Downloaded 06/28/24 to 108.172.233.197 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM/ASA J. UNCERTAINTY QUANTIFICATION (© 2024 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 473-502 and American Statistical Association

Conglomerate Multi-fidelity Gaussian Process Modeling, with Application to
Heavy-lon Collisions*

Yi Jitll, Henry Shaowu Yuchitll, Derek Soeder®, J.-F. PaquetH, Steffen A. Bass?,
V. Roshan Josephi, C. F. Jeff Wu¥, and Simon Mak#

Abstract. In an era where scientific experimentation is often costly, multi-fidelity emulation provides a pow-
erful tool for predictive scientific computing. While there has been notable work on multi-fidelity
modeling, existing models do not incorporate an important “conglomerate” property of multi-fidelity
simulators, where the accuracies of different simulator components are controlled by different fidelity
parameters. Such conglomerate simulators are widely encountered in complex nuclear physics and
astrophysics applications. We thus propose a new CONglomerate multi-FIdelity Gaussian process
(CONFIG) model, which embeds this conglomerate structure within a novel non-stationary co-
variance function. We show that the proposed CONFIG model can capture prior knowledge on
the numerical convergence of conglomerate simulators, which allows for cost-efficient emulation of
multi-fidelity systems. We demonstrate the improved predictive performance of CONFIG over state-
of-the-art models in a suite of numerical experiments and two applications, the first for emulation
of cantilever beam deflection and the second for emulating the evolution of the quark-gluon plasma,
which was theorized to have filled the universe shortly after the Big Bang.
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1. Introduction. Computer experimentation is widely used for modeling complex scien-
tific and engineering systems, particularly when physical experiments are costly, unethical,
or impossible to perform. This shift from physical to computer experimentation has found
success in a wide range of physical science applications, including rocket design [39], solar
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irradiance modeling [62], and 3D printing [7]. However, as systems become more complex
and realistic, such computer experiments also become more expensive, thus placing a heavy
computational burden on design exploration and optimization. Statistical emulators [57] have
shown great promise in tackling this limitation. The idea is simple but effective: computer
experiments are first performed at carefully chosen design points and then used as training
data to fit an emulator model to efficiently predict and quantify uncertainty on the expensive
virtual experiment.

In recent years, however, with the increasing sophistication of modern scientific problems,
an emerging challenge for emulators is the simulation of high-fidelity training data, which
can be prohibitively expensive. One way to address this is via multi-fidelity emulation, which
makes use of training simulation data of multiple fidelities (or accuracies) for model fitting.
Such multi-fidelity data can often be generated by varying different fidelity parameters, which
control the precision of the numerical experiment. There are a wide variety of fidelity param-
eters, ranging from mesh sizes for finite element analysis [41, 47] to time-steps for dynamical
system simulation [67]. The goal is to leverage information from lower-fidelity (but cheaper)
simulations to enhance predictions for the high-fidelity (but expensive) model, thus allowing
for improved emulation and uncertainty quantification (for the highest-fidelity code) at lower
computational costs.

There has been much recent work on multi-fidelity emulation, particularly for Gaussian
process (GP) modeling. This includes the seminal work [33], which presented a first-order
autoregressive model for integrating information over a hierarchy of simulation models from
lowest to highest fidelity. This Kennedy—O’Hagan model has then been extended in various
works, including a Bayesian hierarchical implementation in [54], the multi-fidelity optimization
in [16], and the nonlinear fusion model in [48]. In [66], the authors proposed a multi-fidelity
emulator for finite element analysis (FEA), which utilizes the discretization mesh size as
the single fidelity parameter. This emulator models the bias induced by discretization mesh
elements via a GP and is related to the state-of-the-art grid convergence index approach
typically employed in FEA [1, 56]. Such multi-fidelity models have been widely applied in
engineering design and scientific computing; see, e.g., [29, 34, 58]. Experimental design for
such emulators have been explored [70], including a sequential design strategy in [23]. Similar
ideas have also been applied for broader applications in data fusion [21], Bayesian optimization
[43, 52], and transfer learning [65].

The above methods, however, have limitations when applied to our motivating nuclear
physics application. Here, we are studying the quark-gluon plasma (QGP), a deconfined phase
of nuclear matter consisting of elementary quarks and gluons. The QGP was theorized to have
filled the universe shortly after the Big Bang, and the study of this plasma sheds light on the
properties of this unique phase of matter. This plasma can be simulated at a small scale by
virtually colliding heavy ions together at near-light speeds in particle colliders. Simulating such
collisions requires a “conglomerate” system of complex dynamical models to faithfully capture
the detailed evolution of the plasma. Consider, in particular, the three-stage simulation
framework in [15] (see also [12, 18, 24]), which models the initial energy disposition of the
heavy ions, the hydrodynamic evolution of the plasma after the collision, and the subsequent
conversion of nuclear fluid into particles. Figure 1 visualizes this conglomerate (specifically,
multi-stage) procedure. At each stage, the simulation of the component physics can involve
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Figure 1. Three-stage simulation of the quark-gluon plasma.

multiple and different fidelity parameters, controlling, e.g., the size of the hydrodynamics
spatial mesh or the time-scale for dynamic evolution.

This conglomerate multi-fidelity framework, where the simulator comprises multiple sub-
models for simulating different physics of a complex phenomenon, poses several challenges for
existing multi-fidelity emulators. First, since there are multiple fidelity parameters to set for
each simulation stage, the resulting simulation runs typically cannot be ranked from lowest to
highest fidelity, which is required for a direct application of Kennedy—O’Hagan-type models.
For example, to gauge the effects of three fidelity parameters, the physicist may choose to
run the simulator in three different ways, each with higher fidelity at one stage and lower
fidelity at the remaining stages. A priori, it is unclear if these three simulation approaches
can be ranked from lowest to highest fidelity. Second, unlike the multi-fidelity emulator in
[66] (which allows only one fidelity parameter), there are multiple fidelity parameters that
should be accounted for when training emulators with conglomerate simulations. Neglecting
this conglomerate structure for emulation can result in significantly poorer predictive perfor-
mance, as we show later. A broader emulation model is thus needed to tackle the challenges
presented by conglomerate multi-fidelity simulators, which are widely encountered in nuclear
physics [28] and astrophysics [26].

We propose in this work a new GP emulator that addresses these challenges. The pro-
posed CONglomerate multi-FIdelity Gaussian process (CONFIG) model makes use of a novel
non-stationary covariance function, which captures prior information on the numerical con-
vergence of conglomerate simulators. Our emulator is applicable for a variety of complex
multi-physics simulators, where each physics (with its corresponding fidelity parameters) is
jointly simulated via a conglomerate framework. By embedding this underlying conglomerate
structure within its kernel specification, the CONFIG model can yield improved emulation
performance and uncertainty quantification over existing methods for predicting the limiting
highest-fidelity simulator. This is demonstrated in a suite of numerical experiments, a beam
deflection problem in finite element analysis, and an application to the motivating heavy-ion
collision problem. Section 2 reviews several existing multi-fidelity emulators and outlines the
motivating QGP problem. Section 3 presents the model specification for the proposed CON-
FIG emulator. Section 4 discusses implementation details for CONFIG, including parameter
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estimation and experimental design. Section 5 compares the proposed model with existing
methods on a suite of numerical experiments. Finally, section 6 demonstrates the effective-
ness of CONFIG for the motivating QGP application as well as a cantilever beam deflection
problem. Section 7 concludes the paper.

2. Preliminaries and motivation. In this section, we first provide an overview of con-
glomerate multi-fidelity simulators and their use for complex multi-physics applications. We
then briefly introduce the GP model and review the Kennedy—O’Hagan model in [33] and the
multi-fidelity model in [66]. Finally, we discuss the limitations of such models for our QGP
application, thus motivating the proposed CONFIG model.

2.1. Conglomerate multi-fidelity simulation. With an urgent need for reliable simulation
of complex phenomena involving multiple physical mechanisms and/or components, conglom-
erate multi-fidelity simulations are now increasingly used in modern scientific and engineering
applications, such as structural studies [13, 63], engine combustion [44], and high-energy
physics [35]. Such simulators model the complex phenomenon via either multiple submodels
that account for different physics (e.g., hydrodynamic evolution, nuclear particlization) or
multiple components (e.g., spatial mesh, time discretization) that are required by the simu-
lation procedure. Consequently, the simulation of the owverall phenomenon typically involves
multiple fidelity parameters, each controlling the simulation accuracy of individual submodels
or components. This poses a key challenge for existing emulator models.

To tackle this, it is useful to first understand different types of conglomerate simulators
encountered in applications. In our experience, this falls roughly into two scenarios (see
Figure 2):

e Scenario 1: The simulator consists of multiple fidelity parameters for simulating
a single mechanism or phenomenon. Such parameters control different means for
varying simulation precision, e.g., via spatial meshing or temporal discretization. One
example is the FEA of a cantilever beam deflection under stress, where three mesh
fidelity parameters can be used for each dimension of the three-dimensional finite
element analysis. We will investigate this application further in section 6.1.

/ Conglomerate Multi-fidelity Simulation \

Scenario 1 Scenario 2

11-1],-8

/

Figure 2. Visualizing examples of Scenarios 1 and 2 for conglomerate multi-fidelity simulations. The left
plot shows an example of Scenario 1 for cantilever beam deflection, where the three fidelity parameters specify the
size of the finite elements for the beam. The right plot shows an example of Scenario 2 for heavy-ion collisions,
where different fidelity parameters control simulation precision at different stages of the collision system.
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e Scenario 2: The simulator comprises multiple stages that are performed sequentially
over time, where a separate phenomenon is simulated at each stage, with associated
fidelity parameters. Multiple mechanisms are thus involved in simulating the desired
phenomenon. This is the case for our motivating nuclear physics problem (Figure 1),
where multiple mesh size parameters control simulation precision in each of the three
consecutive stages for heavy-ion collisions. We will investigate this application further
in section 6.2.

Motivated by these two scenarios, we will present later two variations of the CONFIG model
that tackle each of these scenarios; more on this is presented in section 3.

2.2. Gaussian process modeling. Gaussian process (GP) modeling is a popular Bayesian
non-parametric approach for supervised learning [68] with broad applications for computer
experiments [57]. The specification of a GP model involves two key ingredients: the mean
function and the covariance function. Let x € [0,1]” be the input parameters (sufficiently
scaled) for the simulator, and let n(x) be the corresponding output of the simulator. (In
practice, the inputs need not be confined to a hypercube and can be defined beyond Fuclidean
spaces via arbitrary index sets.) A GP model places the following prior on the unknown
response surface 7(-):

(2.1) () ~GP(u(-), k(-,-))-

Here, p(-) is the mean function controlling the centrality of the stochastic process. If appro-
priate basis functions f(z) are known, one can model the mean function as p(x) = f(x)’3,
where 3 are the corresponding coefficients on f(x). In the absence of such information, yu(-) is
typically set to be a constant. The function k(-,-) is the covariance function that controls the
smoothness of its sample paths. Common choices of k(-,-) include the squared-exponential
and Matérn kernels [57].

Let D = {x1,...,X,} denote the simulated input points, and let y = [n(x1),...,7(Xy)]
be the simulated outputs. Assuming that the kernel hyperparameters are fixed and known
(we will discuss the estimation of such parameters later in section 4.1), the predictive distri-
bution 7(x*) at the new input x* conditional on data {D,y} is given by

(2.2) n(x")|D,y ~ GP(i(x"), s*(x")).

Here, the posterior mean and variance are given by

(2.3) Alx*) = u(x*) + k(x*, D) TK(D) "y — w(D)),
' s3(x*) = k(x*,x*) — k(x*, D)TK(D) " 'k(x*, D),
where k(x*,D) = [k(x*,x1),...,k(x* x,)] is the vector of covariances, u(D) = [u(x1),...,

p(x5,)] is the vector of means, and K(D) is the covariance matrix for the training data. The
models introduced later in this paper will make use of these closed-form predictive equations
with different choices of covariance functions.

2.3. The Kennedy—O’Hagan model. In the seminal work of [33], the authors proposed
a first-order autoregressive model for linking outputs from a hierarchy of H simulators from
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the lowest fidelity (simulator 1) to the highest fidelity (simulator H). Let n,(x) denote the
output from simulator h at standardized input parameters x € [0, 1]P. The Kennedy—O’Hagan
(KOH) model is specified as

(2.4) Mh(X) = pr—1Mh-1(X) + 0n(x), h=2,....H.

Here, pp_1 is a regression scale factor, and d0p,(x) is a bias term that models the discrepancy
between simulator h— 1 and h. The bias term §;,(x) may be modeled by a stationary GP with
a squared-exponential covariance function [57]

(2.5) Cov [6n(x), 04 (x")] = o}t exp {— Z bn.i(xi — xg)Q} ,
i=1

where ¢y, ; is the weight parameter for the ith input parameter at the hth fidelity level. Such
a model allows one to integrate information from a sequence of simulator models with varying
fidelity levels to efficiently emulate the highest-fidelity simulator model.

The KOH multi-fidelity model has subsequently been extended in a variety of ways, includ-
ing a Bayesian implementation in [53] and a nonlinear extension in [49]; see also [13, 17, 55].
This modeling framework is also closely related to the idea of co-kriging [60] in spatial sta-
tistics and was employed for sequential co-kriging design [36]. However, the aforementioned
methods assume that the multi-fidelity training data can be ranked from lowest to highest
fidelity. As such, this body of literature does not directly apply to the motivating problem
of conglomerate multi-fidelity emulation, where simulation accuracy is controlled by multiple
fidelity parameters, and thus there is no clear ranking of training data from lowest to high-
est fidelity. There are several ways to force existing models on this problem, but each has
its shortcomings. One could design the data such that the training simulations are ranked
(e.g., increasing all fidelity parameters simultaneously), but this would result in highly inef-
ficient designs which fail to sufficiently explore the space of fidelity parameters. One could
also arbitrarily assign a single “artificial” fidelity level for each simulation, which imposes
a ranking on the training runs. This, however, neglects the rich conglomerate multi-fidelity
framework (i.e., the “science”) for the simulator, which can lead to significantly poorer pre-
dictive performance from the emulator, as we show later.

2.4. The Tuo—Wu—Yu model. For problems where the fidelity level is controlled by a
single continuous fidelity parameter ¢ (e.g., mesh size), an alternative model is proposed in
[66] (we call this the TWY model) that can make use of such information. Let n(x,t) denote
the deterministic code output at standardized inputs x € [0,1]P and at fidelity parameter t.
Here, t is typically assumed to be between 0 and 1, i.e., t € [0,1], with a smaller ¢ indicating
a finer mesh size or, equivalently, higher mesh density. The TWY model adopts the following
model for n(x,t):

(2.6) n(x,t) =n(x,0) + 6(x,t) =: p(x) + d(x, ).

Here, ¢(x) :=n(x,0) denotes the “exact” simulation output at input x at the highest (limiting)
fidelity ¢t = 0, and d§(x,t) denotes the discrepancy (or bias) between this exact solution and
realized simulation output with mesh size ¢. In practical problems, the exact solution 7(x,0)
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is typically not obtainable numerically since some level of approximation (e.g., mesh or time
discretization) is needed for simulating the system. The goal is to leverage simulation training
data of the form {n(x;,t;)}_, along with an appropriate model on (2.6) to predict the exact
solution 7(x,0).

Since ¢(x) and J(x,t) are unknown a priori, these terms are modeled in [66] by two
independent Gaussian processes. For ¢(x), a standard GP prior is assigned with constant
mean and a stationary correlation (e.g., squared-exponential) function. For the bias term
0(x,t), a nonstationary zero-mean GP prior is assigned with covariance function

(27) COV[(S(Xl,tl), 5(X2, tz)] = O'%Ki(xl, Xg) min(tl,tg)é,

where K2(-,-) is a stationary correlation function on input parameters x, and £ is a hyper-
parameter. One can view this as a product of two kernels, where the kernel on the fidelity
parameter t is non-stationary and closely resembles that of a Brownian motion. This separable
kernel structure has been utilized in [50] as well.

This choice of non-stationary kernel over the single fidelity parameter ¢ can be reasoned
from a Bayesian modeling perspective. Consider the GP model with covariance function (2.7)
as a prior model on discrepancy d(x,t). Before observing the data, one can show from (2.7)
that

(2.8) limd(x,t) =0 for all x €0, 1]P.
t—0

The TWY model thus assumes a priori that the discrepancy term should converge to 0 as
fidelity parameter ¢ goes to 0 or, equivalently, that the simulation output 7(x,t) converges
to the exact solution ¢(x) as we increase the fidelity of the simulator. This can be seen as
a way of integrating prior information on the numerical convergence of the simulator within
the prior specification of the emulator model. One can further set the kernel parameter ¢ to
capture additional information on known numerical convergence rates of the simulator; see
[66] for details.

For the target conglomerate setting where multiple fidelity parameters are present, the
TWY model needs to be further extended. A simple modification might be to first assign
for each simulation run an “artificial” fidelity, e.g., the average of the multiple fidelity pa-
rameters, and then use this single aggregate fidelity level with the TWY model for multi-
fidelity emulation. However, such an approach ignores the rich conglomerate structure of the
simulation framework, which can lead to poor predictive performance. We show later that,
by integrating directly the conglomerate multi-fidelity nature of the simulation framework
(i.e., the “science”) within the CONFIG model, we can achieve significantly improved predic-
tive performance in numerical experiments and for the motivating nuclear physics application.

3. The CONFIG model. Given these limitations, we now present the proposed CON-
FIG model for the efficient emulation of conglomerate multi-fidelity simulations. Our model
adopts a novel non-stationary GP model which captures prior information on the numerical
convergence behavior of conglomerate simulators. Below, we outline the general CONFIG
model specification and then present two choices of non-stationary covariance functions which
capture this desired prior information.
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Let x € [0,1]? be the vector of p standardized simulation inputs for the computer code
(again assumed to be deterministic), and suppose there are ¢ fidelity parameters (denoted
by t € [0,1]7) that control simulation accuracy in the code. These may, e.g., consist of
different mesh sizes for domain discretization and time steps at different simulation stages.
As before, a smaller fidelity parameter ¢, (with other fidelity parameters held constant) yields
more accurate simulations at higher computational costs, with ¢, = 0 denoting the highest
(limiting) fidelity level. Let n(x,t) denote the deterministic code output at inputs x and
fidelity parameters t. The CONFIG model assumes the following decomposition of 7(x,t):

(3.1) n(x,t) =n(x,0) + 0(x,t) := p(x) + 0(x, t).

Similar to before, ¢(x) :=n(x,0) models the “exact” simulation solution at the highest (limit-
ing) fidelity setting of t — 0, and §(x,t) models the numerical discrepancy (or error) between
the exact solution ¢(x) and the simulated output 7(x,t). We next place independent GP
priors on both terms. For ¢(x), a standard GP is assigned with user-defined basis functions
for the mean and a stationary correlation function. In our later implementation, we make use
of linear basis functions along with the popular squared-exponential correlation function

(3.2) Cov]p(x1), p(x2)] = 0T KL (x1,%2) = ofexp {— Z%(ﬂﬁl,s - 962,5)2} )
s=1

where ;s is the weight parameter for the sth input dimension.

For the bias term §(x,t), we will carefully specify a new nonstationary covariance function
that captures one’s prior knowledge on the numerical convergence behavior. One desirable
property of §(x,t) is the limiting constraint

- — P
(3.3) %gl(l) d(x,t) =0 for all x €[0,1]P.

In words, for any inputs x, the simulation output n(x,t) should converge to the underlying
exact solution ¢(x) when all fidelity parameters converge to zero, i.e., all fidelity levels are
set to their highest (limiting) setting. Property (3.3) should thus be satisfied if the simulator
enjoys theoretical convergence guarantees (e.g., weak convergence of PDE solutions) or is
trusted to converge empirically. Another desirable property is that, for a fidelity parameter
t, and fixed levels of the remaining fidelity parameters t_,. # 0, we have

(3.4) tliglolP’(é(x,t) =0)=0 forall x€[0,1]7.

In words, for any inputs x and if any fidelity parameters t_, are nonzero, there should be
a nonnegligible (i.e., nonzero) discrepancy between the simulation output n(x,t) and the
underlying true solution ¢(x). This is again intuitive, as the simulator should not reach the
true solution when some of its fidelity parameters are not at their highest fidelities. The two
limiting constraints thus describe how fidelity parameters determine the discrepancy behavior
of the simulator: only when all fidelity parameters approach zero should the simulator converge
to the true solution.
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To satisfy these two properties, we place a GP prior on d(x,t) with product covariance
form

(3.5) Cov[d(x1,t1),0(x2,t2)] = 02 KO (x1,x2) KQ (t1, t2);

i.e., the effect of input variables and fidelity parameters are assumed to be separable for §.
For the first kernel K2(-,-), one can employ a standard stationary kernel; we make use of the
squared-exponential kernel

(3.6) K;Z(X]_,Xz —exp{ Zas (1,6 — xzs) }

in our later implementation. For the second kernel K¢ (t1,t2), a careful non-stationary spec-
ification is needed to satisfy the aforementioned two properties; one can show that this non-
stationarity is necessary but not sufficient for satisfying these properties; see [66] and later
discussion. We will present the next two choices for this kernel, which cater to the two common
scenarios for conglomerate multi-fidelity simulators from section 2.1.

We note that these kernel choices are only recommendations. The modeler should carefully
consider prior domain knowledge to carefully select a kernel that captures such knowledge.
With the kernel Ky specified (along with kernels K2 and K¢ ), one can show that the response
surface n(x,t) follows a GP model with covariance function

(3.7)
Kn{(Xl,tl), (Xg,tg)} = COV[ﬁ(Xl,tl),n(Xz,tg)] = O'le)(Xl,Xg) + 0'2K (Xl,Xg)Kt (tl,tg)

The predictive equations for the CONFIG model then follow immediately from the stan-
dard GP equations (2.2) and (2.3) with kernel K, given above and with the desired prediction
point (x*,0), as the goal is to predict the (limiting) highest-fidelity setting. We provide further
details on these predictive equations in section 4.1.1.

3.1. Kernel option 1. Consider the first kernel choice for K¢ (Kernel 1), which we rec-
ommend for Scenario 1 above. This takes the non-stationary form

(3.8)
q q
K(tl,t2 —exp{ ZG (tiy —tar) }—exp{—ZGrtiT}—exp{—Z@rt%,r}+1
r=1 r=1

Here, 0, denotes the weight parameter for the rth fidelity parameter. A larger 6, indicates
greater sensitivity of discrepancy d to the rth fidelity parameter, and vice versa. One can
check that, with this kernel (3.8), the two desired properties (3.3) and (3.4) for § are satisfied
(see the supplementary materials (supp.pdf [local/web 301KB]), linked from the main article
webpage), meaning that such a kernel indeed captures the aforementioned prior information
on numerical convergence behavior.

Kernel 1 is inspired by the non-stationary covariance function in [22], which was proposed
for a different task of uncertainty propagation for system outputs. The rationale for this
kernel here is as follows. For simplicity, let 6(t) denote the bias term at some fixed input x.
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One way to ensure that §(t) satisfies the limiting condition (3.3), i.e., limg_0d(t) = 0, is to
represent it as a difference of two terms

(3.9) 5(t) = K(t) — £(0),

where k() can be modeled as a GP. In words, the limiting condition on d(-) is enforced by
centering x by its response at the limiting fidelity 0. The covariance function for § can then
be written as

Cov[d(t1),d(t2)] = Cov]k(t1) — k(0),x(t2) — K(0)]
= Covl|k(t1), k(t2)] — Cov|[k(t1),x(0)] — Cov[k(tz2),x(0)] + Cov[k(0), x(0)].

Kernel 1 in (3.8) can be recovered from (3.10) with a squared-exponential correlation function
on k and satisfies the desired limiting condition (3.3) by construction.

Kernel 1 has several appealing features for conglomerate multi-fidelity emulation. First, in
many applications, one may have prior knowledge of the continuity of the underlying numerical
solutions (e.g., from FEA theory). With Kernel 1, the corresponding prior process on discrep-
ancy ¢ can be shown to yield continuous sample paths, thus capturing such prior knowledge
from a Bayesian perspective. Second, the form of this kernel provides a flexible framework
for modeling interactions between fidelity parameters across different stages. Compared to
the additive structure in Kernel 2 introduced later, the latent GP model on k(-) (with the
squared-exponential kernel) provides a flexible framework for learning interactions between
different fidelity parameters. Because of this, Kernel 1 appears to work best in Scenario 1
for emulating a single mechanism with multiple fidelity parameters, e.g., the FEA for beam
deflection with different fidelities for each dimension, as such systems often have significant
interaction effects between fidelity parameters, e.g., between mesh sizes of each dimension.

(3.10)

3.2. Kernel option 2. Consider next the second choice for K (Kernel 2), which we
recommend for the multi-stage sequential simulations in Scenario 2. This kernel takes the
non-stationary form

¢
(3.11) tl,tg [Z@ min tlr,tgr) ] .

Here, 6, is a weight parameter for the rth fidelity parameter, and ¢, and £ are positive integer
kernel hyperparameters which we discuss later. Similar to Kernel 1, a greater 0, allows for
greater sensitivity of the discrepancy § to the rth fidelity parameter. We can again show
that with this kernel (3.11), the two properties (3.3) and (3.4) for bias ¢ are satisfied. This
follows from the observations that K{(t/,t') tends to 0 as t/ — 0 and that, given that some
entries in t' are nonzero, we have Kg (t',t") # 0 (see the supplementary materials (supp.pdf
[local/web 301KB]) for further discussion). Such a kernel choice thus captures the desired
prior information on numerical convergence. With Kernel 2, the resulting prior process on
discrepancy d can be viewed as a multi-variate extension of a standard Brownian motion
model [14] and extends the non-stationary model (2.7) in [66], which tackled only the case of
one fidelity parameter.

Kernel 2 has several appealing features for conglomerate multi-fidelity emulation, partic-
ularly when the multiple stages are performed sequentially over time (see Scenario 2 at the
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start of the section). One can show that the parametrization of this kernel is directly inspired
by (and thus can capture prior information on) standard numerical convergence results for
multi-stage simulators. To see why, consider first the simple setting of a single fidelity param-
eter ¢, and let vg and vy be the exact and simulated solutions at fidelity ¢, respectively. In
the case of finite element analysis (where ¢ is the mesh grid size), it is well known [2] that the
numerical error of the simulator can be upper bounded as

(3.12) o — | < CH,

where || - || is an appropriate norm on the solution space, £ is a rate parameter, and C' is a
constant. In words, the numerical error resulting from mesh discretization decays polynomially
as mesh size t decreases. Similar polynomial decay rates have also been shown for a broad
range of fidelity parameters in numerical solvers, e.g., for elliptical PDEs [27] and large-eddy
simulations in fluid mechanics [64].

Consider now the multi-stage simulators from Scenario 2, where a separate phenomenon
is simulated sequentially at each stage. Suppose, at stage r, its precision is controlled by a
fidelity parameter t,.. For this parameter t,, further suppose the simulation error at this stage
can be bounded by (3.12) with rate parameter £,. One example of this is multi-stage finite
element simulators when each stage involves a distinct finite element model (FEM) whose
precision depends on a mesh size parameter t,. Similar to before, let v9 and v, ... ;, denote
the exact solution and the simulated solution at fidelity parameters ¢y,...,¢,. Applying the
triangle inequality iteratively, the error between vy, . ¢ and g can then be bounded as

llvo —vey,..t, 1| < |vo —ve 0,011 + [|ve10,....0 = Vi ta0,..0] | + -+

+ Hvtly-wtq—l,o - Ut17~--,tq—17tq||
q
<> Gt
r=1

where C1,...,C, are again constants. We now show that Kernel 2 indeed captures the error
bound (3.13) as prior information within its kernel specification. To see why, consider the prior
standard deviation of the discrepancy term §(x,t). From a Bayesian modeling perspective,
this should capture the modeler’s prior belief on the expected numerical error of the simulator.
With Kt set as Kernel 2, one can show that this prior standard deviation takes the form

(3.13)

¢/2

(3.14) v/ Var {6(x,t)} =09 [i O,

r=1

Comparing (3.14) with (3.13), we see that they are precisely the same with the kernel
hyperparameters set as £ =2 and £, =&, for r =1,...,q. This suggests that with K; chosen
as Kernel 2, the resulting prior model on discrepancy §(x,t) indeed captures (on expectation)
the numerical error convergence of the multi-stage simulator.

The above connection also helps guide how the specification of hyperparameters for Kernel
2. If the rate parameters &1, ...,&, can be identified via a careful analysis of the error bound
(3.12) at each stage, one can simply set the hyperparameters as ¢, = & for r = 1,...,q.
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However, for more complex multi-stage simulators, one may not be able to identify the precise
error convergence rates at each stage. In such cases, the kernel hyperparameters can be
estimated via maximum likelihood or a fully Bayesian approach (see section 4.1) or set at
a fixed value (e.g., ¢, = ¢ =2). Whether such hyperparameters are set a priori or inferred
from data, the infusion of such prior information can yield noticeably improved predictive
performance for multi-fidelity emulation, as we show later in section 6.2.

It is worth noting that, with the Brownian-like Kernel 2, sample paths from the discrepancy
process d(x,t) will be highly nonsmooth, in the sense that within any neighborhood around
t =0, the discrepancy J§(x,t) will equal 0 an infinite number of times. This may be unintuitive
for other properties of discretization error (see, e.g., equation (1) of [1]), which require that
0(x,t) = 0 only when t = 0. Our justification for Kernel 2 is not from such properties but
rather from its ability to embed prior information on expected numerical convergence via its
non-stationary specification. In applications where trajectory smoothness is a concern, Kernel
1 may be a better kernel choice; more on this is presented below.

Figure 3 visualizes the two proposed non-stationary kernels in the simple setting with a
single fidelity parameter ¢t. For Kernel 1, we set 6, =1 and ¢ = 1, and for Kernel 2, we set
¢ =/{,=2and ¢ =1. We see these two kernels have noticeably different shapes: Kernel 1
shows a smooth and gradual increase as either 1 or 9 increases, whereas Kernel 2 exhibits a
sharper increase and has a cusp along the line ¢t; = ¢2. This cusp causes the highly nonsmooth
sample paths from Kernel 2, whereas the smoother kernel (Kernel 1) induces smoother sample
paths, as can be seen from the corresponding sample paths in Figure 3.

3.3. Kernel recommendation. We provide next a concise summary of kernel recommen-
dation for the CONFIG model. In applications where the conglomerate simulator uses multiple
fidelity parameters (e.g., spatial mesh size or temporal discretization) for simulating a single
mechanism (Scenario 1), we recommend the use of Kernel 1 (3.8), which can better account
for stronger interactions between different fidelity parameters. We will encounter such an

Visualization of Kernel Option 1 (4=1) Visualization of Kernel Option 2 (6=1, I=I1= 2)

038 0.8

06 06

0.4 0.4

02 02

0 0
(a) Visualizing Kernel 1 (3.8) with correspond- (b) Visualizing Kernel 2 (3.11) with corre-
ing sample paths using parameters ¢ = 1 and sponding sample paths using ¢ = 1, 8 = 1,
0=1. (=10 =2.

Figure 3. Visualization of both kernel options (with corresponding sample paths) for CONFIG with a single
fidelity parameter t.
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application in section 6.1. On the other hand, in applications where the conglomerate sim-
ulator is comprised of multiple sequential stages that model for separate mechanisms, we
recommend the use of Kernel 2 (3.11), which can be justified via numerical error analysis for
these simulators. Our motivating QGP application falls within this setting, which we will
investigate further in section 6.2.

There are, of course, applications that may not cleanly fall within the two presented
scenarios; in such cases, careful consideration is needed for an informed kernel specification.
In later numerical experiments, we have found that when there is little prior knowledge on the
degree of interaction between fidelity parameters, Kernel 2 seems to be a considerably more
robust choice for predictive modeling; we would thus recommend Kernel 2 for such problems.

4. Implementation. We now discuss important implementation details for the CONFIG
model. We present two parameter inference approaches, the first via maximum likelihood and
the second via a fully Bayesian formulation for incorporating external knowledge and richer
uncertainty quantification. We then outline plausible experimental design strategies.

4.1. Parameter inference.

4.1.1. Maximum likelihood. We first present a maximum likelihood approach for esti-
mating the CONFIG model parameters. Let ® = (3,7, a,0,0%,03) be the set of parameters
to infer, where = is the vector of weight parameters for K¢ , a is the vector of weight pa-
rameters for K,‘z, and 0 is the vector of weight parameters for the CONFIG kernel Ky (either
Kernel 1 or Kernel 2). Here, we presume that the hyperparameters ¢, in Kernel 2 (3.11)
are prespecified (similar to [66]) and thus not included in the parameter set @; in the set-
ting where ¢, needs to be estimated, we can simply include them in @. Since 7(x,t) can be
expressed as a GP with the kernel given in (3.7), one can easily obtain an analytic expres-
sion for the likelihood function to optimize. More specifically, let the simulated multi-fidelity
training data be y = (n(x;,t;))!_;, and let the matrix of basis functions for the GP mean be
F = (f(x1,t1)7;f(x2,t2)7;. .. ; f(xn,t,)T) with corresponding coefficients 3. We thus aim to
maximize the log-likelihood of the CONFIG model, given by

(4.1) max {—; logdet 3 — %(y ~FB)Ix(y - FB)} )

where det ¥ is the determinant of the covariance matrix 3.

While the optimization problem (4.1) is quite high dimensional, standard nonlinear op-
timization algorithms, such as the L-BFGS-B method [46], appear to work well. One can
further speed up this optimization procedure via an informed initialization of the parameters
©. In particular, we have found that the correlation parameters « can be well-initialized
by first fitting a standard GP model with kernel K over the full training data (ignoring
fidelity parameters). With these initial estimates, we then perform the L-BFGS-B nonlinear
optimization, as implemented in the R package stats [4].

After maximum likelihood estimation, we would ideally like to integrate such estimates
along with their uncertainties within the GP predictive equations (2.2) to predict the limiting
highest-fidelity surface n(x*,0) at a new input x*. However, this integration of uncertainty
is difficult to do in closed form for all parameters (see [57]). We can, however, integrate
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estimation uncertainty on the mean coefficients 3 in an efficient manner. Following [1, 33], the
CONFIG predictive mean and variance of n(x*,0) with such uncertainty integrated (denoted
as fip(x*) and s3(x*), respectively) becomes

fio(x") = p(x*,0) + k(x*, D) TK(D) "} (yp — u(D)),
(4.2)  s3(x*) = k(x*,x*) — k(x*,D)TK(D) 'k(x*, D) + (f(x*,0) — k(x*, D)TK(D)'F)T
(FTK(D)"'F)~L(f(x*,0) — k(x*,D)TK(D)"'F).

Unknown model parameters in (4.2) can then be plugged in via the maximum likelihood
estimates (4.1). With this, we can then construct the 95% predictive interval on the limiting
highest-fidelity output n(x*,0) as

(4.3) <ﬂ0(x*) —1.964/s3(x*), fio(x*) + 1.96\/8(2)(X*)> .

4.1.2. Fully Bayesian inference. In situations where a richer quantification of uncertainty
is desired, a fully Bayesian approach to parameter inference may be appropriate. Below,
we present one such approach for the CONFIG model which leverages a Metropolis-within-
Gibbs algorithm [19] for posterior sampling. For an easier derivation of the full conditional
distributions, we consider a reparametrization of the covariance kernel (3.7) for n(x,t) as

(4.4) Kn{(Xl,tl), (Xg, tg)} =02 {ng(xl,){g) + )\Ki(xl, XQ)Kg(tl,tQ)} ,
2= 0? and ) := 03/0?. Here, the new parameter \ captures the degree of non-
stationarity in the kernel from the influence of the fidelity parameters t. When A = 0, the
covariance kernel becomes a stationary kernel that depends on only input parameters x.

With this reparametrization, the parameter set to infer is given by © = (B,v,,0,0%,)\).
It is straightforward to show that

where o

(4.5) y|® ~N(FB,X),

using the same notation as in (4.1). Table 1 summarizes the priors assigned on parameters .
As before, this specification does not include ¢, for Kernel 2, but one can always leverage a
reasonable prior distribution on £, if information is not known on such parameters. Here, the
prior hyperparameters can either be set via prior information or set in a weakly informative
fashion with ay =by, =1 and a =b=0.001 for the remaining hyperparameters.

With the priors speciﬁed, we now proceed to the posterior sampling algorithm. Of the

model parameters in ®, we can derive full conditional distributions for two parameters, 3 and
1/0%:

(4.6) Bly, v, 0,0 A~ N((E'ST'F)'FTE y, o> (FTS7'F) ),
1
(4.7)  1/c%y,v,a,0,\, 8~ Gamma (ao + g (1+ A)by + 5(y —-FR) Iz (y - Fﬁ)) .

For the remaining parameters in ©, we make use of Metropolis-Hastings [40] steps for sampling
the full conditional distributions, as implemented in the R package MHadaptive [8]. We then
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Table 1
Hierarchical model specification for the fully Bayesian CONFIG model.

Model Prior specification
CONFIG: 7(x,t) ~ GP{FB, K, (")} [B1, B2, Bm] "X 1
Priors: [©] = [B][\][o”|\][v][e][6]
Non-stationary parameter A~ Beta(ax,bx)
Kernel precision 1/0%| A ~ Gamma(ac, (1 + \)b,)
Weight parameters V1yY25 -+ Yp b Gamma(a~, by)
Weight parameters Q1,02,...,0p Sy Gamma(aa,ba)
01,0s,...,0, " be) for Kernel 1
CONFIG weight parameters 17205V Cid Gamma(ag, bo) for Kerne
01,02,...,04 "~ Beta(ag,bg) for Kernel 2

Algorithm 4.1. Metropolis-within-Gibbs sampler for the CONFIG model.

Input: Training data {x;,t;}]" 1, ¥y = (n(x;,t;))" ;; testing input x*; prior hyperparam-
eters ay, by, aq, by, @y, by, aq, ba, ag, bg; number of desired MCMC draws M; burn-in
period Mpuyrn-in and thinning rate 7.

Output: Draws from the posterior distribution [@|y].

1: Initialize the parameters (:)[0] from the prior.

2: for iter=1,..., Myyrn-in + TM do

Draw B0t from the full conditional distribution (4.6).

4:  Draw 1/¢?® from the full conditional distribution (4.7).

5:  For the remaining parameters {7, a, 8, A}, perform one step of Metropolis-within-
Gibbs sampling using parameters {ﬁ[iter], 1/o?liter]y,

6: end for

7: Discard the first My draws and thin the remaining draws at a rate of 1" to obtain

draws {(:)[m] M.

Return: Draws {(':)[m} }M_ from the posterior distribution [@]y].

@

iterate these full conditional sampling steps within a Gibbs sampler for posterior exploration
of [®|y]. Algorithm 4.1 presents the detailed steps for this Metropolis-within-Gibbs sampler
for the CONFIG model with details on burn-in and thinning.

Finally, with the posterior draws {C:)[m} %:1 obtained from Algorithm 4.1, we can easily

estimate the posterior predictive mean at a new test point x* by marginalizing over ®:
Ry )]
A ~ |
E[n(x",0)ly] ~ - Zn<X*,0|® )
m=1

where 7(x*, OIC:)M) is the closed-form GP predictive mean in (2.2) with fixed hyperparameters
é[m]. This serves as the emulator for the fully Bayesian CONFIG model. One can also
quantify its uncertainty via posterior predictive draws on n(x*,0)|y. These can be obtained
by sampling a batch of draws from the predictive distribution [(x*,0)|y, @[m]g in (2.2) given

MmN M

parameters (:)[m] and then repeating this procedure on all posterior draws {(:) 1"
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4.2. Experimental design. Of course, given a fixed and limited computational budget, an
experimenter would want to maximize the predictive power of the fitted multi-fidelity emulator
model. For GP models, space-filling designs [31]—which aim to uniformly fill up the design
space—are commonly used and have desirable information-theoretic and predictive properties
[30]. Different notions of space-filling designs have been explored in the literature, including
maximin designs [30, 42], minimax designs [30, 38], and maximum projection (MaxPro) designs
[32].

For the CONFIG model, there are several ways in which one can adapt existing space-
filling designing methods. One approach is to (i) adopt a space-filling design over the combined
design space of both input parameters x and fidelity parameters t. Such a design ensures that
training points are not only well-spaced out over the input space for prediction at untested
settings but also well-spaced out over the fidelity space to better learn the effects of individual
fidelity parameters. Another approach might be (ii) a crossed array design [69] between input
and fidelity space, which are popular designs for robust parameter design. In such a design,
one first generates two space-filling designs, one over the input space and the other over the
fidelity space, and then takes for the final design all combinations of input and output points.
Both designs appear to yield good performance: the designs in (i) are used for our numerical
experiments and cantilever beam deflection application, and the designs in (ii) are used for
the emulation of the QGP evolution. The problem of optimal experimental design for the
proposed non-stationary CONFIG model is quite intriguing, and we aim to pursue this in
future work.

5. Numerical experiments. We now explore the performance of the proposed CONFIG
model in a suite of simulation experiments with multiple fidelity parameters. We compare
the CONFIG model with several existing emulator models. The first model is a standard
GP emulator with a squared-exponential correlation function on both input parameters x
and fidelity parameters t; one then uses the fitted model to predict at t = 0. We call this
model simply the “standard GP” emulator. The second model is the TWY model [66], which
uses a single fidelity parameter. Since there are multiple fidelity parameters in the target
conglomerate problem, we will first compute the arithmetic or geometric mean of the fidelity
parameters t1,...,t, then apply the TWY model with this single aggregate fidelity parameter.
We call the resulting models the TWY (ARITH) and TWY (GEOM) emulators, respectively.

In the following, we investigate the performance of these models on multi-fidelity exten-
sions of two test functions, the 2D Currin function [11] and the 4D Park function [9]. For
CONFIG, we follow section 4 and set the power parameters in Kernel 2 as ¢, =/ = 2. Kernel
hyperparameters for our model are estimated via maximum likelihood in sections 5.1 and 5.2,
and its fully Bayesian counterpart is explored in section 5.4.

5.1. Multi-fidelity Currin function. Our first test function builds off of the 2D Currin
test function in [11]:

1 )} 230023 + 190022 + 2092z, + 60

5.1 = [1—exp (-
(5.1) o) [ eXp( 10023 + 50022 + 4y +20

21y

where x = [r1,22] € [0,1]>. We then build a lower-fidelity representation of this function, de-
noted as n(x,t), with two fidelity parameters t = [t1, 2] via piecewise grid interpolation. More
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(a) n(x,t) with ¢t = 0.1 and ¢, = 0.2. (b) n(x,t) with ¢; = 0.05 and ¢2 = 0.05.

Figure 4. Visualization of the multi-fidelity Currin function at two different fidelity settings.

specifically, this approximation is carried out in two steps. First, we generate a rectangular
grid in the input space, where the dimension of each mesh cell is t; X to. Next, we evaluate
the underlying function (5.1) at the mesh grid points and perform piecewise grid interpolation
to construct a lower-fidelity version of (5.1). This procedure is effectively the same as finite
element meshing, which splits the input domain into many smaller elements. Figure 4 visu-
alizes this test function n(x,t) with (¢1,t2) = (0.1,0.2) and (0.05,0.05). It is clear that as ¢;
and t2 become smaller, 7(x,t) becomes closer to the underlying Currin function (5.1), which
is as desired.

We then compare the CONFIG emulator with the aforementioned baseline models. For
each experiment, we first generate n = 50 design points over both input and fidelity parameters
via the MaxPro design [32]. Here, we set the range for each fidelity parameter to be between
0.1 and 0.4 to mimic the reality that simulations are prohibitively expensive for small choices
of fidelity parameters t;. Using this design, we then collect training data from the multi-fidelity
Currin function 7n(x,t). For validation, we randomly select N = 1,000 points over the input
parameter space as the testing set and compare how well these models predict the Currin
function ¢(x) in terms of mean squared error (MSE) and its empirical coverage ratio of 95%
predictive intervals. This procedure is then replicated 20 times.

Figure 5(left) shows the boxplots of testing MSEs and a scatterplot of empirical coverage
rates against MSEs for the compared models, with Table 2(left) reporting its corresponding
average MSEs and coverage ratios. There are several observations of interest. First, CONFIG
(with either Kernel 1 or Kernel 2) outperforms existing models in terms of average MSE. This
suggests that, by embedding the underlying conglomerate multi-fidelity structure within the
non-stationary kernel specification, the proposed model can indeed provide better emulation
over models that do not explicitly integrate this information. The improved performance
of CONFIG over the TWY models also suggests that, when multiple fidelity parameters are
present in the simulator, the use of such information can be useful for reducing emulation error
over the TWY models, which aggregate fidelity into a single parameter. Finally, CONFIG
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Figure 5. (Top) Boxplots of MSEs for the multi-fidelity Currin and multi-fidelity Park experiments. (Bot-
tom) Scatterplots of empirical coverage ratios vs. MSEs for the multi-fidelity Currin and multi-fidelity Park
experiments. Each dot represents a replication of the experiment, and the black dashed lines denote the nominal
95% rate.

Table 2
Average testing MSEs and empirical coverage ratios for the multi-fidelity Currin and Park experiments
over 20 replications.

Avg. MSE Avg. coverage Avg. MSE Avg. coverage

Model (Currin) (Currin) (Park) (Park)
Standard GP 1.537 71.93% 7.587 67.96%
TWY (ARITH) 1.772 84.46% 7.509 79.96%
TWY (GEOM) 2.233 83.96% 7.609 80.68%
CONFIG (Kernel 1) 1.310 84.90% 6.141 80.60%
CONFIG (Kernel 2) 0.438 83.18% 6.429 76.41%

with Kernel 2 provides noticeably better performance than Kernel 1; this may be because there
is little interaction between the two fidelity parameters under the piecewise grid interpolation
of n(x,t).

As for coverage ratios (Figure 5 and Table 2(left)), we first note that among the 20 replica-
tions, not all empirical coverage ratios can attain the nominal rate of 95%. This highlights an
inherent challenge for multi-fidelity uncertainty quantification, as one requires extrapolation
beyond the range of simulated fidelity parameters to predict for the (limiting) highest-fidelity
code. This becomes more pronounced for the considered conglomerate setting with multiple
fidelity parameters and limited data. We see that the standard GP yields the lowest coverage
rates; this is unsurprising, as it fails to account for the non-stationary behavior of fidelity
parameters t from numerical convergence. Both CONFIG and TWY provide comparable
coverage rates that are slightly below 95%, particularly that for CONFIG Kernel 2. We will
address this undercoverage later in section 5.4.
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Figure 6. Boxplots of computational times (in log-seconds) for the multi-fidelity Currin and Park experi-
ments over 20 replications.

Figure 6 shows the computational times of the compared methods over 20 replications,
where all experiments are run on an 16-core CPU and 64 Gb memory. Not surprisingly, the
two CONFIG models have higher computational costs, as it requires the estimation of more
parameters within a non-stationary GP framework. Such costs, however, are considerably less
than the computational resources required to simulate training data from expensive computer
experiments in practice.

5.2. Multi-fidelity Park function. Our second test function builds off of the 4D Park test
function in [9]:

(5.2) o(x)= % [\/1 + (z2+ x%)i% — 1| + (z1 + 3z4) exp (1 +sin(z3)).

We again build a lower-fidelity representation of ¢(x), denoted as n(x,t), using four fidelity
parameters t = (t1,...,t4) via piecewise grid interpolation. Similar to before, we use MaxPro
designs (with n =50 design points) over both input and fidelity parameters, with a range of
[0.2,0.5] for each fidelity parameter. The same emulator models are compared as before, and
the experiment is replicated 20 times over N = 1,000 random testing points.

Figure 5(right) shows the boxplots of testing MSEs and a scatterplot of empirical cover-
age rates against MSEs for the compared models, with Table 2(right) reporting its average
MSEs and coverage ratios. We see again that the proposed CONFIG model outperforms its
competitors by a noticeable margin in terms of MSE, which affirms the value of embedding
prior information on the conglomerate multi-fidelity simulator within a carefully constructed
non-stationary kernel. For coverage ratios, all five models yield lower coverage rates than for
the Currin function; this may be due to the increasing challenge of uncertainty quantification
for extrapolation in a higher-dimensional setting. Despite this, CONFIG (with Kernels 1 and
2) maintains comparable coverage to TWY and higher coverage than the standard GP.

5.3. Modified multi-fidelity Currin function. We now explore a more complex modifica-
tion of the Currin function, which integrates additional structure for the high-fidelity function.
Our third test function 7yeq(x,t) takes the form

(53) T]mod(X, t) = ncurrin(x, t) + (1 - tl) sin(xl) + (1 - tz) COS(xg),
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Table 3
Average testing MSEs and empirical coverage ratios for the modified multi-fidelity Currin experiment over
20 replications.

Model Avg. MSE (modified Currin) Avg. coverage (modified Currin)
Standard GP 2.014 64.65%
TWY (ARITH) 2.132 85.48%
TWY (GEOM) 2.073 83.02%
CONFIG (Kernel 1) 1.559 84.36%
CONFIG (Kernel 2) 0.632 73.12%

where neyrrin (X, t) is the multi-fidelity Currin function used in section 5.1. The two additional
terms sin(x1) and cos(z2) impose structure in the high-fidelity function (i.e., with t; =to =0),
which gets blurred out at lower fidelities (i.e., as t; or to increases). This reflects scenarios
where higher-fidelity refinements of the computer code may reveal additional structure not
captured at lower fidelities. The simulation setup used here is the same as in section 5.1, with
the visualizations provided in the supplementary materials (supp.pdf [local/web 301KB]).

Table 3 shows the average MSEs and coverage ratios over 20 replications. We see again
that the CONFIG (with either Kernel 1 or 2) outperforms its competitors in terms of testing
MSE. For coverage ratios, we see that while the TWY with arithmetic mean yields the highest
coverage ratio, this model also returns the highest predictive error, which is clearly not desir-
able. The CONFIG with Kernel 1 achieves a comparably high coverage ratio with noticeably
less prediction error, and the CONFIG with Kernel 2 yields a much lower prediction error
at the cost of slight undercoverage (this can be addressed via the following fully Bayesian
implementation).

5.4. Fully Bayesian implementation. One reason for the slight undercoverage of CON-
FIG in previous experiments is that it employs plug-in parameters estimated via maximum
likelihood (section 4.1.1). One solution is to employ a fully Bayesian implementation of the
model (section 4.1.2); we explore its performance for the earlier Currin and Park experiments.
For the MLE approach, its 95% predictive interval is obtained from the closed-form distribu-
tion (4.2) with plug-in parameter estimates. For the fully Bayesian approach, we use its 95%
highest-posterior-density interval computed from posterior draws on the predictive distribu-
tion [n(x*,0)]y]. These draws are obtained via five parallel MCMC chains from Algorithm 4.1
with random initialization. Each chain was run for 10,000 iterations, with the first 5,000 dis-
carded as burn-in and the remaining draws thinned by a factor of 50 to reduce autocorrelation.
Since the fully Bayesian model is more costly to fit, we demonstrate this on only one set of
training/testing data from earlier experiments.

For MCMC, convergence was assessed via the Gelman—Rubin statistic [20], as implemented
in the R package coda [51]. For the fully Bayesian CONFIG model with Kernel 2, all model
parameters have a Gelman—Rubin statistic below 1.2, thus suggesting the MCMC has con-
verged [3]. However, for the fully Bayesian CONFIG model with Kernel 1, we encountered
very poor mixing performance and numerical instability issues, as the posterior distribution of
kernel hyperparameters appears to be highly complex and multi-modal. Since undercoverage
seems to be less pronounced for Kernel 1 (see Table 2), we thus recommend a fully Bayesian
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Table 4
Testing MSFEs and empirical coverage ratios for the plug-in MLE and fully Bayesian CONFIG model with
Kernel 2 in the two multi-fidelity Currin and Park experiments with the first set of training/testing data.

Coverage
MSE Coverage MSE Coverage MSE (Mod  (Mod
Model (Currin) (Currin) (Park) (Park) Currin) Currin)
CONFIG (Kernel 2, MLE) 0.621  82.30%  6.041  78.40% 0.706 82.80%
CONFIG (Kernel 2, 0.615 86.70%  6.396  83.40% 0.496 93.50%

Bayesian)

implementation for only Kernel 2 to address the aforementioned undercoverage issue with
plug-in MLEs.

With this in mind, Table 4 summarizes the MSEs and coverage ratios for the plug-in MLE
and fully Bayesian CONFIG model using Kernel 2. We see that, while the MSEs of the plug-in
MLE approach are quite small, its coverage ratios (82.30% and 78.40% for the Currin and Park
functions, respectively) are lower than the desired rate of 95%. This is again unsurprising since
plug-in MLEs do not account for parameter estimation uncertainty. The fully Bayesian CON-
FIG model yields similarly small MSEs but provides noticeably closer coverage to the desired
95% rate by factoring in posterior uncertainty on parameters. While this still yields slight
undercoverage (which is unsurprising since extrapolation with GPs is inherently difficult, par-
ticularly with multiple fidelity parameters), we see that a fully Bayesian implementation can
indeed provide improved uncertainty quantification for conglomerate multi-fidelity emulation.

6. Applications. Finally, we explore the usefulness of the proposed model in two applica-
tions. The first application involves the conglomerate multi-fidelity emulation of a cantilever
beam deflecting under stress. The second application is the earlier motivating problem of
multi-stage multi-fidelity emulation of the quark-gluon plasma produced in heavy-ion colli-
sions. In both applications, parameter estimation for CONFIG is performed via maximum
likelihood (see section 4.1.1).

6.1. Cantilever beam deflection. The first application investigates the static stress analy-
sis on a cantilever beam. Beam structures are commonly used in finite elements to model
transverse loads and deformation under various circumstances, and the study of their deflec-
tion behavior is a canonical problem in FEA and has been studied extensively [6, 25, 45].
Here, we use it to evaluate the performance of our modeling framework. Figure 7 shows an
illustration of the beam for our study, where one end surface of the beam is fixed, and an
external pressure field is applied on its top surface. The deflection of this beam under stress
is typically simulated using FEA simulations, which can be computationally expensive. For
our experiments, these FEA simulations are carried out using the ABAQUS software [59] with
rectangular mesh cells.

The setup is as follows. The beam dimensions are specified by its breadth di, its height
ds, and its length d3. We further let d; = ds so the cross-section of the beam is square-shaped
(see Figure 7). We then set Young’s modulus of the beam (which parametrizes the stiffness of
the beam) to be 200 MPa and the Poisson ratio (which measures the deformation of the beam
under loading) to be 0.28, with material properties corresponding to steel. For the external

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/28/24 to 108.172.233.197 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

494 JI, YUCHI, SOEDER, PAQUET, BASS, JOSEPH, WU, AND MAK

Figure 7. Beam cantilever simulation with fized end surface as shown in ABAQUS.

pressure field, which is applied vertically downward on top of the beam, we employed the
continuous half-sine pressure field given by

(6.1) p(w) = Crzq sin(Cow/z2).

Here, w € [0,ds] denotes the location along the beam from the fixed end, C; = 2000 and
Cy = /200 are constants, x; is a scale factor for the pressure, and xo parametrizes the length
of the beam, i.e., d3 = 200x5. An additional input parameter xz controls the width and
breadth of the beam cross-section x3 = 20d; = 20dy. There are thus a total of three input
parameters x = [z1, 72, 23] € [0,1]3 for this study.

For fidelity parameters, it is natural to consider a meshing procedure that partitions the
beam into smaller 3D mesh rectangles. The size of these mesh rectangles can be controlled
by three fidelity parameters, which dictate the size of the mesh rectangles in each dimension.
In other words, the three fidelity parameters t1,t9,t3 € (0,1) determine the scale of the finite
elements. As a result of the pressure field, the cantilever beam will deflect downward, resulting
in deflection at its tip. The response of interest is taken to be the amount of tip deflection.
The goal is thus to train an emulator model which, using a carefully designed training set of
simulation runs over different inputs x and fidelities t, efficiently predicts the “exact” solution
for tip deflection (i.e., at t =0) of a new beam with inputs x.

The experiment is carried out as follows. To generate training data, we first run the
simulator (ABAQUS) on a n = 50-point MaxPro design [32] over the combined space of
input parameters x and fidelity parameters t, which required about 4.5 hours of computation.
For fidelity parameters, we set it to be t € [1/31,1/3]3, which ensures we have an integer
number of finite elements at the edge case in each dimension (for t values in between, we
round up to the nearest integer). For validation, we further run the simulator on 30 new
cantilever configurations (the testing set) where each takes about 1 hour, uniformly sampled
over the input space, to test the performance of each model (in terms of MSE and coverage)
in predicting the tip deflections. While the “exact” response with t = 0 cannot be obtained
numerically, this can be well-approximated by running the simulator at very fine mesh sizes; in
our case, we used t =[0.025,0.025,0.005] for testing points, which provided a sufficiently fine
mesh according to a mesh validation study. One simulation run at this high-fidelity setting
requires around 1 hour of computation, meaning there is a considerable opportunity for a
multi-fidelity emulator to greatly speed up design exploration.

Copyright (©) by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/28/24 to 108.172.233.197 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CONGLOMERATE MULTI-FIDELITY GAUSSIAN PROCESS MODEL 495

The same emulators as before (the standard GP, the two TWY models, and the two
CONFIG models) are used for comparison. Here, we recommend the use of Kernel 1 for
CONFIG, as the application involves the simulation of a single mechanism with multiple
fidelity parameters (Scenario 1); Kernel 2 is, however, included for comparison. We further
set £ = ¢, = 2 for CONFIG and ¢ = 2 for the two TWY models; such a choice captures the
fact that the governing deflection equation (between beam deflection and span) involves the
derivative of the deflection [66]. In addition, we include a “high-fidelity GP” emulator model,
which is trained only on data from the high-fidelity simulator with t = [0.025,0.025,0.005].
For a fair comparison, this model is trained on high-fidelity points from a four-point MaxPro
design, which requires comparable time to simulate as the earlier 50-point designs over the
combined input-fidelity space.

Table 5 summarizes the MSEs, average standard errors, and empirical coverage ratios
(of 95% predictive intervals) for the compared emulators over 30 test points. Again, we see
that CONFIG with the recommended Kernel 1 (but also with Kernel 2) yields noticeably
improved predictive performance over existing methods. This again highlights the advantage
of an informed kernel specification from the conglomerate multi-fidelity simulator, and is
particularly apparent in the cantilever beam application, where the three fidelity parameters
bear physical importance. For beam bending, the accuracy of simulations is known to be
more sensitive to the mesh density along the beam span (i.e., d3) [10]. By explicitly modeling
this conglomerate multi-fidelity structure, CONFIG can identify the greater importance of this
fidelity parameter via inference of its weight parameter, thus allowing for improved predictions
over existing models that ignore such structure.

In terms of coverage ratios, the 95% predictive intervals for both CONFIG models cover 26
out of 30 test points. Although this is slightly lower than the desired 95%, this is in line with
earlier numerical experiments and may be due to the inherent challenge of multi-dimensional
extrapolation with GPs. While the high-fidelity GP and TWY (ARITH) models have higher
coverage ratios than CONFIG, their predictive uncertainties (measured by average standard
error) are significantly larger (28.28 and 16.89, respectively) compared to the CONFIG models
(2.75 and 4.77). These large uncertainties, along with poor predictions, make such models un-
appealing despite their high coverage ratios. The proposed CONFIG models provide markedly
better predictions with lower uncertainties while maintaining comparable coverage ratios to
existing models.

Further insight can be gleaned by comparing the performance of CONFIG with Kernel 1
vs. Kernel 2. Here, Kernel 1 provides slightly better predictions compared to Kernel 2. This

Table 5
Result comparison for the beam defiection application.

Model MSE Average standard error Coverage ratio
High-fidelity GP 475.50 28.28 30/30
Standard GP 211.13 8.43 25/30
TWY (ARITH) 747.30 16.89 27/30
TWY (GEOM) 551.07 11.29 26/30
CONFIG (Kernel 1) 23.58 2.75 26/30
CONFIG (Kernel 2) 33.18 4.77 26/30
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is not too surprising since this cantilever beam deflection can be viewed as a single-mechanism
multi-fidelity problem and can thus be classified under Scenario 1 (see section 3), where the
experiment simulates a single mechanism with multiple fidelity parameters. Kernel 1 appears
to be better suited at capturing the more complex interactions between fidelity parameters,
thus leading to slightly better performance than Kernel 2.

6.2. Quark-gluon plasma evolution. We now return to our motivating problem on the
quark-gluon plasma, an exotic state of nuclear matter which can be created in modern par-
ticle colliders and which pervaded the universe during its first microseconds. The study of
this plasma—in particular, properties of this unique phase of matter—is thus an important
problem in high-energy nuclear physics. Modern investigation of QGP often requires com-
putationally intensive numerical simulations, with the plasma modeled via relativistic fluid
dynamics. The use of cost-efficient emulators, when carefully constructed, can thus greatly
speed up the discovery of fundamental properties on the QGP, as evidenced in recent works [5].

For this study, we adopt a simplified version of the QGP simulation framework in [15],
which can be split into three distinct stages: a pre-hydrodynamic stage, a hydrodynamic stage,
and a post-hydrodynamic stage. Figure 1 visualizes this conglomerate (multi-stage) simulation
framework. Each stage typically involves the discretization of the simulated physical system
onto a spatial or space-time mesh (see Figure 8). The sizes and dimensionalities of the meshes
may vary among stages. Meshes must be large enough to contain the entire initial and final
states of the systems, to be fine enough to capture relevant details (e.g., small-scale fluctuations
in the pre-hydrodynamic initial state), and yet to allow for timely computation.

The considered simulator has two key fidelity parameters, ¢, and t,, which control its
precision. The first fidelity parameter arises in the pre-hydrodynamic stage. This stage
models the initial distribution of energy resulting from the collision of two atomic nuclei.
The energy distribution is defined on a 3D (spatial) mesh with coordinates z, y, and 7. The
bounds of the mesh are fixed in all three dimensions, but the mesh density in the n-direction
will be varied to adjust fidelity; it is specified by the longitudinal mesh size variable ¢;, which
serves as our first fidelity parameter. The simulation costs of all three stages are inversely
proportional to ¢,. The second parameter arises when the initial hydrodynamic state is evolved
with the relativistic hydrodynamic equations until a completion criterion is reached, in effect
extending the mesh into a time dimension, denoted by 7. The temporal mesh size variable
t.—our second fidelity parameter—can thus be varied to adjust fidelity, although we note that
in contrast with the 7 spatial direction, the number of time-steps is not known in advance

Mesh Density t,, Mesh Density t,

Coarse Fine Coarse Fine

Figure 8. Visualizing the two mesh densities (fidelity parameters) in the quark-gluon plasma simulation.
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because the full evolution time cannot be fixed: it is only determined once the completion
criterion is satisfied and hence depends on the initial conditions in a complicated way. Except
at very low fidelity, the simulation costs of the hydrodynamic and post-hydrodynamic stages
are inversely proportional to t,.

In this simplified QGP simulator, we consider a single response variable: the ratio of
pions produced at two different points, 7 =0 and 1 = 1. This ratio serves as a measure of how
particle production is distributed along the collision axis of the atomic nuclei and is chosen
because it is strongly influenced by the model parameter o, which we use as our single input
parameter in this study. We denote « as x1 and the ratio observable as y; below.

The experiment is carried out as follows. We compare the CONFIG models with the stan-
dard GP and the TWY models. Since the multi-stage procedure involves multiple sequential
stages, it falls under Scenario 2 (see section 3), and thus we recommend the use of Kernel 2 for
CONFIG, although results for Kernel 1 are included later for completeness. We set £ =/, =2
for CONFIG and £ =2 for the two TWY models; these were optimized via cross-validation. To
demonstrate the cost efficiency of multi-fidelity emulation, we again include the “high-fidelity
GP” model, which makes use of only high-fidelity runs to train a standard GP emulator using
the squared-exponential kernel. As before, the limiting highest-fidelity setting of t =0 cannot
be numerically simulated. We thus set the fidelity parameters t = (1.0 x 107%,1/64) as the
“high-fidelity” setting for prediction, which appears to provide a fine enough mesh accord-
ing to a mesh validation study. With this, a single high-fidelity run is very time-consuming,
requiring around 1,000 CPU hours.

For comprehensive cost analysis, we fit each emulator using different design sizes and
then compare the predictive performance of these models given a computational budget. The
training data are generated as follows. For the high-fidelity GP model, we generate n =
2,3,4, or 5 maximin (equally spaced) high-fidelity design points over the input interval x; €
[3,5]. For the remaining models, we generate n = 15, 20, or 25 design points over the joint space
of input and fidelity parameters. Each design has an equal number of points on five maximin
(equally spaced) levels on z1. For the two fidelity parameters ¢, and t,, we first generate a 2D
n-point maximin LHD [42] and scale this over the domain [1.0 x 107%,5.0 x 1072 x [1/64,1/24].
We then randomly assign to each level of z; a fidelity setting from this LHD. For validation,
the test set is generated on 100 evenly spaced points over the input space x; € [3, 5], run at the
aforementioned high-fidelity setting for t. To account for simulation variation, we repeat this
procedure of training data generation and model fitting 20 times and compute the average of
all metrics. The average computational cost for generating multi-fidelity training data ranges
from 2.4 x 103 to 3.7 x 10> CPU hours for 15 to 25 design points, respectively.

Consider first the comparison of the predictive performance of the emulators given a
computational budget for training data generation. Figure 9(left) plots the log-MSEs of the
considered models and their corresponding costs (in logl0-CPU hours) for simulating the
training data. We see that, at a given computational budget, CONFIG with Kernel 2 (as
recommended under Scenario 2) yields the best predictive performance out of all methods.
This suggests that by integrating information on the underlying conglomerate (multi-stage)
multi-fidelity simulation framework within its kernel specification, the proposed model can
provide cost-efficient and accurate emulation of expensive simulators given a tight computa-
tional budget. While such errors appear relatively small in magnitude, it is shown in [37]
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Figure 9. (Left) Plot of testing log-MSE vs. logl0-CPU hours required for training data simulation for each
emulator model. (Right) Scatterplot of empirical coverage ratios vs. log-MSEs for the compared models. The
black dashed line denotes the nominal 95% rate.

that small improvements in emulation accuracy may lead to large improvements (i.e., tighter
constraints) for Bayesian parameter estimation of QGP properties. As such, the improved
predictions from CONFIG can facilitate greater precision in scientific studies. It is also in-
teresting to note the poor performance of CONFIG with Kernel 1 here, which we do not
recommend using since this falls under Scenario 2. This is not too surprising given the fewer
interactions between fidelity parameters in the current sequential multi-stage setting.

For coverage ratios, Figure 9(right) shows the scatterplot of empirical coverage ratios (for
95% predictive intervals) vs. log-MSEs for the compared methods. For the high-fidelity GP,
we see that while it can achieve relatively low MSEs, it has severe undercoverage and the
required cost for training data generation is high. The standard GP and the TWY models,
on the other hand, provide good coverage but poor predictive performance. Of the compared
models, CONFIG with the recommended Kernel 2 yields the best predictive performance
with good coverage. This again suggests that, by integrating the underlying conglomerate
(multi-stage) multi-fidelity framework for non-stationary kernel specification, CONFIG can
yield improved emulation performance with reliable uncertainty quantification.

7. Conclusion. In this paper, we presented a new emulator model, called the CONFIG
model, that tackles the challenge of surrogate modeling for conglomerate multi-fidelity simu-
lators, whose precision is controlled by multiple fidelity parameters. Such simulators are often
encountered in complex physical systems (including our motivating application in high-energy
nuclear physics), but there has been little work in constructing cost-efficient emulators which
leverage this structure for predictive modeling. CONFIG makes use of novel non-stationary
covariance functions, which embed numerical convergence information on the underlying con-
glomerate simulator within its kernel specification. This infusion of prior information allows
for effective surrogate modeling of complex simulators, even with limited training data. We
demonstrate the effectiveness of the CONFIG model in a suite of simulation experiments
and two applications, the first on emulating cantilever beam deflection and the second on
emulating the quark-gluon plasma in high-energy physics.
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With these encouraging results, there are many avenues for future work. Given the promise
of multi-fidelity modeling, one crucial direction for maximizing predictive power given a tight
computational budget is experimental design. While there is a growing literature on design for
multi-fidelity modeling [16, 21, 36, 61, 71], such methods largely do not account for multiple
fidelity parameters (as is present in conglomerate simulators) or factor in varying simulation
costs. For example, given a budget of 106 CPU hours for a project, an experimenter would
wish to know if a better predictive model can be trained with a few carefully chosen higher-
fidelity runs or with more lower-fidelity runs. Tackling this design problem for the current
conglomerate multi-fidelity framework can greatly increase the applicability of CONFIG in
applications. We also aim to extend the CONFIG model for a broader range of multi-fidelity
applications, where simulator fidelity is more complex and cannot be well-captured by several
continuous fidelity parameters.
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