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Abstract

Robust principal component analysis (RPCA) is a widely usedmethod for recov-

ering low-rank structure from data matrices corrupted by significant and sparse

outliers. These corruptions may arise from occlusions, malicious tampering, or

other causes for anomalies, and the joint identification of such corruptions with

low-rank background is critical for process monitoring and diagnosis. How-

ever, existing RPCA methods and their extensions largely do not account for

the underlying probabilistic distribution for the data matrices, which in many

applications are known and can be highly non-Gaussian. We thus propose a

new method called RPCA for exponential family distributions (eRPCA), which

can perform the desired decomposition into low-rank and sparse matrices when

such a distribution falls within the exponential family. We present a novel alter-

nating direction method of multiplier optimization algorithm for efficient eRPCA

decomposition, under either its natural or canonical parametrization. The effec-

tiveness of eRPCA is then demonstrated in two applications: the first for steel sheet

defect detection and the second for crime activity monitoring in the Atlanta

metropolitan area.
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1 INTRODUCTION

With remarkable advances in sensing and experimental

technologies, scientists and engineers now have access to

massive datasets with complex forms for decision-making.

The efficient harnessing of such data, in particular, the

extraction of background structure and deviating anoma-

lies (arising from occlusions,malicious tampering, process

defects, or other causes for outliers), becomes ever more

important for timely process monitoring, diagnosis, and

improvement. The increasingly complex form of such

data further necessitates a careful consideration and

integration of its underlying probabilistic distribution,

which is often known and can be highly non-Gaussian. To

tackle these challenges, we propose a novel robust princi-

pal component analysis (RPCA) method for exponential

family distributions (eRPCA, for short), that leverages

structure on this probabilistic distribution from the expo-

nential family, to jointly perform anomaly detection

and background extraction from massive and complex

data matrices. The eRPCA is expected to outperform

the state-of-the-art when the distribution of such data

matrices is non-Gaussian and can reliably be inferred

from domain knowledge; we shall show this later in

experiments.

Our approach is motivated by two ongoing applica-

tions, on defect detection for steel sheet manufacturing

and burglary monitoring in the Atlanta metropolitan area.
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For the first application, the timely detection of defects

(e.g., gashes and dents) in steel sheet manufacturing is

crucial for quality control. Recent developments in quanta

image sensing (QIS; [11]) have shown promise for the

desired high-frequency imaging, but these systems typi-

cally capture image intensities via binary bits. The efficient

identification of potential defects for timely diagnosis thus

poses a challenge with such large binary images. For the

second application, the detection of regular and irregu-

lar burglary activities is paramount for crime monitoring

and prevention. Reported burglary data naturally take the

form of counts and can be observed at high spatiotemporal

resolution. Using such high-dimensional count data for

timely extraction of regular and irregular crime patterns

is thus a critical challenge. In both applications, both the

identification of background structure, for example, reg-

ular crime activity, and its corresponding anomalies, for

example, irregular crime activity, are important for timely

decision-making from high-dimensional and complex

data matrices. We return to these two applications later in

Section 5.

A widely used method for joint extraction of struc-

ture and sparse anomalies from a data matrix M ∈ R
p×q

is the RPCA method [6]. RPCA decomposes M into the

sum of two matrices L and S, such that L is a low-rank

matrix (modeling structure) and S is a sparse matrix

(capturing anomalies). Such a decomposition can be opti-

mized via convex optimization methods via its tightest

convex relaxation using the nuclear and l1-norms; more

on this later. There has been much subsequent work on

efficient optimization algorithms for the RPCA decom-

position, including the use of augmented Lagrangian

multipliers [27, 40], accelerated proximal gradient [2],

alternating minimizing approaches [20], and low-rank

matrix fitting [36]. There is also notable (albeit less)

work on the RPCA when M is observed with random

noise. This includes the stable principal component pur-

suit approach [42], which relaxes the equality constraint

M = L + S to account for the presence of small mea-

surement errors; more on this later. Such an approach,

however, does not factor for the specific probabilistic

distribution for M, which in many applications may be

known or can be reliably inferred. Ding et al. [13] proposed

a hierarchical Bayesian approach for decomposing a noisy

matrix into its low-rank and sparse components, but such

an approach again does not factor in the non-Gaussian

distribution ofM.

There is also a complementary line of work on extend-

ing the standard principal component analysis (PCA) for

non-Gaussian noise distributions. This includes Collins

et al. [12], which proposed amodification of PCA that gen-

eralizes to a broad class of so-called exponential family

distributions [8] via Bregman distances. The exponential

family covers a broad range of parametric distributions

encountered in applications, including the Bernoulli, Pois-

son, Exponential, and Gaussian distributions. Mohamed

et al. [30] investigated a fully probabilistic extension of

PCA for the exponential family. Liu et al. [29] presented

the <Exponential PCA= (or ePCA) approach, which uses

recent developments in randommatrix theory and shrink-

age for efficient estimation of low-rank structure under

exponential family noise. Such methods, however, do

not account for nor facilitate the identification of sparse

anomalies in M, which is critical in our aforementioned

motivating applications.

To tackle these limitations, we thus propose a new

eRPCA method that facilitates the joint extraction of

low-rank structure and sparse anomalies, in the setting

where data matrices are generated from the exponential

family distribution. The eRPCA leverages a novel optimiza-

tion formulation for this decomposition, which integrates

information on the underlying probabilistic distribution

of M via its likelihood function. We then present an

alternating direction method of multiplier (ADMM; [3])

optimization algorithm, which incorporates this dis-

tributional structure for efficient decomposition under

either its natural or canonical parametrization. Finally,

we demonstrate the effectiveness of the eRPCA over exist-

ing methods in a suite of numerical experiments and for

our two motivating applications on steel defect detec-

tion and crime monitoring. In particular, we show that

when the distribution of the data matrices is markedly

non-Gaussian and can be reliably inferred from domain

knowledge, the eRPCA can leverage this information for

improved extraction of low-rank structure and sparse

anomalies over the state-of-the-art.

This article is organized as follows. Section 2 provides

background on the RPCA, the ePCA, and their recent

extensions, then discusses their limitations for our moti-

vating application. Section 3 outlines the proposed eRPCA,

including its formulation and optimization algorithm,

including a discussion on hyperparameter tuning and

scalability for large data matrices. Section 4 presents a

suite of numerical experiments investigating the perfor-

mance of eRPCA and existing methods, under different

distributions ofM from the exponential family. Section 5

explores the eRPCA in the aforementioned two motivating

applications. Section 6 concludes the article.

2 BACKGROUND AND
MOTIVATION

We first provide an overview of the robust PCA [6], the

exponential PCA [29] and its extensions, thenmotivate the

proposed eRPCA via our steel defect detection application.
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2.1 Robust PCA

RPCA [6] is a widely used method for jointly recover-

ing low-rank structure and anomalies from a data matrix

M ∈ R
p×q with significant corruptions on a sparse num-

ber of entries. For recovering low-rank structure, it is

well-known that the standard PCA approach [22, 35] can

be highly sensitive to sparse and large outliers inM; a sin-

gle large outlier can greatly skew its estimated structure.

PCA also cannot perform the task of detecting and iso-

lating these sparse anomalies, which as mentioned before

is critical for process diagnosis and quality control. To

address such limitations, RPCAmakes use of the following

decomposition of the data matrixM:

min
L,S

||L||∗ + ÿ||S||1, s.t. L + S = M. (1)

Here, ||A||∗ is the nuclear norm (the sum of the singu-

lar values of A), and ||A||1 is the matrix ý1-norm (the sum

of absolute values of entries in A). Note that the nuclear

norm A can be viewed as the tightest convex relaxation

for the rank of A, and its ý1-norm similarly serves as a

convex relaxation of the number of non-zero entries in

A. Thus, Equation (1) decomposes the data matrix M as

the sum of a low-rank matrix L and a sparse matrix S,

which facilitates the desired recovery of the underlying

low-rank structures and anomalies from M. The param-

eter ÿ > 0 controls the trade-off between low-rankedness

and sparsity in this decomposition.

The formulation (1), which can be shown to be con-

vex, can be efficiently optimized via a variety of scalable

algorithms. A popular approach [27, 40] is to iteratively

minimize the following augmented Lagrange multiplier

(ALM) formulation:

ý(L, S,Y) ≔ ||L||∗ + ÿ||S||1 + ïY,M − L − SðF
+

ÿ

2
||M − L − S||2F , (2)

where ï⋅, ⋅ðF denotes the Frobenius inner product. Here,
the equality constraint on L + S = M is replaced by its

Lagrangian form, Y is the so-called Lagrange multiplier

matrix, and ÿ > 0 a positive constant. A generic Lagrange

multiplier algorithm [1] can then be applied to iteratively

solve (2). During the k-th iteration, one would optimize

(Lk, Sk) = argminL,S ý(L, S,Yk), then update the Lagrange

multiplier matrix via Yk+1 = Yk + ÿ(M − Lk − Sk). These

two steps are repeated until convergence. The parame-

ter ÿ > 0 can be viewed as the step size for updating the

Lagrangian multiplier matrix. Lin et al. [27] provides fur-

ther technical details on the validity and optimality of

ALM. Further extensions include Xue et al. [38]; Yang and

Zou [39], which explored various exact and inexact ALM

approaches; Guyon et al. [21], which proposed a linearized

alternating direction optimization approach with adaptive

penalties; and Bouwmans and Zahzah [2], which investi-

gated the use of accelerated proximal gradient algorithms

for performing this decomposition.

The formulation (1), however, does not account for

the presence of noise in the observed data matrix M, as

M is assumed to decompose into the low-rank signal L

and sparse anomalies S without noise. In many problems,

including our motivating applications on steel defect

detection and crime monitoring, such noise is ubiquitous

and unavoidable; it arises either from the measurement

process or as a realization of the data-generating pro-

cess. To account for this, Zhou et al. [42] investigated the

following extension of RPCA, which they call the stable

principal component pursuit (Stable-PCP):

min
L,S

||L||∗ + ÿ||S||1 s.t. ||M − L − S||F ≤ ÿ. (3)

The inequality in (3) relaxes the equality constraint

L + S = M in (1) to account for a small amount of

deviation ÿ resulting from noise. One limitation of the

Stable-PCP, however, is that it does not factor in the para-

metric form of the underlying noise, which is often known

in applications. For example, in imaging applications, the

imaging system often dictates the parametric distribution

used when observing the data matrix M [7]. As we shall

see later, the use of this information on noise structure can

greatly improve the recovery of both the low-rank signal L

and its anomalies S, particularly when such noise is large

and non-Gaussian. We will investigate this further in later

numerical experiments.

2.2 Exponential PCA

The extension of the standard PCA for non-Gaussian noise

has been explored in a series of articles; such work showed

that when the parametric form of this noise is known,

the integration of this structure can greatly improve the

recovery of the low-rank signal. A common family of distri-

butions is the exponential family distribution [8]. Given a

single parameter ÿ, the (one-parameter) exponential fam-

ily is a family of distributions with probability density (or

mass) function:

pÿ(m) = exp{ÿ(ÿ)t(m) + a(ÿ) + b(m)}. (4)

Here, ÿ(ÿ) is the canonical parameterization of parameter

ÿ, t(m) is the sufficient statistic of the distribution, and a(ÿ)

and b(m) are fixed and known functions of ÿ and data m,

respectively. Such a specification defines a broad range of

common distributions, including the Poisson, Bernoulli,
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TABLE 1 Common distributions from the (one-parameter)

exponential family (4): the Poisson, Bernoulli, Exponential, and

Gaussian (with known variance ÿ2) distributions.

Distribution ÿ(ÿ) t(m) a(ÿ) b(m)

Poisson log ÿ m −ÿ − log(x!)

Bernoulli log
(

ÿ

1−ÿ

)
m log(1 − ÿ) 0

Exponential −ÿ m log ÿ 0

Gaussian ÿ

ÿ

m

ÿ
−

ÿ2

2ÿ2
−
log(2ÿÿ2)

2
−

m2

2ÿ2

Exponential, and Gaussian distributions (see Table 1). We

will denote a random variable following this distribu-

tion as M ∼ ExpFam{ÿ; ÿ(⋅), t(⋅), a(⋅), b(⋅)}. An early work

on integrating this non-Gaussian structure within PCA

is Collins et al. [12], which proposed a PCA extension

that generalizes to the exponential family distribution via

Bregman distances. This is further extended in Mohamed

et al. [30] via a fully probabilistic extension of PCA lever-

aging hybrid Monte Carlo sampling.

A recent development on this front is the ePCAmethod

in Liu et al. [29]. The key idea is to leverage the eigende-

composition of a new covariance matrix estimator, con-

structed via moment calculations, shrinkage, and random

matrix theory. ePCA begins with the sample covariance

matrix of the data, then applies a series of operations,

including diagonal debiasing, homogenization, shrinkage,

heterogenization, and scaling (guided by the underlying

exponential family model), to improve this covariance

estimator. The corresponding low-rank representation can

finally be obtained via an eigendecomposition of this mod-

ified covariance estimator. Further details of ePCA and its

theoretical justification can be found in Liu et al. [29].

While such work on extending the standard PCA for

non-Gaussian distributions is promising, there has been

little work on leveraging such non-Gaussian noise for

jointly recovering structure and anomalies in the presence

of significant sparse outliers. This combined setting of

non-Gaussian noise with sparse anomalies arises in a

broad range of modern problems, including our two later

applications on steel defect detection and crime mon-

itoring. The aforementioned approaches, which tackle

only the setting of non-Gaussian noise or sparse corrup-

tions, can thus yield poor low-rank recovery and anomaly

detection performance, as we will see next.

2.3 Steel defect detection application

We first investigate these existing methods for our moti-

vating steel defect detection application (further details

can be found in Section 5.1). This application features

the two defining challenges motivating our method: (i)

non-Gaussian noise with (ii) significant sparse anomalies.

For (i), the high-frequency imaging of steel sheets can be

performed via QIS [11], which has shown improved per-

formance over more conventional multi-bit systems (e.g.,

complementary metal-oxide semiconductor imaging [11])

due to higher frequency imaging with lower read noise

[9]. QIS is a photon-counting device that captures image

intensities using binary bits [11], which can be modeled

via i.i.d. Bernoulli noise [9]. For (ii), anomalies arise in

the form of defects in the steel manufacturing process,

for example, gashes, dents, or inhomogeneities on the

steel sheet. These defects result in significant anomalies

that are sparse on the imaged surface, and the primary

objective is to quickly detect such anomalies for process

diagnosis.

Figure 1 (left) shows the uncorrupted image of a steel

sheet from a steel industry company Severstal [34]. We

see that the steel sheet has a <criss-cross= background

structure, which can be well-represented via a low-rank

decomposition. It also has visible defects from the manu-

facturing process, for example, bumps and dents in white,

F IGURE 1 (Left) The uncorrupted steel sheet image from Severstal and (right) corresponding binary images generated with Bernoulli

noise.
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F IGURE 2 Visualizing the estimated low-rank structure L from RPCA and its anomalies S, along with the estimated low-rank

structure from ePCA, for the steel defect detection application.

particularly on the right side. To mimic QIS, we generate

synthetic binary images by first normalizing the uncor-

rupted image intensities, then sampling n = 500 binary

images from i.i.d. Bernoulli distributions with param-

eters taken as such intensities. Figure 1 (right) shows

several binary images generated in this fashion. We then

explore the performance of RPCA and ePCA for jointly

estimating the background structure of the steel sheet

and its associated defects (further details on this set-up in

Section 5.1).

Figure 2 shows the estimated low-rank structure L

and its estimated anomalies (i.e., defects) S using RPCA,

along with the estimated low-rank structure using ePCA.

For RPCA, we see it yields a mediocre recovery of the

criss-cross background, which is expected since it does

not factor in the underlying non-Gaussian noise from

QIS. Because of this, the estimated anomalies from RPCA

erroneously capture the cross-cross background and fail

to pinpoint the desired defects. The ePCA yields a slightly

improved recovery of the background, but the recovered

L also captures the underlying defects (in white), which is

undesirable. This is again unsurprising since ePCA does

not account for the presence of sparse anomalies. The com-

bined setting of non-Gaussian noisewith sparse anomalies

thus poses a challenge for structure recovery and anomaly

detection using these existing methods. We present

next the proposed eRPCA approach for tackling these

challenges.

3 eRPCA: RPCA FOR
EXPONENTIAL FAMILY
DISTRIBUTIONS

Wenow outline the proposed RPCA for exponential family

distributions (eRPCA) for two settings: the <single-group=

setting, where all observations share the same anoma-

lies, and the <multi-group= setting, where anomalies may

change between different groups of observations. We

first formulate the optimization problem for the eRPCA,

then present an efficient optimization algorithm and

recommendations for tuning parameters.

3.1 Optimization formulation

3.1.1 Single-group setting

Consider first the single-group setting. Suppose that

we observe a collection of matrices M1, … ,Mn ∈

Rp×q. Further suppose the entries of each Mi =(
Mi,ÿ,k

)
ÿ=1,… ,p;k=1,… ,q

, follow the earlier exponential

family model (4):

Mi,ÿ,k
indep.
∼ ExpFam

(
ÿÿ,k; ÿ(⋅), t(⋅), a(⋅), b(⋅)

)
, (5)

for i = 1, … ,n, ÿ = 1, … , p and k = 1, … , q. The random

variableMi,ÿ,k thus models the randomly corrupted obser-

vation given the true (unobserved) signal ÿÿ,k. As before,

we assume that prior knowledge is available on the class

of noise distribution (e.g., Bernoulli), hence the functions

ÿ(⋅), t(⋅), a(⋅), and b(⋅) are known, and only the parameter

matrix Θ =
(
ÿÿ,k

)
ÿ=1,… ,p;k=1,… ,q

needs to be estimated.

Following RPCA, we assume the parameter matrix Θ

can be decomposed as Θ = L + S, where L is a low-rank

matrix capturing background structure, and S is a sparse

matrix that models for sparse anomalies. Let l(ÿ;m) be the

negative log-likelihood function for the exponential family

distribution (4) given a single data pointm, defined as:

l(ÿ;m) = −ÿ(ÿ)t(m) − a(ÿ) − b(m). (6)

One appeal of the exponential family is that, with

the canonical parametrization ÿ(ÿ) (or alternate careful

parametrizations of ÿ), the above negative log-likelihood

can be made convex in the transformed parameter. This is

important for our decomposition algorithm later; it allows

for efficient parameter updates via computationally effi-

cient convex optimization algorithms.

We can then formulate the optimization problemof the

penalized maximum likelihood estimator [8] for Θ as:

min
L,S,Θ

n∑
i=1

p∑
ÿ=1

q∑
k=1

l
(
ÿÿ,k;Mi,ÿ,k

)
n

+ ÿ||L||∗ + ÿ||S||1

s.t. Θ = L + S. (7)
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The first term in (7) is the standard maximum likeli-

hood estimator for the parameter matrix Θ. As in RPCA,

the second term penalizes the rank of the background

structure L via its tightest convex relaxation, and the third

term penalizes the number of non-zero entries in S via

its tightest convex relaxation. The parameters ÿ > 0 and

ÿ > 0 control the severity of each penalty term; Section 3.3

provides recommendations on how such parameters

should be set.

Given that the noise corruption follows an exponential

family distribution, one can then plug in the correspond-

ing negative log-likelihood function l, and solve for L and

S to extract the underlying low-rank structure and sparse

anomalies. For example, in our steel defect application,

where the image is subject to Bernoulli noise, the eRPCA

formulation becomes:

min
L,S,Θ

n∑
i=1

p∑
ÿ=1

q∑
k=1

{
−Mi,ÿ,k log

(
ÿÿ,k

)
n

−

(
1 −Mi,ÿ,k

)
log

(
1 − ÿÿ,k

)
n

}
+ ÿ||L||∗ + ÿ||S||1

s.t. Θ = L + S. (8)

Similar formulations can be adopted for other distribu-

tions from the exponential family (see Table 1).

A natural question is whether the parameter matrix

Θ itself is suitable for the desired low-rank plus sparse

decomposition L + S or whether such a decomposition is

better suited on some transformation of Θ. One computa-

tional advantage of the decomposition ofΘ in (7) is that for

the common distributions in Table 1, one can show that

the negative log-likelihood l(ÿ;m) is convex in ÿ (see [4]).

As we shall see later, this convexity is useful for develop-

ing efficient optimization algorithms for solving the eRPCA

formulation (7).

An alternate decomposition may be via its canon-

ical parameterization ÿ(ÿ) (see Table 1). For example,

in our steel defect application, suppose one expects

the low-rank structure L to arise in the canonical

parameter matrix, rather than Θ. Defining the matrix

H =
(
ÿÿ,k

)
ÿ=1,···,p;k=1,···,q

as:

ÿÿ,k = log
ÿÿ,k

1 − ÿÿ,k
, ÿ = 1, … , p, k = 1, … , q,

the following formulation may be more appropriate:

min
L,S,E

n∑
i=1

p∑
ÿ=1

q∑
k=1

{
−
Mi,ÿ,kÿÿ,k

n
+
log(1 + eÿÿ,k )

n

}

+ ÿ||L||∗ + ÿ||S||1 s.t. H = L + S. (9)

Similar formulations can be adopted for other exponential

family distributions. This canonical decomposition again

retains a convex formulation in the natural parameter ÿ

and does not require additional constraints on H when

solving (9), since the range of the canonical parameter ÿ

is over the reals [8]. In problems where there is domain

knowledge on where low-rank structure is expected to

arise, such information should be used first and foremost

for guiding the formulation of this low-rank plus sparse

decomposition.

3.1.2 Multi-group setting

Consider next the multi-group setting, where between

groups of observed matrices, the underlying low-rank

structure remains the same but the sparse anomalies may

change. This arises, for example, for our crime monitor-

ing application, where one may have common activities

within each week, but different (and sparse) anoma-

lies from week to week. Suppose the observed matrices

form G > 1 groups, namely,
{
M[1]

i

}n1
i=1
,
{
M[2]

i

}n2
i=1
, … ,{

M[G]
i

}nG

i=1
, where the anomalies may vary between differ-

ent groups. As before, suppose the entries of eachM
[g]

i
=(

M
[g]

i,ÿ,k

)
ÿ=1,… ,p;k=1,… ,q

independently follows the exponen-

tial family distribution (4) with parameters in matrix Θ[g].

With this, the multi-group eRPCA can be formulated as:

min
L,S1,···,SG,Θ

p∑
ÿ=1

q∑
k=1

»¼¼¼½

G∑
g=1

ng∑
i=1

l
(
ÿ
[g]

ÿ,k
;M

[g]

i,ÿ,k

)

ng

¾¿¿¿À

+ ÿ||L||∗ +
G∑
g=1

ÿg||Sg||1

s.t. Θg = L + Sg, g = 1, … ,G. (10)

Here, each of the G parameter matrices is decomposed as

Θg = L + Sg, where Lmodels the common low-rank struc-

ture, and Sg models the different sparse anomalies within

each group. The parameter ÿ > 0 controls the low-rank

penalty, and the parameters ÿ1, … , ÿG > 0 control the

sparsity within each group. One can similar adopt an alter-

nate decomposition via the canonical parametrization ÿ(ÿ)

(see Table 1).

3.2 Optimization algorithm

Next, we present efficient optimization algorithms

for solving the single-group and multi-group eRPCA
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formulations (7) and (10). These algorithms make use

of the ADMM method [3], which has been widely used

in large-scale optimization problems in image process-

ing [10] and statistical learning [43]. ADMM optimizes

problems of the form:

min
x,z

f (x) + g(z) s.t. Ax + Bz = c, (11)

where f and g are convex functions of x and z. Note

that the original RPCA formulation (1) fits in the above

form, where with x = L and z = S, we have f (x) = ||L||∗
and g(z) = ||S||1. With this, the key steps for ALM are

to (i) minimize the augmented Lagrangian form (2)

iteratively for first L then S (given other parameters

fixed), (ii) update the Lagrange multiplier matrix via

Yk+1 = Yk + ÿ(M − Lk − Sk). These steps are then iter-

ated until the solution converges. One can show that this

ADMM algorithm enjoys appealing convergence proper-

ties for RPCA optimization; see Lin et al. [27] for details.

We will adapt ADMM for solving the single-group and

multi-group problems.

3.2.1 Single-group setting

Consider first the single-group eRPCA problem (7). Its

corresponding augmented Lagrangian form can be

written as:

min
L,S,Θ

n∑
i=1

p∑
ÿ=1

q∑
k=1

l
(
ÿÿ,k;Mi,ÿ,k

)
n

+ ÿ||L||∗ + ÿ||S||1

+ ïY,Θ − L − SðF + ÿ

2
||Θ − L − S||2F , (12)

where Y is the Lagrange multiplier matrix, and ÿ > 0 is

a constant. The key differences of the above eRPCA formu-

lation from (2) are the additional parameter matrix Θ to

optimize and the additional negative log-likelihood term

in the objective.

Our optimization of (7) proceeds as follows. First, for

fixed Θ and L, the optimal S that minimizes (12) can be

solved in closed form via the following lemma.

Lemma 1. [5] For ÿ > 0, the optimal solution

S∗ to the following problem,

min
S

ÿ||S||1 + 1

2
||X − S||2F , (13)

is given by:

S∗
jk
= ÿ(X) ≔ sgn

(
Xjk

)
max

(|Xjk| − ÿ, 0
)
, (14)

for ÿ = 1, … , p and k = 1, … , q.

This is known as the pointwise soft thresholding solu-

tion. As a direct corollary, the optimal S that minimizes

(12) given fixed Θ and L, that is:

S∗ = argmin
S

{
ÿ||S||1 + ÿ

2

‖‖‖‖Θ − L − S +
1

ÿ
Y
‖‖‖‖
2

F

}
, (15)

can be solved via pointwise soft thresholding (see

Algorithm 1 for specific expression).

Algorithm 1. Single-group eRPCA optimization via

ADMM

Inputs: Data matrices M1,… ,Mn, initial parameters

(S[0],Y[0],Θ[0]), penalty parameters ÿ, ÿ, ÿ.

Initialize S = S[0], Y = Y[0] and Θ = Θ[0]. Set t = 0.

while not converge do

L[t+1]
← ÿ∕ÿ(Θ

[t] − S[t] + 1

ÿ
Y[t])

S[t+1] ← ÿ∕ÿ(Θ
[t] − L[t+1] +

1

ÿ
Y[t])

for ÿ = 1,… , p and k = 1,… , q

ÿ[t+1]
ÿ,k

← argminÿÿ,kÿÿ,k(ÿÿ,k;L
[t+1]
ÿ,k

, S[t+1]
ÿ,k

,Y [t]
ÿ,k
)

end for

Y[t+1]
← Y[t] + ÿ(Θ[t+1] − L[t+1] − S[t+1])

Update t ← t + 1.

end while

Outputs: Optimized parameters (S[t],L[t],Θ[t]).

Similarly, for fixed Θ and S, the optimal L that min-

imizes (12) can be solved in closed form via the lemma

below.

Lemma 2. [5] Let X = UÿVT be the SVD of

X. Then for ÿ > 0, the optimal solution L∗ to the

following problem

argmin
L

ÿ||L||∗ + 1

2
||X − L||2F (16)

is given by:

L = ÿ(X) ≔ Uÿ(Σ)V
T . (17)

This is the singular value thresholding (SVT) solution.

With this, the L that optimizes (12) given fixed Θ

and S:

L∗ = argmin
L

{
ÿ||L||∗ + ÿ

2

‖‖‖‖Θ − L − S +
1

ÿ
Y
‖‖‖‖
2

F

}
, (18)

can be solved via SVT (see Algorithm 1 for expression).

Finally, we need to optimize (12) for the parameter

matrix Θ given L and S. Note that this can be decoupled

into pq separate optimization problems for each entry of
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Θ, that is, for ÿ = 1, … , p and k = 1, … , q:

ÿ∗
ÿ,k

= argmin
ÿÿ,k

{
n∑
i=1

l
(
ÿÿ,k;Mi,ÿ,k

)
n

+
ÿ

2

(
ÿÿ,k − Lÿ,k − Sÿ,k +

1

ÿ
Yÿ,k

)2
}

≕ argmin
ÿÿ,k

ÿÿ,k
(
ÿÿ,k;Lÿ,k, Sÿ,k,Yÿ,k

)
. (19)

For the exponential family, it is known that the negative

log-likelihood l(ÿ;m) is convex in ÿ for the common dis-

tributions in Table 1 (see [4]). Thus, given L and S, we

can optimize for Θ using gradient descent methods and

enjoy standard convergence guarantees [31, 33]. For cer-

tain exponential family distributions (e.g., the Bernoulli),

one can further obtain closed-form solutions for (19) that

can be exploited for efficient optimization (see Appendix

for such closed-form solutions for specific distributions).

The decoupled problem (19) can further be sped up via

parallel optimization on each entry of Θ.

With this in hand, the proposed optimization

algorithm is presented in Algorithm 1. We begin with an

initial estimate on L via a low-rank SVD approximation

of the observation mean M = (1∕n)
∑n

i=1Mi, with Y ini-

tialized at 0 and Θ initialized atM. Next, we update L as

the SVT solution to (18) given current iterates for S, Y and

Θ, then update S as the soft thresholding solution to (15)

given current L, Y and Θ. The parameter matrix Θ is then

optimized via (19) either gradient descent methods (see,

e.g., nocedal1999numerical; the L-BFGS algorithm in Liu

and Nocedal [28] was used in later experiments) or the

closed-form updates in Table A1 (see Appendix). Finally,

the Lagrange multiplier matrix Y is updated via:

Y ← Y + ÿ(Θ − L − S), (20)

where ÿ > 0 is a step size parameter. These steps are then

iterated until convergence. Algorithm 1 summarizes the

detailed steps of this optimization procedure.

It is worth noting that, in Algorithm 1, the step size

ÿ is fixed as a constant, that is, ÿt = ÿ over different iter-

ations t. This can be justified as follows. For the ALM

formulation of RPCA (2), one can show that (see [27]) if

(ÿt)
∞
t=1 is a non-decreasing sequence and

∑∞
t=1ÿ

−1
t = ∞,

then the iteratively updated matrices L[t] and S[t] converge

to an optimal solution (L∗, S∗) for the RPCA problem (1).

Furthermore, ifÿt is bounded above, one can show that the

iterative solutions
(
L[t], S[t]

)
can reach ϵ-optimality from

the optimal solution (i.e., within ϵ of the desired RPCA

objective in (1)) after t = (1∕ϵ) algorithm iterations [27].

Given such convergence guarantees for the RPCA, we

thus adopt a similar strategy of constant step size ÿ for

the eRPCA via Algorithm 1. We further note that, while

theoretical convergence guarantees are difficult to

establish for Algorithm 1 (due in large part to the iter-

ative estimation of the unknown natural parameter

matrix), empirical experiments later suggest that the

employed algorithm yields satisfactory convergence and

optimization performance.

3.2.2 Multi-group setting

Consider next the multi-group eRPCA problem (10),

where there are multiple groups of observed matrices{
M[1]

i

}n1
i=1

,
{
M[2]

i

}n2
i=1

, … ,
{
M[G]

i

}nG

i=1
that share a com-

mon low-rank structure L but different sparse anoma-

lies S1, … , SG. We adopt a similar augmented Lagrangian

form for optimization, given by:

min
L,S1,… ,SG,Θ

p∑
ÿ=1

q∑
k=1

»
¼¼¼½

G∑
g=1

ng∑
i=1

l
(
ÿ
[g]

ÿ,k
;M

[g]

i,ÿ,k

)

ng

¾
¿¿¿À
+ ÿ||L||∗

+

G∑
g=1

{
ÿg||Sg||1 + ï

Yg,Θg − L − Sg
ð
F

+
ÿ

2
||Θg − L − Sg||2F

}
. (21)

Similar to before, Y1, … ,YG are Lagrange multiplier

matrices, and ÿ > 0 is a constant.

The optimization problem (21), unfortunately, is

harder to solve than the single-group problem (12). This is

due to the fact that, as the low-rank structure L is shared

over all groups, its optimization, given fixed Θ, S1, … , SG,

is no longer in closed form. We thus adopt the follow-

ing two-stage algorithm to find an approximate solution.

For Stage 1, we obtain an estimate L̃ of the low-rank

matrix L under the approximation S = S1 = · · · = SG,

that is, all groups have the same sparse anomalies, and

thus Θ = Θ1 = · · · = ΘG. This can be achieved via a direct

application of the earlier single-stage ADMM algorithm.

The optimization of L̃ (given common parameters Θ and

common anomalies S) yields the closed-form SVT update:

L̃
[t]

← ÿ∕ÿ

(
Θ[t] − S[t] +

1

ÿ
Y[t]

)
. (22)

Similarly, the optimization of S (given L̃ and Θ) and Θ

(given L̃ and S) yields closed-form updates from (15) and

(19), respectively. For Stage 2, with L fixed at this esti-

mated L̃, we then cyclically optimize the group-dependent

sparse anomaly matrices S1, … , SG and parameter matri-

ces Θ1, … ,ΘG via a similar ADMM algorithm on (21);

such closed-form updates are provided in Algorithm 2.
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Algorithm2. Multi-group eRPCA optimization via ADMM

Inputs: Data matrices {M[1]
i
}
n1
i=1

,… , {M[G]
i

}
nG
i=1
, initial

parameters for Stage 1 {(S[0],Y[0],Θ[0])} and Stage 2

{(S[0]g ,Y[0]
g ,Θ[0]

g )}Gg=1, penalty parameters ÿ, ÿ, ÿ.

Stage 1: Let L̃ be the low-rank structure with common

anomalies S and parameters Θ.

Initialize S = S[0], Y = Y[0] and Θ = Θ[0].

Optimize L̃ using Algorithm 1.

Stage 2: Fix L = L̃.

for g = 1,… ,G

Initialize Sg = S[0]g ,Yg = Y[0]
g ,Θg = Θ

[0]
g . Set t = 0.

while not converge do

S[t+1]g ← ÿg∕ÿ(Θ
[t]
g − L +

1

ÿ
Y[t]
g )

for ÿ = 1,… , p and k = 1,… , q

ÿ
[t+1]
g,ÿ,k

← argminÿÿ,kÿg,ÿ,k
(
ÿg,ÿ,k;Lÿ,k, S

[t+1]
g,ÿ,k

,Y [t]
g,ÿ,k

)

end for

Y[t+1]
g = Y[t]

g + ÿ(Θ[t+1]
g − L − S[t+1]g )

Update t ← t + 1.

end while

end for

Outputs: Optimized parameters {
(
S[t]g ,Θ

[t]
g

)
}Gg=1,L.

The detailed steps for this two-stage optimization proce-

dure are outlined in Algorithm 2.

3.3 Hyperparameter tuning

Finally, careful tuning of the hyperparameters ÿ, ÿ, and

ÿ is needed for accurate recovery of the low-rank struc-

ture and sparse anomalies. For the standardRPCA,Candès

et al.(2011) showed thatwith ÿ = 1, ÿ = 1∕
√
max(p, q) and

ÿ = pq∕(4||Θ||1), one achieves the theoretical recovery of
L and S in an asymptotic sense.We found that such a spec-

ification works reasonably well for the eRPCA as well for

both single-group andmulti-group settings, in the absence

of any prior knowledge on the rank of L or the degree

of sparsity in S. We note, however, that this specifica-

tion presumes no noise in the observation of L + S; when

large non-Gaussian noise is present, we found that a larger

choice of ÿ may yield improved recovery performance.

Inmany applications, theremay be guiding prior infor-

mation on the rank ofL or the sparsity level of S, which can

be integrated for hyperparameter tuning.We illustrate how

this can be done for the single-group setting; a similar strat-

egy can be used for multiple groups. Suppose we have a

desired upper bound on the rank rank(L) ≤ r and the pro-

portion of non-zero entries %nz(S) ≔ #
{
Sÿ,k ≠ 0

}
∕(pq) <

s. Starting with an initial hyperparameter setting ÿ[0] = 1,

ÿ[0] = 1∕
√
max(p, q), and ÿ = pq∕(4||Θ||1), we first

Algorithm 3. Hyperparameter tuning for single-group

eRPCA

Inputs: Hyperparameter step sizes ÿÿ > 0, ÿÿ > 0.

Condition (∗): rank(L) ≤ r, %nz(S) < s

Initialize ÿ[0] = 1, ÿ[0] = 1∕
√
max(p, q). Set t = 0.

Optimize (L, S) with ÿ = ÿ[0], ÿ = ÿ[0] via Algorithm 2.

While (∗) is not satisfied do

if rank(L) > r then

ÿ[t]
← ÿ[t−1] + ÿÿ

√
t

else ÿ[t]
← ÿ[t−1]

end if

if %nz(S) > s then

ÿ[t] ← ÿ[t−1] + ÿÿ
√
t

else ÿ[t] ← ÿ[t−1]

end if

Optimize (L, S) with ÿ = ÿ[t], ÿ = ÿ[t] via

Algorithm 2.

Update t ← t + 1.

Stop if ÿ[t] = ÿ[t−1] and ÿ[t] = ÿ[t−1].

end while

Outputs: Optimized hyperparameters (ÿ[t], ÿ[t]).

perform the eRPCA optimization (Algorithm 1) with

ÿ = ÿ[0] and ÿ = ÿ[0] to estimate the low-rank structure

L and corresponding anomalies S. If the rank of the

estimated L exceeds r, we then iteratively increase ÿ. Oth-

erwise, if the proportion of sparse entries in the estimated

S exceeds s, we then iteratively increase ÿ. Algorithm 3

summarizes this hyperparameter tuning procedure.

3.4 Computational complexity

Another appealing property of the eRPCA is that, in addi-

tion to leveraging the underlying exponential family struc-

ture, it also permits closed-form efficient updates in the

optimization algorithm. We investigate next the compu-

tational complexity of eRPCA optimization algorithm, in

terms of the data matrix dimensions p and q as well as

sample size n.

For the single-group setting (Algorithm 1), each itera-

tive update of L involves an SVD operation that requires

(pqmin(p, q)) work. Each iterative update of S and Y

requires (pq) work. Each iterative update for the param-

eter ÿÿ,k (of which there are pq in total) requires(1)work,

but this involves a one-shot computation of the sample

meanM = n−1
∑n

i=1Mi (see the closed-form updates in the

Appendix) that requires (npq) work. Summarizing the

above, the single-group Algorithm 1 thus requires an ini-

tial (npq) work for pre-processing, and (pqmin(p, q))

work per optimization iteration. For the multi-group
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setting (Algorithm 2), we need to consider both Stage 1

and Stage 2. For Stage 1, one can follow the above ratio-

nale to show that this requires an initial (npq) work for

pre-processing, and(pqmin(p, q))work per optimization

iteration. For Stage 2, the parameter updates within each

group require (pq) work, thus incurring a total work of

(Gpq) per optimization iteration.

With a relatively small sample size n and number of

groups G, the key computational bottleneck for eRPCA thus

lies in the SVT updates that each require (pqmin(p, q))

work. This will not be too burdensome for data matri-

ces with large p and small q (or vice versa), but may be

time-consuming when both p and q are large. Luckily,

with modern computing architecture, such operations can

be greatly sped up via multi-thread processing and GPU

acceleration; see, for example, Kontoghiorghes [25]; Fata-

halian et al. [16]. As this is the primary bottleneck for

eRPCA, we have found such tools to be greatly useful in

scaling up this decomposition approach for massive data

matrices.

We also provide next a brief comparison of computa-

tional complexity with the standard RPCA and the ePCA.

For the standard RPCA (1) (with appropriate modifica-

tions for the considered noisy setting with multiple data

matrices; see Section 4 for details), the ALM approach

requires the same running time per optimization iteration

of (pqmin(p, q)). The ePCA incurs much higher compu-

tation relative to the other two methods, particularly for

large data matrices. The key computational bottleneck in

ePCA is the eigendecomposition of a pq × pq covariance

matrix, which requires 
(
(pq)3

)
work. Clearly, for mas-

sive data matrices with both p and q large, the eRPCA and

standard RPCA are much more computationally efficient

compared to the ePCA.

4 NUMERICAL EXPERIMENTS

We now explore the performance of the proposed

eRPCA in a suite of simulation experiments. Here, the

underlying parameter matrix Θ ∈ R
p×q follows the pre-

sumed low-rank plus sparse decomposition Θ = L + S.

The low-rank matrix L is simulated by first generat-

ing a matrix with independent entries from the Gaus-

sian distribution 
(
ÿ, ÿ2

)
, then truncating all but the

largest p∕5 singular values via SVD. The sparse matrix

S is simulated with p2∕20 uniformly selected non-zero

entries, where non-zero entry values are uniformly sam-

pled from the interval [L,U]. The corresponding data

matrices are then generated from Θ following several

common non-Gaussian exponential family distributions,

including the Bernoulli, Exponential, and Poisson distri-

butions. Since the entries of Θ should be constrained to

specific intervals depending on the choice of exponential

family distribution, the simulation parameters ÿ, ÿ2,L,U

need to be carefully chosen to adhere to such constraints;

for brevity, we provided specific settings of these parame-

ters in the Appendix.

For comparison, we adopt two baseline approaches.

The first is the standard RPCA approach [6]. Since multi-

ple data matricesM1, … ,Mn are observed with noise, the

RPCA formulation (1) can be modified as follows for fair

comparison:

min
L,S,ÿ

n∑
i=1

p∑
ÿ=1

q∑
k=1

(
Mi,ÿ,k − ÿÿ,k

)2
2nÿ̂2

+ ||L||∗ + ÿ||S||1

s.t. Θ = L + S, (23)

where ÿ̂ is the sample standard deviation of the datamatri-

ces, and ÿ is set via recommended settings in Candès

et al. [6]. The formulation (23) makes two modifications

in its first term, which account for standard Gaussian

noise as well as multiple data matricesM1, … ,Mn. This

is analogous to the Stable-PCP formulation (3) from [42];

for which we could not find an implementation online),

where the constraint in (3) is relaxed via the first term

in (23). This is then optimized using the aforementioned

ALM approach ([27, 40]; see Section 2.1), with the recom-

mended step size ÿ = pq∕
(
4||Θ̂||1

)
in Candès et al. [6],

where Θ̂ is the maximum likelihood estimator [8] of Θ.

The second baseline is the ePCA method [29], which can

leverage the underlying non-Gaussian noise for extracting

low-rank structure, but not for detection of sparse anoma-

lies. These methods are compared with the eRPCA for the

single-group and multi-group settings.

4.1 Single-group setting

In the single-group experiments, we generated the

low-rank matrix L and sparse anomalies S as described

previously, then simulated n = 500 data matrices

M1, … ,Mn from the parameter matrix Θ = L + S. We

then compared each method on its recovery of the

low-rank structure L and the sparse anomalies S in terms

of Frobenius error. These experiments are performed for

matrices of dimensions p × p, p = 10,20,30, and 40, with

each setting replicated for 30 trials.

4.1.1 Bernoulli distribution

Consider first noise drawn from the Bernoulli distribution,

where each matrix entry follows Mi,ÿ,k
indep.
∼ Bern

(
ÿÿ,k

)
.

Figure 3A shows the recovery errors for L and S
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(A)

(B)

(C)

F IGURE 3 Boxplots of recovery errors (in Frobenius norm) for the low-rank matrix L (left), and sparse anomalies S (right) as a

function of matrix dimension p for single-group simulations across different distributions.

(in Frobenius norm) using the proposed eRPCA, the

standard RPCA (with appropriate modifications detailed

earlier) and the ePCA; note that the latter does not pro-

vide an estimate of S. For L, we see that the eRPCA yields

a noticeably improved recovery of the low-rank structure

compared to existing methods, particularly as dimen-

sion p increases. Similarly, for S, we observe an improved

recovery of the underlying sparse anomalies for the eRPCA

compared to RPCA, with this improvement again growing

as dimension p increases. This suggests, that with prior

information on the underlying non-Gaussian noise, the

integration of such information can greatly improve

the joint recovery of both the underlying low-rank struc-

ture and sparse anomalies. Figure 4A and B visualizes

the recovery of L and S, respectively, for one simula-

tion experiment in p = 10 dimensions. We see that the
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(A) (B)

F IGURE 4 Visualizing the true and recovered low-rank matrix L and sparse anomalies S in one simulation in p = 10 dimensions, for

the single-group Bernoulli simulations.

(A) (B)

F IGURE 5 Visualizing the true and recovered low-rank matrix L and sparse anomalies S in one simulation in p = 10 dimensions, for

the single-group exponential simulations.

standard RPCA yields a noticeably poorer recovery of the

true L compared to eRPCA, which is unsurprising as it does

not account for the underlying non-Gaussian noise form.

This, in turn, resulted in the erroneous detection of many

<anomalies= that were not truly anomalies. The ePCA,

while providing slightly better recovery of L to the RPCA,

can be seen to be highly sensitive to the underlying sparse

anomalies, resulting in significant deterioration of the

recovery. The proposed eRPCA, by incorporating the under-

lying non-Gaussian noise within the desired low-rank

plus sparse decomposition, yields improved recovery of

both the low-rank structure L and the sparse anomalies S.

4.1.2 Exponential distribution

Consider the case where noise is drawn from the expo-

nential distribution; thus each entry follows Mi,ÿ,k
indep.
∼

Exp
(
ÿÿ,k

)
and ÿÿ,k is its rate parameter. Here, since the

sparse decomposition arises in its rate parameter (which

is inversely proportional to its mean), we performed the

RPCA after taking the entry-wise inverse of the datamatri-

ces. Figure 3B shows the reconstruction errors for L and S

(in Frobenius norm) using the eRPCA, the standard RPCA

and the ePCA, where again the latter does not provide an

estimate of S. As before, the eRPCA yields improved recov-

ery of both the low-rank structureL and the sparse anoma-

lies S, with this improvement gap growing as dimen-

sion p increases. Figure 5A and B visualizes the recovery

of L and S, respectively, for a simulation experiment in

p = 10 dimensions. The standard RPCA, which does not

factor for non-Gaussian noise, can be seen to yield poorer

recovery of L and erroneous detection of numerous false

<anomalies.= The ePCA offers a slightly better recovery of

L, but this is highly corrupted by the underlying sparse

outliers. By integrating both non-Gaussian noise and

sparse anomalieswithin an efficient decomposition frame-

work, the eRPCA facilitates an accurate recovery of both

L and S.

4.1.3 Poisson distribution

Finally, consider noise drawn from the Poisson distribu-

tion,where eachmatrix entry followsMi,ÿ,k
indep.
∼ Pois

(
ÿÿ,k

)
.

Figure 3C shows the recovery errors for L and S using

the compared methods. Here, we see that the eRPCA and

standard RPCA have comparable performance, with both

having considerably lower errors than the ePCA. In par-

ticular, eRPCA yields slightly lower errors for both L and S

in lower dimensions, while the standard RPCA performs

slightly better in higher dimensions. One likely reason

for this is that, with sufficiently large rate parameters ÿ,

the resulting Poisson noise can be well-approximated by a

Gaussian distribution [17]. Thus, for Poisson noise, both

the eRPCA and the standard RPCA yield good performance.

Figure 6A and B visualizes the recovered L and S for an

experiment in p = 10 dimensions. We see that the eRPCA

and the standard RPCA both provide good recovery of

both the low-rank structure and sparse anomalies,with the

standard RPCA again erroneously identifying more false

<anomalies.=
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(A) (B)

F IGURE 6 Visualizing the true and recovered low-rank matrix L and sparse anomalies S in one simulation in p = 10 dimensions, for

the single-group Poisson simulations.

4.2 Multi-group setting

Next, we performed multi-group experiments with G = 2

groups. We generated the low-rank matrix L and sparse

anomalies S1 and S2 as before, then simulated n1 = n2 =

250 data matrices for each group, with Θ1 = L + S1 and

Θ2 = L + S2. We then compared methods on its recovery

of the low-rank structure L and the sparse anomalies S in

terms of Frobenius error. These experiments are again per-

formed for p × pmatrices, where p = 10,20,30 and 40, with

each setting replicated for 30 trials.

4.2.1 Bernoulli distribution

Consider first themulti-group settingwithBernoulli noise.

Figure 7A shows the recovery errors for L and S using

the eRPCA, the RPCA, and the ePCA, where again the lat-

ter does not provide an estimate for S. We see that, for

L, the eRPCA offers improved recovery to competing meth-

ods, with the improvement growing larger as dimension p

increases. Furthermore, the eRPCA appears to yield greater

improvement in this multi-group experiment compared to

the earlier single-group experiment. This is not too sur-

prising, as these competing methods do not factor in the

different sparse anomalies between different groups. Sim-

ilar observations can be made for the recovery of sparse

anomalies S.

4.2.2 Exponential distribution

Consider next the multi-group setting with Exponential

noise. Figure 7B shows the recovery errors for L and S

using eRPCA and competing methods. For L, we again see

a marked improvement for the proposed method, with

this improvement growing as dimension p increases. As

before, these improvements appear more pronounced

for the multi-group set-up compared to the single-group

set-up. Similar observations hold for the recovery of

anomalies in S.

4.2.3 Poisson distribution

Finally, consider the multi-group setting with Poisson

noise. Figure 7C shows the recovery errors for L and S.

Interestingly, while the earlier single-group experiments

showed comparable results for the eRPCA and RPCA, the

multi-group experiments show a noticeable improvement

for the eRPCA. This can again be explained by the pres-

ence of different sparse anomalies within different groups,

which is not accounted for in the standard RPCA. Similar

conclusions hold for recovering the sparse anomalies S.

4.3 Recommendations

We provide here a brief recommendation summarizing

when the eRPCA is expected to outperform existing meth-

ods, following the simulation results above. First, when the

underlying noise distribution is known or can be reliably

inferred (e.g., from domain knowledge), the use of such

information can greatly improve performance for struc-

ture recovery and anomaly detection, particularly when

such a distribution is markedly non-Gaussian. Second,

when this distribution is elicited well, the improvement

of the eRPCA over the state-of-the-art can grow larger as

matrix dimensions increase. Finally, when present, the use

of multi-group information (where sparse anomalies may

change from group to group) can greatly improve recovery

performance via the proposed eRPCA.

5 APPLICATIONS

We now explore the use of the proposed eRPCA in two prac-

tical applications. The first is our motivating problem on

steel defect detection, and the second is a crimemonitoring

application in the city of Atlanta.

5.1 Steel defect detection

Consider first the motivating steel defect detection

problem from Section 2.3. Steel manufacturing is essential
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(A)

(B)

(C)

F IGURE 7 Boxplots of recovery errors (in Frobenius norm) for the low-rank matrix L (left), and sparse anomalies S (right) as a

function of matrix dimension p for multi-group simulations across different distributions.

in many facets of modern manufacturing, including the

production of automobiles, electronics, furniture, infras-

tructure, and shipbuilding. The automated monitoring of

steel defects, for example, gashes, dents, or other inho-

mogeneities, thus plays a critical role in maintaining high

product quality at low operation costs. Defects are typi-

cally detected via careful monitoring of images of the steel

sheets taken from high-frequency cameras. Recent stud-

ies, for example, Chan [9], have shown that QIS ([11]) may

offer improved higher frequency imaging with lower read

noise over more conventional multi-bit imaging systems

(e.g., complementary metal-oxide semiconductor imaging

[[11]]). The key challenge in defect detection using QIS

is that its image intensities take the form of binary bits,

which can be well-modeled via i.i.d. Bernoulli noise [9];

this thus presents an appropriate application for the eRPCA.

We adopt the same set-up as Section 2.3 for numerical

experiments. First, an uncorrupted steel sheet image with
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(A)

(B)

F IGURE 8 Visualizing (A) the estimated low-rank structure (background pattern) L and (B) the recovered sparse anomalies (defects)

S, using the eRPCA, RPCA and ePCA in the steel defect detection application.

visible defects is taken from Severstal [34] (see Figure 1

left). Next, to mimic QIS, n = 500 binary images are gener-

ated by normalizing the uncorrupted image and sampling

via i.i.d. Bernoulli noise (see Figure 1 right). The com-

pared methods include the proposed (single-group) eRPCA,

the standard RPCA (with modifications as discussed in

Section 4), and the ePCA. For the eRPCA, wemade use of the

default hyperparameter specification in Section 3.3, that is,

without any prior knowledge of rank or degree of sparsity.

Figure 8A shows the recovered low-rank structure L

using the standard RPCA, ePCA, and the proposed eRPCA.

Here, the desired structure to recover is the underlying

<criss-cross= background pattern. As observed previously,

the first two existing methods yield a visually mediocre

recovery of this criss-cross pattern; one reason may be

that neither method accounts for the joint presence of

sparse anomalies with non-Gaussian noise. The eRPCA, by

factoring in both properties, in turn, provides a notice-

ably smoother recovery of the cross-cross pattern without

defects.

Figure 8B shows the recovered sparse anomalies S

using RPCA and eRPCA; note that the ePCA does not pro-

vide an estimate of S. FromFigure 1, the desired anomalies

to recover include a large gash on the right and two smaller

inhomogeneous spots in themiddle.We see that the RPCA

returns a rather muddled recovery of such defects: while

the large right gash is noticeable visually, the recovered

S also picks up on the background criss-cross structure,

which obfuscates other defects. Comparatively, the eRPCA

yields improved recovery of the underlying defects: it picks

up not only the clear right gash and the more subtle

inhomogeneities in the middle but also darker discol-

orations along the criss-cross structure on the left. The

latter defects were not immediately evident at first glance

from Figure 1, but are indeed present upon further inspec-

tion from this analysis. Thus, by integrating information

on non-Gaussian noise, the proposed eRPCA appears capa-

ble of jointly recovering low-rank structures and identify-

ing sparse defects for steel monitoring.

5.2 Crime mapping in Atlanta

Next, we investigate the use of the eRPCA for a crime moni-

toring application in the city of Atlanta. The identification

of regular (background) and irregular (anomalous) crimi-

nal activities are clearly critical tasks for improving public

safety: it helps inform law enforcement of hotspots and/or

peak times for different crimes [14] and facilitates the diag-

nosis of abnormal crime spikes. As such, a key objective

here is to identify regular and irregular crime patterns over

different geographical regions and times.

Our data consist of reported burglaries from the

Atlanta Police Department over 2 years: 2015 and 2016.

Each burglary is recorded along with its hour of occur-

rence, as well as its spatial location in the form of

police <beats= (or zones) for patrol, of which there are

79 beats in total. Given the fine spatiotemporal scales

for the recorded burglaries, there is typically at most

one recorded crime within each spatiotemporal <win-

dow,= that is, a combination of occurrence hour and

police beat. Prior studies [19, 32] suggest that weekly

recurrent trends may be common for burglaries, which

we leverage next for specifying the underlying low-rank

structure.

Since there is no ground truth available for L and S

here, we forgo a full comparison with existing methods

and instead investigate the extraction of useful burglary
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F IGURE 9 Visualizing the

estimated low-rank matrix L from

eRPCA for the crime monitoring

application. The two red arrows

highlight two police beats: Beat 512

(downtown Atlanta) and Beat 509

(Midtown Atlanta).

patterns (both regular and irregular) from the proposed

eRPCA. Since there is at most one recorded crime within

nearly all spatiotemporal windows, we thus adopt a bina-

rization of this data (<0= for no burglaries within the

window, <1= for at least one burglary). With this, eRPCA

then proceeds using the Bernoulli distribution, with the

underlying probability matrix Θ presumed to follow the

low-rank plus sparse decomposition. We employ here the

multi-group eRPCA set-up, with G = 2 groups for the sum-

mer and winter seasons (more on this next). To incor-

porate information on weekly trends, the data matrices{
M

[g]

i

}ng

i=1
are constructed week-by-week; each matrix is

thus of dimensions 79 × 168, where p = 79 is the num-

ber of police beats, and q = 24 × 7 = 168 is the number of

hours in a week. We then take ng = 24 weeks (12weeks

per season × 2 years) of reported crime data for both

the summer and winter seasons. With this set-up, the

low-rankmatrixLmodels forweekly (regular) crime activ-

ity, and the sparse matrices S1 and S2 account for irregular

burglary activity over the summer and winter seasons,

respectively.

Figure 9 shows the recovered low-rank matrix L

using the two-group eRPCA. We immediately see seven

bright vertical bands, which suggest the presence of

a daily trend in crime activity. In particular, for most

beats, we observe an increased probability of burglary

after dawn, which peaks during the day and decreases

during the evening. Several beats, such as Beat 512

(downtown Atlanta) or 509 (Midtown Atlanta), have

noticeably higher burglary rates compared to other beats,

which is expected as such areas are highly urban and

dense in terms of population. There also seems to be some

(A)

(B)

F IGURE 10 Spatial visualization of the burglary rate from

the estimated L on Monday, Friday, and Sunday at (A) 9 a.m. and

(B) 10 p.m. for the crime monitoring application. Beats 202 and 209

(outlined in blue) have noticeably higher rates on Monday

mornings, whereas Beats 203 or 313 (outlined in green) experience

higher rates in the evenings.

interactions between occurrence hour and police beat, in

that some beats have notably different peak hours than

other beats.

Figure 10 visualizes the spatial distribution of the esti-

mated low-rank matrix L at various hours in the week.
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F IGURE 11 Visualizing the absolute values of the estimated anomaly matrices S1 (summer) and S2 (winter) from eRPCA for the crime

monitoring application.

F IGURE 12 Plotting the non-zero entries in S1 (summer) and S2 (winter) for Beat 403 (left, residential) and Beat 503 (right,

commercial) from eRPCA for the crime monitoring application.

Certain beats, such as Beat 202 and 209 (outlined in

blue), have noticeably higher burglary rates on Mon-

day mornings, whereas other beats, such as Beat 203 or

313 (outlined in green), experience higher rates in the

evenings. Upon further inspection, this is quite intuitive:

the former beats (in blue) are primarily residential areas,

where burglaries are expected to occur more often during

weekday mornings (e.g., when individuals are at work),

whereas the latter beats (in green) are primarily business

districts, where burglaries typically occur more frequently

at night (e.g., when businesses are closed). The estimated

L reflects such intuitive patterns, thus suggesting the

proposed eRPCA can indeed recover useful insights for

diagnosis.

Next, Figure 11 visualizes the estimated sparse matri-

ces S1 and S2, which models for anomalous (irregular)

burglary activities over the summer and winter seasons,

respectively. From a quick inspection, there appear to be

some differences in anomalies between the two seasons,

which supports our multi-group approach. To explore this

difference, Figure 12 plots the non-zero entries in S1 and S2
over Beats 403 (a residential area) and 503 (a commercial

area). For Beat 403, it appears that after factoring in the

weekly trends in L, it experiences more anomalous bur-

glaries in the summer than in the winter during the

evenings. A plausible explanation is that, in residential

areas, burglaries during the daytime become more dif-

ficult due to more people being at home from summer

break or hot weather. Similarly, for Beat 503, one observes

a greater quantity of irregular burglaries in the summer

than in the winter. A likely reason is that commercial

areas typically experience a large influx of tourists and

visitors, which may create greater opportunities for bur-

glaries. Such insights suggest that the proposed eRPCA can

indeed extract interpretable and useful insights for crime

monitoring.
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6 CONCLUSION

In this work, we proposed a new eRPCA method for

jointly recovering embedded low-rank structures and cor-

responding sparse anomalies fromdatamatrices corrupted

by non-Gaussian noise from the exponential family dis-

tribution. This method is directly motivated by two appli-

cations, the first for steel defect detection and the sec-

ond for crime activity monitoring. The eRPCA employs a

novel optimization formulation that leverages the underly-

ing exponential noise structure for performing the desired

low-rankplus sparse decomposition.We thenpresented an

ADMM algorithm for efficient optimization, both for the

single-group eRPCA (where anomalies are shared over all

data matrices) and the multi-group eRPCA (where anoma-

lies may vary over different groups). We demonstrated the

effectiveness of the proposed eRPCA in a suite of numeri-

cal experiments with varying non-Gaussian noise and in

our two motivating applications for steel defect detection

and crime monitoring. We found that, when the underly-

ing noise distribution is considerably non-Gaussian and

can be reliably inferred from domain knowledge, our

method can yield considerable improvements over the

state-of-the-art.

Given promising results, there are numerous direc-

tions for impactful futurework. First, a Bayesian extension

of the eRPCA would be of interest, as in many applica-

tions, it would be useful to have a reliable quantifica-

tion of uncertainty for anomaly detection. Recent work

on Bayesian matrix modeling [41] appears promising on

this front. Another direction is the application of such

methods for high-energy physics [15, 23, 26], where there

has been much recent work on using anomaly detec-

tion techniques to identify new particle activity from

heavy-ion collisions; see, for example, Kasieczka et al.

[24]. A key challenge is the non-Gaussian measure-

ment noise in such systems [18], and the eRPCA can be

highly useful in this setting. The decoupling of shared

and unique features from diverse data sources (see,

e.g., PerPCA [37]) is also of potential interest as future

work.

A publicly-available implementation of our methods

(with detailed documentation) can be found at https:

//github.com/Xiaojzheng/ERPCAhttps://github.com

/Xiaojzheng/ERPCA.
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APPENDIX A

A.1 Closed-form optimization updates for ÿ

TABLE A1 Closed-form updates of (19) for common

(one-parameter) exponential family distributions.

Distribution ÿ∗

ÿ,k

Poisson root of aÿ2
ÿ,k

+ bÿÿ,k + c = 0

with the smallest loss, where

a = ÿ,

b = −ÿ
(
Lÿ,k + Sÿ,k

)
+ Yÿ,k + 1,

c = −Mÿ,k
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TABLE A1 Continued

Distribution ÿ∗

ÿ,k

Bernoulli root of aÿ3
ÿ,k

+ bÿ2
ÿ,k

+ cÿÿ,k + d = 0

with the smallest loss, where

a = −ÿ,

b = ÿ
(
1 + Lÿ,k + Sÿ,k

)
− Yÿ,k,

c = 1 − ÿ
(
Lÿ,k + Sÿ,k

)
+ Yÿ,k,

d = −Mÿ,k

Exponential root of aÿ2
ÿ,k

+ bÿÿ,k + c = 0

with the smallest loss, where

a = ÿ,

b = −ÿ
(
Lÿ,k + Sÿ,k

)
+ Yÿ,k +Mÿ,k,

c = −1

Gaussian
(
Mÿ,k + ÿ

(
Lÿ,k + Sÿ,k

)
− Yÿ,k

)
∕(1 + ÿ)

A.2 Simulation set-up for L and S

The settings for constructing the low-rank matrix

L are as follows. For the Bernoulli distribution, we

use ÿ = 0.5, ÿ = 0.15. For the exponential distribu-

tion, ÿ = 1, ÿ = 0.15; and for the Poisson distribution,

ÿ = 50, ÿ = 2. When creating the sparse matrix S, the

spike ranges are [0.2,0.3] for Bernoulli distribution and

Exponential distributions, and [2, 5] for the Poisson dis-

tribution. Note that the Bernoulli parameters must lie

between [0, 1], so any out-of-range sampled values are set

to zero or one (whichever is closest). For the exponential

and Poisson distributions, only positive parameters are

permitted, thus negative sampled values are set as zero.
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