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In this article, we exploit the spiked covariance structure of the

clutter plus noise covariance matrix for radar signal processing. Using

state-of-the-art techniques high dimensional statistics, we propose a

nonlinear shrinkage-based rotation invariant spiked covariance ma-

trix estimator. We state the convergence of the estimated spiked eigen-

values. We use a dataset generated from the high-fidelity, site-specific

physics-based radar simulation software RFView to compare the

proposed algorithm against the existing rank constrained maximum

likelihood (RCML)-expected likelihood (EL) covariance estimation
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algorithm. We demonstrate that the computation time for the estima-

tion by the proposed algorithm is less than the RCML-EL algorithm

with identical Signal to Clutter plus Noise (SCNR) performance. We

show that the proposed algorithm and the RCML-EL-based algorithm

share the same optimization problem in high dimensions. We use

Low-Rank Adaptive Normalized Matched Filter (LR-ANMF) detec-

tor to compute the detection probabilities for different false alarm

probabilities over a range of target signal-to-noise ratios (SNR). We

present preliminary results which demonstrate the robustness of the

detector against contaminating clutter discretes using the challenge

dataset from RFView. Finally, we empirically show that the minimum

variance distortionless beamformer error variance for the proposed

algorithm is identical to the error variance resulting from the true

covariance matrix.

I. INTRODUCTION

Clutter plus noise covariance matrix estimation is an

integral part of radar signal analysis. In a high-dimensional

setting, the sample size is of the same order of magnitude

as the dimension of the covariance matrix. Therefore, the

sample covariance matrix is no longer a reliable estimator

of the clutter plus noise covariance matrix as it becomes

singular.

To mitigate such singular nature of the sample covari-

ance matrix, we exploit the spiked covariance structure for

high-dimensional settings proposed in [1], [2], and [3] to

model the clutter plus noise covariance matrix. The bulk of

the eigenvalues of the spiked covariance matrix are identi-

cal, corresponding to the noise component of the clutter plus

noise covariance matrix. A finite number of spiked eigenval-

ues significantly exceed the bulk eigenvalues in magnitude,

accounting for the clutter component of the clutter plus

noise covariance matrix. We propose a rotation invariant

nonlinear shrinkage-based spiked covariance estimator to

estimate the clutter plus noise covariance matrix.

We use the challenge dataset contaminated with targets

to validate our results. The challenge dataset was con-

structed by ISL1 using high-fidelity, physics-based, site-

specific, modeling, and simulation software RFView [4].

RFView uses stochastic transfer function model to simulate

a scenario. It computes the Green’s functions impulse re-

sponse of the clutter and targets and simulates a real time

instantiation of the RF environment. The RFView model

accounts for intrinsic clutter motion encountered in the real

world which existing models cannot address. This has been

extensively vetted using measured data from VHF to X band

with one case documented in [5] demonstrating the match

with measured data. This provides the rationale for using the

challenge dataset. The spiked covariance matrix structure

can be observed in a real-world radar scenario. As an illus-

trative example, consider an airborne radar looking down

on a heterogeneous terrain, consisting of mountains, water

bodies, and foliage simulated by RFView, as shown in Fig. 1.

Fig. 1 displays the relative power of the returned signal from

such heterogeneous terrain in Southern California near San

Diego. We observe that the regions of high-power returns

1Information Systems Laboratory (ISL) is a US based company that gave

us access to the challenge dataset.

7640 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 59, NO. 6 DECEMBER 2023

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2024 at 18:27:04 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Clutter returns from the littoral scene with mountains and water

showing shadow regions (dark blue) as well as stronger signal

components (yellow).

Fig. 2. Clutter plus noise covariance matrix formed by the return signal

given in Fig. 1 gives evidence that most of the components of clutter

(red) are below the noise floor. The first 25 components are above the

noise floor. Therefore, the covariance matrix exhibits a spiked covariance

structure.

have less area compared to the regions of low-power return,

with noise power higher than the low-power returns. This

is evident from the eigenvalue plot of the clutter plus noise

covariance matrix in Fig. 2, computed from the return signal.

A large number of eigenvalues of the clutter covariance

matrix fall below the noise power.

In this article, we use a nonlinear shrinkage-based ro-

tation invariant estimator developed in [3] to estimate the

clutter plus noise covariance matrix in a high-dimensional

setting. In the spiked covariance model, we only need to

estimate the noise power and the spiked components.

We show that for the estimation of covariance matrix

of dimension p, the proposed algorithm performs O(p)

real-valued multiplications for the joint noise power-clutter

rank estimation as compared to theO(p2) in the RCML-EL2

algorithm with identical SCNR and error variance. The

proposed algorithm is applicable to adaptive radar where

the covariance matrix computation speed up, as given in

Table I, is beneficial during angle-Doppler sweeps over a

region to detect targets. The angle-Doppler sweep requires

repetitive batchwise computations of clutter plus noise co-

variance. The proposed algorithm reduces the clutter plus

noise covariance computation time. Adaptive radars also

have several hierarchical layers for data acquisition, pro-

cessing, and decision-making [8]. The reduced clutter plus

noise covariance computation time is beneficial since it

relaxes time constraints for other hierarchical layers which

include target tracking, beam allocation, pulse shaping [9],

task scheduling, and resource allocation, as stated in [10].

In addition, we state the convergence results for the

estimated eigenvalues and bounds for normalized SCNR for

the proposed estimator. We test the target detection perfor-

mance of the estimator using low-rank adaptive normalized

matched filter (LR-ANMF) detector. We empirically show

the robustness of the detector against contaminating clutter

discretes. We apply the proposed algorithm on the challenge

dataset simulated by RFView software.

A. Related Works

The problem of covariance matrix estimation [11], with

data deficient scenario has received considerable attention

in radar signal processing literature. In the data deficient

scenarios, the sample covariance matrix is no longer a reli-

able estimator as it becomes ill-conditioned. To address such

ill-conditioning, methods like diagonal loading (DL) [12],

[13], [14], [15], [16], [17], [18] and factored space-time

approaches [19] have been proposed. Data dependent tech-

niques include principal components inverse [20], multi-

stage Wiener filter [21], parametric adaptive matched fil-

ter [22], and EigenCanceler [23]. Data independent ap-

proaches include JDL-GLR [24].

In a high-dimensional setting, the properties of covari-

ance matrices are explained by the random matrix theory, as

stated in [25], [26], [27], and [28]. In such high-dimensional

settings, shrinkage estimators have been developed to esti-

mate covariance matrices in signal processing and finance.

Shrinkage estimators have been used in wireless communi-

cations [29] to estimate the channel matrices, in array signal

processing to estimate direction of arrival [30] and in finance

for Markowitz portfolio optimization [31], [32], [33], [34].

Shrinkage methods include Ledoit–Wolf shrinkage estima-

tor [35], regularized PCA [36], Ridge and Lasso shrinkage

estimators [37], and regularized M-estimators [38].

In radar signal processing, the covariance matrices often

contain a low-rank structure corresponding to the clutter.

2RCML-ELrepresents the RCML covariance estimator [6] with the clut-

ter rank and noise power obtained by the expected likelihood (EL) ap-

proach [7].
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The covariance matrices are called clutter plus noise co-

variance matrices. Covariance estimation algorithms devel-

oped in [7], [39], [40], [41], and [42], propose estimation

schemes assuming a rank sparse clutter covariance matrix in

a high-dimensional setting. These papers use the Brennan’s

rule which gives an estimate of the rank depending on the

dominant components of the clutter and the jammers. How-

ever, as demonstrated in [43], [44], and [45], the Brennan’s

rule fails when a plethora of real-world effects, such as

internal clutter motion, mutual coupling between antenna

array elements arise on account of the system and envi-

ronmental factors. In our article, the data generated from

the high fidelity, site-specific, physics-based, radar scenario

simulation software RFview are used where the Brennan

rule does not prevail, as documented in [5].

To address these issues we exploit the spiked covariance

structure, as proposed in [1], [2], [46], and [47], of the clutter

plus noise covariance matrix. We use the nonlinear shrink-

age estimation techniques of [3] to estimate the covariance

matrix. Spiked covariance models have been used to esti-

mate direction of arrival (DOA) in array signal processing,

as demonstrated in [48], and for target detection in [49].

We are using the spiked covariance model to estimate the

clutter plus noise covariance matrix.

B. Main Results and Organization

The main results and organization of this article are as

follows.

1) In Section II-A, we formulate the rotation invariant

estimators. The asymptotic model for large random

matrices and the spiked covariance model for the

clutter plus noise covariance matrix is defined in

Section II-B.

2) In Section III, we present the algorithm proposed

in [3] for spiked covariance matrix estimation. In

Section III-A, Theorem 1 shows a strong law of large

numbers (namely, the estimated spiked eigenvalues

converge almost surely to a constant) and satisfy a

central limit theorem. This is due to the fact that,

even though we are in a high-dimensional setting, the

number of spikes is constant. Empirical verification

of the convergence properties for RFview Challenge

Dataset is provided. We derive the bounds for nor-

malized SCNR ρ in Section III-B. In Section III-C,

we establish that the proposed algorithm and the

RCML-EL estimation algorithm in high dimensions

have similar performance due to the fact they share a

common optimization problem. In Section III-D, we

employ the LR-ANMF detector to verify target de-

tection performance when using a rotation invariant

estimator.

3) In Section IV-A, we demonstrate that the proposed

algorithm has identical SCNR compared to the

RCML-EL algorithm for the challenge dataset simu-

lated using RFView. We further show that the compu-

tation time of estimation by the proposed algorithm

is less than that of the RCML-EL algorithm. In Sec-

tion IV-B, we compute the target detection probabil-

ities for various false alarm probabilities and SCNR,

and empirically show its robustness with respect to

contaminating clutter discretes. In Section IV-C, we

compute the error variance of the minimum variance

distortionless beamformer (MVDR) beamformer for

the proposed algorithm.

II. ROTATION INVARIANT ESTIMATOR AND SPIKED
COVARIANCE MODEL

This section is organized as follows. Section II-A

presents a general rotation invariant estimator. Section II-B

describes the high-dimensional spiked covariance model.

We use a narrowband baseband equivalent model used

in [5]. The radar transmits a complex-valued waveform s(k)

and receives a complex-valued return y(k) in discrete time

y(k) = ht (k) � s(k) + hc(k) � s(k) + n(k). (1)

Here � is the convolution operator and k denotes discrete

time. ht (k) and hc(k) are the complex valued target impulse

response and complex valued clutter impulse response,

respectively. The noisy measurement n(k), due to thermal

noise, is the additive white Gaussian noise with variance

σ 2 with zero mean. The noise samples are independent,

identically, distributed (i.i.d).

In matrix-vector notation, (1) reads

y = Ht s + Hc s + ns (2)

where Ht , Hc ∈ C
p×q are Toeplitz matrices constructed by

the impulse responses ht (k) and hc(k), respectively. y ∈ C
p

is a return signal of length p and s ∈ C
q is the waveform

of pulse length q. The noise ns ∈ C
p is a complex valued

Gaussian distributed vector, where ns ∼ N (0, σ 2 I) and

has i.i.d samples.

We define the clutter plus noise return as yc

yc := Hc s + ns. (3)

A. Rotation Invariant Estimator

In this subsection, we describe the rotation invariant

estimation for the clutter plus noise covariance matrix.

Rotation invariant estimators have the same eigenvectors

as that of the sample covariance matrix and the eigenvalues

of the estimators are a function of the eigenvalues of the

sample covariance matrix.

The clutter plus noise covariance matrix is given by

R = Rc + σ 2 I (4)

where the clutter covariance matrix is

Rc := E[Hc ssH Hc
H ] (5)

and σ 2 I is the noise component. The eigendecomposition

of clutter plus noise covariance is

R =
p

∑

i=1

λiuiu
H
i (6)
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with eigenvalues λi and eigenvectors ui. The sample covari-

ance matrix R̂n is

R̂n =
1

n

n
∑

k=1

yc,k yc
H
,k (7)

where yc is the clutter plus noise return defined in (3) which

will be used as training data samples, k is the discrete time,

and n are the number of training data samples. The spectral

decomposition of R̂n for a given training data size n is

R̂n =
p

∑

i=1

λ̂i,nvi,n vH
i,n (8)

where λ̂i,n are the eigenvalues and vi,n are the eigenvectors

of R̂n. The spiked covariance matrix estimate for a given

number of data samples n is

R̄n =
p

∑

i=1

λ̄i,n vi,n vH
i,n (9)

where λ̄i,n are the eigenvalues of R̄n, with eigenvectors vi,n

identical to those of the R̂n in (8). The spiked covariance

estimator is a rotation invariant estimator.

In addition, we use normalized SCNR to compare co-

variance estimation methods. We denote ρ to define the

normalized SCNR as

ρ =
(yt

H R̄−1 yt )2

(yt
H R−1 yt )(yt

H R̄−1 R R̄−1 yt )
. (10)

where yt = Aθ ⊗ A f is the Kronecker product of angle

steering vector [Aθ ]i = exp[− jπ i sin(θ )], 1 ≤ i ≤ N and

the Doppler steering vector [A f ]i = exp[− j2π i fd ], 1 ≤ i ≤
K . N and K are defined in Section IV. The dimension of the

covariance matrix is p = N × K .

In the next section, we will show that λ̄ is a nonlinear

function of λ̂, where the nonlinearity depends on the loss

function.

B. Clutter Plus Noise Covariance Matrix Modeling Using
Large Random Matrices

In this subsection, we define the spiked covariance

model and the asymptotic regime for the high-dimensional

setting. We use this framework to model the clutter plus

noise covariance matrix.

DEFINITION 1 A spiked covariance matrix R is a p ×
p positive definite Hermitian matrix with eigenvalues

(λ1, λ2 . . . , λp) such that for a finite r � p, λ1 ≥ λ2 ≥
λr > σ 2 and λr+1 = · · · = λp = σ 2 > 0.

We make two assumptions

1) The clutter plus noise covariance matrix has a spiked

covariance structure given in Definition 1. The clut-

ter plus noise covariance matrix is given in (4), where

clutter covariance matrix Rc has rank r with eigenval-

ues λi − σ 2, 1 ≤ i ≤ r. The noise covariance matrix

σ 2 I is diagonal.

2) There exists a γ ∈ (0, 1) such that for given training

data size n with the dimension of the covariance

matrix as p such that

p

n
→ γ , p, n → ∞, p < n. (11)

Data displayed in Figs. 1 and 2 satisfies these conditions.

In Fig. 2, we see that the clutter covariance matrix can be

approximated by a rank r positive semidefinite matrix as

the remaining p − r components are below the noise floor.

We assume that clutter plus noise covariance matrix

is spiked if the rank of the clutter matrix is less than

a fraction χ of the clutter plus noise covariance matrix.

For convenience, we choose χ = 0.1, since it empirically

fits with the data simulated by RFView. In the classical

statistical setting, this is well studied in terms of penalized

likelihood methods, such as Akaike information criterion

(AIC) [50], minimum description length (MDL) [51], in-

formation theoretic criteria [52], statistical techniques [53],

data dependent techniques [54], and min-max approaches,

such as the embedded exponential families [55].

However, in the high-dimensional setting considered in

this article, estimating the model order (number of spikes)

is a difficult problem and will not be addressed. In [7],

the RCML-EL algorithm uses the Brennan’s rule [11], as

an initial estimate for the rank of the clutter covariance

matrix to determine the model order. RCML-EL algorithm

correctly estimates the rank as compared to the AIC and

MDL techniques. In Section III-C, since the proposed algo-

rithm and RCML-EL algorithm share similar optimization

problem, the proposed algorithm correctly estimates the

model order.

The spiked covariance property helps us to deal with the

clutter plus noise covariance matrices in high dimensions,

which is frequently encountered in radar signal processing.

With this knowledge, we define the nonlinear shrinkage-

based rotation invariant estimator.

III. NONLINEAR SHRINKAGE ESTIMATION

In this section, we propose the rotation invariant esti-

mator using nonlinear shrinkage of the eigenvalues of the

sample covariance matrix. We state the convergence of the

estimated eigenvalues in Theorem 1 in Section III-A. Note

that we use the terms spiked eigenvalues and the leading r

eigenvalues of the covariance matrix interchangeably for a

fixed clutter covariance matrix with rank r. We outline the

computation cost of the proposed algorithm. We propose

bounds for the normalized SCNR(ρ) in Section III-B. We

show the similarity of SCNR performance between the

proposed algorithm and the RCML-EL algorithm in high

dimensions in Section III-C. We conclude this section by

stating the ANMF for target detection for the proposed

algorithm in Section III-D.

The spiked covariance matrix R is stated in Definition 1.

Estimation of the spiked covariance matrix R̄n, as defined in

(9), consists of two subproblems: estimation of the spiked

eigenvalues and the estimation of the noise power σ 2.
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1) The estimate of the noise power is given, as stated

in [3], is

σ̂ 2 =
λ̂med

µmed

(12)

where λ̂med is the median of the eigenvalues of the

sample covariance matrix R̂n and µmed is the median

of the Marchenko–Pastur distribution with parame-

ter γ stated in (11). The proof of the consistency of

the noise power estimator is given in [3, Sec. 9].

2) The shrinkage function η∗(·), as stated in [3], is

η∗(λ̃i ) =

{

η( f (λ̃i )) λ̃i > (1 + √
γ )2

1 λ̃i ≤ (1 + √
γ )2

(13)

where λ̃i = λ̂i/σ̂
2, λ̂i are the eigenvalues of the sam-

ple covariance matrix R̂ and σ̂ 2 is defined in (12).

The function f (·) given by3

f (x) =
x + 1 − γ +

√

(x + 1 − γ )2 − 4x

2
(15)

and η(·) for Stein loss, as stated in [3], LSt =
tr(R−1 R̄ − I) − log det(R−1 R̄), is given by

ηSt(x) =
x

c(x)2 + s(x)2 x
(16)

where c(·) is given by

c(x) =

{
√

1−γ /(x−1)2

1+γ /(x−1)
x > 1 + √

γ

0 x ≤ 1 + √
γ

(17)

s(·)2 = 1 − c(·)2 and γ is given in (11).

The eigenvalues λ̄i,n of the estimator R̄n are given by

λ̄i,n = σ̂ 2 η∗(λ̃i ) (18)

where σ̂ 2 is given in (12) and η∗(λ̃i ) is given in (13).

The proof of optimality of this estimator is given

in [3, Sec. 6].

A pseudo-code to compute the estimator is stated in

Algorithm 1.

A. Convergence of Eigenvalues of the Proposed Estima-
tor

Although we deal with finite p and n, in Theorem 1 we

state that the spiked eigenvalues converge almost surely to

a constant and satisfy a central limit theorem when both

p, n → ∞, given that the number of spikes r is fixed.

We assume the following for a covariance matrix R with

dimension p.

3It is to be noted that (15) is the inverse mapping for

g(x) =

{

x + γ x
x−1

x > 1 + √
γ

(1 + √
γ )2 1 ≤ x ≤ 1 + √

γ
(14)

when x > (1 + √
γ )2, it is the relationship between the λ̂ and λ and has

been explained in [3].

Algorithm 1: Nonlinear Shrinkage Algorithm for

Spiked Covariance Matrix Estimation.

1: Evaluate the eigenvalue decomposition of sample

covariance matrix R̂n as done in (8) for a given

number of data samples n.

2: Compute the noise power σ̂ 2 by (12).

3: Compute the eigenvalues λ̄i,n of the estimator as in

(18).

4: Using eigenvalues computed in Step 3, the

estimated covariance matrix R̄n is given by (9).

A1. Leading r distinct eigenvalues λ1, λ2, . . . , λr with

multiplicity 1 and lower bounded by 1 + √
γ .

A2. Eigenvalues λr+1 = 1, . . . , λp = 1.

THEOREM 1 Consider the estimator R̄n of dimension p

with eigenvalues (λ̄1,n, λ̄2,n, . . . , λ̄p,n) that estimates the

spiked covariance matrix R satisfying the assumptions (A1)

and (A2). Assume p/n → γ ∈ (0, 1), p, n → ∞. Then

λ̄i,n’s, 1 ≤ i ≤ r satisfy

λ̄i,n
a.s.−→ η∗(βi ). (19)

In addition, if p/n − γ = o(n−1/2), then

√
n(λ̄i,n − η∗(βi ))

d−→ N (0, α2
i (η′(βi ))

2) (20)

where η∗(·) is given by (13) and η(·) is given by (16). βi =
λi + γ λi

λi−1
, α2

i = 2 λ2
i (1 − γ

(λi−1)2 ) and γ is given (11).

PROOF Almost sure convergence can be proved by applying

continuous mapping theorem on [2, Th. 2] with function η.

The in-distribution convergence can be proved by applying

the delta method on [2, Th. 3] with function η. �

We empirically showed the validity of assumptions of

Theorem 1 for the challenge dataset using the double version

of the Kolmogorov–Smirnov (K–S) test with significance

level 5% and 1024 Monte Carlo simulations. The reference

data was generated from the prescribed distribution in (20)

and the test data were generated from the challenge dataset.

The cumulative distribution function (CDF) plot in Fig. 3

for the test and reference data reveals that the challenge

dataset satisfies the assumptions for Theorem 1.

Computation Cost

Algorithm 1 does not require prior knowledge of the

number of spikes. Step (2) and Step (3) in Algorithm 1

determine the eigenvalues that are above the noise floor.

The computation cost of the algorithm is given as follows.

1) The eigenvalue decomposition requires O(p3) real-

valued multiplications.

2) The noise power estimation, step (2), is a median

finding algorithm that requires O(p) real-valued

multiplications.

3) The nonlinear shrinkage, step (3), requiresO(r) real-

valued multiplications, r being the rank of the clutter

covariance matrix.
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Fig. 3. Double version of the K–S test with reference data from the

prescribed distribution (20) and the test data from the challenge dataset

verifies that the challenge dataset satisfies the assumptions for Theorem1

with p-value of 0.8390.

We compare Algorithm 1 to the RCML-EL algorithm

whose computational cost is given as follows.

1) The eigenvalue decomposition step takes O(p3) real

valued multiplications.

2) The joint noise and rank estimation step takes O(p2)

real valued multiplications.

The difference is in the noise and rank estimation

step; Algorithm 1 takes O(p) real-valued multiplications,

whereas the RCML-EL algorithm takes O(p2). This will be

demonstrated in Section IV-A empirically.

B. Bounds for ρ

In this section, we derive the lower and upper bounds

for the normalized SCNR(ρ) using results from [56].

We rewrite ρ from (10)

ρ =
‖x‖2

2

(xH R̄− 1
2 RR̄− 1

2 x)(xH R̄
1
2 R−1R̄

1
2 x)

(21)

where x = R̂− 1
2 yt . Without loss of generality, assume ‖x‖ =

1. We use the matrix version of Kantorovich’s inequality

to bound the denominator. For a positive semidefinite ma-

trix A and a unit vector x, ‖x‖2 = 1, (xH Ax)(xH A−1x) ≤
1
4
(κ (A) + 1

κ (A)
+ 2), where κ (A) is the condition num-

ber of the matrix A. By the Cauchy–Schwarz inequality

(xH Ax)(xH A−1x) ≥ 1. We lower bound ρ by

ρ ≥
1

1
4
(κ (A) + 1

κ (A)
+ 2)

(22)

where A = R̄− 1
2 RR̄− 1

2 . From [56], we have

κ (A) =
max

[

1, max1≤i≤r ν+(λ∗
i , ηi )

]

min
[

1, min1≤i≤r ν−(λ∗
i , ηi )

] (23)

where

ν±(λ∗
i , ηi ) = T/2 ±

√

T 2/4 − D

D = ηSt/λ∗, T =
(

s2 + ηStc2

λ∗ + c2 + ηSts2

)

ηSt defined in (16) and λ∗
i = λi/σ

2.

In Section IV, we shall demonstrate that the proposed

algorithm performs within the derived bounds.

C. Performance Similarity Between Proposed Algorithm
and RCML-EL Algorithm

In this section, we show that the proposed algorithm

and the RCML-EL algorithm will give similar SCNR per-

formance.

The optimization problem for clutter plus noise covari-

ance matrix estimation assuming noise power to be unity

defined in [6, (35)] is

min
λ̄

dT
λ̄ − 1T log λ̄

s.t. F λ̄ � g

E λ̄ = h

(24)

where di = λ̂i, recall from Section II that λ̄ is eigenvalue

of the estimator and λ̂ is the eigenvalue of the sample

covariance matrix

F =
[

UT − Ip×p Ip×p

]T

∈ R
3p×p

g =
[

0T
p×1 − ε

T
p×1 1T

p×1

]T

∈ R
3p×1

εp×1 = [ε, . . . , ε]p×1, ε > 0,

U =

⎡

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 . . . 0

0 1 −1 0 . . . 0

...
. . .

. . .
. . .

...
...

0 . . . . . . . . . 1 −1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R
p×p

E =

[

0r×r 0r×p−r

0(p−r)×r Ip−r

]

∈ R
p×p

h =
[

0, 0, . . . , 0r, 1, 1, . . . , 1

]T

∈ R
p×1.

The first constraint in (24) enforces λ̄i to be positive in

descending order and the second constraint enforces the

last p − r eigenvalues of the estimator to be equal. These

constraints enforce a spiked covariance matrix structure on

the estimator, stated in Definition 1, in a high-dimensional

setting. In [3], the optimization problem for estimating lead-

ing r eigenvalues for Stein loss under a spiked covariance

model is given by

min
λ̄i, 1≤i≤r

ai λ̄i − bi log λ̄i + mi (25)

where ai = c2/g(λ̂i ) + s2, bi = 1 and mi = 1/g(λ̂i ) − 1 −
ai + log( f (λ̂i )); f (·) is given in (15), g(·) is given in (14),

c(·) and s(·) are given in (17).

Since the cost function of (24) is identical to (25) within

a constant and the constraints of (24) are implicit to the
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optimization problem of (25), the normalized SCNR, ρ and

the rank of the clutter covariance matrix r will be identical.

In Section IV, we shall demonstrate that the SCNR

performance for the proposed algorithm is identical to the

RCML-EL algorithm with a reduced computation time.

D. Low-Rank Adaptive Normalized Matched Filter De-
tection

In this section, we use the LR-ANMF detector for a

rotation-invariant estimator, as stated in [57]. The detection

scheme is independent of the eigenvalue shrinkage in (13)

and only depends on the eigenvectors of the sample covari-

ance matrix in high dimensions. The detector is the same for

both the proposed algorithm and the RCML-EL algorithm.

We have the following binary hypothesis for a single

target:

H0 : y ∼ N (0, R)

H1 : y ∼ N (ht s, R) (26)

whereH0 is the null hypothesis when no target is present and

H1 is the alternate hypothesis when the target is present. The

target signal s is defined in the same way as yt in (10) with a

complex-valued amplitude ht and R is the clutter plus noise

covariance matrix. The test statistics for the LR-ANMF with

n data samples, as stated in [58], is

Tn =
|s �̂n y|2

‖�̂n s‖2
> δ (27)

where

�̂n = I −
r

∑

i=1

vi,n vH
i,n

is a projection matrix constructed using the eigenvectors

vi,n defined in (8) corresponding to the r spikes of the

spiked covariance matrix and δ is the detection threshold.

Recall from Section II-B that r is the rank of the clutter

covariance matrix. The knowledge of noise power σ 2 is not

impacting the detection since we are using assumption (A1)

in Section III-A, where σ 2 has already been estimated. We

present the convergence theorems from [57] that state the

in-distribution convergence of the test statistics under H0

and H1.

THEOREM 2 ([57], TH. 2) Under H0 and assumption (A1)

the test statistics Tn satisfies

Tn
D−→ χ2(2) (28)

where χ2(2) is a chi-squared distribution with one complex

degree of freedom. The probability of false alarm with

detection threshold δ is

FA = lim
n→∞

P(Tn > δ|H0) =
∫ ∞

δ

exp(−x) dx

= exp (−δ). (29)

THEOREM 3 ([57], TH. 3): Under H1 and assumption (A1)

the test statistics Tn satisfies

lim
n−→∞

sup
x∈R

|P(Tn < x) − F (x; 2, �)| −→ 0 (30)

where F (x; 2, �) denotes the cumulative distribution of

a noncentral χ2 distribution with one complex degree of

freedom and noncentrality parameter �

� =
2|ht |2

ν
. (31)

ht is defined in (26)

ν =
1

‖�s‖2 +
∑r

i=1(1 − c2(λi ))|sH ui|2

+
∑r

i=1(λi − 1)(1 − c2(λi ))|sH ui|2

(‖�s‖2 +
∑r

i=1(1 − c2(λi))|sH ui|2)2

where � = I −
∑r

i uiu
H
i , c(·) is defined in (17), ui defined

in (6), r is rank of the clutter covariance matrix, and s defined

in (26). The corresponding target detection probability with

detection threshold δ is

PD = exp(−�)

∞
∑

k=0

�k

k!

[

1 −
∫ δ

0
xk exp(−x) dx

�(k + 1)

]

= lim
n→∞

P(Tn > δ|H1) (32)

where �(·) is the gamma function.

In Section IV-B, we compute the detection probabili-

ties for different false alarm probabilities over a range of

signal-to-noise ratios (SNRs), we empirically evaluate the

robustness of the detector for detecting a single target in the

presence of multiple targets that act as contaminating clutter

discretes. Contaminating clutter discretes are additional

spikes that are present due to undesired targets. They are

not part of clutter spikes and change the clutter covariance

matrix rank from r to r̂.

To conclude this section, we propose the nonlinear

shrinkage-based rotation invariant estimator by using the

sample covariance matrix. We state the convergence of the

spiked eigenvalues of the estimator. We state the bounds for

the normalized SCNR. The equivalence of the RCML-EL

algorithm in a high-dimensional setting to the proposed

algorithm is established. A detector for target detection is

stated for the proposed algorithm.

IV. NUMERICAL EXAMPLES

We use a dataset generated using RFView software

that provides an accurate characterization of complex RF

environments. It uses stochastic transfer functions [5] to

simulate the high-fidelity RF clutter encountered in practice.

The dataset consists of a data cube in the time domain

and is a multidimensional N × K × n matrix, where N is

the total number of channels, K is the slow time, and n is

the number of range gates (fast-time) in a specified coherent

processing interval. For our case, we use the range gates as

the number of data samples n.
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TABLE I

Algorithm 1 Takes Less Computation Time as

Compared to the RCML-EL Algorithm for the

Challenge Data Set

×

×

×

×

×

In Section IV-A, we use the challenge dataset generated

by RFView. We compare the performance of the Algo-

rithm 1 against the RCML-EL-based estimation algorithm

given in [7]. We plot the normalized SCNR (ρ), stated in

(10), as a function of training data size n, the normalized

Doppler, and the normalized angle. For all the plots we

are simulating in the regime, where n = O(p), i.e., 1/10 <

p/n < 1. We also demonstrate the computation times for

our proposed algorithm and the RCML-EL algorithm for

various n.

In Section IV-B, we compute the target detection proba-

bilities over a range of false alarm probabilities and SCNR.

In Section IV-C, we compute the error variance of the mini-

mum variance distortionless response beamformer using the

proposed algorithm and compare it with the error variance

corresponding to the RCML-EL algorithm and the true

covariance matrix.

We compare with the RCML-EL algorithm because it

outperforms the sample covariance matrix SMI, FML [59],

Chen’s algorithm [60], and AIC [50], as documented in [7]

in all metrics. In addition, we demonstrate that the proposed

algorithm has higher SCNR than the DL method. The DL

method adds a small positive perturbation ζ I to the sample

covariance matrix R̂ to construct the estimator R̄ = R̂ + ζ I.

It has smaller computation time than the proposed algo-

rithm, but yields lower SCNR. The SCNR of the DL method

depends on the perturbation ζ , which is scenario-dependent

and the optimal ζ lies between the maximum and mini-

mum eigenvalues of the sample covariance matrix, as stated

in [61]. We plot two instances where the SCNR is maximum

(DLmax) and minimum (DLmin) by varying the perturbation

ζ between the maximum and minimum eigenvalues of the

sample covariance matrix.

Since the theory underlying Theorem 1 holds only in the

regime of n > p, no definitive statements can be made for

the case of n < p. Therefore, the validity of the proposed

algorithm is restricted to the case of n > p.

We simulated our results Matlab-R2021b4 on Windows-

11 OS running on AMD Ryzen 7 5800H microprocessor

with 16 GB RAM.

4All the simulations are completely reproducible. The code is

on https://github.com/sjain474/Radar-Clutter-Nonlinear-Shrinkage-

Approach.git. For access to the Challenge Dataset contact the coauthor S.

Gogineni.

Fig. 4. Proposed algorithm has identical SCNR compared to the

RCML-EL algorithm. SCNR for both estimators is within the derived

bounds. The SCNR of diagonal loading method is less than proposed

algorithm.

A. SCNR Performance

The challenge dataset contains radar target and clutter

returns generated by RFView. The scenario in challenge

dataset has four targets and ground clutter containing build-

ings. This scenario involves an airborne monostatic radar

flying over the Pacific Ocean near the coast of San Diego

looking down for ground moving targets. The data spans

several coherent processing intervals as the platform is

moving with constant velocity along the coastline. In Ta-

bles II–IX, Appendix we state all the parameters used for

this scenario.

The challenge dataset consists of a 32 × 64 × 2335 data

cube which has the clutter impulse response over 32 chan-

nels with 64 pulses and 2335 data samples. We concatenate

8 channels to get a clutter impulse response matrix of size

512 × 2335. We convolve the rows of the clutter impulse

response matrix with a waveform of pulse length 1000 to

get a clutter return signal of dimension 512 × 3334. To

the clutter return signal from the challenge dataset we add

additive white Gaussian noise with zero-mean and variance

σ 2 = 5 × 10−14, to get the clutter plus noise return signal.

The additive white Gaussian noise is the thermal noise

encountered during the measurement of the radar return

signal. The thermal noise is chosen using the 6-dB criteria,

as stated in [14] and [15] and cannot be zero. The dimension

of the clutter plus noise covariance matrix is 512 × 512.

We vary n in the multiples of p till n < 3334 to get the

sample covariance matrix. For each plot, we use 1024 Monte

Carlo simulations. For normalized Doppler, we fix the angle

interval at π
180

and marginalize over it. For the normalized

angle, we fix the Doppler interval at π
50

and marginalize over

it. For both cases, we fix n = 1024.

Fig. 4 displays the average normalized SCNR versus

the number of data samples n. The run-time for different n

is given in Table I. Normalized SCNR versus normalized

Doppler is given in Fig. 5 and normalized SCNR versus

normalized angle in Fig. 6.

The proposed algorithm has higher SCNR performance

than the DL method because it has similar SCNR perfor-

mance to the RCML-EL algorithm, which outperforms the
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Fig. 5. Algorithm 1 has identical SCNR compared to the RCML-EL

algorithm. The SCNR of diagonal loading method is less than proposed

algorithm.

Fig. 6. Algorithm 1 has identical SCNR compared to the RCML-EL

algorithm. The SCNR of Diagonal Loading method is less than proposed

algorithm.

EigenCanceller [6], [23]. The EigenCanceller and the DL

method are similar according to [61].

B. Target Detection

In this section, we use results from Section III-D with

the target having a Doppler of fd = 0.2 and an angle of

θ = 30◦. We plot the target detection probability PD as we

vary false alarm probability PFA from 10−5 to 10−1 in the

multiples of 10 from SCNR = −10 dB to 30 dB. We use

n = 1024 data samples with 1024 Monte Carlo Simulations.

The challenge dataset contains four targets. We consider

detecting a single target with remaining targets constituting

contaminating clutter discretes. These contaminating clutter

discretes do not share the same characteristics as the target

of interest so there is no self-target cancellation. Recall from

Section III-D that the contaminating clutter discretes change

the clutter rank to an unknown r̂. By introducing multiple

targets as contaminating clutter discretes we demonstrate

the robustness of the detector.

Fig. 7. As PFA is decreased, higher SNR is required to get a fixed PD for

a single target. The presence of other targets is not affecting the detection

probabilities as they are projected into the null space of the target

subspace. This empirically shows that the detector is robust to the

presence of contaminating clutter discretes.

The detection probabilities are the same for both the

RCML-EL algorithm, the proposed algorithm and the DL

method as the detector uses only the eigenvectors of the

sample covariance matrix. The detection probabilities are

illustrated in Fig. 7.

C. Empirical Error Variance

In this section, we empirically present the MVDR er-

ror variance due to the proposed algorithm with the error

variance of the beamformer of the RCML-EL algorithm

and the true covariance matrix. The error variance for the

beamformer is

Error Variance = 1/|sH M−1s| (33)

where M = R̄proposed for the proposed algorithm, R̄RCML-EL

for the RCML-EL algorithm and R for the true covariance

matrix, respectively. The target signal s, as defined like yt in

(10), has Doppler fd = 0.3 and angle θ = 30◦. In Fig. 8, the

error variance for RCML-EL and the proposed algorithm is

identical to the true covariance matrix. The error variance

does not change as the training data size is increased since

we are working in the asymptotic regime. This is due to the

fact that in the asymptotic regime, the estimated covariance

matrix converges to the true covariance matrix with proba-

bility 1. Hence, the error variance in (33) merely becomes

the reciprocal of the SNR from (10) when R̄ = R. Observe

that the error variance of DL is higher than the proposed

and the RCML-EL algorithm.

To conclude this section, we demonstrated that with

reduced covariance computation time, Algorithm 1 gives

identical SCNR performance compared to the EL-based co-

variance estimation algorithm within the proposed bounds.

However, the noise computation step requires some precom-

puted values of the medians of Marchenko Pastur distribu-

tions for various values of γ . This also makes our algorithm

less robust to a sudden change in the parameters of the
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Fig. 8. Normalized error variance due to the proposed algorithm and

the RCML-EL algorithm is identical to that of the true covariance matrix.

We normalize error variance in (33) by the error variance of the true

covariance matrix. The mse of diagonal loading is higher than both

RCML-EL and the proposed algorithm.

scenario as data samples can vary depending on the range

swath.

We demonstrated the target detection probabilities for

different false alarm probabilities using the LR-ANMF

detector. We empirically demonstrated the robustness with

respect to contaminating clutter discretes in the challenge

dataset. We empirically demonstrated that the error variance

of the proposed algorithm is identical to the true covariance

matrix.

V. CONCLUSION

In this article, we exploit the spiked covariance structure

for the clutter plus noise covariance matrix in a high-

dimensional setting and propose a nonlinear shrinkage-

based rotation invariant estimator. We state the convergence

of the spiked eigenvalues of the estimator. We demon-

strated the reduced covariance computation times com-

pared to the RCML-EL algorithm. The proposed algo-

rithm and the RCML-EL algorithm have identical SCNR

performance. We employed the LR-ANMF detector for

robust target detection and empirically showed that the error

variance of the algorithm is identical to the true covariance

matrix.

Our proposed algorithm computes covariance matrix

using batchwise data. In future work it is worthwhile de-

veloping an adaptive version of the algorithm. We will

also investigate other kinds of loss functions for various

scenarios by introducing various constraints and deriving

the concentration bounds for the proposed algorithm. The

number of contaminating clutter discretes and their relative

strength in the challenge dataset is not sufficient to provide

a comprehensive analysis of the robustness feature of the

LR-ANMF detector. This facet of the technique will be

explored in more detail in the future.

APPENDIX

CHALLENGE DATASET PARAMETERS

In this section, we state the parameters we used for

the challenge dataset in Tables II–IX. The scenario of the

challenge dataset is illustrated in Fig. 9.

TABLE II

Radar Platform Location

TABLE III

Monostatic Radar Parameters for the Challenge

Dataset Scenario

TABLE IV

First Target is Moving Straight North on the Ground on

Ocean Front Walk Near Mission Beach Park in San Diego

JAIN ET AL.: RADAR CLUTTER COVARIANCE ESTIMATION: A NONLINEAR SPECTRAL SHRINKAGE APPROACH 7649

Authorized licensed use limited to: Cornell University Library. Downloaded on June 28,2024 at 18:27:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V

Second Target is Moving Straight North on the Ground on

Ingraham Street Near Sea World San Diego

TABLE VI

Third Target is Moving South in the Water Off the Coast of

San Diego

TABLE VII

Fourth Target is Moving North in the Water Off the Coast

of San Diego

TABLE VIII

First Clutter Object is an L-Shaped

Building Inside Sea World San

Diego

TABLE IX

Second Clutter Object is a Cube

Shaped Building Off Mission

Blvd in San Diego

Fig. 9. Challenge dataset scenario consists of four targets and two

clutter discretes.
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