension p
with eigenvalues (A, A2, ..., A,,) that estimates the
spiked covariance matrix R satisfying the assumptions (A1)
and (A2). Assume p/n — y € (0, 1), p,n — oco. Then
Xin’s, 1 <i < r satisfy

Min —> 0*(Bi). (19)
In addition, if p/n — y = o(n~'/?), then
aGin — 1 (B) > N(©. a2 (7 (B)))  (20)

where 1*(-) is given by (13) and n(-) is given by (16). B; =

hi 22 0F = 222(1 — 5Lo) and y is given (1),

PROOF Almost sure convergence can be proved by applying
continuous mapping theorem on [2, Th. 2] with function 7.
The in-distribution convergence can be proved by applying
the delta method on [2, Th. 3] with function 7. |

We empirically showed the validity of assumptions of
Theorem 1 for the challenge dataset using the double version
of the Kolmogorov—Smirnov (K-S) test with significance
level 5% and 1024 Monte Carlo simulations. The reference
data was generated from the prescribed distribution in (20)
and the test data were generated from the challenge dataset.
The cumulative distribution function (CDF) plot in Fig. 3
for the test and reference data reveals that the challenge
dataset satisfies the assumptions for Theorem 1.

Computation Cost

Algorithm 1 does not require prior knowledge of the
number of spikes. Step (2) and Step (3) in Algorithm 1
determine the eigenvalues that are above the noise floor.
The computation cost of the algorithm is given as follows.

1) The eigenvalue decomposition requires O(p?) real-
valued multiplications.

2) The noise power estimation, step (2), is a median
finding algorithm that requires O(p) real-valued
multiplications.

3) The nonlinear shrinkage, step (3), requires O(r) real-
valued multiplications, r being the rank of the clutter
covariance matrix.
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Fig. 3. Double version of the K-S test with reference data from the
prescribed distribution (20) and the test data from the challenge dataset
verifies that the challenge dataset satisfies the assumptions for Theorem1
with p-value of 0.8390.

We compare Algorithm 1 to the RCML-EL algorithm
whose computational cost is given as follows.

1) The eigenvalue decomposition step takes O(p?) real
valued multiplications.

2) The joint noise and rank estimation step takes O(p*)
real valued multiplications.

The difference is in the noise and rank estimation
step; Algorithm 1 takes O(p) real-valued multiplications,
whereas the RCML-EL algorithm takes O(p?). This will be
demonstrated in Section IV-A empirically.

B. Bounds for p

In this section, we derive the lower and upper bounds
for the normalized SCNR(p) using results from [56].
We rewrite p from (10)
1113

p= — — — — 20
xHFRIRR7x)(x?R:R-R3x)

wherex = ﬁ_%yl. Without loss of generality, assume ||x|| =
1. We use the matrix version of Kantorovich’s inequality
to bound the denominator. For a positive semidefinite ma-
trix A and a unit vector x, ||x[, = 1, x?Ax)(x"A7'x) <
i(K(A)—i— ﬁ +2), where «(A) is the condition num-
ber of the matrix A. By the Cauchy—Schwarz inequality
(x" Ax)(x A='x) > 1. We lower bound p by

1

p= (22)
FkA) + 5 +2)
where A = R™:RR 3. From [56], we have
max |1, max<j<, Vo (AF, n;
K(A) = [ 1<i<r V4( i 77)] (23)

min [1, min <<, v_ (A}, n;)]

where

vi(Aj,n)=T/2+£T?*/4—-D
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2 4 ,St.2
D=nS/F T = (—s +/\Z S ns‘s2>
nSt defined in (16) and A} = A;/02.

In Section IV, we shall demonstrate that the proposed
algorithm performs within the derived bounds.

C. Performance Similarity Between Proposed Algorithm
and RCML-EL Algorithm

In this section, we show that the proposed algorithm
and the RCML-EL algorithm will give similar SCNR per-
formance.

The optimization problem for clutter plus noise covari-
ance matrix estimation assuming noise power to be unity
defined in [6, (35)] is

min d” X —17 logk
i

st. FA<g
Eil=h
(24)
where d; = 4;, recall from Section II that X is eigenvalue

of the estimator and A is the eigenvalue of the sample
covariance matrix

T
F=[U" 1, T,,] RV

T
— lor T 4T 3px1
£= [Opxl - €p><l 1p><l:| eR

erlz[es"'ve]pX17 € >03
(1 =1 0o o0 ... 0
0 1 -1 0
U= c RP*P
0 ... ... .1 -1
E — OVX}’ 0r><p—r e Rp)(p
| 0p—rxr  Tpr
r T
h=[0.0,...,0, 1, 1,...,1] e RPX.

The first constraint in (24) enforces A; to be positive in
descending order and the second constraint enforces the
last p — r eigenvalues of the estimator to be equal. These
constraints enforce a spiked covariance matrix structure on
the estimator, stated in Definition 1, in a high-dimensional
setting. In [3], the optimization problem for estimating lead-
ing r eigenvalues for Stein loss under a spiked covariance
model is given by

a; )_»,' — b; log )_L,‘ + m; (25)

_ min
T 1<i<r
where a; = ¢2/g(h) + 5%, b =1 and m; = 1/g(A;) — 1 —
a; + log(f(ii)); f(-) is given in (15), g(-) is given in (14),
c(-) and s(-) are given in (17).
Since the cost function of (24) is identical to (25) within
a constant and the constraints of (24) are implicit to the
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optimization problem of (25), the normalized SCNR, p and
the rank of the clutter covariance matrix » will be identical.
In Section IV, we shall demonstrate that the SCNR
performance for the proposed algorithm is identical to the
RCML-EL algorithm with a reduced computation time.

D. Low-Rank Adaptive Normalized Matched Filter De-
tection

In this section, we use the LR-ANMF detector for a
rotation-invariant estimator, as stated in [57]. The detection
scheme is independent of the eigenvalue shrinkage in (13)
and only depends on the eigenvectors of the sample covari-
ance matrix in high dimensions. The detector is the same for
both the proposed algorithm and the RCML-EL algorithm.

We have the following binary hypothesis for a single
target:

Ho:y~N(@O,R)

Hi:y~NUs,R) (26)

where H, is the null hypothesis when no targetis present and
‘H, is the alternate hypothesis when the target is present. The
target signal s is defined in the same way as y; in (10) with a
complex-valued amplitude 4, and R is the clutter plus noise
covariance matrix. The test statistics for the LR-ANMF with
n data samples, as stated in [58], is

sty

=2 27)
|11, s]|?

n

where

p

A H

I, =1- E VinVin
i=1

is a projection matrix constructed using the eigenvectors
v, defined in (8) corresponding to the r spikes of the
spiked covariance matrix and § is the detection threshold.
Recall from Section II-B that r is the rank of the clutter
covariance matrix. The knowledge of noise power o2 is not
impacting the detection since we are using assumption (A1)
in Section III-A, where o2 has already been estimated. We
present the convergence theorems from [57] that state the
in-distribution convergence of the test statistics under H
and H;.

THEOREM 2 ([57], TH. 2) Under H, and assumption (A1)
the test statistics 7,, satisfies

T, 2 X2 (28)

where x%(2) is a chi-squared distribution with one complex
degree of freedom. The probability of false alarm with
detection threshold § is

oo
ra = lim P(T,, > 6|Ho) =/ exp(—x)dx
n—00 Fy

=exp (—9§). 29)
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THEOREM 3 ([57], TH. 3): Under #H,; and assumption (A1)
the test statistics 7,, satisfies

lim sup |[P(T,, <x)—F (x;2,A)] = 0

=700 yeR

(30)

where F(x;2, A) denotes the cumulative distribution of
a noncentral x2 distribution with one complex degree of
freedom and noncentrality parameter A
2l
=—

A €1V

h; is defined in (26)
B 1
T IISE  , (— 0a) s ul?
i O — D — ()]s wy)?
(ITTs]12 4 31 (1 = 2 (A) st wi|?)?
where [T =1 — er u,-ulH, c(+) is defined in (17), u; defined
in (6), r is rank of the clutter covariance matrix, and s defined

in (26). The corresponding target detection probability with
detection threshold § is

+

k!
= lim P(T, > §|H))
n— oo

©AK fa x* exp(—x) dx
Pp=exp(—=A) Y — [1 -
=0 Pk +1)

(32)

where I'(-) is the gamma function.

In Section IV-B, we compute the detection probabili-
ties for different false alarm probabilities over a range of
signal-to-noise ratios (SNRs), we empirically evaluate the
robustness of the detector for detecting a single target in the
presence of multiple targets that act as contaminating clutter
discretes. Contaminating clutter discretes are additional
spikes that are present due to undesired targets. They are
not part of clutter spikes and change the clutter covariance
matrix rank from r to 7.

To conclude this section, we propose the nonlinear
shrinkage-based rotation invariant estimator by using the
sample covariance matrix. We state the convergence of the
spiked eigenvalues of the estimator. We state the bounds for
the normalized SCNR. The equivalence of the RCML-EL
algorithm in a high-dimensional setting to the proposed
algorithm is established. A detector for target detection is
stated for the proposed algorithm.

V. NUMERICAL EXAMPLES

We use a dataset generated using RFView software
that provides an accurate characterization of complex RF
environments. It uses stochastic transfer functions [5] to
simulate the high-fidelity RF clutter encountered in practice.

The dataset consists of a data cube in the time domain
and is a multidimensional N x K x n matrix, where N is
the total number of channels, K is the slow time, and » is
the number of range gates (fast-time) in a specified coherent
processing interval. For our case, we use the range gates as
the number of data samples .
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TABLE 1
Algorithm 1 Takes Less Computation Time as
Compared to the RCML-EL Algorithm for the

Challenge Data Set
Training | Proposed RCML-EL | Speed Up
Data
Size (n)
512 0.012035s | 0.107116s | 9x
1024 0.003046s | 0.070876s | 23x
1536 0.002028 s | 0.053037s | 26x
2048 0.002026s | 0.050819s | 25x
2560 0.002090s | 0.050504s | 24x

It is to be noted that the speed-up factor depends on the processor
parameters, which varies from machine to machine.

In Section IV-A, we use the challenge dataset generated
by RFView. We compare the performance of the Algo-
rithm 1 against the RCML-EL-based estimation algorithm
given in [7]. We plot the normalized SCNR (p), stated in
(10), as a function of training data size n, the normalized
Doppler, and the normalized angle. For all the plots we
are simulating in the regime, where n = O(p), i.e., 1/10 <
p/n < 1. We also demonstrate the computation times for
our proposed algorithm and the RCML-EL algorithm for
various n.

In Section IV-B, we compute the target detection proba-
bilities over a range of false alarm probabilities and SCNR.
In Section IV-C, we compute the error variance of the mini-
mum variance distortionless response beamformer using the
proposed algorithm and compare it with the error variance
corresponding to the RCML-EL algorithm and the true
covariance matrix.

We compare with the RCML-EL algorithm because it
outperforms the sample covariance matrix SMI, FML [59],
Chen’s algorithm [60], and AIC [50], as documented in [7]
in all metrics. In addition, we demonstrate that the proposed
algorithm has higher SCNR than the DL method. The DL
method adds a small positive perturbation ¢I to the sample
covariance matrix R to construct the estimator R = R + ¢ L.
It has smaller computation time than the proposed algo-
rithm, but yields lower SCNR. The SCNR of the DL. method
depends on the perturbation ¢, which is scenario-dependent
and the optimal ¢ lies between the maximum and mini-
mum eigenvalues of the sample covariance matrix, as stated
in [61]. We plot two instances where the SCNR is maximum
(DLhax) and minimum (DL,;,) by varying the perturbation
¢ between the maximum and minimum eigenvalues of the
sample covariance matrix.

Since the theory underlying Theorem 1 holds only in the
regime of n > p, no definitive statements can be made for
the case of n < p. Therefore, the validity of the proposed
algorithm is restricted to the case of n > p.

We simulated our results Matlab-R2021b* on Windows-
11 OS running on AMD Ryzen 7 5800H microprocessor
with 16 GB RAM.

4All the simulations are completely reproducible. The code is
on https://github.com/sjain474/Radar- Clutter-Nonlinear- Shrinkage-
Approach.git. For access to the Challenge Dataset contact the coauthor S.
Gogineni.
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Normalized SCNR
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Fig. 4. Proposed algorithm has identical SCNR compared to the
RCML-EL algorithm. SCNR for both estimators is within the derived
bounds. The SCNR of diagonal loading method is less than proposed

algorithm.

A. SCNR Performance

The challenge dataset contains radar target and clutter
returns generated by RFView. The scenario in challenge
dataset has four targets and ground clutter containing build-
ings. This scenario involves an airborne monostatic radar
flying over the Pacific Ocean near the coast of San Diego
looking down for ground moving targets. The data spans
several coherent processing intervals as the platform is
moving with constant velocity along the coastline. In Ta-
bles II-IX, Appendix we state all the parameters used for
this scenario.

The challenge dataset consists of a32 x 64 x 2335 data
cube which has the clutter impulse response over 32 chan-
nels with 64 pulses and 2335 data samples. We concatenate
8 channels to get a clutter impulse response matrix of size
512 x 2335. We convolve the rows of the clutter impulse
response matrix with a waveform of pulse length 1000 to
get a clutter return signal of dimension 512 x 3334. To
the clutter return signal from the challenge dataset we add
additive white Gaussian noise with zero-mean and variance
0?2 =5 x 107, to get the clutter plus noise return signal.
The additive white Gaussian noise is the thermal noise
encountered during the measurement of the radar return
signal. The thermal noise is chosen using the 6-dB criteria,
as stated in [14] and [15] and cannot be zero. The dimension
of the clutter plus noise covariance matrix is 512 x 512.
We vary n in the multiples of p till n < 3334 to get the
sample covariance matrix. For each plot, we use 1024 Monte
Carlo simulations. For normalized Doppler, we fix the angle
interval at 7g; and marginalize over it. For the normalized
angle, we fix the Doppler interval at g5 and marginalize over
it. For both cases, we fix n = 1024.

Fig. 4 displays the average normalized SCNR versus
the number of data samples n. The run-time for different n
is given in Table I. Normalized SCNR versus normalized
Doppler is given in Fig. 5 and normalized SCNR versus
normalized angle in Fig. 6.

The proposed algorithm has higher SCNR performance
than the DL method because it has similar SCNR perfor-
mance to the RCML-EL algorithm, which outperforms the
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Fig. 5. Algorithm 1 has identical SCNR compared to the RCML-EL

algorithm. The SCNR of diagonal loading method is less than proposed
algorithm.
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Fig. 6. Algorithm 1 has identical SCNR compared to the RCML-EL
algorithm. The SCNR of Diagonal Loading method is less than proposed
algorithm.

EigenCanceller [6], [23]. The EigenCanceller and the DL
method are similar according to [61].

B. Target Detection

In this section, we use results from Section III-D with
the target having a Doppler of f; = 0.2 and an angle of
6 = 30°. We plot the target detection probability Pp as we
vary false alarm probability Prs from 107> to 10~! in the
multiples of 10 from SCNR = —10 dB to 30 dB. We use
n = 1024 data samples with 1024 Monte Carlo Simulations.

The challenge dataset contains four targets. We consider
detecting a single target with remaining targets constituting
contaminating clutter discretes. These contaminating clutter
discretes do not share the same characteristics as the target
of interest so there is no self-target cancellation. Recall from
Section III-D that the contaminating clutter discretes change
the clutter rank to an unknown 7. By introducing multiple
targets as contaminating clutter discretes we demonstrate
the robustness of the detector.
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Fig. 7. As Pry4 is decreased, higher SNR is required to get a fixed Pp for
a single target. The presence of other targets is not affecting the detection
probabilities as they are projected into the null space of the target
subspace. This empirically shows that the detector is robust to the
presence of contaminating clutter discretes.

The detection probabilities are the same for both the
RCML-EL algorithm, the proposed algorithm and the DL
method as the detector uses only the eigenvectors of the
sample covariance matrix. The detection probabilities are
illustrated in Fig. 7.

C. Empirical Error Variance

In this section, we empirically present the MVDR er-
ror variance due to the proposed algorithm with the error
variance of the beamformer of the RCML-EL algorithm
and the true covariance matrix. The error variance for the
beamformer is

Error Variance = 1/|sH M 's| (33)

where M = Rproposed for the proposed algorithm, Rrewmr gL
for the RCML-EL algorithm and R for the true covariance
matrix, respectively. The target signal s, as defined like y; in
(10), has Doppler f; = 0.3 and angle & = 30°. In Fig. 8, the
error variance for RCML-EL and the proposed algorithm is
identical to the true covariance matrix. The error variance
does not change as the training data size is increased since
we are working in the asymptotic regime. This is due to the
fact that in the asymptotic regime, the estimated covariance
matrix converges to the true covariance matrix with proba-
bility 1. Hence, the error variance in (33) merely becomes
the reciprocal of the SNR from (10) when R = R. Observe
that the error variance of DL is higher than the proposed
and the RCML-EL algorithm.

To conclude this section, we demonstrated that with
reduced covariance computation time, Algorithm 1 gives
identical SCNR performance compared to the EL-based co-
variance estimation algorithm within the proposed bounds.
However, the noise computation step requires some precom-
puted values of the medians of Marchenko Pastur distribu-
tions for various values of y. This also makes our algorithm
less robust to a sudden change in the parameters of the
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Fig. 8. Normalized error variance due to the proposed algorithm and
the RCML-EL algorithm is identical to that of the true covariance matrix.
We normalize error variance in (33) by the error variance of the true
covariance matrix. The mse of diagonal loading is higher than both
RCML-EL and the proposed algorithm.

scenario as data samples can vary depending on the range
swath.

We demonstrated the target detection probabilities for
different false alarm probabilities using the LR-ANMF
detector. We empirically demonstrated the robustness with
respect to contaminating clutter discretes in the challenge
dataset. We empirically demonstrated that the error variance
of the proposed algorithm is identical to the true covariance
matrix.

V. CONCLUSION

In this article, we exploit the spiked covariance structure
for the clutter plus noise covariance matrix in a high-
dimensional setting and propose a nonlinear shrinkage-
based rotation invariant estimator. We state the convergence
of the spiked eigenvalues of the estimator. We demon-
strated the reduced covariance computation times com-
pared to the RCML-EL algorithm. The proposed algo-
rithm and the RCML-EL algorithm have identical SCNR
performance. We employed the LR-ANMF detector for
robust target detection and empirically showed that the error
variance of the algorithm is identical to the true covariance
matrix.

Our proposed algorithm computes covariance matrix
using batchwise data. In future work it is worthwhile de-
veloping an adaptive version of the algorithm. We will
also investigate other kinds of loss functions for various
scenarios by introducing various constraints and deriving
the concentration bounds for the proposed algorithm. The
number of contaminating clutter discretes and their relative
strength in the challenge dataset is not sufficient to provide
a comprehensive analysis of the robustness feature of the
LR-ANMF detector. This facet of the technique will be
explored in more detail in the future.
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APPENDIX
CHALLENGE DATASET PARAMETERS

In this section, we state the parameters we used for
the challenge dataset in Tables II-IX. The scenario of the
challenge dataset is illustrated in Fig. 9.

TABLE IT

Radar Platform Location
Latitude 32.66 deg. N
Longitude 118 deg. W
Height 6000 m
Speed 100 m/s
Azimuth angle of velocity vector | 0 deg
(deg. w.r.t. true north)
Elevation angle of velocity vector | O deg
(deg. w.r.t. horizon)

TABLE 111
Monostatic Radar Parameters for the Challenge
Dataset Scenario

Number of Array Elements (Hor- | 32
izontal Dimension)
Number of Array Elements (Ver- | 5
tical Dimension)
Number of Horizontal Spatial | 32
Channels (Receiver)
Number of Vertical Spatial Chan- | 1
nels (Receiver)
Total Number of Spatial Channels | 32

(Receiver)

Total Number of Channels (Trans- | 1

mitter)

Transmit Antenna Gain 503.3509
Receive Antenna Gain 15.7297

Center Frequency 10 GHz

Array Inter-Element Spacing 0.015 m

Number of Coherent Processing | 30
Intervals (CPI)
Number of Pulses per CPI 64

Pulse Repetition Frequency 1 KHz
Radar Waveform Standard LFM
Radar Waveform Bandwidth 10 MHz

Radar Waveform Duty Factor 0.1

Sampling Frequency 10000000
Peak Transmit Signal Power 1000 Watts
Number of Range Bins 2334

Size of Data Cubes (for each CPI) | 32 x64 %2334
Range Swath Width 20000 m
Radar Azimuth Look Angle | 80.8321 deg
(Fixed)

Radar Elevation Look Angle | -5.1364 deg
(Fixed)

Clutter Scene Size 20x20 Km
Clutter Patch Size 20 %20 m

TABLE IV
First Target is Moving Straight North on the Ground on
Ocean Front Walk Near Mission Beach Park in San Diego

Latitude 32.7627 deg. N
Longitude 117.2524 deg. W
Height 0 m

Speed 10 m/s

Azimuth angle of velocity vector | O
(deg. w.r.t. true north)
Elevation angle of velocity vector | 0
(deg. w.r.t. horizon)
RCS 40
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TABLE V
Second Target is Moving Straight North on the Ground on
Ingraham Street Near Sea World San Diego

Latitude 32.7668 deg. N
Longitude 117.2334 deg. W
Height 0m

Speed 20 m/s

Azimuth angle of velocity vector | 0
(deg. w.r.t. true north)

Elevation angle of velocity vector | 0
(deg. w.r.t. horizon)

RCS 40
TABLE VI
Third Target is Moving South in the Water Off the Coast of
San Diego
Latitude 32.793 deg. N
Longitude 117.283 deg. W
Height 0 m
Speed 10 m/s

Azimuth angle of velocity vector | 180
(deg. w.r.t. true north)
Elevation angle of velocity vector | 0
(deg. w.r.t. horizon)
RCS 20

It is a weaker target compared to the other targets in this simulation.

TABLE VII
Fourth Target is Moving North in the Water Off the Coast
of San Diego
Latitude 32.763 deg. N
Longitude 117.283 deg. W
Height 0m
Speed 15 m/s

Azimuth angle of velocity vector | 0
(deg. w.r.t. true north)
Elevation angle of velocity vector | 0
(deg. w.r.t. horizon)
RCS 30

TABLE VIII
First Clutter Object is an L-Shaped
Building Inside Sea World San
Diego

Latitude 32.7665 deg. N
Longitude | 117.2305 deg. W
Height 6 m

Speed 0 m/s

RCS 50

TABLE IX
Second Clutter Object is a Cube
Shaped Building Off Mission
Blvd in San Diego

South)L'a/Jolla

State Marine

Conservation
Area

South La Jolla
State Marine
Reserve

Q

Target 4

Sunset{Cliffs Natural Park 4 Airport

Fig. 9. Challenge dataset scenario consists of four targets and two

clutter discretes.
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