This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

T-HyperGNNs: Hypergraph Neural Networks
via Tensor Representations

Fuli Wang™, Student Member, IEEE, Karelia Pena-Pena™, Student Member, IEEE,
Wei Qian", and Gonzalo R. Arce™, Life Fellow, IEEE

Abstract— Hypergraph neural networks (HyperGNNs) are a
family of deep neural networks designed to perform inference
on hypergraphs. HyperGNNs follow either a spectral or a spatial
approach, in which a convolution or message-passing operation
is conducted based on a hypergraph algebraic descriptor. While
many HyperGNNs have been proposed and achieved state-of-the-
art performance on broad applications, there have been limited
attempts at exploring high-dimensional hypergraph descriptors
(tensors) and joint node interactions carried by hyperedges.
In this article, we depart from hypergraph matrix representations
and present a new tensor-HyperGNN (T-HyperGNN) framework
with cross-node interactions (CNIs). The T-HyperGNN frame-
work consists of T-spectral convolution, T-spatial convolution,
and T-message-passing HyperGNNs (T-MPHN). The T-spectral
convolution HyperGNN is defined under the t-product alge-
bra that closely connects to the spectral space. To improve
computational efficiency for large hypergraphs, we localize
the T-spectral convolution approach to formulate the T-spatial
convolution and further devise a novel tensor-message-passing
algorithm for practical implementation by studying a compressed
adjacency tensor representation. Compared to the state-of-the-
art approaches, our T-HyperGNNs preserve intrinsic high-order
network structures without any hypergraph reduction and model
the joint effects of nodes through a CNI layer. These advantages
of our T-HyperGNNs are demonstrated in a wide range of
real-world hypergraph datasets. The implementation code is
available at https://github.com/wangfuli/T-Hyper GNNs.git.

Index Terms— Convolution, hypergraphs, message passing,
neural networks, tensors.

NOMENCLATURE
Symbol Description
g Hypergraph structure G.
1% Vertex set of a hypergraph.
& Hyperedge set of a hypergraph.

Manuscript received 31 January 2023; revised 21 September 2023 and
18 December 2023; accepted 23 February 2024. This work was supported
in part by the National Science Foundation under Grant CCF-2230161, Grant
CCF-2230162, and Grant DMS-1916376; in part by the Air Force Office of
Scientific Research (AFOSR) Award under Grant FA9550-22-1-0362; and in
part by the Institute Financial Services Analytics, University of Delaware.
(Corresponding author: Fuli Wang.)

Fuli Wang is with the Institute for Financial Services Analytics, University
of Delaware, Newark, DE 19716 USA (e-mail: fuliwang@udel.edu).

Karelia Pena-Pena and Gonzalo R. Arce are with the Department of
Electrical and Computer Engineering, University of Delaware, Newark,
DE 19716 USA

Wei Qian is with the Department of Applied Economics and Statistics,
University of Delaware, Newark, DE 19716 USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNNLS.2024.3371382, provided by the authors.

Digital Object Identifier 10.1109/TNNLS.2024.3371382

N Number of nodes in a hypergraph, i.e., |V]|.

M Maximum cardinality of hyperedges.

X Original feature/signal matrix, X € RV*P,

A Hypergraph adjacency tensor, A € RV "

L Hypergraph Laplacian tensor, £ € RV "

X Hypergraph interaction tensor, X € RV*PxN®™

4% Weight tensor to be learned, W € RP*D>xN™™,

Z Convoluted hypergraph signal, Z € RN*DxN*™?

()s Symmetric tensor obtained according to
Appendix A.

(-)norm Normalized representation tensor according to
Appendix C.

eM Mth-order hyperedge, length(e™) = M.

a, Adjacency value associated with a hyperedge e.

EM(v) Mth-order incidence edge set of node v.

mgv,y Embedding of EM(v), mgu(, € R*P.

NM(v) Mth-order neighborhood of node wv.

mym,, Embedding of N (v), mpw, € R>*P.

I. INTRODUCTION

ACHINE learning on graphs has drawn much atten-

tion in the last few years as graphs can represent
non-Euclidean relations in data [1]. Graph neural networks
(GNNp), in particular, have shown promise in various domains,
such as computer vision [2], [3], recommendation [4], [5], and
reinforcement learning [6]. These graph structures modeled
by GNNs, however, are assumed to be pairwise relationships.
In other words, each relational edge connects exactly two
entities, as shown in Fig. 1(a). In real-world applications where
polyadic relationships among multiple objects are important,
GNNs become insufficient to capture all useful features [7].
For example, biomedical reactions often contain more than
two drugs [8], and traffic flows usually are determined by
more than two locations [9]. This brings up the concept
of a hypergraph, a more general data abstraction in which
each hyperedge binds a group of nodes simultaneously [see
Fig. 1(b) and (c)].

One convenient way to study hypergraphs is to map them
into regular graphs and adopt simple graph convolution
to approximate high-order relationships. This approach of
reducing hypergraphs is called hypergraph expansion, which
includes clique expansion [10] and star expansion [11], among
several others [12]. Since the graph convolution operation
is originally derived in the spectral domain [10], we call

2162-237X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7062-9432
https://orcid.org/0000-0001-8214-6852
https://orcid.org/0000-0003-1022-1141
https://orcid.org/0000-0001-7163-7111

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 1. Robot collaboration network represented by (a) simple graph and
(b) hypergraph G;, and (c) another hypergraph G,. In (a), each cooperation
relationship is denoted by a line connecting exactly two entities, whereas in
(b) and (c), each hyperedge denoted by a colored ellipse represents multirobot
cooperation.

them spectral hypergraph neural networks (HyperGNNs).
Despite the simplicity, these methods could cause topological
distortion and difficulty in downstream tasks since the
mapping from a hypergraph to its corresponding simple graph
is not one-to-one [13], [14]. For example, if we consider
the clique expansion that connects any two nodes in a
hyperedge, it is easy to verify that hypergraphs G in Fig. 1(b)
and G, in Fig. 1(c) have the same pairwise connections,
which is the simple graph in Fig. 1(a). Other types of
HyperGNNs, such as hypergraph network with hyperedge
neurons (HNHN) [11] and HyperSAGE [15], defined
by a two-stage spatial message-passing rule that gathers
information from the neighboring nodes of each central node,
utilize more advanced deep learning architectures but are still
limited to linear aggregations without modeling higher order
multiplicative interactions among nodes.

Recently, approaches that do not require the use of
hypergraph expansions have been proposed to fully exploit
polyadic relationships. In particular, tensor—tensor multiplica-
tions (t-products) [16] were introduced to better understand
hypergraph operations such as signal shifting and spectral
filtering, thus offering powerful tools to formulate spectral
convolutions [17], [18]. Given these tensor representations
and operations, several intriguing questions naturally arise:
1) can we efficiently describe hypergraph structures in a
high-dimensional space without information loss? 2) can we
model node interactions to represent their joint effects within
a hyperedge? and 3) is it possible to generalize common
GNN architectures, such as spectral convolution, spatial con-
volution, and message passing under the tensorial setting of
hypergraphs? To address these questions, instead of collapsing
hypergraphs to simple graphs and representing reduced graphs
in matrix forms, we study the hypergraph representation
learning by a tensor-based approach. For simplicity, we call
this new framework tensor-hypergraph neural networks (T-
HyperGNNs). Compared to matrix-based HyperGNNs, the
proposed T-HyperGNN framework takes the following advan-
tages.

1) Drawing from previous work, matrix representations of
hypergraphs are limited by either information loss or
an inability to undergo eigendecomposition [7], [11],
[14] and, therefore, spectral analysis [12]. We leverage
techniques from tensor hypergraph signal processing
(t-HGSP) [18] to encode hypergraph structures in tensors
and develop both spectral and spatial convolutions.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

2) We introduce the idea of modeling node interactions via
multiplicative interaction tensors. Inside the interaction
tensor, the aggregation is raised from classic low-order
linear operations (e.g., sum and average) [10], [11], [19]
to higher order polynomial maps, thus significantly
enhancing the expressiveness of HyperGNNSs.

3) We scale up the tensor spatial convolution to formulate
the tensor-message-passing operation by making use of
tensor sparsity. The tensor-message-passing hypergraph
neural network (T-MPHN), in particular, is capable of
processing large hypergraphs with efficient space and
computational complexities comparable to matrix-based
HyperGNNGs.

The rest of this article is organized as follows. We introduce
the necessary background and related work in Section II.
We then define the cross-node interaction (CNI) tensor and
T-spectral convolution in Section III. To tackle the complexity
of T-spectral convolution, in Section IV, we first localize
the T-spectral convolution to form T-spatial convolution and
then propose an inductive and scalable T-MPHN. Connections
between our three methods and other existing HyperGNNs are
illustrated in Section V. The numerical experiments are sum-
marized in Section VI. A conclusion is given in Section VII.

II. BACKGROUND AND RELATED WORK

A. Hypergraph Signal Processing

A hypergraph G is defined as a pair of two sets G =
W, E), where V = {vy, vp,..., vy} denotes the set of N
nodes (or vertices) and £ = {ej, ep,...,ex} is the set of
K hyperedges whose elements ¢, (k = 1,2,...,K) are
nonempty subsets of V. The maximum cardinality of edges,
or m.c.e(G), is denoted by M, which defines the order of a
hypergraph. Apart from the hypergraph structure, there are also
features x,, € R? associated with each node v € V, which are
used as row vectors to construct the feature matrix X € RV*P,

A hypergraph structure G can be encoded in either a matrix
or a tensor form. We refer to these algebraic descriptors as S.
In matrix representations, a hypergraph is usually described as
a vertex-to-hyperedge incidence matrix H € RV*X, As shown
in Fig. 2(c), entries of the incidence matrix are h,; = 1 if
node v, lies in hyperedge e, and h,; = 0, otherwise. While
the incidence matrix representation is a loss-free representa-
tion, its rectangular shape hinders two of the most powerful
techniques: convolution and spectral analysis. Another matrix
descriptor known as the adjacency matrix of a hypergraph
is defined as A = HH’, which projects out the hyperedge
dimension but leads to clique expansion (see Fig. 2(b) where
ey is dismissed) that causes distortion of hypergraph struc-
tures [13], [14]. To address the limitations in the hypergraph
matrix representations, we propose to use tensor descriptors
and formulate a novel T-HyperGNN framework.

Definition 1 (Hypergraph Adjacency Tensor [20], [21]):
Given a hypergraph G = (V, &) with N nodes of order M
(i.e., m.c.e(G) = M), its adjacency tensor is defined as an
Mth-order N-dimensional tensor A € RN". Specifically, for
any hyperedge e; = {vg,, Vi, - .-, Uk} € € Withc = |ex| < M,

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: T-HyperGNNs: HYPERGRAPH NEURAL NETWORKS VIA TENSOR REPRESENTATIONS 3
ez
v v 10
Existing HyperGNNs 1{1 N \\ vz 1o
\ N/ v 0 1
N U v 00 Ny
e, 4 vs 0 0 N3 Ny
(b) (©) N,

L M=3 (@) (b)

Vs

- Fig. 3. (a) Third-order tensor A e RN *N2XNs (b) N3 frontal slices

(a) o AWK = AG, 1 k) € RMxVaxT
AE€E]RSXSXS
€3 G133 = Q133 = Gz13 = Q31 = G312 = U321 = 3

Our Approach

(Applicable in both

Spectral and spatial domains)

(d) *

Fig. 2. (a) Hypergraph with (b) its clique expansion that is used in spectral) N
HyperGNNs, (c) incidence matrix is utilized in spatial HyperGNNs, and
(d) adjacency tensor, where nonzero entries of the adjacency tensor are gjg 4. Visual illustration of the T-eigendecomposition for a 3rd-order

specified on the right. The adjacency tensor is applicable to both spectral
and spatial approaches.

the tensor’s corresponding entries are given by

C
Apipycpy = (L

o
M
2
Fi,r, ..., re

where the indices pi, p2, ..., py for adjacency entries are
chosen from all possible ways of {k;, k>, ..., k.}’s permuta-
tions with at least one appearance for each element of the
hyperedge set, and « is the sum of multinomial coefficients
with the additional constraint ry,7,...,r. # 0, as demon-
strated in Fig. 1(d). In addition, a hypergraph adjacency tensor
with an order higher than 3 is included in Appendix J (see
the Supplementary Material). Note that a hypergraph with
M = 2 degrades to a simple graph with a binary adjacency
matrix A € RV*V,

Despite the rich theoretical support [20], [21], [22], the
formula introduced above generalizes a fundamental property
of the graph adjacency matrix to higher orders, accommodat-
ing complex relationships in hyperedges. This key property
states that the sum of entries along any (M — 1) dimensions,
with the remaining one fixed, should yield the degrees of
the nodes, i.e., d,, = Zﬁ,jz,...,j,w:l Qjj, jy...ju_, - Node degrees
represent the number of edges connected to each node. For
example, in Fig. 2(d), summing the adjacency tensor along the
horizontal dimension for each node yields the node degrees:
[2, 2,2, 1, 1]. The degree tensor D € R is a super-diagonal
degree tensor with the degree of node v; on the corresponding
diagonal entry d;..;. The Laplacian tensor is then defined as
L=D- A

For ease of presentation, we first describe the notation for
3rd-order tensors as 3rd-order tensors form the base case
of higher order tensors. For a 3rd-order tensor, indices i €
{1,2,...,N1},je{l,2,...,Ny}, and k € {1,2,..., N3} are
used to specify the height, width, and depth direction of the
cube in Fig. 3(a). Breaking down a 3rd-order tensor along the
third mode, we obtain frontal slices in Fig. 3(b), where the kth
frontal slice is A%l = A(, :, k) € RV*N2X1 When it comes

with

o =

>

" c p—
FLTysente= L D =M

Laplacian tensor £7°™.

to Mth-order tensors 4 € RY M, we can view the last (M —2)
orders as flattened frontal slice indices along the third order,
that is, A € RVNXNs with Nj = N3Ny - -+ Ny

In HGSP [18], a symmetric adjacency and Laplacian hyper-
graph tensor descriptors are introduced since the tensors A
and £ above are not symmetric under the t-product algebra.
Therefore, the operator sym(.A) generates a symmetric version
Ay € RVXVXNe of A € RV*NXNwith Ny = 2N + 1
according to the symmetrization operation in Appendix A
(see the Supplementary Material). The motivations of the
symmetrization operation are: 1) to obtain an orthonormal
set of the hypergraph spectral space that is defined by the
eigendecomposition of the normalized Laplacian L™ =
V* A VT as shown in Fig. 4, where £, = T, — A™ is the
normalized symmetric Laplacian tensor and Z; is an identity
tensor (with the first frontal slice being identity matrix and
the other entries being zero) as shown in Appendix C (see the
Supplementary Material), and 2) to obtain a symmetric block
circulant matrix in the T-product * that is to be introduced
in (3).

Definition 2 (T-Product [16], [18]): Let A, € RN*NxN;
and X, € RV*P*Ns be two 3rd-order symmetric tensors, and
their T-product Y, € RY*P>*Ns ig given by

A * Xy
= fold(bcirc(Ay) - unfold(X))

f0 Al Al A2l Al XOU]
Al o Al AP AR || X
AR AL A4 Al || X
=fold :
: : : - : = i
AL AT A4 0 Alll -t
Al Al2] ABl Alll 0
3
where the operator bcirc(A,) converts the set of
N, frontal slice matrices (in RM*¥) of the tensor

A into a block circulant matrix. Specifically, the first
row/column of bcirc(A,) is the frontal slices of A,
ie., [0, A AR CAINT AN AR AT and the next

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

row/column is simply the one-step cyclic shifting of the
previous row/column. The operation unfold(X;) vertically
stacks the set of N, frontal slice matrices (in RV*P) of X,
into an NyN x D matrix. The operator fo1d() is the reverse
of the unfold() process so that fold(unfold(Ay)) = A,.
The t-product of higher order tensors is more involved with
recursive computation with 3rd-order base cases, which is
relegated to Appendix B (see the Supplementary Material) for
technical completeness.

B. Problem Statement

The idea of HyperGNNs is to build neural networks on
hypergraphs such that higher order relationships among enti-
ties as well as any available node attributes are unlocked.
Formally, given a descriptor S of a hypergraph and the
associated node features in X, the goal of HyperGNNSs is to
identify a representation map ®(-) between the feature X and
the target representation t = ®(X, S, {W}) that incorporates
the hypergraph structure, where {}V} contains the weight
parameters learned by the model. To learn the representation
map, we consider a cost function J(-) and a training set 7 =
{x1, 1), ..., X7, f)7))} with the observed training targets
t=(t1, ..., 7). The learned map is then ®(X, S, W*) with

W* = argmin J(®(X, S, W), t). 4)
W

C. Existing HyperGNNs

The research of HyperGNNs can be briefly categorized into
two main approaches: 1) spectral methods that define convolu-
tion in the spectral space and 2) spatial methods that aggregate
neighboring messages and combine with self-embedding for
each node.

1) Matrix-Based Spectral HyperGNNs: The earliest attempt
to build HyperGNNSs includes HGNN [10] and HCHA [23],
which can be considered as spectral HyperGNNs built on
the adjacency matrix A of a hypergraph. From the adjacency
matrix, the hypergraph Laplacian is defined to construct the
hypergraph spectral space that is formed by the eigendecom-
position of the Laplacian matrix. After applying first-order
approximation to spectral filters, the spectral convolution is
formulated as Z = A"™XW, where A™™ ¢ RV*N ig a
normalized adjacency matrix, X € RV*P is the feature matrix,
and W € RP*P" is a learnable filter weight matrix. Although
A is a squared matrix, it is geometrically equivalent to the
clique expansion, in which a hypergraph is reduced to a simple
graph by connecting any two nodes that are in a hyperedge. For
instance, the simple graph in Fig. 2(b) is the clique expansion
of the hypergraph in Fig. 2(a). With such reduction, the small
edge e; contained in e, is ignored. Thus, the hypergraph
expansion is not a one-to-one mapping, which could cause
node- and edge-level ambiguities [14]. Other methods, such
as HyperGCN [24] and LEGCN [25], are developed following
similar ideas with different variants of matrix descriptors.

2) Matrix-Based Spatial HyperGNNs: In contrast to spec-
tral HyperGNNs, spatial HyperGNNs focus on the local
connectivity of each node without going to the spectral
domain. By defining the incident-edge set of node v as

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

E, = {e € E|v € e}, UniGNN [19] proposes a spatial
message-passing process with two steps

X, = ¢ ({Xu}uee)
z, = ¢2(XU, {Xe}eeEu)

where ¢; and ¢, are two permutation-invariant functions
for node-to-edge and edge-to-node aggregations, respectively.
Specifically, the first step aggregates information from all
nodes that are in each incident edge, thus forming a node-to-
edge propagation. The edge embedding x, is then combined
with the target node embedding x, and passes through ¢, to
produce a new node embedding z,. Such a node—edge—node
embedding scheme remains to be matrix-based since it is a
generalization of Z = H(HTX), where H is the incidence
matrix. In addition to UniGNN, current methods, including
HNHN [11], HyperSAGE [15], and AllSet [13], are all
under such node—edge—node propagation paradigm, but with
more advanced architectures such as an attention mechanism.
Compared to spectral HyperGNNSs, spatial message passing
does not require the construction of a hypergraph algebraic
descriptor and can be applied to previously unseen nodes
during testing. However, it remains unclear if an appropriate
higher order descriptor (i.e., a tensor) can be employed to
accommodate hypergraph structures.

In summary, the following issues remain unsolved for
these existing HyperGNNSs. First, they are based on matrix
descriptors with possible information loss. For example, the
adjacency matrix A corresponds to a clique-expanded simple
graph, which could not encode all intrinsic higher order
structures. Second, they do not consider possible high-order
feature interactions among multiple nodes. Indeed, the salient
characteristic of hypergraphs compared to simple graphs is
that hyperedges depict the joint effects of a group of nodes.
Finally, spectral and spatial HyperGNNSs are studied separately
in the literature, while a more unified study connecting both
approaches would be desirable.

To overcome the aforementioned issues, we propose the
tensorial descriptor of the hypergraph structure and further
construct the hypergraph interaction tensor by modeling
CNIs. Using these two tensors, we design hypergraph
spectral convolution under the t-algebra framework and then
localize the spectral convolution to form spatial convolution
that only propagates to neighbors of each node. Spatial
message-passing HyperGNNs are then built upon the
compressed adjacency tensor to address tensor complexity
for developing computationally efficient algorithms. For the
convenience of the reader, the important notations used in
this article are listed in the Nomenclature.

(&)

III. T-SPECTRAL HYPERGNNS

In this section, we present a tensor-based spectral convo-
lution formulation on hypergraphs, utilizing well-established
tools in hypergraph signal processing (HGSP) [18]. The
T-spectral convolution approach aims to leverage the power
of HGSP to develop effective hypergraph convolutional neural
networks that can process and analyze higher order geometric
data. We first introduce the hypergraph interaction tensor X
by modeling CNIs. Based on the hypergraph tensor represen-
tations and the interaction tensor, the hypergraph T-spectral

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: T-HyperGNNs: HYPERGRAPH NEURAL NETWORKS VIA TENSOR REPRESENTATIONS 5

convolution is proposed by leveraging hypergraph spectral
filtering, which is defined in Definition 3.

A. Modeling CNIs

The CNI tensor X is designed as the (M — 1)-time outer
product of feature matrix X € R¥*P along each feature
dimension d = 1,..., D. The dth dimensional interaction
among all nodes (d =1, ..., D) is given by

CNI([x]y) =[xlgo[x]go---0[x]; € RN XX N®=2 ©)

(M —1)times

where o denotes the outer product (also known as elementary
tensor product) and [x],; € RV represents the dth dimensional
feature vector of all N nodes. For example, given M = 3,
CNI([x]s) = [xla[x]} € RN¥*"*N_ Here, we unsqueeze the
outer product tensor to generate the additional second mode for
the dimension index of different features. Then, by computing
CNI([x],) for all D features and stacking them together along
the second-order dimension, we obtain an Mth-order interac-
tion tensor X € RV*2XN™™ 'The resulting interaction tensor
can be viewed as a collection of D tensors, each depicting node
interactions at one feature dimension. The formulation of the
CNI tensor has the following unique properties: 1) interactions
capture features that cannot be decomposed into sums of
subfunctions of node features; 2) interactions are applied
across different linked nodes, as opposed to different features;
and 3) the order of interactions grows naturally with increasing
order of complexity of the hypergraph.

Remark: Although the cross-channel multiplicative inter-
action has been widely used in recommendation systems
(e.g., deep and cross network (DCN) [26] and eXtreme Deep
Factorization Machine (xDeepFM) [27]) and high-dimensional
regression [28], here we design the interactions to be nonlinear
cross-node (as opposed to cross-channel) based on the intrinsic
node interactions depicted in hyperedges, which significantly
enhances the expressive power of node aggregations by going
beyond linear summations.

B. Hypergraph T-Spectral Convolution

The foundation of GNN development traces back to spectral
filtering, established in the field of graph signal processing
(GSP) [29], [30]. Building upon this idea, we embrace the
newly proposed t-HGSP framework [18] to introduce our novel
approach: hypergraph T-spectral convolution.

Definition 3 (Hypergraph Spectral Filtering [18], [29]):
Given the normalized Laplacian tensor £I°™™ of a hypergraph
as shown in Appendix C (see the Supplementary Material),
the spectrum space of the hypergraph is defined by the
t-eigendecomposition £7°™ =V x A * VT (see Appendix D
for details, see the Supplementary Material). The hypergraph
spectral filter # : R — R is a function of the frequency
response h(A), and the spectral filtering operation on
hypergraph G is defined as

Hyxg Xy =V h(A) VT % X, (7N
= h(L2™) x X, ®)

with the frequency response
h(h) - 0
h(p) = .
0 o hOw)

Instead of performing eigendecomposition, a more compu-
tationally efficient approach is to approximate h(A) by a
truncated expansion of Chebyshev polynomials T;(x) =
2xTp—1(x) — Tx—a(x), with Ty = 1,77 = x up to the Kth
order, as proposed in ChebyNet [30]. Since the Chebyshev
polynomial is defined recursively, which can be achieved
by cascading multiple layers of neural networks, following
the first-order approximation proposed in graph convolutional
network (GCN) [31], we can further let K = 1, and the
convolution operation is simplified to

Zy=Hoxg Xy =00 X + 01V (A —Ty) « V' x X, (9)

= 0o X, + 61 (L™ — Iy) X, (10)

= 0o Xy — O AT * A (11

Unifying the two parameters 6y and 6, as w = 6y = —6, the
convolution is further simplified as

Z, = H, % X, = w(T, + A™™) & X, (12)

where (Z; + A"™™) can be treated as an adjusted hypergraph
adjacency tensor with a self-loop of each node. For notation
brevity, we use A"™ to denote normalized adjacency tensors
with either self-loop or not. When the h}/pergraph signal is
in D-dimension, ie., X, € RV*DXN“7 " and the desired
convoluted hypergraph signal) is in D’-dimension, i.e.,
YV, € RV¥DXN™™ “4he weights will be characterized by a
bank of DD’ parameters instead of a single value w. In this
way, the T-spectral convolution is given by

Ze = APk Xy x W (13)

’ (M=2)

where W, € RP*DxNs is the weight tensor with DD’
weights parameterized in the first frontal slice and the remain-
ing frontal slices from 2 throughout 2N + 1 are all zeros for
parameter sharing across nodes. The reason for constructing
the T-spectral convolution using the t-product * is that the
tensor V forms an orthonormal set, i.e., VT %V = Vx VT = T,
with Z; being a f-diagonal tensor [16] whose first frontal slice
is an identity matrix and other frontal slices are all zeros.
In this way, the Fourier transform and the inverse Fourier
transform of a given feature tensor are perfectly achieved
without approximation or information loss [18].

C. Implementation Details

With the T-spectral convolution defined in (12), a T-spectral
convolutional HyperGNN can be built by cascading L layers
with

X;Hl) _ U(Agorm " Xs(l) *WS(]))’ [=0,1,...,L—1

(14)
where the initial interaction tensor X;O) is obtained by (6) and

o (+) is an activation function. In the final layer of the T-spectral
convolutional HyperGNN, after obtaining the tensor X,

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

an inverse symmetrization operation is first applied to obtain
X = XD, and a readout function f: RNXCxNM2_ pNxC
is utilized to generate the node representations Xy, € RY xC,
where C is the number of classes

NM=2)

Xouw= Y X1
k=1

with [X[1, X2 o XIN*™1] = ynfold(X) being flattened
frontal slices of X.

(15)

D. Complexity Analysis

As the order and the number of nodes of a hypergraph
increase, the time and space complexity of the T-spectral con-
volution becomes a major concern. Indeed, the computation
in a one-step t-convolution of the tensors A°™ s Xy * Wi
in (12) can be shown to be O(DN?"), which is practically
difficult given any moderate M. Since circulant matrices are
diagonalized by the discrete Fourier transform, as shown in
Algorithm 2 in Appendix E (see the Supplementary Material),
the t-product can be efficiently computed by recursively
applying the fast Fourier transform to both tensors, followed
by regular matrix products between flattened tensors and
eventually performing inverse fast Fourier transform.

Even though the computation of the t-product could be
reduced to O(DNM) using Algorithm 2, it is still not
sufficiently fast in large hypergraph learning. In addition,
considering the space complexity of a Mth-order hypergraph,
the memory allocated for the adjacency tensor is O(NM).
Since tensor-based convolutions require that the full hyper-
graph adjacency tensor is known during the model training
process, a direct implementation is usually not feasible for
large hypergraphs. We address these limitations in Section I'V.

IV. T-SPATIAL HYPERGNNS

To scale up the T-spectral convolution, two improvements
are proposed in this section. First, we localize the T-spectral
convolution to form a T-spatial convolution that only prop-
agates to connected neighbors of each node. Two important
properties of the T-spatial convolution are highlighted in
Propositions 1 and 2. Second, to alleviate the space complexity
of tensors, we introduce the compressed adjacency tensor that
takes little memory usage. The compressed adjacency tensor
consists of two tables: the adjacency value table where the
adjacency values are computed based on Theorem 1 and
the neighborhood table that records higher order hyperedge
and neighborhood of a node based on Definitions 4 and 5,
respectively. Given the compressed adjacency tensor, a
two-step message-passing framework is proposed, within
which the T-spatial convolution is subsumed.

A. T-Spatial Convolution

In the vertex domain, convolution is viewed as a weighted
sum of neighboring information. As a result, the main
idea of developing spatial convolution is to localize the
spectral convolution, that is, only connected nodes should be
propagated through during a shifting operation AM™ x X.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Interestingly, we found that only the first frontal slice (matrix)
of the resulting tensor (A™™ x X))l € R¥*P has local
meaning in the vertex domain. To this end, we define the
T-spatial convolution as

Zg = (A™™ x x,)'w (16)

where A}°™ and X, are the corresponding symmetrized
tensors, (A™™ x X)) is the first frontal slice of the shifted
hypergraph signal A™™ % X,, and W € RP*?" is a learnable
weight matrix.

Also, note that since the circulant operation is muted now,
the symmetrization is not needed anymore and the T-spatial
aggregation (A™™ x X)) can be computed as the sum of the
corresponding frontal slice products between A™™ and X.
The resulting feature matrix Y € RV*? is given by

NM-2

Y = (Anorm * X)[l] — Z A[k]X[k]' (17)
k=1

Equivalently, for an individual node v; with 1 <i < N and
1 <d < D, we compute y;q :=[Y]; 4 as

N N N
Vid = DD D ijisein Xdis iy

j=1is=1

(18)
iv=1
where Xjqi,. iy = XjaXisds - - > Xiyd-

For example, in the 3rd-order case with M = 3, the first
frontal slice of the shifted signal is computed as "5 AKIXI],
which is equivalent to computing Zj.vzl Z,ivzl ijkX jaXkq for
each node v; (i = 1,..., N). Then, if three different nodes
v;, vj, and vy are in the same hyperedge, we have g;;; # 0 and
the interaction with the neighboring nodes v; and vi are used
to compute the shifted signal for v;; otherwise, a;j = 0 and
the respective interaction term makes no contribution for the
shifted signal.

Remark: In general, by the adjacency tensor definition
and its sparse nature, the entries a;j;;,...;, are the indicators
to determine whether a corresponding set of nodes is con-
nected to the target node v; through a hyperedge. Therefore,
(18) implies that only the features/signals from neighboring
nodes contribute to computing the shifted signal of the target
node under the T-spatial convolution, which can lead to effi-
cient computing algorithms to be introduced in Sections IV-B
and I'V-C. In addition, the outcome of the T-spatial convolution
does not depend on the node ordering for adjacency tensor
generation. On the other hand, the other frontal slices of
AN™ 5 X (except the first one) would involve more than the
neighbors of a target node and may not be computed without
prior node ordering information. Therefore, these frontal slices
apart from the first one are not included in the T-spatial
convolution.

These two desirable properties of the T-spatial aggregation
discussed above are summarized in the following propositions.

Proposition 1: The T-spatial aggregation is localized,
which propagates only through neighbors of each target node.

Proposition 2: The T-spatial convolution is permutation
invariant on the ordering of the nodes.

Proof: See Appendix F (Supplementary Material) for the
proof of Propositions 1 and 2.]

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: T-HyperGNNs: HYPERGRAPH NEURAL NETWORKS VIA TENSOR REPRESENTATIONS 7

v perrputed inQex sequences corresponding 'to the gdjacency

o ¢ entries associated with h/}t;peredge e. Spemﬁca}ly, given any

1. - (p1, p2,---, pu) € m(e™), the entry value in (1) can be

Vi v Y v 2 equivalently written as

_ el ”

Fig. 5. Spanning the hyperedge e; in Fig. 2(a) with |e;| =2 < M =3 to Apipasespy = ‘n(eM)‘ (22)
Mth-order sub-hyperedges span™ (¢}).

B. Compressed Adjacency Tensor Representation

While the convolution operation is localized in the spatial
domain through the T-spatial convolution, the space and time
complexities remain too large for most applications. Our goal
next is to formulate an efficient message-passing scheme
that aggregates neighboring features according to (18), but
without direct tensor loading in the model architecture. To this
end, we first propose the compressed adjacency tensor to
store the adjacency tensor compactly in this section and then
formulate the spatial T-message-passing hypergraph neural
network (T-MPHN) based on the compressed adjacency tensor
in Section IV-C.

Returning to the hypergraph adjacency tensor introduced in
Section II-A, from the hypergraph adjacency tensor example in
Fig 2, we can see that the construction of the adjacency tensor
can be divided into two sequential steps: 1) spanning every
edge into Mth-order hyperedge and 2) permutating indices of
each spanned Mth-order hyperedges.

Step 1 (Spanning Every Edge e € & Into Mth-Order
Hyperedges): Since hyperedges with |e| = M are in Mth-order
already, only hyperedges with |e| < M need to be spanned.

Definition 4 (Mth-Order Hyperedge): Given a hypergraph
GV, &) with the order M, for any hyperedge e € &, its
Mth-order hyperedge set eV is given by

eM — {e}’
spanM(e),

Here, span™(e) is the set of Mth-order sub-hyperedges
spanned from e with |e] < M

if le| =M

19
if le| < M. (19

span¥ () = {¢’' [unique(e’) =e, |¢'| = M} (20)

where unique(e’) = e means that the distinct elements in
¢’ are the same as e and |e/| is the number of (possibly
nonunique) elements in ¢'. It is not hard to see that the
size of the sub-hyperedge set | span¥ (e)| is exactly the total
number of combinations for choosing (M — |e|) elements with
replacement from the set e

M —1
|span™ (e)| = CR(le|, (M — le])) = (()). (21)

(lef] =D
For example, given the hypergraph of Fig. 2(c), the edge e;
with |e;| =2 < M = 3 can be spanned to two 3rd-order sub-

hyperedges e} = (vy, v2, v;) and e] = (vy, vz, v2) as shown in
Fig. 5 and e = span’®(e;) = {¢], ¢]}.

Step 2 (Permutating Mth-Order Hyperedges): After obtain-
ing Mth-order hyperedges e for every e € £, we permutate
elements contained in e (denoted by a sequence permu-
tation function m(-)), which in turn specifies the set of

where the cardinality of permutated Mth-order hyperedge
|w(eM)| = a is given in (2). As we can see from (22), two
types of information are associated with nonzero adjacency
entries: the adjacency value corresponding to the hyperedge e
and the indices capturing node connectivities. We then intro-
duce two lookup tables to encode the information of the
adjacency tensor: the adjacency value table and the node
neighborhood table, which together are called the compressed
adjacency tensor, and an illustrative example is shown in
Fig. 6(c) and (d).

For the adjacency value table, we first discover that they can
be computed efficiently as a function of the edge cardinality |e|
and the order M of the hypergraph.

Theorem 1: Given an adjacency tensor of a hypergraph, the
adjacency value a, associated with a hyperedge e is a function
of (le], M)

le]

de = —
o

where

le]
i(lel M
a—g(1) (l.)(|e| Y. (23)
Proof: The proof is given in Appendix G (see the
Supplementary Material).]
Given Theorem 1, the adjacency value table is easily
constructed, in which the first column lists the cardinalities
of hyperedges ranging from 2 (the minimum) to M (the
maximum), and the second column refers to the corresponding
adjacency value a,’s computed from (23). Note that the com-
putation of the adjacency values a,’s does not rely on specific
hyperedges, and hyperedges sharing the same cardinalities
have the same adjacency values. Therefore, the adjacency table
as shown in Fig. 6(c) is typically very short and can be stored
with linear complexity.
Next, for the node neighborhood table, we introduce the
concept of Mth-order neighborhood of a node.
Definition 5 (Mth-Order Neighborhood of a Node): Given
a hypergraph G = (V, £) with order M, for any node v € V,
its Mth-order incidence edge set is

EM@):={e"|ec& veel (24)

where e is the Mth-order hyperedge set defined in (19).
Then, we can define the Mth-order neighborhood of v that
basically excludes one target node v in each hyperedge from
EM(v)

N @) = {r(eM(—v)) | € EY(v)} (25)

where e (—v) deletes exactly one node of v from each
Mth-order hyperedge in e and m(-) represents the
permutation of the remaining nodes.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

€

v \\v3 | Vs

vz/ Vs

€y Qp3 = Gy3p = Q13 = Q31 = G312 = G321 = 1/2 |

(a) (b)
ﬂCompress

v Ni(w)
le] ae vy | {{nl h{m(vy,v3}}
2 | 1/3 vy | {m(vyn h{m(vz,v3}}
3 1/2 U3 {{7'[(1’1' Vz)}v { 13

2 { }

Vs { }

(© (d)

Fig. 6. (a) Hypergraph. (b) Nonzero adjacency tensor entries for the hyper-
graph (a). (c) Adjacency value table. (d) Neighborhood table. The parentheses
in the neighborhood table represent the nodes forming a hyperedge with the
target node in the first column.

Example 1 (Mth-Order Neighborhood of a Node):
Consider node wv; in Fig. 6(a) as an example. The
3rd-order incidence edge set for vy is E3(v) =
{span’(e1), {e2}} = {{(v1, v2, V1), (U1, v2, VD)), {(V1, V2, V3)}).
Correspondingly, it follows that the 3rd-order neighborhood
is N3() = {{m(va, v1), T(v2, v2)}, {(v2, v3)}}. Note that
hyperedge (vi,v,,v;) in span®(e;) of E3(v;) contains
repeated v;’s since it results from the edge spanning, and the
subsequent node deletion for generating A" (v;) should only
remove one node of v;.

From the Mth-order neighborhood definition, the neigh-
borhood table [see, e.g., Fig. 6(d)] is constructed with every
node as the first column and their Mth-order neighborhood
N™M(v) as the second column so that it represents the hyper-
edge connectivity information carrying indices of nonzero
adjacency entries. By specifying any target node v; from
the first column of the neighborhood table, we can quickly
search for nonzero adjacency entries required in computing
the shifted signal corresponding to v; in (18) without (M — 1)-
times looping. For example, as shown in Fig. 6, the nonzero
adjacency entries for v; with its index fixed at the first mode
are ap.. = {an1, aiz, a122, d123, d132}, which is consistent with
the permutations in V3 (v;) from the neighborhood table. The
neighborhood table together with the adjacency value table
therefore forms the compressed sparse adjacency tensor to pro-
vide an efficient representation for higher order hypergraphs.

C. Tensor-Message-Passing HyperGNN

With the compressed adjacency tensor representation,
we propose the algorithm called the T-MPHN in this section.
The aggregation rule of the T-"MPHN is formulated as follows:

myv ;) = AGGREGATE (ae AGGREGATE CNI Xu) (26)

eMeEM (v) T()eENM@w) uen(

different edges interactions in an e™

for any node v € V. The AGGREGATE denotes permuta-
tion invariant aggregation functions such as summation and

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

average, which is chosen to be summation in our implemen-
tation, and a, is the adjacency value computed by Theorem 1.
The CNI is the CNI modeled by the product of the neighboring
signals along each dimension. Specifically, let x, € R” be the
input feature associated with node v. Given any sequence of
nodes U = (uy, us, ..., upy—_1), define

CI\LIII Xu ‘= Xy, © Xy, Q-0 X (27)
ue

to be the Hadamard (element-wise) product of their node
features along each feature dimension d (1 <d < D).

If the AGGREGATE function is fixed to be summation and
a 1-D feature is considered (i.e., a scalar value for each node),
then the aggregation rule in (26) can be written as a two-stage
message-passing process

o= 3 (1%
T()ENM (v) \uemn(") (28)
My = (aem,)
eMecEM (v)

where m,wv(, is the Mth-order hyperedge embedding that
aggregates CNIs of each permutated sequence of neighborhood
nodes from (e (—v)). myrm () is the neighborhood embed-
ding for node v that leverages information from different
Mth-order hyperedges using the adjacency value a,.

To better illustrate the T-message-passing rule, consider the
hypergraph example in Fig. 6(a). As illustrated in Fig. 7,
if we set node v; as the target node, its 3rd—order hyperedge
embeddings are mg,, = XX + xox1 + xz, mg) = X2X3 +
x3x, by looking up the neighborhood table in the compressed
adjacency tensor. Since the coefficients a,, = 1/3 and a,, =
1/2 can be directly retrieved from the adjacency value table,
the neighborhood embedding of v; in the example is computed
by mps(,) = (2/3)x1x2 + (1/3)x§ + x2x3.

Remark: From (28) and the example, one can easily
see the differences between our T-message passing and the
matrix-based hypergraph message passing in (5). Using the
matrix-based hypergraph message passing, for a target node
(e.g., node vy), its edge embeddings X,, = x, X,, = X2 + x3,
and the neighborhood embedding is further x; + (x, + x3).
Compared to our higher order neighborhood embedding
mysg) = (2/3)xix + (1/3)x§ + xpx3, the matrix-based
hypergraph message-passing does not consider joint
multiplicative interactions that are carried in hyperedges
and does not assign weights to edge embeddings. In addition,
as we can see from (26), the tensor aggregation is a function
of the order M, which can be modified at each layer to
create hierarchical hypergraph architectures. The significance
of these three distinct components in our T-message passing
has been well-established in previous works on higher order
feature products [32], [33] and multilinear PageRank [20]
and has been empirically verified in the ablation study in
Section VI-B and the discussion about hyperparameter effects
in Section VI-C.

D. Inductive Learning With T-MPHN

Based on the T-message-passing scheme proposed above,
we next describe the T-MPHN forwarding algorithm, which is

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: T-HyperGNNs: HYPERGRAPH NEURAL NETWORKS VIA TENSOR REPRESENTATIONS 9
v N3w) E.g., forv,,
v, {{ hin(va v} | M3, = Xo¥s + X3Xp
le] ae v, | Db vy, v3}} \\
2 13 vs {r(vy,)} 3 o _ 1
3 — ~ 3
3 1/2 v, { } \ N (v1) 2 e (v1)
s { } \\ = + X3
(a) (b)

Fig. 7.

Illustration of the T-message passing based on the compressed adjacency tensor. (a) Compressed adjacency tensor was obtained from Section IV-B.

(b) According to (28), for the given node v;, the 3rd-order hyperedge embeddings M3y, and mg ., , are first computed by summing up the product of
neighboring signals (T-message passing) according to the first step in (28). Then, the 3rd-order neighlzaorhood embedding mpr3(,,) is the weighted sum of the
hyperedge embeddings whose weights are the adjacency values a, retrieved from the adjacency value table.

Algorithm 1 T-MPHN Forward Propagation
Input: Hypergraph G(V, £); node features {x,|v € V};
number of layers L; hypergraph order M; the adjacency
value table; the neighborhood table, linear layers MLP®, | =
1,2,...,L; aggregation function AGGREGATE; combine
operation COMBINE; nonlinear activation o.
QOutput: Node embeddings z,, Vv € V.

x¥ « MLP(x,), Vv € V;

for/=1,...,L do

for v € V do
for eM € EM(v) do

m{, ,, < AGGREGATE(CNI x{)
w()eNM(v) uem(-)

end for

(] 0]
mu) < AGGREGATE(@.m()

x!) « o (MLP" (COMBINE(x! ™", mX}M(v))))

@ O] @)
X, < X, /IIx’[]2
end for

end for
7, < x\P Vo eV

summarized in Algorithm 1. Let {x, | v € V} be the input node
features. To begin with, we first initialize these node features
with one linear layer of regular multilayer perceptron (MLP)
and project them into a latent space to obtain the initial hidden
embedding features {x |[v € V}. This step is particularly
helpful when the input features have very high dimensions
(e.g., one-hot-encoding features) to avoid potential gradient
vanishing issues.

The T-MPHN algorithm then iteratively performs L-layer
neural networks as follows. For the /th layer ({ = 1,..., L),
let {x!"D|v € V} be the hidden embedding features from
the previous layer. We first go through each Mth-order hyper-
edges e to compute the hidden edge features mg,&(v) and then
aggregate these edge features to perform the efficient two-
step T-message passing to generate the neighborhood features
mX}M e Subsequently, the neighborhood feature is combined
with the self-node feature x!~! from the previous step and
fed into a multilinear perceptron followed by an activation
function o (-). Eventually, a normalization step is conducted

to generate xl()”, which is used as the node’s new hidden
embedding features for the next layer ! + 1. The process
described above is repeated for L layers and finally leads to the
output node embeddings z, for all v € V from the T-"MPHN
algorithm.

1) Inductivity of T-MPHN: For a given node, the T-MPHN
algorithm can be performed by only knowing its local neigh-
borhood and features. This makes the T-MPHN an inductive
learning approach [34] that can be applied to unseen nodes and
more general, dynamic hypergraphs. In Section VI-C, three
different hypergraphs are constructed for training, validation,
and testing, which can be seen as evolving hypergraphs at
different times.

E. Design Variations of T-MPHN

Under the T-MPHN framework proposed above, it is
conceivable that several variations may be formulated for
practical use. We next illustrate some examples of its
variations. A comprehensive investigation of other possible
variations will be left to future work.

In the T-message passing of (26), one can set the hypergraph
order M as a fixed value so that any hyperedge with more
than M nodes will be uniformly downsampled to M degree.
This downsampling strategy is especially useful for datasets
with only a few extremely large edges but many small-sized
edges. Furthermore, the order M of the hypergraph at different
layers can be set to be different: this variation is motivated by
noting that the /th layer of HyperGNNs aggregates information
from the /th hop neighbors. As the aggregation propagates
to neighbors that are multiple hops away from the central
target node, fewer neighboring nodes may be considered.
By decreasing the order M as the layer / goes deep, the model
performance can often be improved, and we will provide
further discussion in Section VI.

In addition to M, one may also change the aggregation
function. If a dataset contains “hub” nodes that lie in many
hyperedges, a normalization strategy is to set the edge
AGGREGATE function in (26) to be the mean function, that is,

> (o 3 (ouw)

eMeEM®) 7()ENM®
where d, is the degree of node v that counts the number of
edges that v lies in. Other AGGREGATE functions, such as

1

@)
m) =
e =

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

max pooling and long short-term memory (LSTM) [34], may
also be considered in accordance with a study’s learning task.

F. Complexity Analysis

Unlike the T-spectral convolution that requires the use of
the entire sparse adjacency tensor, the T-MPHN algorithm
employs the compressed adjacency tensor to design an efficient
T-message-passing scheme for a hypergraph to avoid excessive
space and time complexity. Let §, = maXx,cpd, be the
maximum degree of all nodes and DY~V be the dimension
of the embedding features generated from the previous layer
[—1. Suppose that M is fixed (which is typically much smaller
than N). Then, since the adjacency value table and the neigh-
borhood table are both stored in dictionary format, the space
complexity of T-"MPHN is O(N4,) and the time complexity for
each layer [is O(N§,+N D~V D®), which is linear in N and
independent of hypergraph order M. Compared to the polyno-
mial complexities of T-spectral convolution in Section III-D,
T-MPHN is scaled to be both space and computationally
efficient and practically comparable to the state-of-the-art
HyperGNNs such as UniGCN [19] and HNHN [11].

V. DISCUSSION AND CONNECTION TO RELATED WORK

Here, we first highlight connections between the three
proposed HyperGNNs: T-spectral convolutional HyperGNN
(T-spectral), T-spatial convolutional HyperGNN (T-spatial),
and T-MPHN. Then, we show the relationship between our
work and other closely related work under some special cases.

1) Connection Between T-Spectral and T-Spatial Convolu-
tions: As shown in Section IV, the T-spatial convolution is
obtained by localizing (or taking the first frontal slice of)
the T-spectral convolution. Alternatively, a connection can be
viewed from (38) in Algorithm 2 (see the Supplementary
Material). Under the hypergraph order M = 2, the pre-Fourier
transform and the post-Inverse Fourier transform in Algorithm
E (see the Supplementary Material) can be omitted since they
are applied only to orders higher than 2; the computation of
T-spectral convolution then becomes the T-spatial convolution
of (16). Therefore, if a hypergraph is reduced to a simple
graph (M = 2), the T-spectral convolution is the same as the
T-spatial convolution.

2) Connection Between T-Spatial ~Convolution and
T-MPHN: The numerical computations of the T-spatial
aggregation in (18) and the T-message passing in (26) are
quite similar. We summarize the connection between them in
Theorem 2.

Theorem 2: Given any node v; € V, its aggregated feature
Y., = i, Yi2,...,yip) in (18) is equivalent to the
neighborhood embedding mps(,,) computed by (26) up to a
node degree normalization factor.

Proof: See Appendix H for proof (Supplementary
Material). [l

In particular, if the node aggregation function and edge
aggregation function in (26) are chosen to be the summation
and average, the neighborhood embedding becomes exactly

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the same as the aggregated feature in (18), that is,

me - Ly

Vi oM e EM ()

a Y. CNIx,|=[Y].
e

While the T-message passing performs a similar higher
order aggregation as the T-spatial aggregation, the T-message
passing is more general due to the flexibility of choosing the
AGGREGATE functions. Aside from the aggregation func-
tion, the difference between the T-spatial convolution and the
T-MPHN also lies in the way of combining the neighborhood
embedding mpsu,,) and the central node embedding x,,. In the
former approach, if a self-loop-added adjacency tensor is used,
the combining operation is restricted to summation; in the
T-MPHN, the combining operation is more flexible, and we
choose to use concatenation in the experiment.

3) Connection Between T-MPHN and Existing HyperGNNs:
As atensor is a generalization of a matrix, certain matrix-based
HyperGNNs built on hypergraph expansions (e.g., HGNN [10]
and HCHA [23]) are naturally subsumed in our work. For
example, after applying clique expansion to a hypergraph G,
we obtained a uniform order-2 hypergraph, and from the
definition of the adjacency tensor with M = 2, adjacency coef-
ficients are a;; = 1 for each edge e = (i, j), which reduces the
adjacency tensor to the adjacency matrix. For the hypergraph
signal that is defined as an (M — 1) times outer product of
the original signal X € RV*P it automatically becomes the
same as the original signal with M = 2. Furthermore, using
our definition of neighborhood with M = 2, the adjacency
matrix-based neighboring aggregation rule can be written as
M) = Dpepp) Mew) With Meq) = 3 ca) X
which is a special case of the T-MPHN.

VI. EXPERIMENTS

The proposed T-HyperGNNS, including the T-spectral con-
volution (T-spectral), the T-spatial convolution (T-spatial), and
the T-MPHN, are evaluated in this section. In the first experi-
ment, we consider transductive learning in which all nodes are
involved in modeling during the training process (except for
true labels of testing sets). An ablation study is conducted to
show the effectiveness of using the adjacency tensor and the
CNI tensor. To demonstrate the scalability and conductivity of
the T-MPHN, an inductive setting is applied to four additional
datasets, demonstrating broad applications in computer vision,
political, and business tasks. We use the accuracy rate to be
the metric for all experiments. For each reported accuracy rate,
50 repeated experiments with different seeds are performed to
compute the mean and the standard deviation of the accuracy
rates. We use the Adam optimizer with a learning rate and
the weight decay choosing from {0.01, 0.001, 0.0001} and
{0.005, 0.0005, 0.00005} and tune the hidden dimensions over
{64, 128, 256, 512} for all methods.

A. Transductive Node Classification

The task for transductive node classification is to predict
the label associated with each node by taking the hypergraph
structure and node features as input. In this experiment,

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: T-HyperGNNs: HYPERGRAPH NEURAL NETWORKS VIA TENSOR REPRESENTATIONS 11

TABLE I

SUMMARY STATISTICS OF THE ACADEMIC NETWORK DATASETS
Statistic Cocitation Coauthorship
Cora Citescer PubMed Cora DBLP

V] 83 87 89 59 65

|€] 42 50 40 40 29
Feature Dimension D 1433 3703 500 1433 1425

Number of Classes 7 6 3 7 6

we consider a transductive setting [34], in which the hyper-
graph structure is assumed to be the same during the training
and testing processes, that is, we assume that the testing node
connections are known during model training.

1) Datasets: We use five standard hypergraph datasets
in the academic network, which include two co-citation
datasets (Cora and DBLP) and three coauthorship datasets
(Cora, CiteSeer, and PubMed). The hypergraph structure
is obtained by viewing each paper as a node and each
co-citation or coauthor relationship as a hyperedge. The node
features associated with each paper are the bag-of-words
representations summarized from the abstract of each paper,
and node labels are classes of papers (e.g., algorithm and
computing). The raw datasets [24] are further downsampled to
smaller hypergraphs such that the T-spectral and the T-spatial
convolution HyeprGNNs can be applied to compare with the
proposed T-MPHN. The descriptive statistics of these five
hypergraphs are summarized in Table I.

2) Setup and Benchmarks: To classify the labels of testing
nodes, we feed the whole hypergraph structure and node
features to the model. The training, validation, and testing data
are set to be 50%, 25%, and 25% for each complete dataset,
respectively. Following the convention of HyperGNNs, we set
the number of layers for all HyperGNNs to be 2 to avoid
oversmoothing except for the T-spectral HyperGNN. For
the T-spectral HyperGNN, we use only one layer because
it is considered as a global approach that propagates to all
nodes within just one-step T-spectral convolution. In this
experiment, we choose regular MLP, clique expansion + GCN
(CEGCN), HGNN [10], HyperGCN [24], and HNHN [11] as
our benchmarks since these methods are originally designed
for transductive settings using matrix representations. Here,
CEGCN, HGNN, and HyperGCN utilize hypergraph reduction
approaches to define the hypergraph adjacency matrix and
Laplacian matrix such that spectral convolutions can be
built up, whereas HNHN formulates a two-stage spatial
propagation rule using the incidence matrix.

3) Results and Discussion: The testing results of the five
academic networks are summarized in Table II. Overall,
the tensor-based approaches achieve satisfactory performance
compared to all the benchmarks, indicating the importance of
effectively utilizing high-order tensor representation for learn-
ing hypergraphs. In particular, the T-spectral HyperGNN con-
structed with the t-product shows the best results on all these
data examples except for the PubMed dataset. This observation
coincides with our theoretical anticipation that the T-spectral
model is the most robust approach as it contains the rich-
est high-order information. Built on the localized T-spectral
convolution, the T-spatial approach with only the first frontal

slice of the t-product unsurprisingly shows somewhat reduced
accuracy rates compared to the T-spectral approach but still
achieves competitive results to the benchmarks. The T-MPHN,
on the other hand, maintains very competitive results across
all the datasets compared to the T-spectral approach (e.g., for
the PubMed dataset, the average accuracy rate is even 7.68%
higher than that of the T-spectral approach). Comparing these
two proposed approaches, we tend to view the T-MPHN as the
most competitive method to model various datasets and tasks;
such capability is partially attributable to the concatenation of
the neighborhood embedding and the central node embedding
[i.e., Concat([x,, mpsm)])], which forms a “skip connection”
between the input and the output of an aggregation step (see,
e.g., GraphSAGE [34]) and, more importantly, the change of
hypergraph order M at different layers.

In addition, it is worthwhile to note that the three proposed
HyperGNNs themselves already demonstrate an ablation study
among the full t-product, the simplified t-product (with only
the first frontal slice), and the node-wise message passing with
concatenation. Through the comparison between the T-spectral
and the T-spatial approaches, we can see that the full t-product
captures more information than only its first frontal slice; from
the T-spatial approach to the T-MPHN, we can further see
that such information loss can be partially compensated from
the concatenation of the neighborhood embedding and the
central node embedding. To gain additional insights into the
model architecture of the T-MPHN, we conduct an ablation
study in the next subsection to examine the adjacency value
computation and the CNI.

B. Ablation Study for T-MPHN

On the same academic networks, an ablation study is
designed by “turning off” the adjacency values in (23) and
the CNIs in (27) separately and testing their corresponding
performance. We consider three modeling scenarios: 1) the
full T-MPHN model; 2) the T-MPHN model with the CNI
but not the adjacency values; and 3) the T-MPHN model
with the adjacency values but not the CNIs. In the second
scenario, when the adjacency values are “turned off,” we
fill in all ones instead. In the third scenario, when the CNI
is “turned off,” we replace the Hadamard product of node
features with their summation. The results of the ablation study
are shown in Fig. 8. We can observe that the performance of
the two corrupted T-MPHNS is worsened compared to the full
T-MPHN, confirming the effectiveness of the adjacency values
and the CNI operation.

C. Inductive Learning on Evolving Hypergraphs

In this experiment, we apply our inductive approach:
T-MPHN to four real-world datasets and compare the per-
formance against other inductive approaches developed on
hypergraphs. To better adapt to practical circumstances,
we assume that the hypergraphs are evolving in which unseen
objects are added during testing. This setting is called induc-
tive learning [34], as opposed to the transductive setting in the
previous experiments. To create the inductive setting from our
static data, we randomly reserve 25% nodes as unseen nodes

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

AVERAGED TESTING ACCURACY (%, == STANDARD DEVIATION) ON FIVE ACADEMIC NETWORKS FOR TRANSDUCTIVE NODE CLASSIFICATION.
THE ToP THREE RESULTS WITH THE HIGHEST AVERAGE ACCURACY ARE HIGHLIGHTED FOR EACH DATASET

Method Data Time Cocitation Coauthorship
Complexity Cora Citeseer Pubmed Cora DBLP
MLP X O(NDD’) 48.23 £ 7.35 65.56 +1.48 73.89 + 5.60 46.11 £+ 8.35 76.15 + 7.26
CEGCN (H,X) O(N?D + NDD") 72.43 + 8.79 73.22 +7.83 92.82 +5.39 70.26 + 7.65 92.33 £ 5.16
HGNN (H,X) O(N2D + NDD') 70.59 + 1.22 73.89 + 8.98 82.22 +1.33 66.94 + 6.51 93.08 + 6.39
HyperGCN (H, X) O(N?D + NDD' + |€|6e) 35.29 +1.24 61.11 +1.53 76.11 +1.40 25.79 +6.43 25.38 +1.29
HNHN (H,X) O(N|E|D+|€|DD’'+ NDD") 69.41 +9.04 74.44 + 9.69 77.22 +4.08 71.39 + 5.56 93.85 + 5.76
T-spectral (A, X) O(NMD + N(M_l)DD/) 71.59+3.43 7833+8.03 86.67+1.18 75.29+5.59 96.10+2.16
T-spatial (A, X) O(NMD + N(M_l)DD’) 69.17 + 7.58 76.11 +7.05 84.22 4+ 3.26 70.00 £+ 6.01 94.62 +4.93
T-MPHN (A, X) O(NDD’ + Néy) 70.83+559 77.22+6.44 93.33+4.48 7278 +4.44 9538+ 3.10
TABLE III
SUMMARY STATISTICS OF 3-D OBJECT RECOGNITION DATASETS
Statistic ModelNet40 NTU House Walmart
V] 12311 2012 1290 18032
z model €] 24622 4024 341 5798
g IE\:’IIALKI::JIZS Feature Dimension D 6144 6144 100 100
] No interactions Number of Classes 40 67 2 10

PubMed
dataset

Citeseer

Fig. 8. Averaged accuracy of T-MPHN and its corrupted variations on the
five academic networks for the ablation study.

for testing, while 50% and 25% nodes are used for regular
training and validation, respectively.

1) Datasets: We employ two public 3-D object detection
datasets (Princeton ModelNet40 [35] and the National Taiwan
University (NTU) [36]) and other two datasets House
(Politician) and Walmart (Business). On the two 3-D object
detection datasets, each 3-D object is viewed as a node, and
the features associated with each node are extracted using
GVCNN [37] and MVCNN [38] following the experimental
setting of prior work [10]. To generate the hypergraph struc-
tures for these two datasets, we follow the setup of [10] by
using the K-nearest neighbor (KNN) algorithm with K = 4
so that all hyperedges of the constructed hypergraph have
size 5. The motivation to construct hyperedges this way is
to explicitly reveal higher order correlations among objects,
which has been empirically shown to be a helpful strategy
compared to pure vision-based models such as PointNet [39]
and PointCNN [40]. We summarize the data preprocessing
steps described above in Fig. 10 in Appendix K (see the
Supplementary Material). The goal of the experiment is to
predict the label associated with each node (e.g., window,
aircraft, and shelf). For the House dataset [41], each node is a
U.S. congressperson and a hyperedge is formed if a group
of congresspersons put forth a bill together. Each node is
labeled with political party affiliation and the goal is to classify
the political party (Democratic or Republican) of each node.
The last dataset Walmart [42] contains a hypergraph where

nodes are an item at Walmart and hyperedges are sets of co-
purchased products. Each node is associated with a department
label (e.g., clothing, accessories, and pet) and the goal is to
classify the products. Considering that either the House or the
Walmart dataset has node features, we follow prior work [13]
to set the node features as 100-D Gaussian random vectors
with variance 1. The summary statistics of these four datasets
are displayed in Table III.

2) Setup and Benchmarks: Since T-spectral and T-spatial
HyperGNNs are not applicable to inductive settings, we only
implement T-MPHN and compare its performance with the
benchmark inductive methods: MLP, clique expansion with
GraphSage (CEGraphSAGE) [34], HyperSAGE [15], and
UniSAGE [19]. The CEGraphSAGE reduces a hypergraph to
a simple graph and applies graph sampling and aggregation to
the simple graph. The HyperSAGE defines the intraedge and
interedge aggregations through a generalized mean function
M, = ((1/n) >0, x")/P | and we set p = 0.01 as it
yields the best performance [15]. On the other hand, UniSAGE
proposes a node—edge—node propagation rule using mean and
summation as the aggregation functions at the first and the
second layers, respectively. For all models, we construct two-
layer neural networks.

3) Results: The average accuracy rates along with standard
deviations are reported in Table IV. It is apparent from the
table that the T-"MPHN achieves consistently better results than
the other benchmark methods for unseen nodes with compara-
ble time complexity. By comparing the MLP approach against
HyperGNNs, we can see that in general, taking into account
an additional hypergraph representation improves model per-
formance except for the HyperSAGE approach. A plausible
reason for this could be the instability of the complex numbers
caused by the generalized mean function. On the other hand,
the other two simple yet effective approaches CEGraphSage

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE IV

WANG et al.: T-HyperGNNs: HYPERGRAPH NEURAL NETWORKS VIA TENSOR REPRESENTATIONS

AVERAGE TESTING ACCURACY (%, £ STANDARD DEVIATION) ON FOUR REAL-WORLD DATASETS FOR INDUCTIVE NODE CLASSIFICATION.

THE BEST RESULTS WITH RESPECT TO THE AVERAGE ACCURACY ARE HIGHLIGHTED FOR EACH DATASET

Method Data Time Complexity ModelNet40 NTU House Walmart
MLP X O(NDD’) 88.42 +1.41 77.68 + 4.46 67.25 + 2.31 46.39 £+ 3.14
CEGraphSAGE (A,X) O(Né, + NDD') 93.32 £ 1.98 83.21 +1.47 70.81 £ 2.43 54.12 £ 2.81
HyperSAGE (G,X) O(€lée + NDD") 88.37 £ 2.66 75.34 £ 1.04 59.75 £ 2.09 46.64 +2.43
UniSAGE (6,X) O(Né,+NDD") 92.62 + 2.19 81.05 + 0.82 68.64 £ 2.17 63.20 £ 1.47
T-MPHN (A, X) O(Né,+NDD') 96.69+322 86.34+217 72.98+239 74424213

and UniSAGE both achieve comparable results on all datasets.
A closer comparison between T-MPHN and the benchmarks
shows that, on the Walmart dataset, the performance differ-
ence between the T-MPHN and the second-best approach
(UniSAGE) is the largest, with the T-MPHN achieving a
remarkable 17.75% accuracy improvement. This could be due
to the full higher order relationship exploitation in T-MPHN.
Since the features of the Walmart dataset are generated ran-
domly, the hypergraph structure is especially important. Under
such circumstances, the advantage of T-MPHN is significant.

4) Effects of Hyperparameters: While there are various
hyperparameters tuned in the training process, the orders of
hypergraph at each layer of the T-MPHN can be flexibly
treated as hyperparameters. We find that decreasing hyper-
graph orders (e.g., 5 — 3) are generally desirable in practice.
This can be viewed as a regularization of the oversmoothing
problem. The first layer spreading at the first-hop neighbors
of target nodes is naturally the most important one that
requires a higher order, while the second layer aggregating
the second-hop neighbors could use a lower order.

D. Running Times and Memory Consumption

The running times and memory consumption of all methods
are available in Appendix L (see the Supplementary Material).
Consistent with the time and space complexity analysis, the
experiment results validate our expectations regarding the
complexity hierarchy of the T-spectral, T-spatial, and T-MPHN
models. Specifically, on the academic networks, T-spectral
shows the highest consumption with up to 191 s/epoch and
about 5000 MB of memory. T-spatial represents a mid-level
complexity, requiring around 70 s and 2000 MB. Most notably,
T-MPHN demonstrates a significant reduction in both time
and memory usage, clocking only 0.06 s/epoch and consum-
ing 700 MB, which is comparable with simpler models such as
GCN and MLP. This significant improvement in efficiency is
primarily attributed to T-MPHN’s utilization of tensor sparsity.
By leveraging this property, T-MPHN not only maintains
the higher order tensor expensiveness but also minimizes
additional time and memory requirements.

However, we observed that on larger inductive datasets
such as ModelNet40, T-MPHN’s consumption metrics are
slightly higher, with both time and memory usage doubling
in comparison to similar-complexity hypergraph networks.
This increase is largely due to the dense connectivity inher-
ent in the hypergraph structure generated via the KNN
algorithm. A deeper examination revealed that the majority of

T-MPHN'’s computation time is allocated to forward computa-
tion, with backpropagation being comparatively faster. Within
the forward process, the most time-consuming step involves
solving the combinatorial problem described in (25), which
is essential for constructing the Mth-order neighborhood of
nodes. To address this bottleneck, one of our future research
directions includes operating out the neighborhood aggrega-
tion as a preprocessing step to further improve the training
efficiency.

VII. CONCLUSION AND FUTURE WORK

In this article, we introduce tensor representations of hyper-
graphs and present a general T-HyperGNN framework that
consists of T-spectral convolutional HyperGNN, T-spatial con-
volutional HyperGNN, and T-MPHN. To the best of our
knowledge, this is the first work using tensor representations in
HyperGNNs. The advantages of this framework are threefold.

1) The proposed models benefit from hypergraph tensor
descriptors. These descriptors preserve full higher order
relationships without using any hypergraph reduction
techniques, leading to loss-free hypergraph exploitation.
In addition, the tensor representations are applicable in
both spectral and spatial domains, providing a unified
framework for hypergraph representation learning.

2) The T-spectral convolution fills up the sparse literature
in spectral HyperGNNs by leveraging spectral filtering
in HGSP.

3) The CNI tensors consider polynomial interactions of
features, which enlarge receptive fields of traditional
linear aggregation schemes, capturing intrinsic higher
order relationships in hypergraphs.

However, with direct tensor representations, the time and
space complexities are too large for some real-world appli-
cations. To address this limitation, we further propose the
compressed adjacency tensor and the T-MPHN, which can
efficiently handle large hypergraphs containing thousands of
vertices as confirmed by the extensive numerical experiments.
The empirical results on the nine real-world datasets show
a very competitive performance of the proposed HyperGNNs
in comparison to the other state-of-the-art benchmarks. Some
issues and open questions of the T-HyperGNN framework
remain to be addressed in future work:

1) Hypergraph structures studied in this work are undi-
rected, unweighted, static (without time variation), and
complete. It is interesting to consider directed, weighted,
dynamic [43], and incomplete [44], [45] hypergraphs.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

2)

3)

4)

5)

[1]

[2]

[4]

[6]

[7]

[9]

[10]
[11]

[12]

[13]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

T-HyperGNNSs achieve satisfactory experimental results
after careful hyperparameter tuning via grid search.
However, it is of great interest to see how hyperpa-
rameter adaption techniques [46] can help to optimize
hyperparameters in T-HyperGNNS.

The current experiments have been primarily focused
on node classification tasks. It would be valuable to
examine the performance of T-HyperGNNs for other
tasks such as hyperlink prediction [47] and hypergraph
drawing [48], and other industrial applications, e.g.,
recommendation [5], cloud services [49], healthcare
[8], [50], and language comprehension [51].

While we propose the compressed adjacency tensor to
formulate T-MPHN, there are different approaches to
reducing the complexities of the high-dimensional sparse
tensors in neural networks, such as automatic sparse
learning [52]. We will investigate these approaches in
future work.

T-spectral and T-spatial convolutional HyperGNNs are
based on the tensor t-product x that is related to the
discrete Fourier transform. Other unitary transforms,
such as discrete cosine transform and Haar transform,
can be considered to establish new tensor products and,
thus, new hypergraph convolutions [53].

REFERENCES

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip,
“A comprehensive survey on graph neural networks,” [EEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4-24, Mar. 2020.

S. Jia, S. Jiang, S. Zhang, M. Xu, and X. Jia, “Graph-in-graph con-
volutional network for hyperspectral image classification,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 1157-1171, Jan. 2024.
D. Wang, B. Du, and L. Zhang, “Spectral-spatial global graph reasoning
for hyperspectral image classification,” IEEE Trans. Neural Netw.
Learn. Syst., 2023. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/10114988

C. Seo, K.-J. Jeong, S. Lim, and W.-Y. Shin, “SiReN: Sign-aware
recommendation using graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., 2022. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/9781816

V. La Gatta, V. Moscato, M. Pennone, M. Postiglione, and G. Sperli,
“Music recommendation via hypergraph embedding,” IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 34, no. 10, pp. 7887-7899, Oct. 2023.

S. Munikoti, D. Agarwal, L. Das, M. Halappanavar, and B. Natarajan,
“Challenges and opportunities in deep reinforcement learning with
graph neural networks: A comprehensive review of algorithms and
applications,” IEEE Trans. Neural Netw. Learn. Syst., 2023. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/10161704

M. M. Wolf, A. M. Klinvex, and D. M. Dunlavy, “Advantages to mod-
eling relational data using hypergraphs versus graphs,” in Proc. IEEE
High Perform. Extreme Comput. Conf. (HPEC), Sep. 2016, pp. 1-7.
D. A. Nguyen, C. H. Nguyen, and H. Mamitsuka, “Central-smoothing
hypergraph neural networks for predicting drug—drug interactions,”
IEEE Trans. Neural Netw. Learn. Syst., 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10091150

C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A graph multi-
attention network for traffic prediction,” in Proc. AAAI Conf. Artif.
Intell., Apr. 2020, vol. 34, no. 1, pp. 1234-1241.

Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural net-
works,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 3558-3565.
Y. Dong, W. Sawin, and Y. Bengio, “HNHN: Hypergraph networks with
hyperedge neurons,” 2020, arXiv:2006.12278.

M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra,
“Signal processing on higher-order networks: Livin’ on the edge. .. And
beyond,” Signal Process., vol. 187, Oct. 2021, Art. no. 108149.

E. Chien, C. Pan, J. Peng, and O. Milenkovic, “You are AllSet:
A multiset function framework for hypergraph neural networks,” 2021,
arXiv:2106.13264.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[14]

[15]

[16]

[17]

(18]

[19]
[20]
(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]

[33]

[34]

[35]

[36]

[38]

[39]

C. Wan, M. Zhang, W. Hao, S. Cao, P. Li, and C. Zhang, “Principled
hyperedge prediction with structural spectral features and neural net-
works,” 2021, arXiv:2106.04292.

D. Arya, D. K. Gupta, S. Rudinac, and M. Worring, “HyperSAGE:
Generalizing inductive representation learning on hypergraphs,” 2020,
arXiv:2010.04558.

M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-order
tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM J. Matrix Anal. Appl.,
vol. 34, no. 1, pp. 148-172, 2013.

M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order
tensors,” Linear Algebra Appl., vol. 435, no. 3, pp. 641-658, Aug. 2011.
K. Pena-Pena, D. L. Lau, and G. R. Arce, “T-HGSP: Hypergraph signal
processing using t-product tensor decompositions,” IEEE Trans. Signal
Inf. Process. over Netw., vol. 9, pp. 329-345, 2023.

J. Huang and J. Yang, “UniGNN: A unified framework for graph and
hypergraph neural networks,” 2021, arXiv:2105.00956.

D. E Gleich, L.-H. Lim, and Y. Yu, “Multilinear PageRank,” SIAM
J. Matrix Anal. Appl., vol. 36, no. 4, pp. 1507-1541, Jan. 2015.

A. Banerjee, A. Char, and B. Mondal, “Spectra of general hypergraphs,”
Linear Algebra Appl., vol. 518, pp. 14-30, Apr. 2017.

S. Zhang, Z. Ding, and S. Cui, “Introducing hypergraph signal process-
ing: Theoretical foundation and practical applications,” IEEE Internet
Things J., vol. 7, no. 1, pp. 639-660, Jan. 2020.

S. Bai, F. Zhang, and P. H. S. Torr, “Hypergraph convolution and hyper-
graph attention,” Pattern Recognit., vol. 110, Feb. 2021, Art. no. 107637.
N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar,
“HyperGCN: A new method for training graph convolutional networks
on hypergraphs,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1511-1522.

C. Yang, R. Wang, S. Yao, and T. Abdelzaher, “Semi-supervised
hypergraph node classification on hypergraph line expansion,” 2020,
arXiv:2005.04843.

R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for ad
click predictions,” in Proc. ADKDD, Aug. 2017, pp. 1-7.

J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “XDeepFM:
Combining explicit and implicit feature interactions for recommender
systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Jul. 2018, pp. 1754-1763.

C. Ye and Y. Yang, “High-dimensional adaptive minimax sparse esti-
mation with interactions,” IEEE Trans. Inf. Theory, vol. 65, no. 9,
pp. 5367-5379, Sep. 2019.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” 2013, arXiv:1312.6203.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 3844-3852.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

A. Novikov, M. Trofimov, and I. Oseledets, “Exponential machines,”
2016, arXiv:1605.03795.

C. Hua, G. Rabusseau, and J. Tang, “High-order pooling for graph neural
networks with tensor decomposition,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 35, 2022, pp. 6021-6033.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 1024-1034.

Z. Wu et al.,, “3D ShapeNets: A deep representation for volumetric
shapes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1912-1920.

D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On visual
similarity based 3D model retrieval,” Comput. Graph. Forum, vol. 22,
no. 3, pp. 223-232, Sep. 2003.

Y. Feng, Z. Zhang, X. Zhao, R. Ji, and Y. Gao, “GVCNN: Group-
view convolutional neural networks for 3D shape recognition,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 264-272.

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 945-953.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on
point sets for 3D classification and segmentation,” in Proc. I[EEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 652-660.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: T-HyperGNNs: HYPERGRAPH NEURAL NETWORKS VIA TENSOR REPRESENTATIONS 15

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(511

[52]

(53]

Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN:
Convolution on X-transformed points,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 31, 2018, pp. 820-830.

P. S. Chodrow, N. Veldt, and A. R. Benson, “Generative hypergraph
clustering: From blockmodels to modularity,” Sci. Adv., vol. 7,
no. 28, Jul. 2021. [Online]. Available: https://www.science.org/doi/
10.1126/sciadv.abh1303

I. Amburg, N. Veldt, and A. Benson, “Clustering in graphs and hyper-
graphs with categorical edge labels,” in Proc. Web Conf., Apr. 2020,
pp. 706-717.

X. Luo, H. Wu, Z. Wang, J. Wang, and D. Meng, “A novel approach
to large-scale dynamically weighted directed network representation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 9756-9773,
Dec. 2022.

X. Luo, H. Wu, and Z. Li, “Neulft: A novel approach to nonlinear
canonical polyadic decomposition on high-dimensional incomplete ten-
sors,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 6148-6166,
Jun. 2023.

D. Wu, Y. He, and X. Luo, “A graph-incorporated latent factor analysis
model for high-dimensional and sparse data,” I[EEE Trans. Emerg. Topics
Comput., vol. 11, no. 4, pp. 907-917, Oct./Dec. 2023.

X. Luo, Y. Yuan, S. Chen, N. Zeng, and Z. Wang, “Position-transitional
particle swarm optimization-incorporated latent factor analysis,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958-3970, Aug. 2022.
C. Chen and Y.-Y. Liu, “A survey on hyperlink prediction,”
IEEE Trans. Neural Netw. Learn. Syst., 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10163497

M. Tiezzi, G. Ciravegna, and M. Gori, “Graph neural networks for
graph drawing,” IEEE Trans. Neural Netw. Learn. Syst., 2022. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9810169

F. Bi, T. He, Y. Xie, and X. Luo, “Two-stream graph convolutional
network-incorporated latent feature analysis,” IEEE Trans. Services
Comput., vol. 16, no. 4, pp. 3027-3042, Jul./Aug. 2023.

X.-A. Bi, Y. Wang, S. Luo, K. Chen, Z. Xing, and L. Xu, “Hypergraph
structural information aggregation generative adversarial networks for
diagnosis and pathogenetic factors identification of Alzheimer’s disease
with imaging genetic data,” IEEE Trans. Neural Netw. Learn. Syst.,
2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9925992

X. Sun, F. Yao, and C. Ding, “Modeling high-order relationships:
Brain-inspired hypergraph-induced multimodal-multitask framework
for semantic comprehension,” IEEE Trans. Neural Netw.
Learn. Syst., 2023. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/10068184

Z. Tang et al., “Automatic sparse connectivity learning for neural
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 10,
pp. 7350-7364, Oct. 2023.

M. Li, Z. Ma, Y. G. Wang, and X. Zhuang, “Fast Haar transforms for
graph neural networks,” Neural Netw., vol. 128, pp. 188-198, Aug. 2020.

Fuli Wang (Student Member, IEEE) received the
B.Sc. degree in finance from Dongbei University of
Finance and Economics, Dalian, China, in 2018, and
the M.Sc. degree in statistics from the University of
Minnesota, Minneapolis, MN, USA, in 2020. She
is currently pursuing the Ph.D. degree in financial
services analytics with the University of Delaware,
Newark, DE, USA.

Her research interests include graph neural net-
works, graph signal processing, anomaly detection,
and applications in finance and business.

Karelia Pena-Pena (Student Member, IEEE)
received the B.Sc. degree in electrical engineering
from the Universidad de Los Andes, Mérida,
Venezuela, in 2017, and the M.Sc. and Ph.D.
degrees in electrical and computer engineering from
the University of Delaware, Newark, DE, USA, in
2020 and 2023, respectively.

Her research interests include graph signal
processing, natural language processing, computer
vision, machine learning, and optimization.

Wei Qian received the Ph.D. degree in statistics
from the University of Minnesota, Minneapolis,
MN, USA, in 2014.

He joined the School of Mathematics and
Statistics, Rochester Institute of Technology, as an
Assistant Professor in 2014 and then moved
to the Department of Applied Economics and
Statistics, University of Delaware, Newark, DE,
USA, in 2017, where he has been an Associate
Professor since 2021. His research interests
include high-dimensional statistics, model selection,
dimension reduction, statistical computing, deep learning, reinforcement
learning, and data science applications.

Dr. Qian currently serves as a fellow for JP Morgan Chase (JPMC),
an affiliated member of the Institute of Financial Services Analytics, and the
Graduate Director of Statistics Programs at the University of Delaware.

Gonzalo R. Arce (Life Fellow, IEEE) is currently
the Charles Black Evans Distinguished Professor
of Electrical and Computer Engineering and a
J. P. Morgan-Chase Senior Faculty Fellow with the
Institute of Financial Services Analytics, Univer-
sity of Delaware, Newark, DE, USA. He held the
2010 and 2017 Fulbright-Nokia Distinguished Chair
of Information and Communications Technologies
with Aalto University, Espoo, Finland. He holds
25 U.S. patents and is the coauthor of four books.
His research interests include computational imag-
ing, data science, and machine learning.

Prof. Arce was an elected fellow of OPTICA, Society of Photo-Optical
Instrumentation Engineers (SPIE), Asia-Pacific Artificial Intelligence Associ-
ation (AAIA), and the National Academy of Inventors (NAI). He received the
NSF Research Initiation Award.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 28,2024 at 20:37:52 UTC from IEEE Xplore. Restrictions apply.

