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Abstract: Bias in causal comparisons has a correspondence with distributional imbalance of covariates
between treatment groups. Weighting strategies such as inverse propensity score weighting attempt to miti-
gate bias by either modeling the treatment assignment mechanism or balancing specified covariate moments.
This article introduces a new weighting method, called energy balancing, which instead aims to balance
weighted covariate distributions. By directly targeting distributional imbalance, the proposed weighting
strategy can be flexibly utilized in a wide variety of causal analyses without the need for careful model or
moment specification. Our energy balancing weights (EBW) approach has several advantages over existing
weighting techniques. First, it offers a model-free and robust approach for obtaining covariate balance that
does not require tuning parameters, obviating the need for modeling decisions of secondary nature to the
scientific question at hand. Second, since this approach is based on a genuine measure of distributional
balance, it provides a means for assessing the balance induced by a given set of weights for a given dataset.
We demonstrate the effectiveness of this EBW approach in a suite of simulation experiments, and in studies on
the safety of right heart catheterization and on three additional studies using electronic health record data.
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1 Introduction

Studying the causal effect of a treatment or intervention is a central goal in many scientific disciplines. In
randomized controlled trials, estimation of causal effects is possible since randomization ensures that treated
units and control units are comparable [1]. However, for many pressing questions, it is impossible or imprac-
tical to randomize treatment assignments. Researchers are thus left with existing sources of observational data
to answer these questions. In these observational studies, it is of prime interest to make unconfounded
comparisons between treatment groups, a common example being estimation of the average treatment effect
(ATE). Yet in observational settings, natural selection processes into the treatment, resulting in imbalance in
the covariate distributions between treatment groups. This may then introduce substantial bias in naive
comparisons of the outcome of interest between groups.

In observational studies based on complex electronic health records (EHRs) or administrative health data,
the differences between treated and untreated units are typically substantial and difficult to characterize. One
motivating application for our work is the study by Connors et al. [2], which explored the impact of right heart
catheterization (RHC), a diagnostic procedure designed to guide therapy, on mortality among intensive care
unit (ICU) patients. In this study, patients who received RHC are different from those who did not receive RHC
in highly complex ways. As an example among many such differences, both younger patients and older
patients are less likely to receive RHC; thus, a simple correction for the average age does not characterize
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the differences between those who received RHC and those who did not. Similar complex differences between
treated and untreated patients can also be observed in three other motivating studies arising from clinical care
and EHRs using the MIMIC-III critical care database [3]; we will demonstrate how the proposed method tackles
these four challenging applications later.

There is a vast literature on adjustment methods for correcting for imbalances between treated and
untreated units to reduce estimation bias in treatment effects. Weighting methods are a class of adjustment
methods that control for confounding by re-weighting the treatment and control groups to look similar.
Inverse-probability weighting (IPW) methods [4-9], which have origins in survey sampling, are by far the
most commonly used weighting approaches. IPW methods model the treatment assignment mechanism (or
propensity score, see Rosenbaum and Rubin [10]), and inverse weight each sample by the probability of
receiving its assigned treatment. Inverse weighting by the true underlying propensity score controls for
confounding, as it re-weights the covariate distributions of the treatment groups to that of the overall
population.

In practice, IPW methods require positing and fitting a model for the propensity score. While model fitting
is no unfamiliar task for a statistician, it has been noted in the literature that even mild model misspecifica-
tions for the propensity score can result in substantial bias in estimating the treatment effect [11]. Hearkening
to George Box’s maxim, “all models are wrong, but some are useful,” it is often quite difficult in practice to
obtain a useful propensity score model, especially in the presence of many covariates. Recent work has
focused on mitigating this issue, by either (i) including conditions on the estimation of the propensity model
which encourage moment balance of the covariates [12] or by (ii) altogether avoiding direct modeling of the
propensity score and instead estimating weights that explicitly balance moments of the covariates either
exactly [13,14] or approximately [15]. A large class of such estimators is explored Chan et al. [14] and further
expanded on by Zhao [16] and has a long history [17]. Recent works [18,19] have attempted to mitigate this issue
by focusing on nonparametric approaches to moment balancing, yet they require a careful choice of kernel
function and tuning of multiple hyperparameters.

To make progress in addressing these issues, we show in this article that estimation bias for the ATE has a
link to imbalance in the covariate distributions. This shows that balancing the full covariate distributions (and
not just lower order moments) of the treatment groups to the full population provides a robust way for
mitigating confounding. Although this is understood in the literature [16,20], in this article, we establish
and make use of this link in a general manner, by (i) introducing a metric that evaluates how well a set of
weights mitigates imbalance for a given dataset and (ii) developing a new method for estimating weights by
minimizing this metric, yielding good distributional balance for a given dataset. The distributional balancing
property of these weights allows for robust empirical performance; they tend to perform well in practice
without relying on modeling assumptions for the propensity score or which moments are imbalanced. Our
approach is designed to yield good distributional balance between treatment groups without the need of
carefully tuning hyperparameters. Hirshberg et al. [21] study the theoretical properties of use of integral
probability metrics for construction of weights; however, our work focuses on a specific choice that is suitable
to wide use in practice. Despite the lack of need for tuning, our proposal works well empirically in a wide
variety of settings.

We introduce weights that are explicitly constructed to balance the covariate distributions of the treat-
ment groups to a target distribution (usually the full population). We do so by leveraging the energy distance
presented in Székely and Rizzo [22]. The energy distance is a measure based on powers of the Euclidean
distance and was originally introduced as a means to replace standard nonparametric goodness-of-fit tests in
high dimensions. The energy distance has an exact duality with a norm on the characteristic functions,
enabling its use to compare two (or more) distributions or the distributions of two samples. We show that
a weighted energy distance still retains this duality, making it a rigorously justified and reliable metric to
compare between multiple sets of weights for a given dataset. From this, we propose the so-called energy
balancing weights (EBWs), which are defined as the weights which minimize the weighted energy distance
between treatment groups and the full sample, subject to constraints that mitigate variability in the weights.
We prove that EBWs asymptotically ensure full distributional balance and result in root-n consistent estima-
tion of the ATE. Our emphasis is on the robust performance of our approach in practice, and our asymptotic
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analysis serves primarily to justify the use of the proposed weights. We analyze four challenging observational
studies and use each of these datasets to conduct realistic and highly challenging simulations, demonstrating
the effectiveness of EBWSs in practice with minimal user input required. Two of the studies we present in this
article and the remaining two are presented in the Supplementary Material.

Although we focus primarily on a simple estimand, namely, the average treatment effect (ATE) the
proposed weights can be used for a wide variety of causal estimands since the distributional re-balancing
property of EBWs enables flexible control of confounding. We show that they can be used for the estimation of
a wide variety of causal quantities, such as the ATE and individualized treatment rules (ITRs) [23,24]. With
minor modifications, they can also be used for estimation of the average treatment effect on the treated (ATT)
and for estimating treatment effects for multi-category treatments. Despite the fact that EBWs are not speci-
fically designed to match low-order moments, in practice, they often result in better marginal mean balance of
covariates than propensity score methods even in high dimensions (50-100 covariates), as seen in Section 6.
EBWs are also quite stable in practice, rarely resulting in large weights, an issue that plagues standard
propensity score methods [11], making it less critical to impose constraints that induce weight variability.
EBWs are constructed without using outcome information; however, as for other weighting approaches,
variance can be reduced via augmented estimators that make use of outcome regression models, such as
the augmented estimators in the studies by Wong and Chan [18], Zhao [16], and Athey et al. [25]. However, we
do not explore such techniques here.

The remainder of this article is organized as follows. Section 2 motivates the need for distributional
balance and introduces the weighted energy distance. Section 3 presents the proposed EBWs and discusses
their computation and asymptotic properties. Section 5 compares the performance of EBWs with other
weighting methods in simulation studies. Section 6 discusses an application of EBWs in a study of RHC and
further uses these data to explore highly challenging simulations that use the natural data-generating pro-
cesses of the study. Section 7 further demonstrates the utility of EBWs by analyzing data from a complex
application involving EHR data. Section 8 concludes with a discussion and future work.

2 Distributional balance and weighted energy distance

2.1 Setup

Consider a sample {(¥;, A;, X;)}-, of size n from a population, where ¥; is the outcome of the ith unit, 4; € {0, 1}
is a binary indicator of receiving a treatment, and X; € X = RP? is a p-dimensional vector of covariates. Further
denote n; = Z;LlA,- and np = n - ny. In this article, we are interested in estimating the average causal effect of
the treatment on the outcome. A formal definition of a causal effect often involves the use of so-called potential
outcomes [26-29]. The potential outcome Y (a) is the outcome that would have been observed under level a of
the treatment. As each individual only receives one level of the treatment at a given time, only one potential
outcome, either ¥;(0) or ¥;(1), for each individual is observable. We assume the standard stable unit treatment
value assumption (SUTVA), which posits that the potential outcomes for each unit are unaffected by the
potential outcomes of other units and that only one version of the treatment exists. Under SUTVA, the observed
outcome is consistent with the potential outcomes in that ¥; = ¥i(4;). We further assume the assignment
mechanism is strongly unconfounded in the sense that {Y(0), Y(1)} 1L A | X, which requires that there are
no unmeasured confounders. The UL notation of Dawid [30] denotes (conditional) independence. We further
assume positivity (or probabilistic assignment) in that the propensity score 77(x) = P(A = 1| X = x) [10] satis-
fies 0 < m(x) < 1, so that everyone has a chance of receiving the treatment. Positivity, together with no
unmeasured confounders, constitute strong ignorability [10].

Let us denote u,(X;) = E(Y(a) | X;) as the conditional mean function and a2(Xy) = Y(Yi(a) | X)) as the
conditional variance function of the response for a € {0,1}. We consider scenarios where data have been
collected from an observational study, and thus, the treatment groups are not comparable due to imbalances
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in the distributions of their baseline covariates. These differences can be characterized through m(x) or
through F(x) = P(X < x| A = a), the cumulative distribution function (CDF) of covariates X conditional on
treatment level a.

Using the notation of potential outcomes, the (population) ATE is defined as 7 = E(Y(1) - Y(0)). This can
be rewritten as follows:

= [ ® - p@F), ()

XEX

where F(x) = Pr(X < x) is the CDF of covariates X marginalized over the treatment groups. In other
words, F(x) = Fy(X)P; + Fy(x)Py, where B, =P(A = a) € (0,1) is the probability of being assigned treat-
ment level a € {0, 1}.

2.2 Weighted average estimates and distributional balance

We restrict our focus to weighted averages as estimates of the ATE. Given a vector of weights w = (wy, ...,wy),
we study estimators of the form:

1 ¢ 1 ¢

fw = — ) WA - — ) w¥(1 - Ay). @

M i Mo =
The most commonly used example of (2), inverse propensity score weighting, uses w; =
AirXny/n + (1 - 4)A - H(Xi))noln)_l. As presented in Imai and Ratkovic [12] and Li et al. [20], the weights
in (2) are often normalized by treatment group, i.e., Yi-;wil(4; = a) = n, for a € {0, 1}, to improve precision
[11,16] at the cost of a small bias. When these weights are constructed as mentioned earlier and normalized by
treatment group, the resulting estimator is called the Hajek estimator [31] and may yield reduced mean
squared error over its nonnormalized version [32].

Given any weight vector w, we can express the error of %, as follows:

f - 7= [ F i - B - [t,d[E 0w - BI®) 3
X X
~ [l - u@1AIF - Rl @
X
+1§Wi8iAi - liwisi(l - Ai), (5)
g No =

where & = Yi(A;) - u, (X)), B(X) = Y I(X; < X)/n is the empirical CDF (ECDF) of the combined sample {X}%,,
and F, , w(x) = Z;’:lwil (X; < x, A; = a)/n, is the weighted ECDF for treatment level a € {0, 1}. In observational
studies, F, is not impacted by the weights, so the error term (4) is irreducible. However, this term goes to 0 as
long as the sample is representative of the desired population. Since (5) always has mean 0, the bias of %, in
essence depends on the properties of (3): the difference of integrals with respect to F,qw — F. Thus, the
systematic source of error from the weighted estimator 7%, can be completely controlled by reducing the
imbalance between the weighted ECDFs F, ,w and the ECDF E,. Unlike the decomposition in Zhao [16], the
decomposition of %, — 7 above holds even if the treatment effect is not constant over x. Further, none of the
methodology or results of this article require such a constant treatment effect to justify the validity of our
methods. We note that the systematic source of bias in equation (3) can be zero without F, ;  being balanced to
F,, depending on y,(x) and u,(x). However, knowledge of such an event a priori is impossible without knowl-
edge of the mean potential outcome functions; as such, a measure of distributional imbalance is critical to
characterize the degree of bias for a given dataset. The terms in (5) drives the variability of %, and can be
straightforwardly mitigated with a measure of dispersion of the weights [33]; we discuss this more at the end of
Section 3; however, this is not the focus of this article.
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The notion that the covariate distributions should be balanced to obtain a good estimate of 7 is not new
(see Imai and Ratkovic [12] and Li et al. [20], among many others). In fact, it is well understood that the weights
resulting from correctly specified propensity score models asymptotically balance covariate distributions.
However, slight model misspecifications of the propensity score may result in poor performance of (2) [11].
Further, two units with the same propensity score do not necessarily have the same covariate values, so in
finite samples, propensity score weights may not be optimal. Other approaches that aim to estimate weights by
balancing prespecified moments of the covariates [12,14] tend to be more robust than directly modeling 7(x).
Yet, the term (3) makes it explicit that bias is directly related to distributional imbalance and that, holding y,
fixed, weights that yield less distributional imbalance will in general result in less bias. A natural conclusion is
that w should be estimated to directly balance each F, , w to F,. In the following, we introduce a new distance
metric between F, ,w and F, which enables one to characterize how well a set of weights re-balances the
weighted distribution F, 4 to E,.

2.3 Weighted energy distance

We introduce next a new measure of the distributional balance induced by a set of weights. This measure is
based on the energy distance, which is a metric on distributions [34]. Due to the link between estimation bias
and distributional imbalance, our measure can be used to evaluate the degree of bias one expects from a given
set of weights and a given dataset. We will later leverage this measure to construct distributional balance
weights that minimize this metric for a given dataset.

The energy distance (as surveyed in Székely and Rizzo [34]) is defined as follows. Let G and H be two finite-

e . i.id iid . o
mean distribution functions on X, and let Z, Z’ " G and Vv,V “" H.The energy distance between distribu-
tions G and H is defined as follows:

&(G,H) = 2E||Z = V||, -~ E[|Z = Z']l, - E|IV = V], (6)

where]|| - ||, is the Euclidean norm. When both G and H are ECDFs, i.e., G, is the ECDF of {Z;}}-; € X and H, is
the ECDF of {V}1, C X, the energy distance &(G,, Hy,) can be expressed as follows:

n-m nn 1 m m
2212~ Vil = 35 2 212 = Bl = 552 2 1N~ Vil ™
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The energy distance has been used within a wide variety of statistical methods, e.g., for testing equivalence of
distributions, for testing statistical independence [35], and for generating samples from a target distribution
[36]. The energy distance is simple to compute as it only involves sums of Euclidean distances, it is nonnega-
tive, and it can be shown to be equivalent to a distance between the characteristic functions of G and H,
indicating that a value of 0 occurs if and only if G and H are the same distribution and a positive value
indicates how similar they are. The name “energy” comes from the fact that the population energy distance (or
limit of the empirical energy distance) has an intricate connection with gravitational potential energy (which
depends on the distance between two bodies of mass). Two key attractive properties of the energy distance are
that it tends to perform well in measuring the distance between two distributions in moderately high-dimen-
sional settings, and it does not require the choice of a kernel or any tuning parameters.

We propose a weighted modification of this energy distance, which measures the distance between a
weighted distribution, i.e., the weighted covariate ECDFs F, oy and F, 1 for the control and treated, and a
target distribution, i.e., the combined covariate ECDF E,. The weighted energy distance between F, ; w and F, is
defined as follows:

n n
ZZwI(A,- = )|IX; - Xk

i=1j=1

nn
Y D wwl(A; = A = @)||X; - Xj|, - ZZHX Xl
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In other words, E(F, q.w, F) is the energy distance between the ECDF of a sample {X;}{-; and a weighted ECDF of
a subsample {Xi}i.4,=q.

We show this new weighted energy distance is indeed a distance between F, 5 and F,. Let (t, s) be the
inner product of vectors t and s and define the empirical characteristic function (ECHF) of {X;}i; and the
weighted ECHFs of {X;};.4,-q as follows:

0,02 T X)) and 0,0 = 13 Wl = @) explict X)),

i=1 ai=1

respectively. The following proposition establishes the distance property of the weighted energy distance.

Proposition 2.1. Let w be a vector of weights such that Y- ,wi(A; = a) = n, for a € {0,1} and w; > 0 for
i=1,..,n. Then

EEraw F) = [10,(0 = 9 qu(OPO(OE for a € 0,1 ®
[RP

where w(t) = 1/(Gy||t|[**P), C, = nT*PI2IT((1 + p)/2) is a constant, and T() is the complete gamma function.
Thus, E(F,q,w, F) 2 0 with equality to zero iff ¢, , () = @,(t) for all t.

Thus, the weighted energy distance is a distance between the weighted distribution of interest and the
target distribution, and is thus a bona fide measure of distributional balance of covariates induced by a set of
weights. This proportion extends the duality results of Proposition 1 from Székely and Rizzo [34] and Theorem
1 from Székely et al. [35] for the weighted energy distance at hand. A subtle point is that Proposition 2.1,
combined with the decomposition presented in Section 2.2, makes clear that E(F, 4w, F,) more closely aligns
with evaluating how well a set of weights estimates the sample average treatment effect [32] than the popula-
tion ATE 7 that is our main focus. Yet, as long as F, is representative of F, the weighted energy distance still
aligns well with the population ATE.

We now show that the weighted energy distance converges to the energy distance when the weights yield
a well-defined limiting distribution.

Theorem 2.2. Assume E(||X]|; | A = a) < © and E||X|], < «. Further assume, for a sequence of weights {Wn},-1
with YL wil(4; = ) = ng for a € {0,1} and w; > 0 for i = 1,..., n for each n (so that F, o, are well-defined as
CDFs), that liMp-«@, 4, (1) = @,(t) almost surely for every t € R?, where @, is some integrable characteristic

function with associated CDF E,(x). Then almost surely we have

lim E(F, a.w,p ) = &(E, F). 9)

Theorem 2.2 shows that the weighted energy distance converges to the limiting energy distance. If the
limiting distribution implied by a set of weights is Fy = F; = F, then &(F,, F) + &(F,, F) = 0. Proposition 2.1 and
Theorem 2.2 together imply that weights with smaller values of the sum E(F, 1w, ) + E(Fy,o0,w, ) vield better
distributional balance of covariates. Due to the link between imbalance and bias (see the following section),
this also implies that better balance will yield estimates with smaller values for the term (3).

2.4 Bias and distributional imbalance

We now demonstrate this connection between bias and distributional imbalance (as measured by the
weighted energy distance) using two illustrative examples. A more formal presentation is provided later in
Section 3.2 when proving asymptotic properties of EBWs.

In the first illustrative example, we generate a one-dimensional covariate of sample size 250, which
impacts treatment assignment via a logistic model under each of three scenarios: (1) logit(m(X)) = -1 + X,
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Figure 1: (a, left) Energy distances and biases for IPW estimates based on weights from the three fitted logistic regression models; (b,
right) Boxplots of the biases for IPW estimates versus weighted energy distance based on weights estimated by several methods, each
with different combinations of moments included for balancing or estimation.

(2) logit(m(X)) = -1 + X + 2X?%/3, and (3) logit(m(X)) = -1 + X + 2X?/3 - X3/3. In each scenario, the response
is generated as Y = X + X3 - 1/(0.1 + 0.1X%) + &, where £ ~ N(0, +/2). For each scenario, we construct [PWs
based on three logistic regression models, which consider only a linear term in X (denoted as “IPW (1)”), a
linear plus quadratic term (“IPW (2)”), and up to the cubic term (“IPW (3)”), respectively. Thus, for Scenarios 2
and 3, at least one of the fitted models is misspecified. For each set of weights w, we compute E(F, o,w, F)
+ (1w, In), 1.e., the sum of the energy distances between each treatment group and the combined sample,
and compute the error %, — 7 of (2) for 7.

Figure 1(a) displays the energy distances and biases over 1,000 replications of the experiment. We see that
the energy distances are the largest in all scenarios for the unweighted estimator ((2) with all weights equal to
1). For scenarios where the weights are estimated using a misspecified model (IPW (1) in Scenario 2 and IPW (1)
and (2) in Scenario 3), the energy distances are much larger than for weights based on correctly (or over-
specified) models. Correspondingly, the bias is pronounced for the misspecified models. Thus, the weighted
energy distance can be a useful tool to compare between different models, as weights with smaller weighted
energy distances tend to yield estimates with smaller error.

In the second example, we consider a two-dimensional example where the true assignment mechanism
depends on first and second moments of the covariates. We consider several methods for estimate weights:
logistic regression, the method of Imai and Ratkovic [12], and the method of Chan et al. [14], each with different
moments included for balancing or estimation. We then compare their weighted energy distances and abso-
lute errors of (2) over 1,000 replications. Figure 1(b) displays the distances and errors for each dataset and
method. We see that, in general, weights with lower energy distance have a much smaller magnitude of bias in
estimating the ATE.

2.5 Other measures of distributional imbalance

There are, of course, many ways of measuring distance between distributions in the literature, including the
Kolmogorov-Smirnov statistic, f-divergences (e.g., the Kullback-Leibler divergence and the Hellinger dis-
tance), the Wasserstein distance, and the maximum mean discrepancy (MMD). The energy distance has several
advantages for characterizing distributional imbalance. First, while in general there is no uniformly most
powerful nonparametric test for the difference between two distributions, the energy distance is often sensi-
tive to differences in distributions, unlike the Kolmogorov-Smirnov statistic. Second, unlike the energy dis-
tance, f-divergences such as the Kullback-Leibler divergence and Hellinger distance do not metrize weak
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convergence; this property ensures that the distance remains stable under perturbations of the support of the
distributions being measured [37]. Third, the energy distance is easy and efficient to compute, unlike the
Wasserstein distance. It also works reasonably well in moderately high dimensions [36], whereas the Wasser-
stein distance suffers from the curse of dimensionality, in the sense that empirical Wassterstein distances
converge to the true Wasserstein distance at rate o(n1/p) [37,38]. Finally, while there is a direct link between
MMD and the energy distance [39], the energy distance does not require careful tuning of hyperparameters
and tends to work well across a wide variety of scenarios.

3 Energy balancing weights

3.1 Definition

We will now use the proposed weighted energy distance to estimate weights which (i) match the distribution of
covariates of the treated group to the distribution of covariates of the full population, and (ii) match the
distribution of covariates of the control group to the distribution of covariates of the full population.

To achieve this, we define the EBWs to be

wp € argmin {EFw, B + EEow F)}

w=(Wy, ..., Wn)

n n (10
s.t. ZwiAi =ny, Zwi(l -A)=n,w;20fori=1,..,n
i=1 i=1

Thus, the EBWs w? minimize the statistical energy between the treatment and control groups to the full
population. Due to the duality result of Proposition 2.1, minimizing statistical energy is directly equivalent
to balancing covariate distributions. The constraints Y-,w;[(4; = a) = n, serve several purposes: they (i)
preserve the sample size of the weighted pseudo-population to that of the study population, (ii) stabilize
the estimated weights, and (iii) ensure that F, o and F, 1w are valid distribution functions. Also note that,
due to the bias decomposition in (3) and the duality result in Proposition (2.1), the weights w{ are explicitly
designed to minimize the key component of the finite-sample bias of 7y¢, in a manner agnostic to the func-
tional forms of uy(x) and y,(x). If the functional forms of u,(x) and u,(x) are known, it is certainly possible to
construct a different set of weights to better reduce bias, by emphasizing balance in regions of X where either
Uy(X) or u,(X) are pronounced. However, this information is rarely (if ever) known, and hence this is difficult
to achieve in practice except by good fortune.

To illustrate the effectiveness of EBWs for distributional balance, we consider data generated under
Scenario 3 of the toy example in Figure 1(a). Figure 2 shows the difference between the weighted ECDF using
EBWs of the covariate in the treatment group and the ECDF of the combined (i.e., treated and untreated)
sample, for varying sample sizes n. This is compared with the weighted ECDF using weights from the true data-
generating propensity score, the estimated propensity score under the correct model, and the unweighted
ECDF of the treatment group. As sample size increases, the difference vanishes for EBWs, but much more
slowly for both the true and estimated propensity score weights. This demonstrates the improved distribu-
tional balance provided by the proposed EBWs, which should then translate to a greater reduction of bias.

EBWs can be naturally extended to handle a wide variety of scenarios, such as for treatments with more
than two levels, estimation of the ATT, and for the estimation of optimal ITRs. In the Supplementary Material,
we show how these extensions are manifested and empirically demonstrate the benefit of using EBWs for ITR
estimation.

A few key distinguishing features of our proposal from the works of Wong and Chan [18] and Kallus [19]
are (1) its direct focus on distributional balance rather than moment balance. Despite the connection between
balancing moments of an infinite dimensional class of functions and distributional balance, this feature helps
alleviate modeling decisions about what moments to balance of what space of moments to balance and has
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Figure 2: Displayed are the absolute differences between the ECDF of the combined sample and the weighted ECDF of the covariate in
the treatment group based on energy weights. Also displayed the same for the unweighted ECDF of the treated group and the weighted
ECDF based on the true and estimated propensity scores.

advantages in terms of interpretability and (2) by focusing on a measure that does not require tuning para-
meters to characterize distributional differences, our approach can be applied broadly by practitioners of
varying degrees of statistical sophistication.

3.2 Asymptotic properties

Next, we show two desirable properties of the proposed EBWs. We first show that the weighted ECDFs based
on EBWs indeed converge to the population CDF F of X.

Theorem 3.1. Assume that E(||X||; | A = a) < » and E||X||; < « and that the assumptions presented in Section
2.1 hold. Let w¢ be as defined in (10). Then, for a € {0, 1},

1 n

lim B, qwe(%) = lim — Y wfI(X; < X, 4; = a) = F(x) 1)
n—o n—o Itg i=1

almost surely for every continuity point X € X. Furthermore,

lim E(Fy q,we, Fr) = 0

n—o

holds almost surely.
Thus, EBWs result in the almost sure convergence of the weighted ECDFs of the treated (and untreated) group
to the underlying covariate distribution F.

The consistency of 7 follows immediately from Theorem 3.1:

Corollary 3.2. Suppose the conditions of Theorem 3.1 hold, and that the treatment and control mean response
functions py(X) and u,(X) are bounded and continuous on X. Then Ty is a consistent estimator of 7.
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Next, we show that the ATE estimator fwg is root-n consistent. To do so, we make use of the following
lemma, which provides a connection between bias and distributional balance:

Lemma 3.3. Let H be the native space induced by the radial kernel ®(-) = -||-||, on X, and suppose y,(-) € H
fora € {0, 1}. Then, for any weights W satisfying Y- ,wiA; = ny, Y- ;wi(1 = A;) = ng, w; = 0, we have for a € {0, 1}:

4,001 Fr e = BIGO] € CabEram B

where C, 2 0 is a constant depending on only .

Lemma 3.3 provides a connection between the systematic bias in (3) and the weighted energy distance
E(Fyq,w, Fn). Under the mild condition that the conditional mean function y,(x) is found in H (this is discussed
further at the end of the section), this lemma shows that the weighted energy distance is a key component in an
upper bound on the systematic bias in (3). We note that Lemma 3.3 applies to any set of auto-normalized
weights, justifying the use of the weighted energy distance to compare between different sets of weights. The
proposed EBWs wy, which minimize E(F, 4w, F), may therefore yield lower estimation bias via this upper
bound, which is in line with the empirical observations in Section 2.4. With this, we now state the result on
root-n consistency:

Theorem 3.4. Assume the same conditions in Theorem 3.1. Let H be the native space induced by the radial kernel
@(-) = -||:|l, on X. Suppose the following mild conditions hold:
D u,¢) €H and u () €H,
(2) Var[uy(X)] < » and Var[u,(X)] < o,
(3) o¢(x) and 6?(x) are bounded over X € X,
4) E[h(X, X', X", X)] < o and E[h3(X, X', X, X")] < o, where X, X', X", X" """ F and, with m(x)= 1 - 1(x)
and m(x) = n(x), the kernel h, is defined for a = 0,1 as follows:
1
To(X)

ha(x,y,2, @) = X = z|l + lly - all> - IIx = yllz = lla -z, 12)

1
74(y) Ta(X)77(Y)

(5) The EBWs wj, = (Wi, in (10) satisfy we, < Cnl’® for some constant C > 0 independent of n.
Then the proposed EBW estimator fw; is root-n consistent, i.e.,

Exav[(Twe = 7)%] = 0(n2). (13)

We give a brief discussion of Assumptions (A1)-(A5). Assumption (A1) concerns the regularity of the
conditional mean functions y, and y,. It can be shown that the Sobolev space Wr(,+1)/212(X) — the space of
functions with square-integrable r < [(p + 1)/21-th differentials — is contained within the native space H(X)
(Theorem 10.42 of [40]), so (A1) can be viewed as a smoothness assumption on the conditional ATE y, - y, (a
similar assumption is made in [18]). Assumptions (A2) and (A3) require the conditional mean functions to have
finite variance and the conditional variance function to be bounded, respectively. Assumption (A4) require the
kernels hy and h; to have finite second moments; these kernels can be seen as a “modified” Euclidean kernel
weighted by the true propensity scores. Assumption (A5) assumes all EBWs to be bounded above by Cn'/? for
some positive constant C > 0; this assumption has been used in several weighting-based covariate balancing
methods [18,25]. In practice, (A5) can always be checked after optimizing for the EBWs in (10). One can change
the optimization procedure (10) to explicitly enforce (A5), but we have never encountered “exploding weights,”
which violate (A5) in practice; EBWs in our simulations and data analysis typically satisfy (A5) with C = 1. As
we discuss in Section 3.4, if one is willing to add a penalty on the dispersion of the weights, the explicit
assumption on the maximum of the weights is unnecessary and root-n consistency still holds, as shown in the
Supplement.

While Theorem 3.4 proves the desired root-n consistency of the proposed EBW estimator 7y¢, it unfortu-
nately does not shed light on its asymptotic variance, which is useful for constructing confidence intervals on
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7. We recommend the use of bootstrapped confidence intervals for the EBW estimator. We explore a connec-
tion to importance sampling in the Supplementary Material.

3.3 Optimization

The optimization problem (10) for computing EBWs (and the later optimization problem (16) for obtaining
three-way EBWSs) can be viewed as quadratic programs with linear (in)equality constraints. There has been
much work on efficient algorithms for solving such programs [41], including interior point methods [42],
augmented Lagrangian techniques [43], and extensions of the simplex algorithm [44]. A recent development
is the operator splitting approach in Stellato et al. [45], which provides a reliable alternative for nonpositive
definite quadratic programs.

In our implementation, we made use of well-maintained interior-point cone programming solvers in the R
package cccp [46] for optimizing the EBW formulations (10) and (16). Such solvers follow a two-stage proce-
dure: finding an initial feasible solution for w, then iteratively refining this solution by traversing the interior
of the feasible region. Detailed algorithmic steps can be found in Wright et al. [47]. Interior-point algorithms
enjoy empirical and theoretical advantages for solving large-scale quadratic programs (see further discussion
in Gondzio [48] on its scalability and complexity), and we have observed excellent performance of such
algorithms for EBW optimization. In practice, we recommend that the covariates should be normalized so
that each covariate has mean zero and unit variance, before being used as inputs for the optimization
problem. An efficient implementation of these methods for EBW optimization is provided in our R package
ebw, which will be released on comprehensive R archive network in the near future.

3.4 Controlling weight variability

In our experience, the weights resulting from the optimization criterion (10) rarely, if ever, result in large
weights; however, in the literature there has been an emphasis on methods that afford explicit control on the
variability of weights [33]. To allow for such within our framework, one can simply add a penalty An2y -, w? to
the criterion (10) for some fixed A > 0. This penalty can be thought of as a penalty on the inverse of the effective
sample size of the weights [33]. In our experience, since the energy distance criterion is not nearly as variable
as using a kernelized distance using a universal kernel such as the Gaussian kernel, careful tuning of A is not at
all critical and we advocate for a simple choice such as A = 1 or not using any penalty at all. On the other hand,
if one were to replace the energy distance with a kernelized distance using a universal kernel, the choice of A
becomes critical. In the Supplement, we show analogs of Theorems 3.1 and 3.4 hold when using a penalized
energy distance criterion, although the conditions regarding the magnitude of the weights in the latter
theorem can be relaxed.

3.5 Three-way EBWs

The EBWSs in (10) are designed to balance the distributions of covariates between each treatment group to that
of the combined sample {X},. As such, the treatment group should be asymptotically balanced to the control
group. Yet for finite samples, EBWs do not necessarily guarantee good distributional balance between the
treatment and control arms, which can be important in practice. Consider the following re-expression of the
two terms in (3):

[ 1@ + 1@1dE e~ Fron]®) (14)

XEX
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- [ m@dlE - Fowl® + [ IR - Fiwl®. 15)

XEX XEX

Terms (14) and (15) shed light on how the choice of w impacts estimation error for the ATE. In particular, this
error term depends not only on (i) how close the weighted ECDFs F, g and F, 1 are to that of the combined
sample F, but also (ii) how close the weighted ECDF for the control group F, o,w is to the weighted ECDF of the
treated group F,1w. The EBWs in Section 3 take care of the imbalance in (i), but not the imbalance in (ii)
between treatment and control. With finite samples, imbalance in (i) can result in (14) dominating (15),
depending on the properties of uy(x), u,(X), and py(x) + u;(x). Indeed, the importance of this three-way
balance is recognized in the literature, and is emphasized in Chan et al. [14] as an important component in
constructing globally efficient estimators based on moment balancing. In our case, the target is the three-way
distributional balance, i.e., balance in (i) and (ii).

We propose an extension of EBWSs, the improved EBWs (iEBWSs), to help improve covariate balance
between the treatment and control groups. These improved weights are defined as follows:

wé € argmin{E(F, 1w, B) + EEnows B) + EEnomws Friw)}

w

n n (16)
st. Y wiA; =ng, Y w1-A)=no,w; 20 fori=1,..,n,
i=1 i=1
where
2 n n
EFiae Frow) =70 2 2 wiwidi(1 = ADIX: = Xl
i=1j=1
1 n n 1 n n
- 7 2 2 WA X - Xl - 5 3 3 wiw(1 = AL = AD[X; - X,
N i=1j=1 0 i=1j=1

is the energy distance between the weighted ECDFs for treated and control. Thus, the iEBWs w¥ aim to
minimize imbalance not only between treatment arms and the full population but also between the treatment
arm and the control arm. Note that 8(F, 1w, Fn0,w) Still retains the properties of a weighted energy distance, in
the sense that &(F,ow, Fuiw) = I[R,,l(pn,l,w(t) - (pn,o’w(t)lzw(t)dt, as Proposition 2.1 can be trivially extended to
the case where both arguments of the energy distance are weighted.

4 Extensions and applications of EBWs

4.1 Estimation of the ATT

A common target of estimation is the (population) ATT, 7@ = E(Y(1) - Y(0) | A = 1), which is the mean
difference in potential outcomes among those who are actually treated. Due to the unconfoundedness assump-
tion, we can write

= [ [ - u@dA), an

xX€X

which suggests that a plug-in estimator can be obtained by replacing F;(x) with a suitable energy-weighted
ECDF. To do so, we define the new weights w = (w{, ...,w¢), where w¢' = 1 for {i : 4; = 1} and

W ia,=0 € argmin E(Fy,o,.w, Fr1)
" (18)
s.t. Zwi(l -A)=ngw;20fori=1,..n,
i=1
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where F,1(X) = %Z;LlA,-I (X; £ x). Thus, wﬁl balances the covariate distribution for the control group to the
covariate distribution of the treated group. Similar to Theorem 3.1, we have limp-.«k, o we(X) = Fi(X) a.s. for
every continuity point x € X. With the new weights w¢!, the natural plug-in estimate for the ATT 7@ is Tye
(i.e., the weighted estimator in (2) with w = w¢l).

4.2 Multi-category treatments

EBWs can also be constructed for multi-category treatments. When the treatment 4; takes multiple values, i.e.
A; € A ={ay, ...,ax}. Denote n, = Y-, I(A; = a), fora € A.Each unit has K potential outcomes (Y(ay), ..., Y(ax)),
one for each level. The unconfoundedness assumption in this setting becomes {Y;(a), ..., ¥i(ax)} AL A | X. Following
Lopez and Gutman [49], the positivity assumption required is now 0 < 7(a,x) =P(A=a|X =x) <1 for all
a € A and all possible x € X. The standard IPW estimator for E[Y(a)] involves inverse weighting each sample
i by 7m(4;, X;). Instead, we propose to estimate E[Y(a)] or any causal contrast 7@ = E[Y(a) - Y(a)] for
a,a’ € A with EBWs.
We define the EBWs for the multiple treatment case as follows:

wme argmin ) EEaw F)

w=(Wy, ..., Wp) a€A

n
s.t. ZwiI(Ai =a)=n, foralae A and w; 20 fori=1, .., n.
i=1

Improved EBWs, which encourage covariate balance between all pairs of treatment options, can be defined

similarly as (16), where an additional weighted energy distance between each pair of treatment options is

added to the objective. Given any two treatment options a, a’ € A, we can then estimate the causal contrast
(a-a’) (3

T with

(a—a” 1 & 1 <
T(“ﬁm“) = n_ZWiYiI(Ai =a)- n_ZWiYiI(Ai = a’).

w 7
ai=1 @’ i=1

4.3 Estimation of ITRs

As many treatments exhibit heterogeneous effects for different patients, there is great interest in tailoring
treatment decisions to patients. A main line of work in this area is the development of statistical methods
aimed at finding an optimal ITR, which maps patient characteristics to treatment decisions. Thus, the
immediate goal is to estimate a mapping d : X ~ {0, 1} which optimizes the expected potential outcomes
under the distribution induced by d. Following Qian and Murphy [23], and Zhao et al. [24] and assuming
that larger values of the outcome are preferred, the optimal ITR is defined as

19

3

YI(A=dX)| inEl & (4 # d(X))
nA4,x) | 7F n(A, X)

d* € argmax[E[Y(d)] = argmax[E
d d
where m(a, X) = P(A = a | X) and the second equality holds due to the causal assumptions outlined in Section
2.1. The optimal ITR d* has the property that d*(X) = a = u,(X) > u;_,(X). The last term in (19) appears as a
weighted classification task due to the weighted 0-1 loss. With observed data, the objective becomes to
minimize

liLI(A % d(X;)) (20)

nSnALX) o

Due to the nonconvexity of (20), in practice I(4; # d(X;)) is replaced with a surrogate, such as the hinge
function (1 - (24; - 1d(X;))* (see, e.g., the outcome weighted learning (OWL) method of Zhao et al. [24]).
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Table 1: Displayed are the value functions and misclassification rates for the optimal ITR estimation example averaged over 1,000
independent simulated datasets

Scenario 1 Scenario 2
Method Value (SD) Misclass Value (SD) Misclass
OWL (EBW) 3.168 (0.253) 0.283 2.921 (0.166) 0.228
OWL (iEBW) 3.198 (0.204) 0.277 2.931 (0.165) 0.223
OWL (PS) 2.671 (0.327) 0.344 2.706 (0.196) 0.295

In Scenario 1, the optimal value is 4.74 with 56% of units with optimal assignments of A = 1; in Scenario 2, the optimal value is 3.19 with
50% of units with optimal assignments of A = 1. The bold values indicate the best performance across all methods for a given setting.

Yet, this objective still requires estimation of the propensity score 7(X) and involves plugging in this estimate
to (20), which subjects it to the same issues of propensity score weighted estimates of 7. To see how EBWs can
be used in place of (4, X), we can express (19) as argmindfXE Xzae{o,l}ya(x)l (d(x) # a)dF(x). Thus, d*(x) is a
functional of F(x). This suggests a plug-in estimator by replacing F(x) with energy-weighted ECDFs (either
Fyqwe(X) or F; ﬁi(x)). Thus, we propose to estimate the optimal ITR as follows:

,a,W

n
d* € argmin %ZYiwf(p(Ai, d(Xy), (1)

d i=1
where w¢ could be replaced with improved weights w# and ¢(a, d) is a convex surrogate for I(a # d), such as
the hinge function or logistic loss. As in Zhao et al. [24], to prevent overfitting, a penalty A,||d|* can be added to

(21) to control complexity of the estimated ITR.

To demonstrate the effectiveness of using EBWs in optimal ITR estimation, we provide an illustrative
example under two data-generating scenarios. For both scenarios, we generate outcomes as Y = g(X)
+ AA(X)/2 + &, where g(X) are the main effects of X, A = 24 - 1, and A(X) = u,(X) - po(X) is the treat-

ment-covariate interaction, € ~ N(0,1), and R > X it Unif(-1, 1). Both scenarios are motivated by the
simulation studies of Zhao et al. [24], but generate A from a logistic regression model with terms depending
on up to third-order polynomials in a subset of the predictors, and g(X) contains nonlinear terms in the
predictors. Full details of the experiment are given in the Supplementary Material. We utilize the OWL method
to obtain estimates d, which uses inverse weighting via the propensity score and adds a penalty A,||d|f* to the
objective. For OWL, the propensity score is misspecified to only include linear terms in the covariates. We also
estimate d* by minimizing (21) plus A,||d|[>. We denote this as OWL (EBW) for weights given by (10) and OWL
(iEBW) for weights given by (16). We simulate 1,000 independent datasets and compute the average value
function E[Y(d)] evaluated on a large independent dataset in addition to the missclassification rate in esti-
mating d*(X) on the independent dataset. The results are given in Table 1, which indicates that EBWSs can yield
better performing ITRs.

5 Simulation studies

To evaluate the finite sample performance and operating characteristics of our proposed estimators, we
conducted a large-scale simulation study across a wide variety of data-generating scenarios. Since existing
techniques, such as empirical calibration balancing and the covariate balancing propensity score, work
exceedingly well when the correct moments are specified to be balanced, we primarily consider simulation
settings where the relationships between covariates and both the treatment status and outcome regression
model are nonlinear. We consider a wide range of scenarios for the propensity score and outcome regression
models, several of which are examples taken from the existing works. Outcome models B and E are taken from
[18], outcome model D is taken from Wong and Chan [50], and outcome model A is a slight modification of an
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outcome model from Kang and Schafer [11]. Outcome model C is designed to be linear in X for the untreated
group, but nonlinear and with interaction terms for the treated group. Propensity model III is from Kang and
Schafer [11] but with the main effects having twice the dimension as by the Kang and Schafer [11] example.
The remainder of the propensity models have interactions, smooth nonlinear terms, or nonsmooth nonlinear
terms. We generate a p-dimensional covariate vector Z = (Z;, ...,Z,) from a p-dimensional mean zero multi-
variate Gaussian distribution with Cov(Z; Z;) = -0.75"/, which results in positive and negative correlations
between predictors. In covariate setup 1, we let the observed covariates be X = Z; however, similar
to the widely-tested setup by Kang and Schafer [11], in covariate setup 2, we define X = (X, ...,X}),
where X; = exp(Z1/2), X = Z5/(1 + exp(Zy)) + 10, X3 = (Z1Z3/25 + 0.6)%, X4 = 20 + (Z, + Z4)%, X5 = exp(Zs/2),
Xs = Zg/(1 + exp(Zs)) + 10, X; = (Z1Z7/25 + 0.6)3, and Xg = 5 + (Zs + Zg)%. To align with the setup of Kang
and Schafer [11], we utilize covariate setup 2 for any setting with propensity model III. To align with the setup
of Wong and Chan [18], we utilize covariate setup 2 for any setting with outcome model B or E. All other
settings use covariate setup 1.

We compare our proposed EBW and the iEBWs (16), both with no penalty on the squares of the weights,
with several widely used alternatives. First, we compare with inverse propensity score weights (denoted
“IPW”). In addition, we compare with the covariate balancing propensity score weights (denoted “CBPS”),
the empirical calibration balancing weights (denoted “Cal”) with exponential tilting weights. For all methods
that require specification of a model for the treatment assignment or moments to balance, only first-order
terms in X were used, as in Wong and Chan [18]. This reflects a setting where the analyst misspecifies that only
first moments should be balanced. We also utilize the kernel-based functional covariate balancing approach of
Wong and Chan [18], denoted as “KCB” for kernel covariate balancing with the second-order Sobolev kernel. As
a baseline for comparison, we investigate a naive unweighted estimator that simply compares the means
between treated groups and denote this as “Unweighted.” For all estimators, we use weights normalized by
treatment group. Thus, the IPW approach is the Hajek estimator as opposed to the more unstable, nonnorma-
lized Horvitz-Thompson estimator. For each setting, we generate 1,000 independent datasets and evaluate each
method based on the square root of the mean-square error (RMSE) and bias in estimating the ATE. Simulations
for IPW, Cal, and CBPS are conducted using the WeightItR package [51] and that of KCB using the ATE.ncb
package.

For the sake of brevity of presentation, we present a summary of the results across all outcome models.
More detailed results are presented in the Supplementary Material. Table 2 contains a summary of the results
averaged across outcome models (A-E) and dimension settings (p € {10, 25}). Each entry in the table is the
average rank of each method in terms of RMSE and bias for each combination of outcome model and
dimension; i.e. the method with the smallest RMSE for a particular setting receives a “1” and the method
with the largest RMSE receives a “7.” The Supplementary Material contains a similar summary, but averaged

Table 2: Displayed are the ranks among all methods tested of each method in terms of RMSE and bias averaged over all response
models (I-VI) for n = 250 and over the dimension settings p = 10 and p = 25. The bold values indicate the best performance across all
methods for a given setting

Propensity model: I II III v v VI
Mean rank Mean rank Mean rank Mean rank Mean rank Mean rank
Method RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE  Bias
Unweighted 47 3.7 6.5 4.9 5.0 4.5 4.8 4.1 6.2 5.3 3.9 31
EBW 2.5 2.8 2.4 2.7 3.2 4.2 2.5 3.6 1.9 2.6 2.5 3.8
iEBW 2.2 2.5 1.5 1.7 3.0 3.9 1.7 3.5 1.9 2.0 2.0 31
KCB 3.0 3.4 2.5 2.5 3.2 43 2.7 25 3.0 3.6 2.5 23
IPW 5.5 5.0 6.4 5.9 5.0 2.9 6.3 5.4 5.8 5.1 6.8 6.0
CBPS 5.1 4.8 5.1 5.3 47 3.9 5.1 37 5.6 5.3 49 4.2

Cal 5.0 5.8 3.6 5.0 3.9 4.3 4.9 5.2 3.6 4.1 5.4 5.5
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over propensity models and dimensions. In general, iEBW tends to yield the best rank in terms of performance
across the settings, with EBW and KCB yielding similarly low ranks.

6 RHC data

6.1 Description of data

A study by Connors et al. [2] was conducted to investigate the effectiveness of RHC, a diagnostic procedure for
critically ill patients in ICUs. Since RHC is more relevant for certain forms of intensive care than others, there is
substantial imbalance in patient characteristics in those treated with RHC and those who did not receive RHC.
The original analysis was based on propensity score matching, and the data have been subsequently re-
analyzed in many other works [7,20,52,53]. The study consists of data on 5,735 individuals, 2,184 of whom
received RHC, and the remaining 3,551 did not receive RHC. The outcome is an indicator of survival at 30 days
after admission. A panel of experts convened to discuss which variables contribute to a decision to use RHC,
resulting in a large set of covariates to study (72 in total, 21 of which are continuous, 25 binary, and 26 dummy
variables originating from 6 categorical covariates). The dataset is publicly available at: http://biostat.mc.
vanderbilt.edu/wiki/pub/Main/DataSets/rhc.html. There are substantial empirical differences in the distribu-
tions of many of these covariates between treatment groups (RHC vs. no RHC). In Section 6.2, we study the
effect of RHC on 30-day survival. However, since there is no ground truth available, in Section 6.3, we use the
RHC data to conduct a realistic simulation that demonstrates the effectiveness of EBWs.

6.2 Analysis of RHC data

We used 65 of the available covariates, as in the analysis of the same dataset in Rosenbaum [53], leaving out
date-related covariates. Using the 65 covariates, we applied the weighting methods used in Section 5 (except
the method of Wong and Chan [18] as the code returned constant weights of 1 regardless of the tuning
parameters used) to estimate weights to balance the treated groups. To first investigate how well each method
balances the marginal means of each covariate, we evaluate the absolute standardized mean differences for
each covariate and p-values for the difference in weighted means between treated and control groups, which
are displayed in Figure 3. Empirical calibration balancing is designed to balance all specified moments exactly,
and since we balance the first moments, these have exact balance. Both EBWs still result in tight moment
balance despite the fact that this was not an explicit goal. In Figure 4, we investigate how well each method
balances the distributions of all 1- and two-dimensional projections of the covariates. To do this, we compare
the weighted ECDFs for each projection by evaluating the square root of the integrated mean-square error
(RIMSE) of the weighted ECDFs between the two treatment groups. Both EBWs yield the smallest RIMSEs on
average. However, it is important to note that lower-order projections of the distribution are not the explicit
focus of EBWs and thus, the EBWs also likely balance other aspects of the distributions of covariates between
the treatment groups. We display further measures of discrepancy of the covariates between the treatment
groups in Table 3. In addition to displaying the average RIMSE values and absolute SMDs, in this table, we
display the weighted energy values for each of the weights, including the unweighted energy distances. By
definition, EBWs have the minimum weighted energy distances; however, it can be seen that the empirical
calibration balancing weights have a relatively small weighted energy distance, indicating its use is likely
sensible for the RHC data. The estimates of the ATE of RHC and its standard errors are displayed in Table 3.
Standard errors are computed using the nonparametric bootstrap with 1,000 replications. The EBW-based
estimates have the smallest standard errors, and, perhaps more interestingly, yield an estimate of the effect of
RHC that is slightly less deleterious than estimates in the literature, despite it still being a highly significant
effect.
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Figure 3: Displayed are p-values for tests of the difference in weighted means between treatment groups marginally for each covariate
(left) and for each pairwise interaction of covariates (right). For continuous covariates, weighted ¢-tests are used and weighted Chi-

squared tests are used for discrete covariates. For an RCT, the sorted p-values are expected to roughly fall along the diagonal - lines
above the diagonal indicate an improvement in moment balance over random assignment.
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Figure 4: This figure illustrates the differences in the marginal univariate weighted ECDFs between the treated and control populations.
In particular, let x; € X; denote the j component of the covariate vector X and let F, 4,j(x) denote its empirical CDF on treatment arm a.
Similarly denote the weighted versions of this quantity. Here, we are displaying how well each method balances the marginal empirical

1/2

CDFs for the treated and control arms. We do so by evaluating an estimate of J'XjEXj[ELLj,W - Fyojwl()dx  obtained by integration

over a grid of values for all j = 1,..., 65. The results across all covariates are displayed in the left two plots above. The rightmost plots
similarly display the RIMSEs for all possible 65 choose 2 bivariate CDFs.

Table 3: Estimates of the ATE and standard errors for the RHC data. Standard errors were computed for all methods using the
nonparametric bootstrap with 1,000 replications. Also displayed are various measures of discrepancy between the distributions of
covariates for the RHC and non-RHC groups. In addition to weighted energy distances, we display mean and max “SMD|,” which are the
average and maximum, respectively, absolute standardized marginal mean difference of covariates

Unwtd CBPS IPW Cal EBW iEBW
Tw 0.0736 0.0576 0.0528 0.0547 0.0499 0.0470
SE(Tw) 0.0132 0.0142 0.0155 0.0145 0.0120 0.0117
Energy dist (10) 8.1996 0.8572 0.7804 0.4250 0.3236 0.3377
Energy dist (16) 23.7172 1.8560 1.5756 1.0045 0.7536 0.7270
Mean |SMD]| 0.1648 0.0274 0.0182 0.0000 0.0063 0.0043
Max |SMDJ 0.5826 0.1139 0.0778 0.0000 0.0239 0.0168
SD|SMD| 0.1276 0.0206 0.0147 0.0000 0.0050 0.0036
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6.3 RHC data simulation

In this section, we fix the covariates and treatment assignments from the RHC data, and simulate responses
with confounding. This produces a realistic and highly challenging simulation scenario with high dimension.
We use the key functional form from outcome model D from Section 5. Since this outcome model involves only
7 covariates, we use the functional form from this outcome model, apply it over 8 separate groups of 7
covariates in the RHC data, and take the sum of all groups of 7 covariates as the mean of the outcome. We
then simulate 1,000 independent datasets using this procedure and each time estimate the ATE and record
each method’s RMSE in estimating the true ATE. Since under this model the ordering of the covariates changes
the nature of the confounding, we randomly permute the columns 100 times and repeat the simulation 1,000
times for each permutation and each time record the RMSE over the 1,000 replications. Further details are
provided in the Supplementary Material. The RMSEs for each of the 100 column permutations are displayed in
Figure 5. Both EBW and iEBW consistently yield among the smallest RMSE across the permutation settings.
Since the outcome model in this simulation involves a constant treatment effect, and thus is not impacted by
potential issues of covariate overlap, and in the Supplementary Material, we additionally consider an outcome
model with a treatment effect that depends on X; the pattern of the results is consistent with the findings using
a constant treatment effect, albeit the advantage of EBWs is slightly more pronounced with the heterogeneous
treatment effect scenario.

15
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o 4 1

Figure 5: RMSEs for each method across 100 outcome models using the RHC data.

7 Analysis of the MIMIC-III critical care database

We analyze the effectiveness of three treatments based on separate subpopulations of the MIMIC-III v1.4
critical care database [3]: a study of the effect of indwelling arterial catheters (IACs) on mortality in patients
with respiratory failure [54], a study of the effect of transthoracic echocardiography (echo) on mortality in
sepsis patients [55], and a study of mechanical power of ventilation (MPV) on mortality in critically ill patients
[56]. Each study is based on the existing studies utilizing MIMIC-III. The degree of confounding in each study
varies, with the IAC and MPV studies exhibiting a great degree of confounding and the echo study with
minimal confounding. For all studies, missing values were imputed using missForest [57]. We present the
IAC study in this section and the remaining two studies in the Supplementary Material. For each study, we
present treatment effect estimates and balance statistics using each method used in the main text. For all
studies, we also use the covariates and treatment assignments of the observed data to conduct simulation
studies, using the same approach used for the simulation based on the RHC data. In essence, with these
simulation studies we preserve the treatment assignment mechanism of the observed data and simulate
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outcomes that involve a high likelihood of confounding under this real-world treatment assignment
mechanism. The simulation studies investigate scenarios with a constant treatment effect over X and with
a treatment effect that varies with X but results in a (population and sample) ATE of 0. The outcome models
used are the same as described in the Supplementary Material. Each dataset has a differing number of
confounders; however, the outcome model across all datasets involves 63 covariates impacting the response
for any given scenario. As in the setup for the RHC data simulation, the columns are permuted 100 times,
resulting in 100 separate outcome models with different covariates impacting the response in different ways.

7.1 IAC data

In this section, we replicate a study originally conducted Hsu et al. [54] based on the MIMIC-III critical care
database to study the effect of indwelling arterial catherization on 28 day mortality. The data are based on the
queries provided in https://github.com/MIT-LCP/mimic-codeand contains information on 2,522 mechanically-
ventilated patients, 1,298 of whom received the treatment, IAC. The outcome is an indicator of 28 day mortality
from time of admission. Pre-treatment covariates likely to be confounders include demographics, lab values,
calculated risk scores, missingness indicators, and more, totaling to a design matrix with p = 81. We leveraged
the same approach used in the RHC study to control for the confounders via various weighting approaches to
estimate the ATE of IAC on 28-day mortality. The KCB approach yielded constant weights of 1 regardless of the
tuning parameter. Table 4 presents information on the estimated effect of IAC on mortality based on each
weighting method in addition to various balance statistics for the 81 covariates, including marginal mean
balance, univariate and bivariate distributional balance, and weighted energy statistics. EBW and iEBW yield
the best univariate and bivariate distributional balance, while Cal and CBPS result in the best marginal mean
balance. Note that Cal does not achieve exact marginal mean balance due to numerical issues. All approaches
except inverse weighting by propensity score (IPW) yield 95% confidence intervals that contain zero, albeit
with point estimates that suggest a potential benefit of IAC. IPW results in a significant estimated benefit of IAC
on 28 day mortality, with a point estimate of the benefit that is substantially larger than for other methods.

In addition, we conduct a simulation study based on the IAC data with precisely the same response-
generating mechanism as for the simulation on the RHC data in Section 6.3. Although the dimension of the IAC
data is higher, the number of dimensions that impact the response for each data-generating setting is 63, the

Table 4: Estimates of the ATE and standard errors for the IAC data. Standard errors were computed for all methods using the
nonparametric bootstrap with 1,000 replications. Also displayed are various measures of discrepancy between the distributions of
covariates for the IAC and control groups. We also display the mean and max RIMSE statistic for marginal univariate and bivariate CDF
differences, as in Figure 4. In addition, we display summary statistics of SMDs for marginal means and SMDs for all polynomials up to
order 5 and pairwise interactions (denoted SMD(2)). The bold values indicate the best performance across all methods for a given
setting

Unweighted CBPS IPW Cal EBW iEBW
Tw 0.0012 -0.0343 -0.0744 -0.0150 -0.0150 -0.0130
SE(Tw) 0.015 0.0217 0.0446 0.0165 0.0118 0.0114
Energy dist (10) 4.5625 0.7829 31.336 0.5612 0.3869 0.4028
Energy dist (16) 13.6796 1.6922 62.6704 1.3854 0.9614 0.9304
Mean RIMSE, 1d 0.0362 0.0130 0.0670 0.0126 0.0113 0.0111
Max RIMSE, 1d 0.0863 0.0277 0.1646 0.0256 0.0235 0.0245
Mean RIMSE, 2d 0.0416 0.0075 0.0619 0.0071 0.0067 0.0062
Max RIMSE, 2d 0.3295 0.0283 0.2028 0.0284 0.0248 0.0189
Mean |SMD]| 0.0732 0.0023 0.0990 0.0001 0.0060 0.0045
Max | SMD | 0.2996 0.0203 1.2906 0.0028 0.0289 0.0212
Mean |SMD(2)| 0.0788 0.0081 0.0932 0.0075 0.0093 0.0073

Max | SMD (2)] 0.6801 0.1782 1.2906 0.1412 0.1502 0.0998
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Table 5: Displayed are the median, mean, standard deviation, and maximum RMSEs for each method across the 100 simulation settings
using the IAC data. The bold values indicate the best performance across all methods for a given setting

Unweighted CBPS IPW Cal EBW iEBW
Constant treatment effect
Median RMSE 8.0151 3.2899 7.9435 3.4895 3.0276 1.8319
Mean RMSE 9.1296 3.8542 9.5545 3.7609 3.5113 2.2087
SD RMSE 6.7091 2.5588 7.5263 2.5293 2.5028 1.5785
Max RMSE 32.3715 11.0479 39.1095 12.0521 12.4231 7.2066
Heterogeneous treatment effect
Median RMSE 11.9037 3.8587 15.1933 3.7128 3.0732 1.7355
Mean RMSE 13.5594 4.4330 18.4590 4.1689 3.9079 1.8688
SD RMSE 9.9665 3.1225 14.6490 2.8963 2.8718 1.3415
Max RMSE 48.0820 12.3672 75.3899 12.8563 13.8571 5.6715

same as in Section 6.3. The results in terms of RMSE in estimating the ATE across the 100 data-generating
scenarios for both the constant and heterogeneous treatment effect settings, each averaged over 1,000 replica-
tions, are displayed in Table 5. The iEBW approach results in the smallest mean, median, and worst-case RMSE,
followed by EBW, which is closely followed by Cal and CBPS. IPW in this case results in nearly worse
performance than no weighting. We also conducted the same simulation study but with a treatment effect
that varies in X.

8 Discussion

We have introduced a new metric, the weighted energy distance, which measures the distributional balance
induced by a set of weights and thus can be used to determine which set of weights is likely to result in low bias
when estimating a causal quantity. Building on the weighted energy distance, we have introduced the EBWs
that minimize this distance to achieve distributional balance. The energy balancing weights are robust and
reliable across many functional forms of confounding and further rarely result in large weights. Due to the
distributional balancing of the energy balancing weights, they can be utilized to estimate a wide variety of
causal estimands which can be represented as a statistical functional of the population distribution function of
the covariates. While we focused entirely on the weighted energy distance, the connection between the energy
distance and distances between embeddings of probability measures into reproducing kernel Hilbert spaces
[39] opens up the possibility of more effective distributional balancing weights if more is known about the
functional form of confounding. In particular, if the analyst believes lower order projections of the distribu-
tion should be balanced with priority over higher order aspects of the distribution, the use of a kernel which
emphasizes these projections, such as the sparsity-inducing kernel in Mak and Joseph [58], could be used.
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