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Abstract

We establish a set of general results to study how the Galois action
on modular tensor categories interacts with fusion subcategories. This
includes a characterization of fusion subcategories of modular ten-
sor categories which are closed under the Galois action, and a
classification of modular tensor categories which factor as a prod-
uct of pointed and transitive categories in terms of pseudoinvertible
objects. As an application, we classify modular tensor categories with
two Galois orbits of simple objects and a nontrivial grading group.

MSC codes. 18M20, 18M05



Springer Nature 2021 BTEX template

2 Modular tensor categories, subcategories, and Galois orbits

Acknowledgments. J. Plavnik is supported in part by the National Science
Foundation, grant DMS-1917319. A. Schopieray is supported in part by the
Pacific Institute for the Mathematical Sciences. Z. Yu is supported in part
by National Natural Science Foundation of China grant no. 12101541, the
Natural Science Foundation of Jiangsu Province grant no. BK20210785, and
Natural Science Foundation of Jiangsu Higher Institutions of China grant no.

21KJB110006.

1 Introduction

Modular tensor categories are an algebraic shadow of conformal field theory,
and instantiate an intersection of representation theory, low-dimensional topol-
ogy, number theory, and mathematical physics. From their definition it seems
strange that a nontrivial example of such a heavily-defined object would even
exist, yet there are incredibly diverse infinite families coming from the represen-
tation theory of finite groups, quantum groups at roots of unity, and categorical
generalizations thereof. There are two open-ended and interrelated approaches
to understanding modular tensor categories: to produce novel examples, and
to organize known examples. Often, novel examples inspire the classification
of examples with particular characteristics while classification results demon-
strate unusual gaps in the library of known examples. Here we contribute
results organizing modular tensor categories by the interaction between fusion
subcategories and the Galois action on simple objects.

The Galois action on a modular tensor category associates a permutation
of the finite set of simple objects to every Galois automorphism in the absolute
Galois group Gal(Q/Q). As the modular data of a modular tensor category

consists of cyclotomic integers, it is sufficient to study the Galois action of
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Gal(Q(¢)/Q) where ( is a primitive root of unity whose order is the conduc-
tor, or Frobenius-Schur exponent of the modular tensor category in question.
Previously [20, Theorem II], it was shown there is a single infinite family
of modular tensor categories with a transitive Galois action, which is to say
that there is a unique orbit of simple objects under this action. One reason
transitive modular tensor categories have a particularly elegant description is
that they all possess an essentially unique factorization into a product of sim-
ple transitive modular tensor categories, in the sense that each factor has no
proper nontrivial fusion subcategories. But in general it is necessary to have a
more nuanced understanding of the interaction between fusion subcategories
and the Galois action.

In [13], number-theoretical properties of Frobenius-Perron dimension were
used to identify and classify fusion subcategories of fusion categories. Similarly,
here we consider centralizing simple objects in a modular tensor category as a
numerical constraint, and apply analogous methods. In Theorem 1, we prove
that a fusion subcategory of a modular tensor category is closed under the
Galois action if and only if its centralizer subcategory is integral, which means
all simple objects have integer Frobenius-Perron dimension. This implies, for
example, that all fusion subcategories of integral modular tensor categories
(e.g., the twisted doubles of finite groups) are preserved under the Galois
action. A common source of simple objects of integer Frobenius-Perron dimen-
sion are the invertible objects, i.e. those with Frobenius-Perron dimension 1.
In Theorem 2, we obtain a lower bound for |Orb(C)|, the number of Galois
orbits of a modular tensor category C, based on the prime factorization of the
dimension of its maximal pointed fusion subcategory Cp¢. A weaker condition
than invertibility is requiring a simple object to have categorical dimension

41, which we call pseudoinvertibility. We prove in Theorem 3 that a modular
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tensor category C factorizes as P X T where P is a pointed modular tensor
category and T is a transitive modular tensor category if and only if every
Galois orbit of simple objects contains a pseudoinvertible object. In terms of
formal codegrees [24], these conditions are equivalent to all formal codegrees
of a modular tensor category being Galois conjugate.

Lastly, we utilize our general results to further the classification of mod-
ular tensor categories with a small number of Galois orbits of simple objects
initiated in [20]. When |Orb(C)| = 1, i.e. C is transitive, then Cpy is trivial, or
equivalently C has a trivial universal grading group [10, Section 4.14]. Tran-
sitive modular tensor categories are also self-dual and Galois conjugate to
pseudounitary categories. Modular tensor categories C with |Orb(C)| = 2 are
more complex in all of these regards, and so their classification is naturally
partitioned into first studying those which have nontrivial gradings, then those

with nontrivial fusion subcategories. Our general results imply that

- |Orb(C)| = 2 and C, is nontrivial if and only if C ~ DX T where T is
a transitive modular tensor category, and D is pointed of prime dimension
coprime to the conductor of T, or an Ising category (Corollary 2);

- |Orb(C)| = 2 and Cpy is trivial if and only if C ¥ DX T where T is a tran-
sitive modular tensor category, and D is a simple modular tensor category
whose conductor is coprime to that of 7, or rank(7) > 2 and D is braided
equivalent to F; X Fy where F1, Fy are any of the Fibonacci modular tensor

categories (Proposition 4).

Therefore, a complete classification is reduced to understanding those
examples which are simple, which will require future analysis using other meth-
ods. We provide two infinite families of simple modular tensor categories C with
|Orb(C)| = 2 (Table 3) which are not pointed; one family is self-dual while the

other is not self-dual. It is unclear whether 5 additional sporadic examples of
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modular tensor categories of this type belong to infinite families or if they are
truly exceptional. Note that 3 of these examples are not pseudounitary, and
for at least one, there does not exist a pseudounitary modular tensor category
nor a pseudounitary fusion category with these fusion rules [28].

A brief introduction to modular tensor categories, their Galois action, and
corresponding modular group representation are given in Section 2; we pro-
vide an expansive collection of examples in Section 3. Table 1 below contains
notation which recurs throughout. Our general results pertaining to the Galois
action are contained in Section 4, while the particular application to modular
tensor categories with 2 Galois orbits is the subject of Section 5. Appendix
A, consisting of the t-spectra of irreducible representations of SL(2,Z/NZ) for

N € Z>9, is necessary for the proofs of Section 5.

Table 1 Recurring notation

[ Notation [ Parameters Meaning ]
o(n) n € Z> number of positive integers m with ged(m,n) =1
Cn n € Z>q exp(2mi/n)
Q(Cn)T n € Zx> maximal totally real subfield of Q(¢n)
[K:L] | algebraic number fields L C K degree of K as a vector space over L
O(C) fusion category C set of isomorphism classes of simple objects of C
Cc(D) |braided fusion categories D C C relative centralizer of D C C
Ox simple object X in Galois orbit of X in C
a modular tensor category C
Orb(C) modular tensor category C the set of Galois orbits of simple objects of C

2 Preliminaries

Our main objects of study are modular tensor categories. We only briefly
recount the components of a modular tensor category with an aim to reach our
main tool: the modular data of a modular tensor category and its Galois action.
For comprehensive detail one can refer to the standard text [10, Sections 8.13-

8.17] and references within. The structure of a modular tensor category is built
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upon a fusion category: a C-linear, semisimple, rigid monoidal category (the
monoidal operation will be denoted ®) with finitely-many isomorphism classes
of simple objects and a simple ®-unit which will be denoted 1. We will denote
the set of isomorphism classes of simple objects of a fusion category C by O(C).
Rigidity of a fusion category C is the existence of a suitable notion of duality
which we will denote X* for an object X € C. Upon the base fusion category,
a modular tensor category includes two additional structures: a nondegenerate
braiding (see [10, Section 8.1] and Section 2.3 below), or a family of natural
isomorphisms dictating the commutativity of ®, and a spherical structure 10,
Section 4.7], or a family of natural isomorphisms X — X** for all X € C which

allow a well-defined notion of trace for endomorphisms in the category.

2.1 The modular data

Let C be a modular tensor category. There are two important symmetric invert-
ible |O(C)| x |O(C)| matrices associated to C, denoted s and ¢ and often referred
to as the modular data of C. The matrix s consists of the traces (inherited
from the chosen spherical structure) of the double braidings on pairs of sim-
ple objects. For example, the double braiding of 1 and any other X € O(C) is
the identity, and so its trace s3,x = sx,1 is aptly referred to as dim(X), the
categorical dimension of X. The matrix ¢ is a diagonal matrix whose diago-
nal entries are roots of unity ¢tx known as the twists or full twists of simple
objects X; the order of the t-matrix is known as the conductor of C. If C and
D are modular tensor categories whose conductors are coprime as integers, we
will simply refer to C and D as coprime for brevity.

The namesake of the modular data is its relation to the modular group

SL(2,Z). Recall that the modular group SL(2,Z), the group of 2 x 2 integer
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matrices with determinant 1, is generated by

0 -1 11
5= and t:= . (1)
10 01

If C is a modular tensor category, then s — s, t — t defines a projective
representation of SL(2,Z) [10, Section 8.16]. Depending on the application,
one often requires a normalized version of the modular data, giving a lin-
ear representation of SL(2,7Z). This normalization can be made very explicit.

Define
dim(C Z le and Z thlx (2)

Xeo(0) Xeo(C)
Let dim(C)l/2 be the positive square root, and let v be any third root of
£(C) := 7-dim(C)~ /2. The root of unity &(C) is usually called the multiplicative

/25 and

central charge of C. Then the normalized modular data 5 := dim(C)
t := vy~ !t give a linear representation of SL(2,7Z) with 5 +— 5 and t > . We

will elaborate on this representation in Section 2.4.

2.2 The Galois action

If C is a modular tensor category, the characters of the Grothendieck ring K (C)
are in bijection with O(C) [10, Section 8.14]. Specifically, for each X € O(C),
Y — syx/s1x is a ring homomorphism K(C) — C and every character
of K(C) — C arises in this way. This bijection gives a well-defined Galois
action on O(C) coming from the fact that the absolute Galois group Gal(Q/Q)
permutes the characters of K (C). In particular, for any Galois automorphism

o € Gal(Q/Q), there exists a unique permutation & : O(C) — O(C) defined by

o <SX,Y) _ $X,6(Y) (3)

S1,Y S1,6(Y)
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for all X,Y € O(C). One then deduces, for example, that for all X € O(C)
and o € Gal(Q/Q),
dim(C)

(X)) = 2 40y = ~ O (2 ) = i)

=516(x) = o (dim(C)) mU(dim(X)) .4

The Galois action on the matrix ¢ is by squares. We have 02(tx) = o?(y)y !+
ts(x) [5, Theorem II(iii)] which on the normalized modular data simplifies to
oX(lx) = f&(x). For this reason we will often refer to roots of unity (i, (2
as being square Galois conjugate, i.e. there exists o € Gal(Q/Q) such that
0%(¢1) = (a. Denote the Galois orbit of X € O(C) by Ox and the set of
Galois orbits of O(C) by Orb(C). If O(C) = Oq, i.e. |Orb(C)| = 1, we say C is
transitive. Transitive modular tensor categories are completely classified [20,
Theorem II].

It is well-known that the entries of the s-matrix are cyclotomic integers
[10, Theorem 8.14.7] so the Galois action on a modular tensor category is
determined by the permutations arising from the Galois group of a cyclotomic
field. One can always let this field be Q({n) where (y = exp(2mi/N) and N is
the order or conductor of the t-matrix, as sx y € Q({n) for all X,Y € O(C)
[18, Section 5]. In particular the character values of the Grothendieck ring of C
lie in Q({n); the degree of the extensions generated by these so-called Verlinde
eigenvalues determine the size of the Galois orbits. To this end, define the field
of Verlinde eigenvalues for each Y € O(C) by Ly := Q(sx,y/s1,y : X € O(C))

so that the following result follows almost by the definition of the Galois action.

Lemma 1. [1, Lemma 3.2] Let C be a modular tensor category. For all X €

0(C), |0x| = [Lx : Q].
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One should not confuse the Galois action on modular tensor categories with
Galois conjugacy of fusion, braided fusion, and modular tensor categories. If
C is a fusion, braided fusion, or modular tensor category, and o € Gal(Q/Q)
is any Galois automorphism, then we denote by C? the category constructed
by applying ¢ to all structural constraints of C. The fusion categories C and

C? have identical fusion rules.

2.3 Structure of modular tensor categories

Perhaps the most important character of the Grothendieck ring of a fusion cat-
egory is the Frobenius-Perron dimension X +— FPdim(X) where FPdim(X)
is defined as the maximal real eigenvalue of the fusion matrix (IV )Z(,Y)y7 Zeo(C)
with N)?Y = dimc Hom(X ®Y, Z). We denote by Cp, the fusion subcategory
of C generated by X € O(C) with FPdim(X) = 1 and we say such X are invert-
ible. If C is a modular tensor category, or more generally a spherical fusion
category, and dim(X) = +£1 for some X € O(C), we refer to X as pseudoinvert-
ible because these notions are equivalent for pseudounitary fusion categories
[10, Corollary 9.6.6], i.e. fusion categories such that FPdim(C) = dim(C). The
universal grading group of a modular tensor category is isomorphic to O(Cpy)
[14, Theorem 6.3] and the trivial component of this grading is C,q, the fusion
subcategory of C ®-generated by X ® X* over all X € O(C).

If C is a braided fusion category and D C C is a fusion subcategory, we
denote the relative centralizer of D in C by C¢(D). The relative centralizer of
D C C is the fusion subcategory consisting of X € O(C) which centralize all
simple objects of D, i.e. the double braidings with all other Y € O(D) are triv-
ial. If C is a modular tensor category, X,Y € O(C) centralize one another if and
only if sx y = dim(X)dim(Y) [10, Proposition 8.20.5(i)], a more important

characterization in this exposition. We reserve the notation C’' := C¢(C) for the
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symmetric center of C, but the reader may find this notation used for generic
centralizers in other sources. Nondegenerate braidings, a necessary condition
for modular tensor categories, are those braided fusion categories such that
O(C’) = {1} while symmetrically braided fusion categories are those for which
C' = C. Another useful characterization is that C,q = C¢(Cpy) for all modular
tensor categories C [14, Corollary 6.9]. It is well-known that if C is a nondegen-
erately braided fusion category and D C C is a nondegenerately braided fusion
subcategory, then C ~ D X C¢(D) [4, Proposition 2.2] where X is the Deligne
tensor product. As a consequence, each nondegenerately braided fusion cate-
gory has a factorization into prime factors (i.e. containing no nondegenerately
braided fusion subcategories) which is unique up to a permutation of factors

when Cpy is trivial [4, Proposition 2.2].

2.4 Representation theory of SL(2,Z/NZ)

Let C be a modular tensor category, pe be its associated SL(2, Z) representation
defined by the normalized modular data 3,f. It was proven in [18, Theorem
6.8] that p¢ can be factored through SL(2,Z/NZ) where again N € Z>1 is the
order of £. In other words, to each modular tensor category C one associates
a finite-dimensional representation pc¢ of the finite group SL(2,Z/NZ). The
benefit being that the irreducible finite-dimensional complex representations
of SL(2,Z/NZ) have been described explicitly, up to isomorphism [21, 22].
The irreducible representations of SL(2,Z/NZ) can be described from the
irreducible representations of SL(2,Z/p*Z) for p* dividing N where p € Z>»
is prime and A € Z>q (refer to [9, Section 3]), which are listed in tables of
Appendix A. As the t-matrix of a modular tensor category C is a diagonal

matrix with finite order, it is useful to organize the irreducible representations
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of SL(2,Z/p*Z) by the eigenvalues of pc(t) = ¢ which we will refer to as the

t-spectra of pc.

3 Examples

Here we describe a robust collection of examples of modular tensor categories
and their sets of Galois orbits to elucidate our general results in Section 4
and provide modular data for sporadic examples in Section 5. One major
source of examples of modular tensor categories comes from the semisimple
representation theory of quantum groups at roots of unity; these are indexed
by a complex finite-dimensional simple Lie algebra g and positive integer k,
and denoted C(g, k). The details of this construction are but ancillary to our

general theory, so we refer the reader to [27] for further reading.

Example 1 (Pointed categories) Let A be a finite abelian group of order n € Zx>
and consider the pointed modular tensor category C(A, q) where g : A — C* is any
nondegenerate quadratic form [10, Section 8.4]. We will identify A with O(C(A4,q))
and write the group operation (tensor product) additively. If ¢ € A is arbitrary
and h € A has order m | n, then by [17, Lemma 2.4], S_Z:Lh = Sg.mh = Sg,1 = L.
Hence s4j is an m™ root of unity. The Galois orbit of h is thus determined by
Gal(Q(¢m)/Q) =2 (Z/mZ)*, the multiplicative group of integers modulo m. Let
o € Gal(Q(¢m)/Q) be such that o(Cm) = ¢F, for some k € Z coprime to m. Then for

all g € A,

8g.6(h) = Sg.6(h)/S1,6(h) = 9(Sg,n/s1,0) = 0(sg.n) = Sk b= Sg.h- (5)

Therefore 6(h) = kh as the s-matrix is invertible, and Oy = {kh : gcd(m, k) = 1}.
This is the set of generators of the cyclic subgroup generated by h. In partic-
ular |Op| = ¢(ord(h)). Moreover, there is a one-to-one correspondence between
Orb(C(A,q)) and the number of distinct cyclic subgroups of A. While methods

for computing this number have been known for almost a century [16], we prefer
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a more modern formula due to Téth [29, 30]. In particular, with invariant factor
decomposition A = @?:1 Z/n;Z where ni,...,ny € Z>1 (ie. H?Zl n; = |A| and

ni |ng |-+ | ng), then [30, Theorem 1] states that

D DI P L “

di|na,...,dg |
One important observation is that the Galois action on C(A,q) depends only on
the group structure of the finite abelian group A, and not on the nondegenerate
quadratic form g, hence even rough characteristics of modular tensor categories can-
not be derived from the Galois action. For example, C(slz, 1)x2 and C(sog, 1) are both
pointed with underlying abelian group Z/2Z @® Z/27Z. The Galois action on both cat-
egories is trivial, but the latter category is prime while the other factors as a Deligne
tensor product. We illustrate the diversity of the number of Galois orbits of simple

objects in pointed modular tensor categories of a fixed rank by example in Table 2.

Table 2 Number of Galois orbits of pointed modular tensor categories of rank 1800

l A [[0rb(C(A, 9))I]] A [[Orb(C(4, 9))]]
727 & L]30Z & Z]30Z 280 7.J10Z & 7./ 1807 126
7/27. & 7./6Z & 7./ 150Z 120 7./27. & 7./900Z 54
7./27.& 7./10Z & 7./90. 168 ZJ15Z & Z,/120Z 140
7/27. & 7.)27. & 7./ 450Z 72 7./37. & 7./600Z 60
Z/30Z & Z/60Z 210 7/57 & 7./360Z 84
7./67. & 7./3007Z 90 7.,/18007 36

Note 1 (Cyclic groups) Let n € Z>1. Equation (6) states

Orb(C(Z/nZ, ) = > %: > (7)

d€Z>1,d|n d€Z>1,d|n

the number of positive integer divisors of n.

Note 2 (Elementary abelian p-groups) Let p € Zx9 be prime, n € Z>1, and A =

(Z./pZ)®". Equation (6) states

j=19(d =~ (n -
Orb(C(A, )= > ¢(1CE[1](§11,%F.?L,1))_H;(k)(p_l)k1 (8)

di|p,....dn|p




Springer Nature 2021 BTEX template

Modular tensor categories, subcategories, and Galois orbits 13
Pl
=1+ P (9)

Example 2 (Deligne products of transitive categories) If two transitive modular
tensor categories are coprime in the sense that their conductors are coprime inte-
gers, then their Deligne product is transitive as well by [20, Lemma 2.1(iii)]. Now
consider a product 71 X 72 of transitive modular tensor categories. Each of 77 and
T2 has a unique factorization up to reordering into coprime simple transitive fac-
tors [20, Theorem II]. So it is clear that by a organizing these simple factors by
their associated prime conductor, one can compute |Orb(7; X 7T2)| with only the
knowledge of |Orb(T &2)‘ for an abitrary transitive modular tensor category 7. To
this end, recall that simple objects X € T are classified by a Galois automorphism
o € Gal(Q(dim(C))/Q) such that 6(1) = X [20, Section 3]. We will henceforth use
the bijection O(T) = {Xs : 0 € Gal(Q(dim(C))/Q)}. Note that the rank(7) Galois
orbits of TX2, {O1rx, : 0 € Gal(Q(dim(C))/Q)} are pairwise disjoint since the
Galois action on O(T) is fixed-point free [20, Proposition 3.2]. And for the same
reason, for each o, |Ojxgx, | = rank(7). Hence this set contains all Galois orbits
of T%2 and in particular, |Orb(7%?)| = rank(7). This result also follows from [20,

Proposition 3.12].

In the following examples the simple objects will be labeled/ordered as

1= Xo, X1, Xo, . ...

Example 3 Let Fib be any rank 2 modular tensor category with nontrivial simple
object of dimension u := (1/2)(1 + v/5) [23]. Let o be the nontrivial element of
Gal(Q(¢5) T /Q). There are two distinct Deligne products up to Galois conjugacy and

equivalence, of the form Fib™ XFib™ where 71, 15 are either id or o. Their s-matrices
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are
1 W?|u w 1 -1 u  o(u)
uw? 1 |—u —u -1 1 |—o(u) —u
s= and s = (10)
u —u|—1 u? v —o(u)] -1 -1
u —u|u? —1 o(u) —u -1 -1

One can easily verify that {Xo, X1} and { X3, X3} are the orbits of the Galois action.
But Fib X Fib is pseudounitary while Fib X Fib? is not pseudounitary, nor Galois

conjugate to a pseudounitary category.

Example 4 Consider the rank 6 non-psuedounitary modular tensor category
C(s05,3/2)aq [25, Section 5.2]. The entries of the s-matrix lie in the field Q((o)™
where (pn := exp(2mi/n) for n € Z>1, the maximal totally real subfield of the ninth

roots of unity. Define u := (g — (3 — (5 and o € Gal(Q(Cy)™/Q) such that (o) = 3.

Then
[ 1 -1 1 u o(u) 02(u)_
-1 1 —1 |—o(u) —c?(u) —u
- o?(u u o(u
I I W L) (@ o
uw  —o(u) o?(u)| 1 1 1
ou) —o?(u) u 1 1 1
_02(u) —u  o(u) 1 1 L]

One easily computes that {Xg, X1, X2} and {X3, X4, X5} are the orbits of the Galois

action.
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Example 5 Consider the rank 5 unitary modular tensor category C(sla, 12)?4 [15,

Section 7]. The modular data lies in Q(¢7). We compute

i 1 a b l—a+b 1—a+b—
a b -1 —1l4+a-b-1+a-5>
5= b -1 —a l—a+b 1—-a+b |, (12)
l—-a+b—-14+4a—-bl—a+bd c c
l—-a+b—-14a—-bl—a+bd c c

where a := —(3 — (341, b:= —(2 —2¢2 —2¢3 — (2, and ¢ := —(3 — (% —2¢7 — 1. This
category is not self-dual, unlike the previous examples as ¢ € R. One easily computes

that {Xo, X1, X2} and {X3, X4} are the orbits of the Galois action.

4 Generalities

4.1 Galois conjugacy, centralizers, and fusion

subcategories

Here we prove Theorem 1, a classification of fusion subcategories of modu-
lar tensor categories invariant under the Galois action, which generalizes [1,
Lemma 3.3(ii)] to arbitrary fusion subcategories. This implies Theorem 2, a
lower bound for the number of Galois orbits of a modular tensor category
based on the number of invertible objects it possesses, i.e. the order of its uni-
versal grading group. Recall that the conductor of a modular tensor category

is the order of its t-matrix.

Lemma 2. Let C be a modular tensor category with conductor N € Z>1, and
X, Y € O(C). Then X andY centralize one another if and only if X and 5(Y)
centralize one another for all o € Gal(Q(¢{n)/Q(dim(X))).
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Proof The converse direction is trivial. For the forward direction, the definition of
the Galois action in Equation (3) states that for all o € Gal(Q(¢{y)/Q(dim(X))) C
Gal(Q((n)/Q), we have sx 5y) = o(sx,y/s1,y)dim(6(Y)). But sxy/s1,y =
dim(X) as X and Y centralize one another, thus sx ;(y) = o(dim(X)) dim(6(Y)) =
dim(X) dim(6(Y)). O

Lemma 3. IfC is a modular tensor category, then O C O(Caq). Moreover if

O(Cpt) C Oq, then Cpy is symmetrically braided.

Proof The first claim follows from Lemma 2 because 1 € O(C,q). In particular Oy

centralizes Cpt, hence Cpt centralizes itself when O(Cpt) C O1. O

Recall the definition of the fields of Verlinde eigenvalues Lx from Section

2.2.

Lemma 4. LetC be a modular tensor category and D C C a fusion subcategory.
Define the field of dimensions Kp := Q(dim(Y) : Y € O(Ce(D))). If X €
O(D), then

|Ox|

|Ox NO(D)| =[Lx : KpnNLx] = KpNLx:Q

(13)

Proof By definition, any X € O(D) is centralized by all Y € O(C¢ (D)) which by

Lemma 2 occurs if and only if §(X) is centralized by all Y € O(Ce(D)) for all

o € Gal(Q(¢y)/Q(dim(Y))) where N € Zs is the conductor of C. Equivalenty,

6(X) € O(Ce(Ce(D))) = O(D) [10, Theorem 8.21.1(ii)]. Therefore X € O(D) if and
only if 6(X) € O(D) for all

S (1 Gal(Q(¢n)/Qdim(Y))) = Gal(Q(¢n) /Kp).- (14)
Y€O(Ce(D))

As Ox is in bijection with Gal(Lx/Q) by Lemma 1, we have |[Ox N O(D)| = [Lx :

K'Dﬂ]Lx]‘ O
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Example 6 It is instructive to apply Lemma 4 in extreme cases. For example,
consider 1 € O(Cpt). Lemma 4 implies |O1|/|O1 N O(Cpt)| = [Q(dim(Y) : YV €
O(Caq)) : Q] since Q(dim(Y) : Y € O(Coq)) C L1. But |O1] = [L1 : Q], hence |O1 N
OCpt)| =Ly : Q(dim(Y) : Y € O(Caq))]- In [13], a dimensional grading was defined
for all fusion rings from the number fields generated by Frobenius-Perron dimensions
[13, Proposition 1.8]. It is clear this grading group is isomorphic to O3 NO(Cpt) when

C is a pseudounitary modular tensor category.

Question 1. Does a (nonpseudounitary) modular tensor category C exist such that

the dimensional grading group from [13] is not isomorphic to O1 N O(Cpt) ?

Theorem 1. Let C be a modular tensor category and D C C a fusion subcat-
egory. Then D is closed under the Galois action of C if and only if Ce(D) is

integral.

Proof The converse direction follows from Lemma 4 applied to all X € O(D). Now
assume D is closed under the Galois action of C. Fix X € O(C¢(D)) and let o €
Gal(Q(¢n)/Q) be arbitrary where N € Z>; is the conductor of C. The definition of

the Galois action (3) states that for all Y € O(D),

dim(X) dim(&(Y)) = sx sy = 0 (Z:) dim(5(Y)) (15)
= o(dim(X)) dim(6(Y)). (16)

where the first equality follows from D being closed under the Galois action of C and
the last equality follows from X and Y centralizing one another. As dim(6(Y)) # 0
[11, Theorem 2.3], then dim(X) is fixed by all such o, and therefore dim(X) € Z for
all X € O(C¢(D)). But C¢ (D) is spherical, so from the proof of [11, Proposition 8.22],
dim(C¢(D))/FPdim(C¢ (D)) is equal to the dimension of a simple object in the Drin-
feld center Z(C¢ (D)), a modular tensor category. Noting that the forgetful functor
F : Z(C¢ (D)) — C¢ (D) preserves dimension, we have dim(C¢(D))/FPdim(C¢ (D))

is a positive integer < 1 [11, Proposition 8.22], thus dim(C¢ (D)) = FPdim(C¢ (D)) .
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In other words C¢ (D) is pseudounitary, and therefore C¢ (D) is integral by [1, Lemma
3.3(1)]. O

Note 3 Recall from [26, Theorem 1] that if k # 2, the fusion subcategories of
C := C(g, k) are all of the form D C Cpy or Ce(D). Moreover if k # 2, all fusion
subcategories of C(g, k) which are not pointed, are closed under the Galois action on

O(C). This is also clear from geometric reasoning [3, Section 4].

Corollary 1. If C is a modular tensor category, then C,q is closed under the

Galois action.

Proof This follows from Theorem 1 as C¢(Caq) = Cpt [14, Corollary 6.9]. O

Theorem 2. Let C be a modular tensor category such that dim(Cpy) =
rank(Cpt) = Hjerjj where p; are distinct primes and a; € Z>1, indexed by

a finite set J. Then |Orb(C)| > 1+ 3. ; a;.

Proof By the fundamental theorem of finite abelian groups we have a composition
series of O(Cpt) as an abelian group of length n := 3¢ ; a;, corresponding to fusion
subcategories

Vec:’])ogplg"'gpn_lCpn:Cpt- (17)

The double-centralizer property [10, Theorem 8.21.1(ii)] implies that for each 0 <
Jj <n—1, we have C¢(Pjy1) € Ce(P;) is a strict inclusion of fusion subcategories.
By Theorem 1, C¢(Pj) is closed under Galois conjugacy for all 0 < j < n. Therefore

C = Pp, has greater than or equal to n + 1 Galois orbits of simple objects. |

4.2 Pseudoinvertible and pseudounitary

Recall that a pseudoinvertible object X is one such that dim(X) = 41, and a

pseudounitary fusion category is one such that dim(C) = FPdim(C).
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Lemma 5. Let C be a modular tensor category and T' C O(C) be the union of
Galois orbits of C containing a pseudoinvertible object. If there exists X € O(C)
with dim(X) = FPdim(X) such that all Y € O(C) which centralize X belong

to I', then C is Galois conjugate to a pseudounitary category.

Proof Each character of the Grothendieck ring K(C) is indexed by Y € O(C); the
corresponding character is gy : K(C) — C such that Z — sz y/dim(Y). But for any
Y € O(C)\TI', sx,y # dim(X)dim(Y") because X and Y do not centralize one another
by assumption. Hence py (X) # dim(X) for all Y € O(C) \ I'. But FPdim(X) =
dim(X), hence as a character of K(C), FPdim = ¢z for some Z € I'. Specifically,
let o € Gal(Q(¢{x)/Q) such that 6(W) = Z where W is pseudoinvertible. Then we
have FPdim(C) = dim(C)/ dim(6(W))? = o(dim(C)) = dim(C?). The category C is

therefore pseudounitary. ]

Note 4 Recall the category C := Fib X Fib? from Example 3. The category C
possesses both nontrivial pseudoinvertible objects and a nontrivial simple object X1
with FPdim(X7) = dim(X7) = (1/2)(1++/5). But X is centralized by its only other
Galois conjugate, which is not pseudoinvertible. Thus Lemma 5 fails. Indeed C is not

Galois conjugate to a pseudounitary category.

Theorem 3. Let C be a modular tensor category. Then every Galois orbit of
C contains a pseudoinvertible object if and only if C ~ Cpy XT where T is a

transitive modular tensor category.

Proof For the forward direction, we may assume that C is pseudounitary by applying
Lemma 5 with X = 1. Thus there exists at least one invertible object in each
Galois orbit of C. Lemma 2 then implies any Y € O(Cét) centralizes O(C), hence
Y =1, C;t = Vec, and moreover C ~ Cpy B Cyq by [4, Proposition 2.2]. Lemma

3 states O C O(Caq)- But every Galois orbit contains an invertible object and
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O(Caq) N O(Cpt) = {1}, so O(Caq) = Oq is transitive. The converse implication
follows from [20, Lemma 2.1(ii)] which implies that each g®X € O(Cpt X T) is Galois
conjugate to h X 1 for some h € O(Cpt) since T is transitive, which is an invertible

object, hence pseudoinvertible. O

Note 5 Theorem 3 can be restated in terms of formal codegrees [24] as follows. Let
C be a modular tensor category. Then the set of formal codegrees of C are a single

Galois orbit if and only if C ~ C,X7T where 7 is a transitive modular tensor category.

Question 2. Does a fusion category C exist (not necessarily braided or mod-
ular) whose formal codegrees are all Galois conjugate but C # Cpy, X Caq as

fusion categories?

We end this section by computing the number of Galois orbits of the

modular tensor categories characterized by Theorem 3.

Example 7 (Product of pointed and transitive) Pointed modular tensor categories
factor as a Deligne product of coprime factors [6, Theorem 1.1] whose t-matrix has
prime power order [2, Theorem 3.9], while transitive modular tensor categories factor
as a Deligne product of coprime factors whose t-matrix has prime order greater than
or equal to 5 [20, Theorem II]. So fix a prime p € Z>5. To compute the number
of Galois orbits of an arbitrary Deligne product C X T where C is pointed and T is
transitive, it suffices to compute |Orb(C(A4, q) X C(sla,p — 2).q)| where A is a finite
abelian group of order p™ for some n € Z>; and ¢ is any nondegenerate quadratic
form. We assume C and 7 are of this form henceforth and denote their tensor units
by 1 and 17, respectively.

First note that every g X X € O(C X T) is Galois conjugate to an element of
the form h X 17 for some h € O(C) since T is transitive. In the case g = 1¢,
|01.=1,] = (p— 1)/2 since 1¢ is fixed by the Galois action of C. Now it suffices

to count the number of Galois congugacy classes of elements of the form g X 14 for
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nontrivial g € O(C). Let g € O(C) such that the order of g is p* for some k € L>q.
Then 6(g ¥ 1) = h X 1 if and only if 6(g) = h under the Galois action of C
and 6(17) = 17 under the Galois action of 7. As was shown in Example 1, the
Galois orbit of g € O(C) is determined by o € Gal(Q((,+)/Q) and the condition
&(17) = Ly implies o/(dim(7)) = dim(7), i.e. o € Gal(Q(pr)/Q(¢p) ™). Thus gR 1y
has exactly [Gal(Q(¢,x)/Q(G) )] = #(p%)/(6(p)/2) = 2"~ Galois conjugates of
the form h X 1.

Therefore, to each Galois orbit of an element g € O(C) of order p®, there corre-
sponds ¢(p*)/(2p* 1) = (p—1)/2 Galois orbits of C X T, independent of k. We may

then sum over all Galois orbits of C, ommitting Oy, to yield

IOrb(C R T)| = 1+ (|Orb(C)| - 1)1%1. (18)

Note 6 (Cyclic groups) If p € Z>5 is prime and n € Z>1, then

Orb(C(Z/p" 2, ) B Clsta,p ~ 2aa)] = 1+ ((n+ 1)~ 1) B ag)
= w (20)

Note 7 (Elementary abelian p-groups) If p € Z>5 is prime and n € Zx1, then

|Orb(C((Z/pZ)®™, q) R C(sla, p — 2)aa)l = 1+ (1 + p:_—11 - 1) 0 5 Do
pt+1

- (22)

5 Two orbits

The general results of Section 4 can be used to classify modular tensor cate-
gories with a small number of Galois orbits of simple objects and nontrivial
universal grading. We provide a small table of examples in Table 3. Here we
reduce the classification of modular tensor categories C with |Orb(C)| = 2 to
the case where C is simple, i.e. C does not possess any nontrivial fusion subcat-

egories. The culiminating results are Corollary 2 which describes the case Cp¢
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is nontrivial, and Proposition 4 which describes the case when Cp is trivial.

With increasing complexity, these results can be extended to the cases when

|Orb(C)| > 2.

Table 3 Examples of modular tensor categories C with |Orb(C)| = 2

[ C [ rank(C) [rank(Cpt)[ Orbit sizes ]
C(sl2,2) 3 2 1,2
C(g2, —2/3) 4 1 2,2
C(505,3/2)aq 6 1 3,3
C(505,5/2)aa 10 1 5,5
C(g2,5) 12 1 3,9
C(g2,5/3) 16 1 8,8
C(E7,5)ad 22 1 11,11
C(slp, 1) P P 1,é(p)
p > 2 prime
C(sl2,2(p — )% | (0 +3)/2 1 2,56(p)
p > 5 prime
2 2 T T 2
C(sl2, p* — 2)aa |(p? — 1)/2 1 30(p), 30(*)
p > 3 prime

5.1 Possible pointed subcategories

The goal of this subsection is to prove that when a modular tensor category
C has two Galois orbits of simple objects and nontrivial pointed subcategory,

then Cp =~ sVec or C ~ Cp,t )T for some transitive modular tensor category 7.

Lemma 6. Let C be a modular tensor category. If |Orb(C)| = 2 and Cpy is

nontrivial, then Oy = O(Caq).

Proof The relative centralizer C¢(Cpt) = Coq must be closed under Galois conjugacy
by Theorem 1. But C¢(Cpt) C C since C is modular, thus O(Ce(Cpt)) = O(Caq) = O1.
d

Proposition 1. Let C be a modular tensor category with |Orb(C)| = 2. If
Cpt # Vec, then FPAim(Cp) = 2 and Cpy is symmetric, or C ~ Cpy KT where

T is a transitive modular tensor category.
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Proof If O(Cpt) ¢ O, then C =~ Cpy ® T where 7 is a transitive modular tensor
category by Theorem 3. Otherwise O(Cpt) C O1 and thus Cpt is self-dual [1, Lemma
3.2] and symmetrically braided by Lemma 3. Lastly Theorem 2 implies FPdim(C)
is prime. But a pointed self-dual fusion category must be an elementary abelian 2-

group, hence FPdim(Cpt) = 2. d

To finish this subsection by eliminating the possibility that |Gal(C)| = 2 and
Cpt is Tannakian, we will need the standard constructions of connected étale
algebras in braided fusion categories, and their categories of local modules. We

refer the reader to [4, Section 3] where comprehensive detail can be found.

Lemma 7. Let C be a braided tensor category and A be the regular algebra of
a Tannakian fusion subcategory. If dim(X) is an algebraic unit, then the free

A-module A ® X is simple.

Proof Let V be a simple A-submodule of the free A-module A® X. The only possible
subobjects of A ® X are of the form V = § ® X where § is a sum of invertible simple
objects, hence dim(V) = mdim(X) where 1 < m < dim(A). We compute dim 4 (V),

the dimension of V'€ O(C4), using [15, Theorem 1.18]:
dim 4 (V) = dim(V)/dim(A) = (m/dim(A)) dim(X). (23)

But dim(X) is an algebraic unit by assumption, thus m = dim(A) and moreover

A ® X is simple. O

Lemma 8. Let C be a modular tensor category. If O1 = O(Caa) and Cpy is
Tannakian, then C is a transitive modular tensor category where A € Cpy is

the regular algebra of Cpy.

Proof Lemma 7 implies that every V € O(CY) is free. Hence every V € O(CY) has

squared dimension of the form dim(C)/o(dim(C)) = dim(CY)/o(dim(CY)) for some
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o € Gal(Q/Q). Therefore each Galois orbit of Cg contains a pseudoinvertible object,
and Theorem 3 implies C§ =~ (C%)pt XT for some transitive modular tensor category
T. Hence Cg is Galois conjugate to a pseudounitary modular tensor category and
thus C is Galois conjugate to a pseudounitary modular tensor category by [19, Lemma
5.3(c)] and [4, Lemma 3.11]. Lastly, we may now assume X € O(C) has dim(X)? = 1
if and only if X € O(Cpt). Therefore V € O(CY) has dim(V)? = 1 if and only if

V =A. So C% has no nontrivial invertible objects, and is moreover transitive. |

Proposition 2. Let C be a modular tensor category. If O1 = O(Caa) and Cpyt

is Tannakian, then C is transitive.

Proof Assume Cpy is Tannakian with regular algebra A. Then Lemma 8 implies C% is
transitive. By [20, Theorem II], each transitive modular tensor category has a unique

(up to ordering) nontrivial factorization
T ~W;esC(sl2, pj — 2)aa (24)

where J is some finite index set of distinct primes greater than 3. Note that de-
equivariantization commutes with taking centralizers [7, Proposition 4.30]. In our
case this means 7 =~ (C4)aq = (Caq) A, so there exists a canonical equivalence TC ~
Caq. This equivariantization comes from a braided action of G := O(Cpt) on T [10,
Theorem 8.23.3]; let p: G — Aut%r(T) be the corresponding group homomorphism.
Theorem 5.2 of [12] states that Au‘c%r (T) = Pic(T) where Pic(T) is the Picard group
of equivalence classes of invertible 7-module categories. The categories C(sl2, pj—2)ad

are pairwise coprime for j € J, so by [12, Proposition 4.10],
PiC(T) = XjGJPiC(C(SKQ,pj — 2)ad)' (25)

But these Picard groups are trivial for all j € J by [8, Theorem 1.2], so the homomor-
phism p is trivial. Moreover C,q =~ T¢ ~ TR Rep(G) as braided fusion categories.
Therefore C ~ T K C¢(T) with C¢(T) modular [17, Proposition 4.1] and weakly
integral, and FPdim(Ce (7)) = FPdim(Cpt)?.
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Lastly we will prove Cpt is trivial, hence C is transitive. To this end, note that
O(Cpt) C O(Cyq) = O1, which is self-dual. Hence O(Cpt) is an elementary abelian 2-
group. This implies FPdim(C¢ (7)) = 2" for some n € Zx( and therefore dim(X) €
Q(v2) for all X € C¢(T). By Lemma 1, |Oq] is either rank(7) (when C¢(T) is
integral) or 2-rank(7) (when there exists X € O(C¢(T)) with Q(dim(X)) = Q(+/2)).
In the former case, C¢(T )aq is trivial, so C¢(T) is pointed. But this implies Cpt is
not Tannakian unless Cpy is trivial. The latter case implies C¢ (7T )aq is rank 2, which
then must be pointed. Moreover, the Ising categories are the only modular tensor
categories with the above properties, none of which contain a non-trivial Tannakian

subcategory, so this cannot occur. (]

5.2 The case of sVec

Lemma 9. Let C be a modular tensor category with |Orb(C)| = 2 and con-
ductor N € Z>1. If 16 | N, then N = 16m for an odd square-free m € Z>3.
Moreover for some multiplicity n € Z>1, pc = n(e ®,), where 1, is an irre-
ducible transitive representation of SL(2,Z/mZ), and 1. is a 3-dimensional

irreducible representation of SL(2,7/16Z).

Proof Let ¢ be an irreducible summand of pc whose level is divisible by 16. Then
¥ = 1he @ 1ho where e is an irreducible representation of level 2" for some n € Z>3
and 1, is an irreducible representation of level m for some odd integer m by the
Chinese remainder theorem. Since the number of square Galois orbits of t-eigenvalues
is multiplicative across coprime orders, then exactly one each of e, 1o have 1 or
2 square Galois orbits of t-eigenvalues. But there do not exist transitive irreducible
representations of level 2* for A > 4 (Appendix A). This implies that 1), is transitive,
i.e. m is square-free. Moreover, 1. has two square Galois orbits of t-eigenvalues, so
e is isomorphic to one of the sixteen 3-dimensional irreducible representations of

SL(2,Z/16Z) (Appendix A).
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Let ¢ be any other irreducible summand of pe. The eigenvalues of ¢(t) must
be a subset of those of 1, or else |Orb(C)| > 2. In the case ord(t¢) = 16m, the
eigenvalues of ¥(t) are all primitive 16m-th roots of unity, hence ¢ is an irreducible
representation of level 16m as well. By the above argument, ¢ 22 1) since they have

the same eigenvalues. |

Lemma 10. Let p be an irreducible representation of SL(2,Z/NZ) for some
N € Z>o and C be a modular tensor category. If p has distinct eigenvalues,

then pc 2 np for any n € Z>s.

Proof Assume to the contrary that pc = np. Set r := rank(C) = ndim(p). Let Y be
the block diagonal matrix of n copies of p(s), Z be the block diagonal matrix of n
copies of p(t), and P be the 7 x r change-of-basis matrix such that Y = P~ p¢(s)P
and Z = Pilpc (t)P. By possibly commuting with a permutation matrix, we may
assume that P is such that pe(t) = P~ 1pe(t)P on the nose, i.e. Ppc(t) = pe(t)P.
Consider P and P~! as matrices of dim(p) x dim(p) blocks Pjj, and Rjy, for 1 <
J,k < m, respectively. Then for all 1 < j,k < n, Ppc(t) = pc(t)P implies Pjp(t) =
p(t) P}y, and pc()P~1 = P71 pp(4) implies p(YR;1, = Rjip(t). Since p(t) has distinct
eigenvalues, these commutations imply Pj; and Rjj are diagonal matrices for all

1 < 4,k < n. We compute a generic block of PY as

n
(PY)jr =Y Pje(Y)er = Pjrp(s), (26)
=1
hence for 1 < j, k < n,
n
(pc(8))jk = (PYP ™) j5 =D Pjop(s) Ry (27)
=1

But PP~! = I, implies 3.} ; PjyRy, = 0 for j # k. Therefore, the diagonal
elements of (p¢(s)), are 0 for all j # k, and since p¢(s) is symmetric, each row/col-
umn of pe(s) contains at least one 0 entry. This cannot occur since the row/column
corresponding to the Frobenius-Perron dimension must consist only of positive real

numbers. O
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Lemma 11. Let C be a modular tensor category with |Orb(C)| = 2. If
Cpt ~ sVec, then pc = . ® o, where 1, is an irreducible transitive represen-
tation of SL(2,Z/mZ) as in Lemma 9, and . is a 3-dimensional irreducible

representation of SL(2,7Z/167Z).

Proof We begin by noting that Cpy C Oq, or else Cpt is nondegenerately braided
by Theorem 3, a contradiction. Let ¢ € Gal(Q/Q) such that &(1) is the nontrivial
invertible object of sVec. In particular, 1 = 0 = —9&(1) = —1, hence —t1 =t5(1) =
Uz(t]l). The only roots of unity which are square Galois conjugate to their negative

have order divisible by 16, so our claim follows from Lemma 9 and Lemma 10. ]

Proposition 3. Let C be a modular tensor category with |Orb(C)| = 2. If
Cpt > sVec, then C ~ T X T where I is an Ising modular tensor category and

T is a transitive modular tensor category.

Proof Lemma 11 states that pe = ¥e ® 1o where 1, is an irreducible transitive rep-
resentation of SL(2,Z/mZ) for some square-free m € Zx>3, and e is a 3-dimensional
irreducible representation of SL(2,7/16Z). In particular, the eigenvalues of p¢(t) are

distinct and so C is self-dual. Up to a change of basis, we have

|0 V22
bele) =% | va 1 1 (28)
V2 1 1

where (¥ = exp(2kwi/4) for some k = 0,1,2,3 [9, Table A2]. Recall that the
irreducible representation 1, is realized by a modular tensor category D which is
equivalent to the Deligne product of transitive modular tensor categories C(sla,p —
2)35 for some Galois automorphism o, € Gal(Q(¢p)/Q) for all p | m. So we may
assume that 1o (s) is the normalized S-matrix of D by a change of basis indepen-
dent to that for e(s) since their t-eigenvalues are disjoint. In particular, ¥,(s) is

real, so k € {0,2} in (28). Since D is transitive, every row/column of ¢, (s) contains
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a unique entry of the form +1/4/dim(D). By observing the rows/columns without
zeroes of e (s), we see that 1/,/dim(C) is either 1/1/2dim(D) or 1/+/4dim(D), i.e.

dim(C) = 2dim(D) or dim(C) = 4dim(D). But since every row/column of p¢(s) con-
tains a unique entry of the form +1/ \/m , then the former would imply there
exists a unique pseudoinvertible object X € O(C). The pointed subcategory Cpt is
assumed nontrivial, so we may conclude dim(C) = 4dim(D) and moreover, C pos-
sesses a unique, simple, self-dual object X with dim(X) = V2. Tt is clear that X must
®-generate a nondegenerately braided fusion subcategory of C which is equivalent to

one of the Ising modular tensor categories and therefore C factorizes as claimed.

Corollary 2. Let C be a modular tensor category. Then |Orb(C)| =2 and Cpy
is nontrivial if and only if C ~ DX T is an equivalence of modular tensor
categories, where T is a transitive modular tensor category, and D is either
pointed of prime dimension coprime to the conductor of T, or an Ising modular

tensor category.

Proof If |Orb(C)| = 2 and Cpt is nontrivial, then Propositions 1 and 2 imply that
either Cpy ~ sVec, or C ~ DX T is an equivalence of modular tensor categories,
where 7 is a transitive modular tensor category, and D is pointed of prime dimension
coprime to the conductor of 7. In the former case, Proposition 3 implies C ~Z X T
where Z is an Ising modular tensor category and 7 is a transitive modular tensor

category. The converse direction is trivial. |

5.3 The unpointed case

Lemma 12. Let C be an unpointed modular tensor category with |Orb(C)| = 2.

If D C C is a fusion subcategory, then D is a modular tensor category.
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Proof Let D C C be a fusion subcategory. Then D inherits the braiding of C and we
may consider the symmetric center D’. We know that D’ is integral, hence pseudouni-
tary, thus FPdim(X) = +dim(X) for all X € O(D’). If X,Y € O(D’) are Galois

conjugate (by the Galois action on C), then there exists o € Gal(Q/Q) such that
dim(X)? = ¢(dim(Y)?) dim(C) /o (dim(C)) = dim(Y)? dim(C) /o (dim(C)). ~ (29)

Thus dim(X)?/dim(Y)? = dim(C)/o(dim(C)) = 1 as it is a positive integer unit [24,
Corollary 1.4]. Hence dim(X) = £dim(Y) and moreover FPdim(X) = FPdim(Y).
Thus there are at most two distinct Frobenius-Perron dimensions of simple objects
in D’.

Let X € O(D")\{1}. Then since 1 is the unique simple object of Frobenius-Perron

dimension 1, by the above argument,
FPdirn(X)2 =FPdim(X ® X*) = 1 + nFPdim(X) (30)

for some n € Zx>;. This would imply 1 = 0 (mod FPdim(X)), therefore no such X

. /
exists. Moreover D' ~ Vec. O

Proposition 4. Let C be a modular tensor category. Then |Orb(C)| = 2 and
Cpt s trivial if and only if C ~ DX T is an equivalence of modular tensor
categories, where T is a transitive modular tensor category, and D is either a
simple modular tensor category whose conductor is coprime to that of T, or
rank(7) > 2 and D is braided equivalent to Fy X Fy where Fyi, Fo are any of

the Fibonacci modular tensor categories.

Proof For the forward direction, Lemma 12 implies the unique factorization (up to
braided equivalence) given by [4, Proposition 2.2] consists of simple factors. Lemma
2.1(iii) of [20] then implies at most one of these factors, £, has 2 Galois orbits of
simple objects. If £ exists, then the remaining factors are transitive and coprime, or

else |Orb(C¢(€))| > 1 by Example 2 which would imply |Orb(C)| > 4 by [20, Lemma
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2.1(iii)]. In this case & = D proves our claim. If £ does not exist, then all simple fac-
tors of C are transitive, and at least 2 are not coprime or else C would be transitive.
Example 2 implies that D ~ F; X F» for some Fibonacci modular tensor categories
F1,Fa, is the only product of non-coprime simple transitive modular tensor cate-

gories with 2 Galois orbits of simple objects. The converse direction is trivial. |

Appendix A t-spectra

Here we include the classification of irreducible SL(2,Z/NZ) representations
for N € Z>,. This classification first appeared in [22, Section 9] but to justify
the proofs of Section 5.2, we have contributed the t-eigenvalues of each rep-
resentation as a set as well as the number of square Galois orbits of roots of
unity in this set. It is not necessary for our purposes to include multiplicities
of eigenvalues and doing so would increase the length of our exposition greatly.

In the following tables we denote the set of all n-th roots of unity by ®,,
and the set of all primitive n-th roots of unity by I';,, for brevity. We denote
the square Galois orbit of C;A by I‘;A for any r € Z. Any squared Galois
orbit of primitive p*th roots of unity for prime p and A\ € Z>1 is the orbit
of C;A where r is a quadratic (non)-residue modulo p when p is odd, or the
orbit of (J, where r € {1,3,5,7}. In particular, ®; = I'y = {1}, 'y = {~1},
Iy = I}, UTS, = {&i}, Tox = T, U, U5, UTT, when A > 3, and
Ly = F;A U F;’;A for odd p, where r is a quadratic residue and s is a quadratic

are disjoint unless ry = ro,

1

non-residue modulo p. The sets I'"*
p1 2

and I‘;Z N
p1 = p2 and Ay = Ay (similarly for I') », and I',,», ), hence all the unions in
the following tables are disjoint unions.

Denote the one-dimensional modular group representations whose set of t-

eigenvalues are I'y = {1}, I'y = {—1}, '3, = {—i}, T3, = {i} by C1,C5,C5, Cy,

respectively. If a representation has distinct t-eigenvalues then we say it is
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“multiplicity-free”, denoted m.f. in the tables. We have abbreviated the number
of square Galois orbits in the set of t-eigenvalues by |Gal|; only a lower bound
is given in exactly two cases to save space in an already lengthy exposition.
Unless otherwise noted in column 2, y will represent an arbitrary character in
B, the set of characters of the automorphism group of the binary quadratic

module associated to the representation [22, Section 2].

Table A1 Irreps. of SL(2,Z/pZ) for p # 2

type of rep. dim t — spectrum m.f. |Gal|
D1(x) p+1 b, no 3
Ni1(x) p—1 Ty yes 2

r
Ri(r,x1) . =+1 I(p+1) TLUTY yes 2

r
Ba(rix-1) () =1 3(p—1) T} yes 1

Ni(x1) P b, yes 3




oS : ou
_\d d .
X ¢= d ¢ 4&@ N /\%H NI,«QAH - N&vm HAHX &v,ﬂm
‘C=Y : sk
_  9Sp : ou . . o d d Gy
bres ﬂHc“m&W ?_&\MENwma.@?i%ﬂv?ﬂi —d(1— D (X39)5y
4 SOA MN,H A\AQWA._H - n& AXV ,«Z
1+Y¢ ou Yo dA(1+4d) )¥a
rep)| Ju wniyoads — 3 wip -dox jo od£y
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Table A3 Irreps. of SL(2,Z/2Z)
type of rep. dim t— spectrum m.f. |Gal|
Co=Ni(x) 1 T2 yes 1
Ni(x1) 2 [o2y yes 2
Table A4 Irreps. of SL(2,Z/4Z)
type of rep. dim t — spectrum m.f. |Gall
R9(1,1,x1) 3 dyUTL, yes 3
R9(3,1,x1) 3 Quly, yes 3
R9(1,3)1 3 T1UTly yes 3
Co ®R8(1,3)1 3 o UT g2 yes 3
Na(x) XZ12 Ty yes 2
ngRg(B,l,x) xZ11 F%Z yes 1
Cs=RY(1,1,x) x£11 2. yes 1
Table A5 Irreps. SL(2,Z/8Z)
type of rep. dim t — spectrum m.f. |Gal|
F%S ur;3 r=1,t=1
ri, ur =1,t=3
Ri(r,t,x1) 6 TyU F%Z Urgz —3t—g Ve 4
I
R9(1,3,x1)1 6 DUl yes 6
Cs3 ®Rg(1,3,)(1)1 6 T2 UTys yes 6
N3(x) X2 #1 4 Tl U3 urs, uTl, yes 4
1“%3 ] Fgg tj=1
Io,ulll, : 5=2
C,; ® N i=1,2,3,4 2 3 s es 2
J 3(X)+ J ngﬁ U F§3 D j= 3 Yy
5, UL, j=4
rouTl, urg3 cj=1
i ryul:,ur 1 j=2
. 0 _ 3 3
C]®R3(1737X)+ x#1,7=1,2,3,43 F12UF233UF273 1 j=3 yes 3
1“%2 urggurﬁg Lj=4
P2UTH UL, =
_ rurd, ur?, . j=2
] 0 — 23 3
Ci®R3(1,3,x)- x#1,j=1,2,3,43 F§2UF%3UF2§3 i3 yes 3
F22 UF23UF23 1 j=4
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Table A7 Irreps. SL(2,7Z/32Z)
type of rep. dim t — spectrum m.f. |Gal|
D5 (X) 48 ‘1925 no 16
Ns(x) 16 TI'ys yes 4
0 . - . urs; ct=1
Ry (r,t,x) r=13;t=1,5 12 FQSUF25U{F§TU1_‘3T . p—5 Yes 4
RY(1,t,x) t=3,7 24 FQS U gz‘;’ 1;_?; no 8
Ri(r,1,x) r=1,5 12 U3, urr, Urs; yes 4
RL(r,3,x) r=1,3 12 F% U F? U ng U rgr yes 4
RE(r,5,x) r=1,5 12 F% U Fg U FgT U rgr yes 4
RL(r,7,x) r=1,3 12 F% U F% U FT U rgr yes 4
R2(r,t,x)+ r=13;,t=1,3,5,7 6 F24 UF yes 3
R2(r,1,x)1 X¢B;r=1,3 12 F1UF2UFT U35 UTT; UTSD yes 6
C3 @ R2(r,1,x)1 X €B; 7 =1,3 12 FQQUFSTUFWUW ury
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