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Abstract

We establish a set of general results to study how the Galois action
on modular tensor categories interacts with fusion subcategories. This
includes a characterization of fusion subcategories of modular ten-
sor categories which are closed under the Galois action, and a
classification of modular tensor categories which factor as a prod-
uct of pointed and transitive categories in terms of pseudoinvertible
objects. As an application, we classify modular tensor categories with
two Galois orbits of simple objects and a nontrivial grading group.
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1 Introduction

Modular tensor categories are an algebraic shadow of conformal field theory,

and instantiate an intersection of representation theory, low-dimensional topol-

ogy, number theory, and mathematical physics. From their definition it seems

strange that a nontrivial example of such a heavily-defined object would even

exist, yet there are incredibly diverse infinite families coming from the represen-

tation theory of finite groups, quantum groups at roots of unity, and categorical

generalizations thereof. There are two open-ended and interrelated approaches

to understanding modular tensor categories: to produce novel examples, and

to organize known examples. Often, novel examples inspire the classification

of examples with particular characteristics while classification results demon-

strate unusual gaps in the library of known examples. Here we contribute

results organizing modular tensor categories by the interaction between fusion

subcategories and the Galois action on simple objects.

The Galois action on a modular tensor category associates a permutation

of the finite set of simple objects to every Galois automorphism in the absolute

Galois group Gal(Q/Q). As the modular data of a modular tensor category

consists of cyclotomic integers, it is sufficient to study the Galois action of
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Gal(Q(ζ)/Q) where ζ is a primitive root of unity whose order is the conduc-

tor, or Frobenius-Schur exponent of the modular tensor category in question.

Previously [20, Theorem II], it was shown there is a single infinite family

of modular tensor categories with a transitive Galois action, which is to say

that there is a unique orbit of simple objects under this action. One reason

transitive modular tensor categories have a particularly elegant description is

that they all possess an essentially unique factorization into a product of sim-

ple transitive modular tensor categories, in the sense that each factor has no

proper nontrivial fusion subcategories. But in general it is necessary to have a

more nuanced understanding of the interaction between fusion subcategories

and the Galois action.

In [13], number-theoretical properties of Frobenius-Perron dimension were

used to identify and classify fusion subcategories of fusion categories. Similarly,

here we consider centralizing simple objects in a modular tensor category as a

numerical constraint, and apply analogous methods. In Theorem 1, we prove

that a fusion subcategory of a modular tensor category is closed under the

Galois action if and only if its centralizer subcategory is integral, which means

all simple objects have integer Frobenius-Perron dimension. This implies, for

example, that all fusion subcategories of integral modular tensor categories

(e.g., the twisted doubles of finite groups) are preserved under the Galois

action. A common source of simple objects of integer Frobenius-Perron dimen-

sion are the invertible objects, i.e. those with Frobenius-Perron dimension 1.

In Theorem 2, we obtain a lower bound for |Orb(C)|, the number of Galois

orbits of a modular tensor category C, based on the prime factorization of the

dimension of its maximal pointed fusion subcategory Cpt. A weaker condition

than invertibility is requiring a simple object to have categorical dimension

±1, which we call pseudoinvertibility. We prove in Theorem 3 that a modular
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tensor category C factorizes as P � T where P is a pointed modular tensor

category and T is a transitive modular tensor category if and only if every

Galois orbit of simple objects contains a pseudoinvertible object. In terms of

formal codegrees [24], these conditions are equivalent to all formal codegrees

of a modular tensor category being Galois conjugate.

Lastly, we utilize our general results to further the classification of mod-

ular tensor categories with a small number of Galois orbits of simple objects

initiated in [20]. When |Orb(C)| = 1, i.e. C is transitive, then Cpt is trivial, or

equivalently C has a trivial universal grading group [10, Section 4.14]. Tran-

sitive modular tensor categories are also self-dual and Galois conjugate to

pseudounitary categories. Modular tensor categories C with |Orb(C)| = 2 are

more complex in all of these regards, and so their classification is naturally

partitioned into first studying those which have nontrivial gradings, then those

with nontrivial fusion subcategories. Our general results imply that

- |Orb(C)| = 2 and Cpt is nontrivial if and only if C ' D � T where T is

a transitive modular tensor category, and D is pointed of prime dimension

coprime to the conductor of T , or an Ising category (Corollary 2);

- |Orb(C)| = 2 and Cpt is trivial if and only if C ' D � T where T is a tran-

sitive modular tensor category, and D is a simple modular tensor category

whose conductor is coprime to that of T , or rank(T ) > 2 and D is braided

equivalent to F1�F2 where F1,F2 are any of the Fibonacci modular tensor

categories (Proposition 4).

Therefore, a complete classification is reduced to understanding those

examples which are simple, which will require future analysis using other meth-

ods. We provide two infinite families of simple modular tensor categories C with

|Orb(C)| = 2 (Table 3) which are not pointed; one family is self-dual while the

other is not self-dual. It is unclear whether 5 additional sporadic examples of
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modular tensor categories of this type belong to infinite families or if they are

truly exceptional. Note that 3 of these examples are not pseudounitary, and

for at least one, there does not exist a pseudounitary modular tensor category

nor a pseudounitary fusion category with these fusion rules [28].

A brief introduction to modular tensor categories, their Galois action, and

corresponding modular group representation are given in Section 2; we pro-

vide an expansive collection of examples in Section 3. Table 1 below contains

notation which recurs throughout. Our general results pertaining to the Galois

action are contained in Section 4, while the particular application to modular

tensor categories with 2 Galois orbits is the subject of Section 5. Appendix

A, consisting of the t-spectra of irreducible representations of SL(2,Z/NZ) for

N ∈ Z≥2, is necessary for the proofs of Section 5.

Table 1 Recurring notation

Notation Parameters Meaning

φ(n) n ∈ Z≥1 number of positive integers m with gcd(m,n) = 1
ζn n ∈ Z≥1 exp(2πi/n)

Q(ζn)+ n ∈ Z≥1 maximal totally real subfield of Q(ζn)
[K : L] algebraic number fields L ⊂ K degree of K as a vector space over L
O(C) fusion category C set of isomorphism classes of simple objects of C
CC(D) braided fusion categories D ⊂ C relative centralizer of D ⊂ C
OX simple object X in Galois orbit of X in C

a modular tensor category C
Orb(C) modular tensor category C the set of Galois orbits of simple objects of C

2 Preliminaries

Our main objects of study are modular tensor categories. We only briefly

recount the components of a modular tensor category with an aim to reach our

main tool: the modular data of a modular tensor category and its Galois action.

For comprehensive detail one can refer to the standard text [10, Sections 8.13-

8.17] and references within. The structure of a modular tensor category is built
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upon a fusion category: a C-linear, semisimple, rigid monoidal category (the

monoidal operation will be denoted ⊗) with finitely-many isomorphism classes

of simple objects and a simple ⊗-unit which will be denoted 1. We will denote

the set of isomorphism classes of simple objects of a fusion category C by O(C).

Rigidity of a fusion category C is the existence of a suitable notion of duality

which we will denote X∗ for an object X ∈ C. Upon the base fusion category,

a modular tensor category includes two additional structures: a nondegenerate

braiding (see [10, Section 8.1] and Section 2.3 below), or a family of natural

isomorphisms dictating the commutativity of ⊗, and a spherical structure [10,

Section 4.7], or a family of natural isomorphisms X → X∗∗ for all X ∈ C which

allow a well-defined notion of trace for endomorphisms in the category.

2.1 The modular data

Let C be a modular tensor category. There are two important symmetric invert-

ible |O(C)|×|O(C)| matrices associated to C, denoted s and t and often referred

to as the modular data of C. The matrix s consists of the traces (inherited

from the chosen spherical structure) of the double braidings on pairs of sim-

ple objects. For example, the double braiding of 1 and any other X ∈ O(C) is

the identity, and so its trace s1,X = sX,1 is aptly referred to as dim(X), the

categorical dimension of X. The matrix t is a diagonal matrix whose diago-

nal entries are roots of unity tX known as the twists or full twists of simple

objects X; the order of the t-matrix is known as the conductor of C. If C and

D are modular tensor categories whose conductors are coprime as integers, we

will simply refer to C and D as coprime for brevity.

The namesake of the modular data is its relation to the modular group

SL(2,Z). Recall that the modular group SL(2,Z), the group of 2 × 2 integer



Springer Nature 2021 LATEX template

Modular tensor categories, subcategories, and Galois orbits 7

matrices with determinant 1, is generated by

s :=

 0 −1

1 0

 and t :=

 1 1

0 1

 . (1)

If C is a modular tensor category, then s 7→ s, t 7→ t defines a projective

representation of SL(2,Z) [10, Section 8.16]. Depending on the application,

one often requires a normalized version of the modular data, giving a lin-

ear representation of SL(2,Z). This normalization can be made very explicit.

Define

dim(C) :=
∑

X∈O(C)

s2
1,X and τ :=

∑
X∈O(C)

tXs
2
1,X . (2)

Let dim(C)1/2 be the positive square root, and let γ be any third root of

ξ(C) := τ ·dim(C)−1/2. The root of unity ξ(C) is usually called the multiplicative

central charge of C. Then the normalized modular data s̃ := dim(C)−1/2s and

t̃ := γ−1t give a linear representation of SL(2,Z) with s 7→ s̃ and t 7→ t̃. We

will elaborate on this representation in Section 2.4.

2.2 The Galois action

If C is a modular tensor category, the characters of the Grothendieck ring K(C)

are in bijection with O(C) [10, Section 8.14]. Specifically, for each X ∈ O(C),

Y 7→ sY,X/s1,X is a ring homomorphism K(C) → C and every character

of K(C) → C arises in this way. This bijection gives a well-defined Galois

action on O(C) coming from the fact that the absolute Galois group Gal(Q/Q)

permutes the characters of K(C). In particular, for any Galois automorphism

σ ∈ Gal(Q/Q), there exists a unique permutation σ̂ : O(C)→ O(C) defined by

σ

(
sX,Y
s1,Y

)
=
sX,σ̂(Y )

s1,σ̂(Y )
(3)
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for all X,Y ∈ O(C). One then deduces, for example, that for all X ∈ O(C)

and σ ∈ Gal(Q/Q),

dim(σ̂(X))2 = s2
1,σ̂(X) =

dim(C)
σ(dim(C))

σ(s2
1,X) =

dim(C)
σ(dim(C))

σ(dim(X))2. (4)

The Galois action on the matrix t is by squares. We have σ2(tX) = σ2(γ)γ−1 ·

tσ̂(X) [5, Theorem II(iii)] which on the normalized modular data simplifies to

σ2(t̃X) = t̃σ̂(X). For this reason we will often refer to roots of unity ζ1, ζ2

as being square Galois conjugate, i.e. there exists σ ∈ Gal(Q/Q) such that

σ2(ζ1) = ζ2. Denote the Galois orbit of X ∈ O(C) by OX and the set of

Galois orbits of O(C) by Orb(C). If O(C) = O1, i.e. |Orb(C)| = 1, we say C is

transitive. Transitive modular tensor categories are completely classified [20,

Theorem II].

It is well-known that the entries of the s-matrix are cyclotomic integers

[10, Theorem 8.14.7] so the Galois action on a modular tensor category is

determined by the permutations arising from the Galois group of a cyclotomic

field. One can always let this field be Q(ζN ) where ζN = exp(2πi/N) and N is

the order or conductor of the t-matrix, as sX,Y ∈ Q(ζN ) for all X,Y ∈ O(C)

[18, Section 5]. In particular the character values of the Grothendieck ring of C

lie in Q(ζN ); the degree of the extensions generated by these so-called Verlinde

eigenvalues determine the size of the Galois orbits. To this end, define the field

of Verlinde eigenvalues for each Y ∈ O(C) by LY := Q(sX,Y /s1,Y : X ∈ O(C))

so that the following result follows almost by the definition of the Galois action.

Lemma 1. [1, Lemma 3.2] Let C be a modular tensor category. For all X ∈

O(C), |OX | = [LX : Q].
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One should not confuse the Galois action on modular tensor categories with

Galois conjugacy of fusion, braided fusion, and modular tensor categories. If

C is a fusion, braided fusion, or modular tensor category, and σ ∈ Gal(Q/Q)

is any Galois automorphism, then we denote by Cσ the category constructed

by applying σ to all structural constraints of C. The fusion categories C and

Cσ have identical fusion rules.

2.3 Structure of modular tensor categories

Perhaps the most important character of the Grothendieck ring of a fusion cat-

egory is the Frobenius-Perron dimension X 7→ FPdim(X) where FPdim(X)

is defined as the maximal real eigenvalue of the fusion matrix (NZ
X,Y )Y,Z∈O(C)

with NZ
X,Y := dimC Hom(X⊗Y,Z). We denote by Cpt, the fusion subcategory

of C generated by X ∈ O(C) with FPdim(X) = 1 and we say such X are invert-

ible. If C is a modular tensor category, or more generally a spherical fusion

category, and dim(X) = ±1 for some X ∈ O(C), we refer to X as pseudoinvert-

ible because these notions are equivalent for pseudounitary fusion categories

[10, Corollary 9.6.6], i.e. fusion categories such that FPdim(C) = dim(C). The

universal grading group of a modular tensor category is isomorphic to O(Cpt)

[14, Theorem 6.3] and the trivial component of this grading is Cad, the fusion

subcategory of C ⊗-generated by X ⊗X∗ over all X ∈ O(C).

If C is a braided fusion category and D ⊂ C is a fusion subcategory, we

denote the relative centralizer of D in C by CC(D). The relative centralizer of

D ⊂ C is the fusion subcategory consisting of X ∈ O(C) which centralize all

simple objects of D, i.e. the double braidings with all other Y ∈ O(D) are triv-

ial. If C is a modular tensor category, X,Y ∈ O(C) centralize one another if and

only if sX,Y = dim(X) dim(Y ) [10, Proposition 8.20.5(i)], a more important

characterization in this exposition. We reserve the notation C′ := CC(C) for the



Springer Nature 2021 LATEX template

10 Modular tensor categories, subcategories, and Galois orbits

symmetric center of C, but the reader may find this notation used for generic

centralizers in other sources. Nondegenerate braidings, a necessary condition

for modular tensor categories, are those braided fusion categories such that

O(C′) = {1} while symmetrically braided fusion categories are those for which

C′ = C. Another useful characterization is that Cad = CC(Cpt) for all modular

tensor categories C [14, Corollary 6.9]. It is well-known that if C is a nondegen-

erately braided fusion category and D ⊂ C is a nondegenerately braided fusion

subcategory, then C ' D � CC(D) [4, Proposition 2.2] where � is the Deligne

tensor product. As a consequence, each nondegenerately braided fusion cate-

gory has a factorization into prime factors (i.e. containing no nondegenerately

braided fusion subcategories) which is unique up to a permutation of factors

when Cpt is trivial [4, Proposition 2.2].

2.4 Representation theory of SL(2,Z/NZ)

Let C be a modular tensor category, ρ̃C be its associated SL(2,Z) representation

defined by the normalized modular data s̃, t̃. It was proven in [18, Theorem

6.8] that ρ̃C can be factored through SL(2,Z/NZ) where again N ∈ Z≥1 is the

order of t̃. In other words, to each modular tensor category C one associates

a finite-dimensional representation ρC of the finite group SL(2,Z/NZ). The

benefit being that the irreducible finite-dimensional complex representations

of SL(2,Z/NZ) have been described explicitly, up to isomorphism [21, 22].

The irreducible representations of SL(2,Z/NZ) can be described from the

irreducible representations of SL(2,Z/pλZ) for pλ dividing N where p ∈ Z≥2

is prime and λ ∈ Z≥1 (refer to [9, Section 3]), which are listed in tables of

Appendix A. As the t̃-matrix of a modular tensor category C is a diagonal

matrix with finite order, it is useful to organize the irreducible representations
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of SL(2,Z/pλZ) by the eigenvalues of ρC(t) = t̃ which we will refer to as the

t-spectra of ρC .

3 Examples

Here we describe a robust collection of examples of modular tensor categories

and their sets of Galois orbits to elucidate our general results in Section 4

and provide modular data for sporadic examples in Section 5. One major

source of examples of modular tensor categories comes from the semisimple

representation theory of quantum groups at roots of unity; these are indexed

by a complex finite-dimensional simple Lie algebra g and positive integer k,

and denoted C(g, k). The details of this construction are but ancillary to our

general theory, so we refer the reader to [27] for further reading.

Example 1 (Pointed categories) Let A be a finite abelian group of order n ∈ Z≥1

and consider the pointed modular tensor category C(A, q) where q : A→ C× is any

nondegenerate quadratic form [10, Section 8.4]. We will identify A with O(C(A, q))

and write the group operation (tensor product) additively. If g ∈ A is arbitrary

and h ∈ A has order m | n, then by [17, Lemma 2.4], smg,h = sg,mh = sg,1 = 1.

Hence sg,h is an mth root of unity. The Galois orbit of h is thus determined by

Gal(Q(ζm)/Q) ∼= (Z/mZ)×, the multiplicative group of integers modulo m. Let

σ ∈ Gal(Q(ζm)/Q) be such that σ(ζm) = ζkm for some k ∈ Z coprime to m. Then for

all g ∈ A,

sg,σ̂(h) = sg,σ̂(h)/s1,σ̂(h) = σ(sg,h/s1,h) = σ(sg,h) = skg,h = sg,kh. (5)

Therefore σ̂(h) = kh as the s-matrix is invertible, and Oh = {kh : gcd(m, k) = 1}.

This is the set of generators of the cyclic subgroup generated by h. In partic-

ular |Oh| = φ(ord(h)). Moreover, there is a one-to-one correspondence between

Orb(C(A, q)) and the number of distinct cyclic subgroups of A. While methods

for computing this number have been known for almost a century [16], we prefer
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a more modern formula due to Tóth [29, 30]. In particular, with invariant factor

decomposition A ∼=
⊕k
j=1 Z/njZ where n1, . . . , nk ∈ Z≥1 (i.e.

∏k
j=1 nj = |A| and

n1 | n2 | · · · | nk), then [30, Theorem 1] states that

|Orb(C(A, q))| =
∑

d1|n1,...,dk|nk

φ(d1) · · ·φ(dk)

φ(lcm(d1, . . . , dk))
. (6)

One important observation is that the Galois action on C(A, q) depends only on

the group structure of the finite abelian group A, and not on the nondegenerate

quadratic form q, hence even rough characteristics of modular tensor categories can-

not be derived from the Galois action. For example, C(sl2, 1)�2 and C(so8, 1) are both

pointed with underlying abelian group Z/2Z⊕Z/2Z. The Galois action on both cat-

egories is trivial, but the latter category is prime while the other factors as a Deligne

tensor product. We illustrate the diversity of the number of Galois orbits of simple

objects in pointed modular tensor categories of a fixed rank by example in Table 2.

Table 2 Number of Galois orbits of pointed modular tensor categories of rank 1800

A |Orb(C(A, q))| A |Orb(C(A, q))|
Z/2Z⊕ Z/30Z⊕ Z/30Z 280 Z/10Z⊕ Z/180Z 126
Z/2Z⊕ Z/6Z⊕ Z/150Z 120 Z/2Z⊕ Z/900Z 54
Z/2Z⊕ Z/10Z⊕ Z/90Z 168 Z/15Z⊕ Z/120Z 140
Z/2Z⊕ Z/2Z⊕ Z/450Z 72 Z/3Z⊕ Z/600Z 60

Z/30Z⊕ Z/60Z 210 Z/5Z⊕ Z/360Z 84
Z/6Z⊕ Z/300Z 90 Z/1800Z 36

Note 1 (Cyclic groups) Let n ∈ Z≥1. Equation (6) states

|Orb(C(Z/nZ, q))| =
∑

d∈Z≥1,d|n

φ(d)

φ(lcm(d))
=

∑
d∈Z≥1,d|n

1, (7)

the number of positive integer divisors of n.

Note 2 (Elementary abelian p-groups) Let p ∈ Z≥2 be prime, n ∈ Z≥1, and A =

(Z/pZ)⊕n. Equation (6) states

|Orb(C(A, q))| =
∑

d1|p,...,dn|p

∏n
j=1 φ(dj)

φ(lcm(d1, . . . , dn))
= 1 +

n∑
k=1

(
n

k

)
(p− 1)k−1 (8)
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= 1 +
pn − 1

p− 1
. (9)

Example 2 (Deligne products of transitive categories) If two transitive modular

tensor categories are coprime in the sense that their conductors are coprime inte-

gers, then their Deligne product is transitive as well by [20, Lemma 2.1(iii)]. Now

consider a product T1 � T2 of transitive modular tensor categories. Each of T1 and

T2 has a unique factorization up to reordering into coprime simple transitive fac-

tors [20, Theorem II]. So it is clear that by a organizing these simple factors by

their associated prime conductor, one can compute |Orb(T1 � T2)| with only the

knowledge of |Orb(T �2)| for an abitrary transitive modular tensor category T . To

this end, recall that simple objects X ∈ T are classified by a Galois automorphism

σ ∈ Gal(Q(dim(C))/Q) such that σ̂(1) = X [20, Section 3]. We will henceforth use

the bijection O(T ) = {Xσ : σ ∈ Gal(Q(dim(C))/Q)}. Note that the rank(T ) Galois

orbits of T �2, {O1�Xσ : σ ∈ Gal(Q(dim(C))/Q)} are pairwise disjoint since the

Galois action on O(T ) is fixed-point free [20, Proposition 3.2]. And for the same

reason, for each σ, |O1�Xσ | = rank(T ). Hence this set contains all Galois orbits

of T �2 and in particular, |Orb(T �2)| = rank(T ). This result also follows from [20,

Proposition 3.12].

In the following examples the simple objects will be labeled/ordered as

1 = X0, X1, X2, . . ..

Example 3 Let Fib be any rank 2 modular tensor category with nontrivial simple

object of dimension u := (1/2)(1 +
√

5) [23]. Let σ be the nontrivial element of

Gal(Q(ζ5)+/Q). There are two distinct Deligne products up to Galois conjugacy and

equivalence, of the form Fibτ1�Fibτ2 where τ1, τ2 are either id or σ. Their s-matrices
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are

s =



1 u2 u u

u2 1 −u −u

u −u −1 u2

u −u u2 −1


and s =



1 −1 u σ(u)

−1 1 −σ(u) −u

u −σ(u) −1 −1

σ(u) −u −1 −1


. (10)

One can easily verify that {X0, X1} and {X2, X3} are the orbits of the Galois action.

But Fib � Fib is pseudounitary while Fib � Fibσ is not pseudounitary, nor Galois

conjugate to a pseudounitary category.

Example 4 Consider the rank 6 non-psuedounitary modular tensor category

C(so5, 3/2)ad [25, Section 5.2]. The entries of the s-matrix lie in the field Q(ζ9)+

where ζn := exp(2πi/n) for n ∈ Z≥1, the maximal totally real subfield of the ninth

roots of unity. Define u := ζ9−ζ29−ζ59 and σ ∈ Gal(Q(ζ9)+/Q) such that σ(ζ9) = ζ29 .

Then

s =



1 −1 1 u σ(u) σ2(u)

−1 1 −1 −σ(u) −σ2(u) −u

1 −1 1 σ2(u) u σ(u)

u −σ(u) σ2(u) 1 1 1

σ(u) −σ2(u) u 1 1 1

σ2(u) −u σ(u) 1 1 1


. (11)

One easily computes that {X0, X1, X2} and {X3, X4, X5} are the orbits of the Galois

action.
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Example 5 Consider the rank 5 unitary modular tensor category C(sl2, 12)0A [15,

Section 7]. The modular data lies in Q(ζ7). We compute

s =



1 a b 1− a+ b 1− a+ b

a b −1 −1 + a− b −1 + a− b

b −1 −a 1− a+ b 1− a+ b

1− a+ b −1 + a− b 1− a+ b c c

1− a+ b −1 + a− b 1− a+ b c c


, (12)

where a := −ζ47 −ζ37 +1, b := −ζ57 −2ζ47 −2ζ37 −ζ27 , and c := −ζ37 −ζ27 −2ζ7−1. This

category is not self-dual, unlike the previous examples as c 6∈ R. One easily computes

that {X0, X1, X2} and {X3, X4} are the orbits of the Galois action.

4 Generalities

4.1 Galois conjugacy, centralizers, and fusion

subcategories

Here we prove Theorem 1, a classification of fusion subcategories of modu-

lar tensor categories invariant under the Galois action, which generalizes [1,

Lemma 3.3(ii)] to arbitrary fusion subcategories. This implies Theorem 2, a

lower bound for the number of Galois orbits of a modular tensor category

based on the number of invertible objects it possesses, i.e. the order of its uni-

versal grading group. Recall that the conductor of a modular tensor category

is the order of its t-matrix.

Lemma 2. Let C be a modular tensor category with conductor N ∈ Z≥1, and

X,Y ∈ O(C). Then X and Y centralize one another if and only if X and σ̂(Y )

centralize one another for all σ ∈ Gal(Q(ζN )/Q(dim(X))).
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Proof The converse direction is trivial. For the forward direction, the definition of

the Galois action in Equation (3) states that for all σ ∈ Gal(Q(ζN )/Q(dim(X))) ⊂

Gal(Q(ζN )/Q), we have sX,σ̂(Y ) = σ(sX,Y /s1,Y ) dim(σ̂(Y )). But sX,Y /s1,Y =

dim(X) as X and Y centralize one another, thus sX,σ̂(Y ) = σ(dim(X)) dim(σ̂(Y )) =

dim(X) dim(σ̂(Y )). �

Lemma 3. If C is a modular tensor category, then O1 ⊂ O(Cad). Moreover if

O(Cpt) ⊂ O1, then Cpt is symmetrically braided.

Proof The first claim follows from Lemma 2 because 1 ∈ O(Cad). In particular O1

centralizes Cpt, hence Cpt centralizes itself when O(Cpt) ⊂ O1. �

Recall the definition of the fields of Verlinde eigenvalues LX from Section

2.2.

Lemma 4. Let C be a modular tensor category and D ⊂ C a fusion subcategory.

Define the field of dimensions KD := Q(dim(Y ) : Y ∈ O(CC(D))). If X ∈

O(D), then

|OX ∩ O(D)| = [LX : KD ∩ LX ] =
|OX |

[KD ∩ LX : Q]
. (13)

Proof By definition, any X ∈ O(D) is centralized by all Y ∈ O(CC(D)) which by

Lemma 2 occurs if and only if σ̂(X) is centralized by all Y ∈ O(CC(D)) for all

σ ∈ Gal(Q(ζN )/Q(dim(Y ))) where N ∈ Z≥1 is the conductor of C. Equivalenty,

σ̂(X) ∈ O(CC(CC(D))) = O(D) [10, Theorem 8.21.1(ii)]. Therefore X ∈ O(D) if and

only if σ̂(X) ∈ O(D) for all

σ ∈
⋂

Y ∈O(CC(D))

Gal(Q(ζN )/Q(dim(Y ))) = Gal(Q(ζN )/KD). (14)

As OX is in bijection with Gal(LX/Q) by Lemma 1, we have |OX ∩ O(D)| = [LX :

KD ∩ LX ]. �
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Example 6 It is instructive to apply Lemma 4 in extreme cases. For example,

consider 1 ∈ O(Cpt). Lemma 4 implies |O1|/|O1 ∩ O(Cpt)| = [Q(dim(Y ) : Y ∈

O(Cad)) : Q] since Q(dim(Y ) : Y ∈ O(Cad)) ⊂ L1. But |O1| = [L1 : Q], hence |O1 ∩

O(Cpt)| = [L1 : Q(dim(Y ) : Y ∈ O(Cad))]. In [13], a dimensional grading was defined

for all fusion rings from the number fields generated by Frobenius-Perron dimensions

[13, Proposition 1.8]. It is clear this grading group is isomorphic to O1∩O(Cpt) when

C is a pseudounitary modular tensor category.

Question 1. Does a (nonpseudounitary) modular tensor category C exist such that

the dimensional grading group from [13] is not isomorphic to O1 ∩ O(Cpt)?

Theorem 1. Let C be a modular tensor category and D ⊂ C a fusion subcat-

egory. Then D is closed under the Galois action of C if and only if CC(D) is

integral.

Proof The converse direction follows from Lemma 4 applied to all X ∈ O(D). Now

assume D is closed under the Galois action of C. Fix X ∈ O(CC(D)) and let σ ∈

Gal(Q(ζN )/Q) be arbitrary where N ∈ Z≥1 is the conductor of C. The definition of

the Galois action (3) states that for all Y ∈ O(D),

dim(X) dim(σ̂(Y )) = sX,σ̂(Y ) = σ

(
sX,Y
s1,Y

)
dim(σ̂(Y )) (15)

= σ(dim(X)) dim(σ̂(Y )). (16)

where the first equality follows from D being closed under the Galois action of C and

the last equality follows from X and Y centralizing one another. As dim(σ̂(Y )) 6= 0

[11, Theorem 2.3], then dim(X) is fixed by all such σ, and therefore dim(X) ∈ Z for

all X ∈ O(CC(D)). But CC(D) is spherical, so from the proof of [11, Proposition 8.22],

dim(CC(D))/FPdim(CC(D)) is equal to the dimension of a simple object in the Drin-

feld center Z(CC(D)), a modular tensor category. Noting that the forgetful functor

F : Z(CC(D)) → CC(D) preserves dimension, we have dim(CC(D))/FPdim(CC(D))

is a positive integer ≤ 1 [11, Proposition 8.22], thus dim(CC(D)) = FPdim(CC(D)) .



Springer Nature 2021 LATEX template

18 Modular tensor categories, subcategories, and Galois orbits

In other words CC(D) is pseudounitary, and therefore CC(D) is integral by [1, Lemma

3.3(i)]. �

Note 3 Recall from [26, Theorem 1] that if k 6= 2, the fusion subcategories of

C := C(g, k) are all of the form D ⊂ Cpt or CC(D). Moreover if k 6= 2, all fusion

subcategories of C(g, k) which are not pointed, are closed under the Galois action on

O(C). This is also clear from geometric reasoning [3, Section 4].

Corollary 1. If C is a modular tensor category, then Cad is closed under the

Galois action.

Proof This follows from Theorem 1 as CC(Cad) = Cpt [14, Corollary 6.9]. �

Theorem 2. Let C be a modular tensor category such that dim(Cpt) =

rank(Cpt) =
∏
j∈J p

aj
j where pj are distinct primes and aj ∈ Z≥1, indexed by

a finite set J . Then |Orb(C)| ≥ 1 +
∑

j∈J aj.

Proof By the fundamental theorem of finite abelian groups we have a composition

series of O(Cpt) as an abelian group of length n :=
∑
j∈J aj , corresponding to fusion

subcategories

Vec = P0 ( P1 ( · · · ( Pn−1 ⊂ Pn = Cpt. (17)

The double-centralizer property [10, Theorem 8.21.1(ii)] implies that for each 0 ≤

j ≤ n− 1, we have CC(Pj+1) ( CC(Pj) is a strict inclusion of fusion subcategories.

By Theorem 1, CC(Pj) is closed under Galois conjugacy for all 0 ≤ j ≤ n. Therefore

C = Pn has greater than or equal to n+ 1 Galois orbits of simple objects. �

4.2 Pseudoinvertible and pseudounitary

Recall that a pseudoinvertible object X is one such that dim(X) = ±1, and a

pseudounitary fusion category is one such that dim(C) = FPdim(C).
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Lemma 5. Let C be a modular tensor category and Γ ⊂ O(C) be the union of

Galois orbits of C containing a pseudoinvertible object. If there exists X ∈ O(C)

with dim(X) = FPdim(X) such that all Y ∈ O(C) which centralize X belong

to Γ, then C is Galois conjugate to a pseudounitary category.

Proof Each character of the Grothendieck ring K(C) is indexed by Y ∈ O(C); the

corresponding character is ϕY : K(C)→ C such that Z 7→ sZ,Y / dim(Y ). But for any

Y ∈ O(C)\Γ, sX,Y 6= dim(X) dim(Y ) because X and Y do not centralize one another

by assumption. Hence ϕY (X) 6= dim(X) for all Y ∈ O(C) \ Γ. But FPdim(X) =

dim(X), hence as a character of K(C), FPdim = ϕZ for some Z ∈ Γ. Specifically,

let σ ∈ Gal(Q(ζN )/Q) such that σ̂(W ) = Z where W is pseudoinvertible. Then we

have FPdim(C) = dim(C)/ dim(σ̂(W ))2 = σ(dim(C)) = dim(Cσ). The category Cσ is

therefore pseudounitary. �

Note 4 Recall the category C := Fib � Fibσ from Example 3. The category C

possesses both nontrivial pseudoinvertible objects and a nontrivial simple object X1

with FPdim(X1) = dim(X1) = (1/2)(1+
√

5). But X1 is centralized by its only other

Galois conjugate, which is not pseudoinvertible. Thus Lemma 5 fails. Indeed C is not

Galois conjugate to a pseudounitary category.

Theorem 3. Let C be a modular tensor category. Then every Galois orbit of

C contains a pseudoinvertible object if and only if C ' Cpt � T where T is a

transitive modular tensor category.

Proof For the forward direction, we may assume that C is pseudounitary by applying

Lemma 5 with X = 1. Thus there exists at least one invertible object in each

Galois orbit of C. Lemma 2 then implies any Y ∈ O(C′pt) centralizes O(C), hence

Y = 1, C′pt = Vec, and moreover C ' Cpt � Cad by [4, Proposition 2.2]. Lemma

3 states O1 ⊂ O(Cad). But every Galois orbit contains an invertible object and
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O(Cad) ∩ O(Cpt) = {1}, so O(Cad) = O1 is transitive. The converse implication

follows from [20, Lemma 2.1(ii)] which implies that each g�X ∈ O(Cpt�T ) is Galois

conjugate to h � 1 for some h ∈ O(Cpt) since T is transitive, which is an invertible

object, hence pseudoinvertible. �

Note 5 Theorem 3 can be restated in terms of formal codegrees [24] as follows. Let

C be a modular tensor category. Then the set of formal codegrees of C are a single

Galois orbit if and only if C ' Cpt�T where T is a transitive modular tensor category.

Question 2. Does a fusion category C exist (not necessarily braided or mod-

ular) whose formal codegrees are all Galois conjugate but C 6' Cpt � Cad as

fusion categories?

We end this section by computing the number of Galois orbits of the

modular tensor categories characterized by Theorem 3.

Example 7 (Product of pointed and transitive) Pointed modular tensor categories

factor as a Deligne product of coprime factors [6, Theorem 1.1] whose t-matrix has

prime power order [2, Theorem 3.9], while transitive modular tensor categories factor

as a Deligne product of coprime factors whose t-matrix has prime order greater than

or equal to 5 [20, Theorem II]. So fix a prime p ∈ Z≥5. To compute the number

of Galois orbits of an arbitrary Deligne product C � T where C is pointed and T is

transitive, it suffices to compute |Orb(C(A, q) � C(sl2, p − 2)ad)| where A is a finite

abelian group of order pn for some n ∈ Z≥1 and q is any nondegenerate quadratic

form. We assume C and T are of this form henceforth and denote their tensor units

by 1C and 1T , respectively.

First note that every g � X ∈ O(C � T ) is Galois conjugate to an element of

the form h � 1T for some h ∈ O(C) since T is transitive. In the case g = 1C ,

|O1C�1T | = (p − 1)/2 since 1C is fixed by the Galois action of C. Now it suffices

to count the number of Galois congugacy classes of elements of the form g � 1T for
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nontrivial g ∈ O(C). Let g ∈ O(C) such that the order of g is pk for some k ∈ Z≥1.

Then σ̂(g � 1T ) = h � 1T if and only if σ̂(g) = h under the Galois action of C

and σ̂(1T ) = 1T under the Galois action of T . As was shown in Example 1, the

Galois orbit of g ∈ O(C) is determined by σ ∈ Gal(Q(ζpk )/Q) and the condition

σ̂(1T ) = 1T implies σ(dim(T )) = dim(T ), i.e. σ ∈ Gal(Q(ζpk )/Q(ζp)+). Thus g�1T

has exactly |Gal(Q(ζpk )/Q(ζp)+)| = φ(pk)/(φ(p)/2) = 2pk−1 Galois conjugates of

the form h� 1T .

Therefore, to each Galois orbit of an element g ∈ O(C) of order pk, there corre-

sponds φ(pk)/(2pk−1) = (p− 1)/2 Galois orbits of C� T , independent of k. We may

then sum over all Galois orbits of C, ommitting O1, to yield

|Orb(C � T )| = 1 + (|Orb(C)| − 1)
p− 1

2
. (18)

Note 6 (Cyclic groups) If p ∈ Z≥5 is prime and n ∈ Z≥1, then

|Orb(C(Z/pnZ, q) � C(sl2, p− 2)ad)| = 1 + ((n+ 1)− 1)
(p− 1)

2
(19)

=
n(p− 1) + 2

2
. (20)

Note 7 (Elementary abelian p-groups) If p ∈ Z≥5 is prime and n ∈ Z≥1, then

|Orb(C((Z/pZ)⊕n, q) � C(sl2, p− 2)ad)| = 1 +

(
1 +

pn − 1

p− 1
− 1

)
(p− 1)

2
(21)

=
pn + 1

2
. (22)

5 Two orbits

The general results of Section 4 can be used to classify modular tensor cate-

gories with a small number of Galois orbits of simple objects and nontrivial

universal grading. We provide a small table of examples in Table 3. Here we

reduce the classification of modular tensor categories C with |Orb(C)| = 2 to

the case where C is simple, i.e. C does not possess any nontrivial fusion subcat-

egories. The culiminating results are Corollary 2 which describes the case Cpt
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is nontrivial, and Proposition 4 which describes the case when Cpt is trivial.

With increasing complexity, these results can be extended to the cases when

|Orb(C)| > 2.

Table 3 Examples of modular tensor categories C with |Orb(C)| = 2

C rank(C) rank(Cpt) Orbit sizes

C(sl2, 2) 3 2 1, 2
C(g2,−2/3) 4 1 2, 2
C(so5, 3/2)ad 6 1 3, 3
C(so5, 5/2)ad 10 1 5, 5
C(g2, 5) 12 1 3, 9
C(g2, 5/3) 16 1 8, 8
C(E7, 5)ad 22 1 11, 11

C(slp, 1) p p 1, φ(p)
p ≥ 2 prime

C(sl2, 2(p− 1))0A (p+ 3)/2 1 2, 1
2
φ(p)

p ≥ 5 prime

C(sl2, p2 − 2)ad (p2 − 1)/2 1 1
2
φ(p), 1

2
φ(p2)

p ≥ 3 prime

5.1 Possible pointed subcategories

The goal of this subsection is to prove that when a modular tensor category

C has two Galois orbits of simple objects and nontrivial pointed subcategory,

then Cpt ' sVec or C ' Cpt�T for some transitive modular tensor category T .

Lemma 6. Let C be a modular tensor category. If |Orb(C)| = 2 and Cpt is

nontrivial, then O1 = O(Cad).

Proof The relative centralizer CC(Cpt) = Cad must be closed under Galois conjugacy

by Theorem 1. But CC(Cpt) ( C since C is modular, thusO(CC(Cpt)) = O(Cad) = O1.

�

Proposition 1. Let C be a modular tensor category with |Orb(C)| = 2. If

Cpt 6= Vec, then FPdim(Cpt) = 2 and Cpt is symmetric, or C ' Cpt � T where

T is a transitive modular tensor category.
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Proof If O(Cpt) 6⊂ O1, then C ' Cpt � T where T is a transitive modular tensor

category by Theorem 3. Otherwise O(Cpt) ⊂ O1 and thus Cpt is self-dual [1, Lemma

3.2] and symmetrically braided by Lemma 3. Lastly Theorem 2 implies FPdim(C)

is prime. But a pointed self-dual fusion category must be an elementary abelian 2-

group, hence FPdim(Cpt) = 2. �

To finish this subsection by eliminating the possibility that |Gal(C)| = 2 and

Cpt is Tannakian, we will need the standard constructions of connected étale

algebras in braided fusion categories, and their categories of local modules. We

refer the reader to [4, Section 3] where comprehensive detail can be found.

Lemma 7. Let C be a braided tensor category and A be the regular algebra of

a Tannakian fusion subcategory. If dim(X) is an algebraic unit, then the free

A-module A⊗X is simple.

Proof Let V be a simple A-submodule of the free A-module A⊗X. The only possible

subobjects of A⊗X are of the form V = δ⊗X where δ is a sum of invertible simple

objects, hence dim(V ) = mdim(X) where 1 ≤ m ≤ dim(A). We compute dimA(V ),

the dimension of V ∈ O(CA), using [15, Theorem 1.18]:

dimA(V ) = dim(V )/ dim(A) = (m/ dim(A)) dim(X). (23)

But dim(X) is an algebraic unit by assumption, thus m = dim(A) and moreover

A⊗X is simple. �

Lemma 8. Let C be a modular tensor category. If O1 = O(Cad) and Cpt is

Tannakian, then C0A is a transitive modular tensor category where A ∈ Cpt is

the regular algebra of Cpt.

Proof Lemma 7 implies that every V ∈ O(C0A) is free. Hence every V ∈ O(C0A) has

squared dimension of the form dim(C)/σ(dim(C)) = dim(C0A)/σ(dim(C0A)) for some
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σ ∈ Gal(Q/Q). Therefore each Galois orbit of C0A contains a pseudoinvertible object,

and Theorem 3 implies C0A ' (C0A)pt�T for some transitive modular tensor category

T . Hence C0A is Galois conjugate to a pseudounitary modular tensor category and

thus C is Galois conjugate to a pseudounitary modular tensor category by [19, Lemma

5.3(c)] and [4, Lemma 3.11]. Lastly, we may now assume X ∈ O(C) has dim(X)2 = 1

if and only if X ∈ O(Cpt). Therefore V ∈ O(C0A) has dim(V )2 = 1 if and only if

V = A. So C0A has no nontrivial invertible objects, and is moreover transitive. �

Proposition 2. Let C be a modular tensor category. If O1 = O(Cad) and Cpt

is Tannakian, then C is transitive.

Proof Assume Cpt is Tannakian with regular algebra A. Then Lemma 8 implies C0A is

transitive. By [20, Theorem II], each transitive modular tensor category has a unique

(up to ordering) nontrivial factorization

T ' �j∈JC(sl2, pj − 2)ad (24)

where J is some finite index set of distinct primes greater than 3. Note that de-

equivariantization commutes with taking centralizers [7, Proposition 4.30]. In our

case this means T ' (CA)ad ' (Cad)A, so there exists a canonical equivalence T G '

Cad. This equivariantization comes from a braided action of G := O(Cpt) on T [10,

Theorem 8.23.3]; let ρ : G→ Autbr⊗ (T ) be the corresponding group homomorphism.

Theorem 5.2 of [12] states that Autbr⊗ (T ) ∼= Pic(T ) where Pic(T ) is the Picard group

of equivalence classes of invertible T -module categories. The categories C(sl2, pj−2)ad

are pairwise coprime for j ∈ J , so by [12, Proposition 4.10],

Pic(T ) ∼= ×j∈JPic(C(sl2, pj − 2)ad). (25)

But these Picard groups are trivial for all j ∈ J by [8, Theorem 1.2], so the homomor-

phism ρ is trivial. Moreover Cad ' T G ' T � Rep(G) as braided fusion categories.

Therefore C ' T � CC(T ) with CC(T ) modular [17, Proposition 4.1] and weakly

integral, and FPdim(CC(T )) = FPdim(Cpt)2.
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Lastly we will prove Cpt is trivial, hence C is transitive. To this end, note that

O(Cpt) ⊂ O(Cad) = O1, which is self-dual. Hence O(Cpt) is an elementary abelian 2-

group. This implies FPdim(CC(T )) = 2n for some n ∈ Z≥0 and therefore dim(X) ∈

Q(
√

2) for all X ∈ CC(T ). By Lemma 1, |O1| is either rank(T ) (when CC(T ) is

integral) or 2·rank(T ) (when there exists X ∈ O(CC(T )) with Q(dim(X)) = Q(
√

2)).

In the former case, CC(T )ad is trivial, so CC(T ) is pointed. But this implies Cpt is

not Tannakian unless Cpt is trivial. The latter case implies CC(T )ad is rank 2, which

then must be pointed. Moreover, the Ising categories are the only modular tensor

categories with the above properties, none of which contain a non-trivial Tannakian

subcategory, so this cannot occur. �

5.2 The case of sVec

Lemma 9. Let C be a modular tensor category with |Orb(C)| = 2 and con-

ductor N ∈ Z≥1. If 16 | N , then N = 16m for an odd square-free m ∈ Z≥3.

Moreover for some multiplicity n ∈ Z≥1, ρC ∼= n(ψe⊗ψo), where ψo is an irre-

ducible transitive representation of SL(2,Z/mZ), and ψe is a 3-dimensional

irreducible representation of SL(2,Z/16Z).

Proof Let ψ be an irreducible summand of ρC whose level is divisible by 16. Then

ψ ∼= ψe ⊗ ψo where ψe is an irreducible representation of level 2n for some n ∈ Z≥3

and ψo is an irreducible representation of level m for some odd integer m by the

Chinese remainder theorem. Since the number of square Galois orbits of t-eigenvalues

is multiplicative across coprime orders, then exactly one each of ψe, ψo have 1 or

2 square Galois orbits of t-eigenvalues. But there do not exist transitive irreducible

representations of level 2λ for λ ≥ 4 (Appendix A). This implies that ψo is transitive,

i.e. m is square-free. Moreover, ψe has two square Galois orbits of t-eigenvalues, so

ψe is isomorphic to one of the sixteen 3-dimensional irreducible representations of

SL(2,Z/16Z) (Appendix A).
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Let ϕ be any other irreducible summand of ρC . The eigenvalues of ϕ(t) must

be a subset of those of ψ, or else |Orb(C)| > 2. In the case ord(tC) = 16m, the

eigenvalues of ψ(t) are all primitive 16m-th roots of unity, hence ϕ is an irreducible

representation of level 16m as well. By the above argument, ϕ ∼= ψ since they have

the same eigenvalues. �

Lemma 10. Let ρ be an irreducible representation of SL(2,Z/NZ) for some

N ∈ Z≥2 and C be a modular tensor category. If ρ has distinct eigenvalues,

then ρC 6∼= nρ for any n ∈ Z≥2.

Proof Assume to the contrary that ρC ∼= nρ. Set r := rank(C) = ndim(ρ). Let Y be

the block diagonal matrix of n copies of ρ(s), Z be the block diagonal matrix of n

copies of ρ(t), and P be the r × r change-of-basis matrix such that Y = P−1ρC(s)P

and Z = P−1ρC(t)P . By possibly commuting with a permutation matrix, we may

assume that P is such that ρC(t) = P−1ρC(t)P on the nose, i.e. PρC(t) = ρC(t)P .

Consider P and P−1 as matrices of dim(ρ) × dim(ρ) blocks Pjk and Rjk for 1 ≤

j, k ≤ n, respectively. Then for all 1 ≤ j, k ≤ n, PρC(t) = ρC(t)P implies Pjkρ(t) =

ρ(t)Pjk, and ρC(t)P
−1 = P−1ρC(t) implies ρ(t)Rjk = Rjkρ(t). Since ρ(t) has distinct

eigenvalues, these commutations imply Pjk and Rjk are diagonal matrices for all

1 ≤ j, k ≤ n. We compute a generic block of PY as

(PY )jk =

n∑
`=1

Pj`(Y )`k = Pjkρ(s), (26)

hence for 1 ≤ j, k ≤ n,

(ρC(s))jk = (PY P−1)jk =

n∑
`=1

Pj`ρ(s)R`k. (27)

But PP−1 = Ir×r implies
∑n
`=1 Pj`R`k = 0 for j 6= k. Therefore, the diagonal

elements of (ρC(s))jk are 0 for all j 6= k, and since ρC(s) is symmetric, each row/col-

umn of ρC(s) contains at least one 0 entry. This cannot occur since the row/column

corresponding to the Frobenius-Perron dimension must consist only of positive real

numbers. �
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Lemma 11. Let C be a modular tensor category with |Orb(C)| = 2. If

Cpt ' sVec, then ρC ∼= ψe ⊗ ψo, where ψo is an irreducible transitive represen-

tation of SL(2,Z/mZ) as in Lemma 9, and ψe is a 3-dimensional irreducible

representation of SL(2,Z/16Z).

Proof We begin by noting that Cpt ⊂ O1, or else Cpt is nondegenerately braided

by Theorem 3, a contradiction. Let σ ∈ Gal(Q/Q) such that σ̂(1) is the nontrivial

invertible object of sVec. In particular, 1 = θ1 = −θσ̂(1) = −1, hence −t1 = tσ̂(1) =

σ2(t1). The only roots of unity which are square Galois conjugate to their negative

have order divisible by 16, so our claim follows from Lemma 9 and Lemma 10. �

Proposition 3. Let C be a modular tensor category with |Orb(C)| = 2. If

Cpt ' sVec, then C ' I � T where I is an Ising modular tensor category and

T is a transitive modular tensor category.

Proof Lemma 11 states that ρC ∼= ψe ⊗ψo where ψo is an irreducible transitive rep-

resentation of SL(2,Z/mZ) for some square-free m ∈ Z≥3, and ψe is a 3-dimensional

irreducible representation of SL(2,Z/16Z). In particular, the eigenvalues of ρC(t) are

distinct and so C is self-dual. Up to a change of basis, we have

ψe(s) =
ζk4
2


0
√

2 −
√

2
√

2 1 1

−
√

2 1 1

 (28)

where ζk4 = exp(2kπi/4) for some k = 0, 1, 2, 3 [9, Table A2]. Recall that the

irreducible representation ψo is realized by a modular tensor category D which is

equivalent to the Deligne product of transitive modular tensor categories C(sl2, p −

2)
σp
ad for some Galois automorphism σp ∈ Gal(Q(ζp)/Q) for all p | m. So we may

assume that ψo(s) is the normalized S-matrix of D by a change of basis indepen-

dent to that for ψe(s) since their t-eigenvalues are disjoint. In particular, ψo(s) is

real, so k ∈ {0, 2} in (28). Since D is transitive, every row/column of ψo(s) contains
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a unique entry of the form ±1/
√

dim(D). By observing the rows/columns without

zeroes of ψe(s), we see that 1/
√

dim(C) is either 1/
√

2 dim(D) or 1/
√

4 dim(D), i.e.

dim(C) = 2 dim(D) or dim(C) = 4 dim(D). But since every row/column of ρC(s) con-

tains a unique entry of the form ±1/
√

2 dim(D), then the former would imply there

exists a unique pseudoinvertible object X ∈ O(C). The pointed subcategory Cpt is

assumed nontrivial, so we may conclude dim(C) = 4 dim(D) and moreover, C pos-

sesses a unique, simple, self-dual object X with dim(X) =
√

2. It is clear that X must

⊗-generate a nondegenerately braided fusion subcategory of C which is equivalent to

one of the Ising modular tensor categories and therefore C factorizes as claimed.

�

Corollary 2. Let C be a modular tensor category. Then |Orb(C)| = 2 and Cpt

is nontrivial if and only if C ' D � T is an equivalence of modular tensor

categories, where T is a transitive modular tensor category, and D is either

pointed of prime dimension coprime to the conductor of T , or an Ising modular

tensor category.

Proof If |Orb(C)| = 2 and Cpt is nontrivial, then Propositions 1 and 2 imply that

either Cpt ' sVec, or C ' D � T is an equivalence of modular tensor categories,

where T is a transitive modular tensor category, and D is pointed of prime dimension

coprime to the conductor of T . In the former case, Proposition 3 implies C ' I � T

where I is an Ising modular tensor category and T is a transitive modular tensor

category. The converse direction is trivial. �

5.3 The unpointed case

Lemma 12. Let C be an unpointed modular tensor category with |Orb(C)| = 2.

If D ⊂ C is a fusion subcategory, then D is a modular tensor category.
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Proof Let D ⊂ C be a fusion subcategory. Then D inherits the braiding of C and we

may consider the symmetric center D′. We know that D′ is integral, hence pseudouni-

tary, thus FPdim(X) = ±dim(X) for all X ∈ O(D′). If X,Y ∈ O(D′) are Galois

conjugate (by the Galois action on C), then there exists σ ∈ Gal(Q/Q) such that

dim(X)2 = σ(dim(Y )2) dim(C)/σ(dim(C)) = dim(Y )2 dim(C)/σ(dim(C)). (29)

Thus dim(X)2/dim(Y )2 = dim(C)/σ(dim(C)) = 1 as it is a positive integer unit [24,

Corollary 1.4]. Hence dim(X) = ±dim(Y ) and moreover FPdim(X) = FPdim(Y ).

Thus there are at most two distinct Frobenius-Perron dimensions of simple objects

in D′.

LetX ∈ O(D′)\{1}. Then since 1 is the unique simple object of Frobenius-Perron

dimension 1, by the above argument,

FPdim(X)2 = FPdim(X ⊗X∗) = 1 + nFPdim(X) (30)

for some n ∈ Z≥1. This would imply 1 ≡ 0 (mod FPdim(X)), therefore no such X

exists. Moreover D′ ' Vec. �

Proposition 4. Let C be a modular tensor category. Then |Orb(C)| = 2 and

Cpt is trivial if and only if C ' D � T is an equivalence of modular tensor

categories, where T is a transitive modular tensor category, and D is either a

simple modular tensor category whose conductor is coprime to that of T , or

rank(T ) > 2 and D is braided equivalent to F1 � F2 where F1,F2 are any of

the Fibonacci modular tensor categories.

Proof For the forward direction, Lemma 12 implies the unique factorization (up to

braided equivalence) given by [4, Proposition 2.2] consists of simple factors. Lemma

2.1(iii) of [20] then implies at most one of these factors, E , has 2 Galois orbits of

simple objects. If E exists, then the remaining factors are transitive and coprime, or

else |Orb(CC(E))| > 1 by Example 2 which would imply |Orb(C)| ≥ 4 by [20, Lemma
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2.1(iii)]. In this case E = D proves our claim. If E does not exist, then all simple fac-

tors of C are transitive, and at least 2 are not coprime or else C would be transitive.

Example 2 implies that D ' F1 � F2 for some Fibonacci modular tensor categories

F1,F2, is the only product of non-coprime simple transitive modular tensor cate-

gories with 2 Galois orbits of simple objects. The converse direction is trivial. �

Appendix A t-spectra

Here we include the classification of irreducible SL(2,Z/NZ) representations

for N ∈ Z≥2. This classification first appeared in [22, Section 9] but to justify

the proofs of Section 5.2, we have contributed the t-eigenvalues of each rep-

resentation as a set as well as the number of square Galois orbits of roots of

unity in this set. It is not necessary for our purposes to include multiplicities

of eigenvalues and doing so would increase the length of our exposition greatly.

In the following tables we denote the set of all n-th roots of unity by Φn,

and the set of all primitive n-th roots of unity by Γn, for brevity. We denote

the square Galois orbit of ζrpλ by Γrpλ for any r ∈ Z. Any squared Galois

orbit of primitive pλth roots of unity for prime p and λ ∈ Z≥1 is the orbit

of ζrpλ where r is a quadratic (non)-residue modulo p when p is odd, or the

orbit of ζr2λ where r ∈ {1, 3, 5, 7}. In particular, Φ1 = Γ1 = {1}, Γ2 = {−1},

Γ22 = Γ1
22 ∪ Γ3

22 = {±i}, Γ2λ = Γ1
2λ ∪ Γ3

2λ ∪ Γ5
2λ ∪ Γ7

2λ when λ ≥ 3, and

Γpλ = Γrpλ ∪Γspλ for odd p, where r is a quadratic residue and s is a quadratic

non-residue modulo p. The sets Γr1
p1λ1

and Γr2
p2λ2

are disjoint unless r1 = r2,

p1 = p2 and λ1 = λ2 (similarly for Γp1λ1 and Γp2λ2 ), hence all the unions in

the following tables are disjoint unions.

Denote the one-dimensional modular group representations whose set of t-

eigenvalues are Γ1 = {1}, Γ2 = {−1}, Γ3
22 = {−i}, Γ1

24 = {i} by C1, C2, C3, C4,

respectively. If a representation has distinct t-eigenvalues then we say it is
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“multiplicity-free”, denoted m.f. in the tables. We have abbreviated the number

of square Galois orbits in the set of t-eigenvalues by |Gal|; only a lower bound

is given in exactly two cases to save space in an already lengthy exposition.

Unless otherwise noted in column 2, χ will represent an arbitrary character in

B, the set of characters of the automorphism group of the binary quadratic

module associated to the representation [22, Section 2].

Table A1 Irreps. of SL(2,Z/pZ) for p 6= 2

type of rep. dim t− spectrum m.f. |Gal|
D1(χ) p+ 1 Φp no 3
N1(χ) p− 1 Γp yes 2

R1(r, χ1)

(
r

p

)
= ±1 1

2
(p+ 1) Γ1 ∪ Γrp yes 2

R1(r, χ−1)

(
r

p

)
= ±1 1

2
(p− 1) Γrp yes 1

N1(χ1) p Φp yes 3
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Table A3 Irreps. of SL(2,Z/2Z)

type of rep. dim t− spectrum m.f. |Gal|
C2 = N1(χ) 1 Γ2 yes 1
N1(χ1) 2 Φ2 yes 2

Table A4 Irreps. of SL(2,Z/4Z)

type of rep. dim t− spectrum m.f. |Gal|
R0

2(1, 1, χ1) 3 Φ2 ∪ Γ1
22

yes 3

R0
2(3, 1, χ1) 3 Φ2 ∪ Γ3

22
yes 3

R0
2(1, 3)1 3 Γ1 ∪ Γ22 yes 3

C2 ⊗R0
2(1, 3)1 3 Γ2 ∪ Γ22 yes 3

N2(χ) χ 6≡ 1 2 Γ22 yes 2
C3 = R0

2(3, 1, χ) χ 6≡ 1 1 Γ3
22

yes 1

C4 = R0
2(1, 1, χ) χ 6≡ 1 1 Γ1

22
yes 1

Table A5 Irreps. SL(2,Z/8Z)

type of rep. dim t− spectrum m.f. |Gal|

R1
3(r, t, χ1) 6 Γ22 ∪


Γ1
23
∪ Γ3

23
: r = 1, t = 1

Γ1
23
∪ Γ7

23
: r = 1, t = 3

Γ3
23
∪ Γ5

23
: r = 3, t = 3

Γ5
23
∪ Γ7

23
: r = 5, t = 1

yes 4

R0
3(1, 3, χ1)1 6 Φ2 ∪ Γ23 yes 6

C3 ⊗R0
3(1, 3, χ1)1 6 Γ22 ∪ Γ23 yes 6

N3(χ) χ2 6≡ 1 4 Γ1
23
∪ Γ3

23
∪ Γ5

23
∪ Γ7

23
yes 4

Cj ⊗N3(χ)+ j = 1, 2, 3, 4 2


Γ3
23
∪ Γ5

23
: j = 1

Γ1
23
∪ Γ7

23
: j = 2

Γ1
23
∪ Γ3

23
: j = 3

Γ5
23
∪ Γ7

23
: j = 4

yes 2

Cj ⊗R0
3(1, 3, χ)+ χ 6≡ 1, j = 1, 2, 3, 4 3


Γ2 ∪ Γ1

23
∪ Γ5

23
: j = 1

Γ1 ∪ Γ1
23
∪ Γ5

23
: j = 2

Γ1
22
∪ Γ3

23
∪ Γ7

23
: j = 3

Γ3
22
∪ Γ3

23
∪ Γ7

23
: j = 4

yes 3

Cj ⊗R0
3(1, 3, χ)− χ 6≡ 1, j = 1, 2, 3, 4 3


Γ2 ∪ Γ3

23
∪ Γ7

23
: j = 1

Γ1 ∪ Γ3
23
∪ Γ7

23
: j = 2

Γ1
22
∪ Γ1

23
∪ Γ5

23
: j = 3

Γ3
22
∪ Γ1

23
∪ Γ5

23
: j = 4

yes 3
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Table A7 Irreps. SL(2,Z/32Z)

type of rep. dim t− spectrum m.f. |Gal|
D5(χ) 48 Φ25 no 16
N5(χ) 16 Γ25 yes 4

R0
5(r, t, χ) r = 1, 3; t = 1, 5 12 Γr

25
∪ Γ5r

25
∪
{

Γr
24
∪ Γ5r

24
: t = 1

Γ3r
24
∪ Γ7r

24
: t = 5

yes 4

R0
5(1, t, χ) t = 3, 7 24 Γ25 ∪

{
Γ23 : t = 3
Φ22 : t = 7

no 8

R1
5(r, 1, χ) r = 1, 5 12 Γ1

25
∪ Γ3

25
∪ Γr

24
∪ Γ3r

24
yes 4

R1
5(r, 3, χ) r = 1, 3 12 Γ1

25
∪ Γ7

25
∪ Γ3r

24
∪ Γ5r

24
yes 4

R1
5(r, 5, χ) r = 1, 5 12 Γ1

25
∪ Γ3

25
∪ Γ5r

24
∪ Γ7r

24
yes 4

R1
5(r, 7, χ) r = 1, 3 12 Γ1

25
∪ Γ7

25
∪ Γr

24
∪ Γ7r

24
yes 4

R2
5(r, t, χ)± r = 1, 3; t = 1, 3, 5, 7 6 Γ24 ∪ Γr

25
yes 3

R2
5(r, 1, χ)1 χ 6∈ B; r = 1, 3 12 Γ1 ∪ Γ2 ∪ Γr

23
∪ Γ5r

23
∪ Γr

25
∪ Γ5r

25
yes 6

C3 ⊗R2
5(r, 1, χ)1 χ 6∈ B; r = 1, 3 12 Γ22 ∪ Γ3r

23
∪ Γ7r

23
∪ Γr

25
∪ Γ5r

25
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