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1 | INTRODUCTION

| Liyan Xie? | Yao Xie?

Abstract

Robust principal component analysis (RPCA) is a widely used method for recov-
ering low-rank structure from data matrices corrupted by significant and sparse
outliers. These corruptions may arise from occlusions, malicious tampering, or
other causes for anomalies, and the joint identification of such corruptions with
low-rank background is critical for process monitoring and diagnosis. How-
ever, existing RPCA methods and their extensions largely do not account for
the underlying probabilistic distribution for the data matrices, which in many
applications are known and can be highly non-Gaussian. We thus propose a
new method called RPCA for exponential family distributions (eRCA), which
can perform the desired decomposition into low-rank and sparse matrices when
such a distribution falls within the exponential family. We present a novel alter-
nating direction method of multiplier optimization algorithm for efficient eRFCA
decomposition, under either its natural or canonical parametrization. The effec-
tiveness of eRPCA is then demonstrated in two applications: the first for steel sheet
defect detection and the second for crime activity monitoring in the Atlanta
metropolitan area.
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tackle these challenges, we propose a novel robust princi-
pal component analysis (RPCA) method for exponential

With remarkable advances in sensing and experimental
technologies, scientists and engineers now have access to
massive datasets with complex forms for decision-making.
The efficient harnessing of such data, in particular, the
extraction of background structure and deviating anoma-
lies (arising from occlusions, malicious tampering, process
defects, or other causes for outliers), becomes ever more
important for timely process monitoring, diagnosis, and
improvement. The increasingly complex form of such
data further necessitates a careful consideration and
integration of its underlying probabilistic distribution,
which is often known and can be highly non-Gaussian. To

family distributions (eRFCA, for short), that leverages
structure on this probabilistic distribution from the expo-
nential family, to jointly perform anomaly detection
and background extraction from massive and complex
data matrices. The eRPCA is expected to outperform
the state-of-the-art when the distribution of such data
matrices is non-Gaussian and can reliably be inferred
from domain knowledge; we shall show this later in
experiments.

Our approach is motivated by two ongoing applica-
tions, on defect detection for steel sheet manufacturing
and burglary monitoring in the Atlanta metropolitan area.
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For the first application, the timely detection of defects
(e.g., gashes and dents) in steel sheet manufacturing is
crucial for quality control. Recent developments in quanta
image sensing (QIS; [11]) have shown promise for the
desired high-frequency imaging, but these systems typi-
cally capture image intensities via binary bits. The efficient
identification of potential defects for timely diagnosis thus
poses a challenge with such large binary images. For the
second application, the detection of regular and irregu-
lar burglary activities is paramount for crime monitoring
and prevention. Reported burglary data naturally take the
form of counts and can be observed at high spatiotemporal
resolution. Using such high-dimensional count data for
timely extraction of regular and irregular crime patterns
is thus a critical challenge. In both applications, both the
identification of background structure, for example, reg-
ular crime activity, and its corresponding anomalies, for
example, irregular crime activity, are important for timely
decision-making from high-dimensional and complex
data matrices. We return to these two applications later in
Section 5.

A widely used method for joint extraction of struc-
ture and sparse anomalies from a data matrix M € RP*?
is the RPCA method [6]. RPCA decomposes M into the
sum of two matrices L and S, such that L is a low-rank
matrix (modeling structure) and S is a sparse matrix
(capturing anomalies). Such a decomposition can be opti-
mized via convex optimization methods via its tightest
convex relaxation using the nuclear and ;-norms; more
on this later. There has been much subsequent work on
efficient optimization algorithms for the RPCA decom-
position, including the use of augmented Lagrangian
multipliers [27, 40], accelerated proximal gradient [2],
alternating minimizing approaches [20], and low-rank
matrix fitting [36]. There is also notable (albeit less)
work on the RPCA when M is observed with random
noise. This includes the stable principal component pur-
suit approach [42], which relaxes the equality constraint
M =L+S to account for the presence of small mea-
surement errors; more on this later. Such an approach,
however, does not factor for the specific probabilistic
distribution for M, which in many applications may be
known or can be reliably inferred. Ding et al. [13] proposed
a hierarchical Bayesian approach for decomposing a noisy
matrix into its low-rank and sparse components, but such
an approach again does not factor in the non-Gaussian
distribution of M.

There is also a complementary line of work on extend-
ing the standard principal component analysis (PCA) for
non-Gaussian noise distributions. This includes Collins
et al. [12], which proposed a modification of PCA that gen-
eralizes to a broad class of so-called exponential family
distributions [8] via Bregman distances. The exponential

family covers a broad range of parametric distributions
encountered in applications, including the Bernoulli, Pois-
son, Exponential, and Gaussian distributions. Mohamed
et al. [30] investigated a fully probabilistic extension of
PCA for the exponential family. Liu et al. [29] presented
the “Exponential PCA” (or ePCA) approach, which uses
recent developments in random matrix theory and shrink-
age for efficient estimation of low-rank structure under
exponential family noise. Such methods, however, do
not account for nor facilitate the identification of sparse
anomalies in M, which is critical in our aforementioned
motivating applications.

To tackle these limitations, we thus propose a new
eRPCA method that facilitates the joint extraction of
low-rank structure and sparse anomalies, in the setting
where data matrices are generated from the exponential
family distribution. The eRFA leverages a novel optimiza-
tion formulation for this decomposition, which integrates
information on the underlying probabilistic distribution
of M via its likelihood function. We then present an
alternating direction method of multiplier (ADMM; [3])
optimization algorithm, which incorporates this dis-
tributional structure for efficient decomposition under
either its natural or canonical parametrization. Finally,
we demonstrate the effectiveness of the eRPCA over exist-
ing methods in a suite of numerical experiments and for
our two motivating applications on steel defect detec-
tion and crime monitoring. In particular, we show that
when the distribution of the data matrices is markedly
non-Gaussian and can be reliably inferred from domain
knowledge, the eRPCA can leverage this information for
improved extraction of low-rank structure and sparse
anomalies over the state-of-the-art.

This article is organized as follows. Section 2 provides
background on the RPCA, the ePCA, and their recent
extensions, then discusses their limitations for our moti-
vating application. Section 3 outlines the proposed eRPA,
including its formulation and optimization algorithm,
including a discussion on hyperparameter tuning and
scalability for large data matrices. Section 4 presents a
suite of numerical experiments investigating the perfor-
mance of eRFCA and existing methods, under different
distributions of M from the exponential family. Section 5
explores the eRCA in the aforementioned two motivating
applications. Section 6 concludes the article.

2 | BACKGROUND AND
MOTIVATION

We first provide an overview of the robust PCA [6], the
exponential PCA [29] and its extensions, then motivate the
proposed eRFCA via our steel defect detection application.
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2.1 | Robust PCA

RPCA [6] is a widely used method for jointly recover-
ing low-rank structure and anomalies from a data matrix
M e RP* with significant corruptions on a sparse num-
ber of entries. For recovering low-rank structure, it is
well-known that the standard PCA approach [22, 35] can
be highly sensitive to sparse and large outliers in M; a sin-
gle large outlier can greatly skew its estimated structure.
PCA also cannot perform the task of detecting and iso-
lating these sparse anomalies, which as mentioned before
is critical for process diagnosis and quality control. To
address such limitations, RPCA makes use of the following
decomposition of the data matrix M:

n]:iisn L]l + AlIS]l;, st L+S=M. (1)

Here, ||A||. is the nuclear norm (the sum of the singu-
lar values of A), and ||A||; is the matrix Z;-norm (the sum
of absolute values of entries in A). Note that the nuclear
norm A can be viewed as the tightest convex relaxation
for the rank of A, and its #;-norm similarly serves as a
convex relaxation of the number of non-zero entries in
A. Thus, Equation (1) decomposes the data matrix M as
the sum of a low-rank matrix L and a sparse matrix S,
which facilitates the desired recovery of the underlying
low-rank structures and anomalies from M. The param-
eter A > 0 controls the trade-off between low-rankedness
and sparsity in this decomposition.

The formulation (1), which can be shown to be con-
vex, can be efficiently optimized via a variety of scalable
algorithms. A popular approach [27, 40] is to iteratively
minimize the following augmented Lagrange multiplier
(ALM) formulation:

A(LS.Y) = Il + AllS] + (Y. M~ L= S);
+ZIM-L s, @

where (-, -)r denotes the Frobenius inner product. Here,
the equality constraint on L +S = M is replaced by its
Lagrangian form, Y is the so-called Lagrange multiplier
matrix, and u > 0 a positive constant. A generic Lagrange
multiplier algorithm [1] can then be applied to iteratively
solve (2). During the k-th iteration, one would optimize
(Lg, Sg) = argming g (L, S, Yi), then update the Lagrange
multiplier matrix via Y41 = Y + u(M — Ly — Sg). These
two steps are repeated until convergence. The parame-
ter 4 > 0 can be viewed as the step size for updating the
Lagrangian multiplier matrix. Lin et al. [27] provides fur-
ther technical details on the validity and optimality of
ALM. Further extensions include Xue et al. [38]; Yang and
Zou [39], which explored various exact and inexact ALM

approaches; Guyon et al. [21], which proposed a linearized
alternating direction optimization approach with adaptive
penalties; and Bouwmans and Zahzah [2], which investi-
gated the use of accelerated proximal gradient algorithms
for performing this decomposition.

The formulation (1), however, does not account for
the presence of noise in the observed data matrix M, as
M is assumed to decompose into the low-rank signal L
and sparse anomalies S without noise. In many problems,
including our motivating applications on steel defect
detection and crime monitoring, such noise is ubiquitous
and unavoidable; it arises either from the measurement
process or as a realization of the data-generating pro-
cess. To account for this, Zhou et al. [42] investigated the
following extension of RPCA, which they call the stable
principal component pursuit (Stable-PCP):

min L]l + AlISlh st IM-L-Sllr<é.  (3)

The inequality in (3) relaxes the equality constraint
L+S=M in (1) to account for a small amount of
deviation 6 resulting from noise. One limitation of the
Stable-PCP, however, is that it does not factor in the para-
metric form of the underlying noise, which is often known
in applications. For example, in imaging applications, the
imaging system often dictates the parametric distribution
used when observing the data matrix M [7]. As we shall
see later, the use of this information on noise structure can
greatly improve the recovery of both the low-rank signal L
and its anomalies S, particularly when such noise is large
and non-Gaussian. We will investigate this further in later
numerical experiments.

2.2 | Exponential PCA

The extension of the standard PCA for non-Gaussian noise
has been explored in a series of articles; such work showed
that when the parametric form of this noise is known,
the integration of this structure can greatly improve the
recovery of the low-rank signal. A common family of distri-
butions is the exponential family distribution [8]. Given a
single parameter 6, the (one-parameter) exponential fam-
ily is a family of distributions with probability density (or
mass) function:

po(m) = exp{n(0)t(m) + a(d) + b(m)}. C))

Here, 5(0) is the canonical parameterization of parameter
0, t(m) is the sufficient statistic of the distribution, and a(9)
and b(m) are fixed and known functions of # and data m,
respectively. Such a specification defines a broad range of
common distributions, including the Poisson, Bernoulli,
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TABLE 1
exponential family (4): the Poisson, Bernoulli, Exponential, and

Common distributions from the (one-parameter)

Gaussian (with known variance ¢2) distributions.

Distribution 7(6) tim) a(0) b(m)
Poisson log 6 m -0 —log(x!)
Bernoulli log( 1%9 ) m log1—-6) 0
Exponential -0 m log6 0

q 9 m 02 10427[02) m?
Gaussian ; ; _ﬁ = T = ;

Exponential, and Gaussian distributions (see Table 1). We
will denote a random variable following this distribu-
tion as M ~ ExpFam{#@;n(-), t(-), a(:), b(-)}. An early work
on integrating this non-Gaussian structure within PCA
is Collins et al. [12], which proposed a PCA extension
that generalizes to the exponential family distribution via
Bregman distances. This is further extended in Mohamed
et al. [30] via a fully probabilistic extension of PCA lever-
aging hybrid Monte Carlo sampling.

A recent development on this front is the ePCA method
in Liu et al. [29]. The key idea is to leverage the eigende-
composition of a new covariance matrix estimator, con-
structed via moment calculations, shrinkage, and random
matrix theory. ePCA begins with the sample covariance
matrix of the data, then applies a series of operations,
including diagonal debiasing, homogenization, shrinkage,
heterogenization, and scaling (guided by the underlying
exponential family model), to improve this covariance
estimator. The corresponding low-rank representation can
finally be obtained via an eigendecomposition of this mod-
ified covariance estimator. Further details of ePCA and its
theoretical justification can be found in Liu et al. [29].

While such work on extending the standard PCA for
non-Gaussian distributions is promising, there has been
little work on leveraging such non-Gaussian noise for
Jjointly recovering structure and anomalies in the presence

of significant sparse outliers. This combined setting of
non-Gaussian noise with sparse anomalies arises in a
broad range of modern problems, including our two later
applications on steel defect detection and crime mon-
itoring. The aforementioned approaches, which tackle
only the setting of non-Gaussian noise or sparse corrup-
tions, can thus yield poor low-rank recovery and anomaly
detection performance, as we will see next.

2.3 | Steel defect detection application
We first investigate these existing methods for our moti-
vating steel defect detection application (further details
can be found in Section 5.1). This application features
the two defining challenges motivating our method: (i)
non-Gaussian noise with (ii) significant sparse anomalies.
For (i), the high-frequency imaging of steel sheets can be
performed via QIS [11], which has shown improved per-
formance over more conventional multi-bit systems (e.g.,
complementary metal-oxide semiconductor imaging [11])
due to higher frequency imaging with lower read noise
[9]. QIS is a photon-counting device that captures image
intensities using binary bits [11], which can be modeled
via i.i.d. Bernoulli noise [9]. For (ii), anomalies arise in
the form of defects in the steel manufacturing process,
for example, gashes, dents, or inhomogeneities on the
steel sheet. These defects result in significant anomalies
that are sparse on the imaged surface, and the primary
objective is to quickly detect such anomalies for process
diagnosis.

Figure 1 (left) shows the uncorrupted image of a steel
sheet from a steel industry company Severstal [34]. We
see that the steel sheet has a “criss-cross” background
structure, which can be well-represented via a low-rank
decomposition. It also has visible defects from the manu-
facturing process, for example, bumps and dents in white,

FIGURE 1
noise.

(Left) The uncorrupted steel sheet image from Severstal and (right) corresponding binary images generated with Bernoulli
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FIGURE 2
structure from ePCA, for the steel defect detection application.

particularly on the right side. To mimic QIS, we generate
synthetic binary images by first normalizing the uncor-
rupted image intensities, then sampling n = 500 binary
images from ii.d. Bernoulli distributions with param-
eters taken as such intensities. Figure 1 (right) shows
several binary images generated in this fashion. We then
explore the performance of RPCA and ePCA for jointly
estimating the background structure of the steel sheet
and its associated defects (further details on this set-up in
Section 5.1).

Figure 2 shows the estimated low-rank structure L
and its estimated anomalies (i.e., defects) S using RPCA,
along with the estimated low-rank structure using ePCA.
For RPCA, we see it yields a mediocre recovery of the
criss-cross background, which is expected since it does
not factor in the underlying non-Gaussian noise from
QIS. Because of this, the estimated anomalies from RPCA
erroneously capture the cross-cross background and fail
to pinpoint the desired defects. The ePCA yields a slightly
improved recovery of the background, but the recovered
L also captures the underlying defects (in white), which is
undesirable. This is again unsurprising since ePCA does
not account for the presence of sparse anomalies. The com-
bined setting of non-Gaussian noise with sparse anomalies
thus poses a challenge for structure recovery and anomaly
detection using these existing methods. We present
next the proposed eRFCA approach for tackling these
challenges.

3 | eRPCA:RPCA FOR
EXPONENTIAL FAMILY
DISTRIBUTIONS

‘We now outline the proposed RPCA for exponential family
distributions (eRP€A) for two settings: the “single-group”
setting, where all observations share the same anoma-
lies, and the “multi-group” setting, where anomalies may
change between different groups of observations. We
first formulate the optimization problem for the eRPCA,
then present an efficient optimization algorithm and
recommendations for tuning parameters.

Estimated S (RPCA)

WILEY_ |5

Estimated L (ePCA)

Visualizing the estimated low-rank structure L from RPCA and its anomalies S, along with the estimated low-rank

3.1 | Optimization formulation

3.1.1 | Single-group setting

Consider first the single-group setting. Suppose that
we observe a collection of matrices My, ... ,M, €
Rpxq. Further suppose the entries of each M; =
(Mi,j,k)jzlw,p;kzl’wq, follow the earlier exponential
family model (4):

M " BxpFam (0,4 n(), (), a(),b()), (5

fori=1,...,n,j=1,...,pandk =1, ... ,q. Therandom
variable M; ;  thus models the randomly corrupted obser-
vation given the true (unobserved) signal 6, . As before,
we assume that prior knowledge is available on the class
of noise distribution (e.g., Bernoulli), hence the functions
n(-), t(-), a(-), and b(-) are known, and only the parameter
matrix © = (6;x) _, piket.... o eeds to be estimated.
Following RPCA, we assume the parameter matrix ©
can be decomposed as ® = L + S, where L is a low-rank
matrix capturing background structure, and S is a sparse
matrix that models for sparse anomalies. Let [(8; m) be the
negative log-likelihood function for the exponential family
distribution (4) given a single data point m, defined as:

l(6; m) = —n(8)t(m) — a(f) — b(m). (6)

One appeal of the exponential family is that, with
the canonical parametrization 7(@) (or alternate careful
parametrizations of ), the above negative log-likelihood
can be made convex in the transformed parameter. This is
important for our decomposition algorithm later; it allows
for efficient parameter updates via computationally effi-
cient convex optimization algorithms.

We can then formulate the optimization problem of the
penalized maximum likelihood estimator [8] for © as:

& (00 Mijk)
min ——— = +a||L|l. + BlISIh
L5 ;jzllcz:; n
st. ®=L+S. @)
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The first term in (7) is the standard maximum likeli-
hood estimator for the parameter matrix ®. As in RPCA,
the second term penalizes the rank of the background
structure L via its tightest convex relaxation, and the third
term penalizes the number of non-zero entries in S via
its tightest convex relaxation. The parameters ¢ > 0 and
B > 0 control the severity of each penalty term; Section 3.3
provides recommendations on how such parameters
should be set.

Given that the noise corruption follows an exponential
family distribution, one can then plug in the correspond-
ing negative log-likelihood function [, and solve for L and
S to extract the underlying low-rank structure and sparse
anomalies. For example, in our steel defect application,
where the image is subject to Bernoulli noise, the eRPCA
formulation becomes:

. & o Lk log ( k)
EPIIREE

i=1 j=1k=1
—9',k)
. }+aIILII*+ﬂIISII1

st. ®=L+S. (8)

_ (1—M; ;i) log(1
n

Similar formulations can be adopted for other distribu-
tions from the exponential family (see Table 1).

A natural question is whether the parameter matrix
O itself is suitable for the desired low-rank plus sparse
decomposition L + S or whether such a decomposition is
better suited on some transformation of ®. One computa-
tional advantage of the decomposition of ® in (7) is that for
the common distributions in Table 1, one can show that
the negative log-likelihood I(6; m) is convex in 6 (see [4]).
As we shall see later, this convexity is useful for develop-
ing efficient optimization algorithms for solving the eRPCA
formulation (7).

An alternate decomposition may be via its canon-
ical parameterization 7(0) (see Table 1). For example,
in our steel defect application, suppose one expects
the low-rank structure L to arise in the canonical
parameter matrix, rather than ®. Defining the matrix

H= ("j,k)j=1,~-~,p;k=1»"'»q as:

0,k
—0jk

’7j,k=10g1 , j=1,..,p, k=1, ... ,q,

the following formulation may be more appropriate:

ansHE ZZZ{ ukﬂ,k log(1:en,,k)}

i=1 j=1k=1
+al|lLll. + BlISI st

H=L+S. 9)

Similar formulations can be adopted for other exponential
family distributions. This canonical decomposition again
retains a convex formulation in the natural parameter 5
and does not require additional constraints on H when
solving (9), since the range of the canonical parameter #
is over the reals [8]. In problems where there is domain
knowledge on where low-rank structure is expected to
arise, such information should be used first and foremost
for guiding the formulation of this low-rank plus sparse
decomposition.

3.1.2 | Multi-group setting

Consider next the multi-group setting, where between
groups of observed matrices, the underlying low-rank
structure remains the same but the sparse anomalies may
change. This arises, for example, for our crime monitor-
ing application, where one may have common activities
within each week, but different (and sparse) anoma-
lies from week to week. Suppose the observed matrices

(1] [2]
form G > 1 groups, namely, {M }l . { }l Do
{MEG] } , where the anomalies may vary between differ-
i=1
ent groups. As before, suppose the entries of each Ml[g] =
<M le] > independently follows the exponen-
Ljk pik=1,....q

tial family distribution (4) with parameters in matrix 0!8,
With this, the multi-group e®*“A can be formulated as:

p q| G ng l(@j[gi,Ml[gj]Q
Jgin D YD
j=1k=1| g=1i=1
G
+allLll. + ) BeliSelh
g=1
st. ®=L+S, g=1,...,G. (10)

Here, each of the G parameter matrices is decomposed as
0®; = L + Sg, where L models the common low-rank struc-
ture, and S, models the different sparse anomalies within
each group. The parameter a > 0 controls the low-rank
penalty, and the parameters f, ... ,fc > 0 control the
sparsity within each group. One can similar adopt an alter-
nate decomposition via the canonical parametrization #(6)
(see Table 1).

3.2 | Optimization algorithm

Next, we present efficient optimization algorithms
for solving the single-group and multi-group eRFCA
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formulations (7) and (10). These algorithms make use
of the ADMM method [3], which has been widely used
in large-scale optimization problems in image process-
ing [10] and statistical learning [43]. ADMM optimizes
problems of the form:

min f(x)+g(z) st. Ax+Bz=c, (11)

where f and g are convex functions of x and z. Note
that the original RPCA formulation (1) fits in the above
form, where with x = L and z = S, we have f(x) = ||L]|.
and g(z) = ||S||;. With this, the key steps for ALM are
to (i) minimize the augmented Lagrangian form (2)
iteratively for first L then S (given other parameters
fixed), (ii) update the Lagrange multiplier matrix via
Yii1 = Y+ u(M — Ly — Sg). These steps are then iter-
ated until the solution converges. One can show that this
ADMM algorithm enjoys appealing convergence proper-
ties for RPCA optimization; see Lin et al. [27] for details.
We will adapt ADMM for solving the single-group and
multi-group problems.

3.2.1 | Single-group setting

Consider first the single-group eRFCA problem (7). Its
corresponding augmented Lagrangian form can be
written as:

n

Sl iil ks ljk)

i=1 j=lk=

+(Y,®—L—S)F+El|®—L—S||F, (12)

+ a||Ll. + AlIS|lx

where Y is the Lagrange multiplier matrix, and y > 0 is
a constant. The key differences of the above e®’“A formu-
lation from (2) are the additional parameter matrix © to
optimize and the additional negative log-likelihood term
in the objective.

Our optimization of (7) proceeds as follows. First, for
fixed ® and L, the optimal S that minimizes (12) can be
solved in closed form via the following lemma.

Lemma 1. [5] For = > O, the optimal solution
S* to the following problem,

. 1
minz||S[l; + S{IX - Slz. (13)
is given by:
5 = Se(X) = sgn(Xje) max(| X —7,0),  (14)

forj=1,...,pandk=1, ... ,q.

WILEY_L7f

This is known as the pointwise soft thresholding solu-
tion. As a direct corollary, the optimal S that minimizes
(12) given fixed ® and L, that is:

2
}, (15)
F

can be solved via pointwise soft thresholding (see
Algorithm 1 for specific expression).

S*=argmin{ﬁ|lsll1+ H@ L- S+—Y
s

Algorithm 1. RPCA

ADMM

Single-group e optimization via

Inputs: Data matrices My, ..., M,, initial parameters
(811, Y01, ®l01), penalty parameters a, §, .
Initialize S =S Y =Y and ® = O, Set t =0
while not converge do

L*1 « D,/ (01 — S + Lyt

H
1
S+l S,;/”(@[[] — LU+ ;Y[t])
forj=1,...,pandk=1,...,q
[t 1] [t41] Qlt+1] ]
0 o argming ¢, k(a,k,Lj; ,SJ; YD)

end for

Y[t+1] - Y[t] + ”(®[I+1]

Update t « t+ 1.
end while
Outputs: Optimized parameters (S, LI*, @),

_ L[t+1] _ S[t+1])

Similarly, for fixed ® and S, the optimal L that min-
imizes (12) can be solved in closed form via the lemma
below.

Lemma 2. [5] Let X = UXV! be the SVD of
X. Then for = > 0, the optimal solution L* to the

following problem
argmin <|IL]l. + SIX-LI; (16)
is given by:
L = D.(X) := US,(Z)V. a17)

This is the singular value thresholding (SVT) solution.
With this, the L that optimizes (12) given fixed ©

and S:
2
}, as)
F

can be solved via SVT (see Algorithm 1 for expression).
Finally, we need to optimize (12) for the parameter

matrix ® given L and S. Note that this can be decoupled

into pq separate optimization problems for each entry of

L* = argmin{aIILII* + EH@ -L-S+ ly
L 2 u
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0, thatis,for j =1, ...

(055 M
H;k = ar%min{ Z—( Tk u’k)

,pandk=1, ... ,q:

Jk i=1 n
u 1, )
+§<9j,k—Lj,k—Sj,k+;Yj,k> }
=: arg ming“j,k(ej,k; Lj’k, Sj,k, ij) (19)
0k

For the exponential family, it is known that the negative
log-likelihood I(@; m) is convex in 6 for the common dis-
tributions in Table 1 (see [4]). Thus, given L and S, we
can optimize for ® using gradient descent methods and
enjoy standard convergence guarantees [31, 33]. For cer-
tain exponential family distributions (e.g., the Bernoulli),
one can further obtain closed-form solutions for (19) that
can be exploited for efficient optimization (see Appendix
for such closed-form solutions for specific distributions).
The decoupled problem (19) can further be sped up via
parallel optimization on each entry of ®.

With this in hand, the proposed optimization
algorithm is presented in Algorithm 1. We begin with an
initial estimate on L via a low-rank SVD approximation
of the observation mean M = (1/ n) YL, M;, with Y ini-
tialized at 0 and © initialized at M. Next, we update L as
the SVT solution to (18) given current iterates for S, Y and
0, then update S as the soft thresholding solution to (15)
given current L, Y and ©. The parameter matrix © is then
optimized via (19) either gradient descent methods (see,
e.g., nocedal1999numerical; the L-BFGS algorithm in Liu
and Nocedal [28] was used in later experiments) or the
closed-form updates in Table A1l (see Appendix). Finally,
the Lagrange multiplier matrix Y is updated via:

Y« Y+u®-L-5), (20)

where u > 0 is a step size parameter. These steps are then
iterated until convergence. Algorithm 1 summarizes the
detailed steps of this optimization procedure.

It is worth noting that, in Algorithm 1, the step size
u is fixed as a constant, that is, g, = u over different iter-
ations t. This can be justified as follows. For the ALM
formulation of RPCA (2), one can show that (see [27]) if
(ue)s2, is a non-decreasing sequence and Y, u;' = oo,
then the iteratively updated matrices LY and S!Y converge
to an optimal solution (L*, S*) for the RPCA problem (1).
Furthermore, if i, is bounded above, one can show that the
iterative solutions (L!",S!!) can reach e-optimality from
the optimal solution (i.e., within € of the desired RPCA
objective in (1)) after t = O(1/¢) algorithm iterations [27].
Given such convergence guarantees for the RPCA, we
thus adopt a similar strategy of constant step size u for

the eRPCA via Algorithm 1. We further note that, while
theoretical convergence guarantees are difficult to
establish for Algorithm 1 (due in large part to the iter-
ative estimation of the unknown natural parameter
matrix), empirical experiments later suggest that the
employed algorithm yields satisfactory convergence and
optimization performance.

3.2.2 | Multi-group setting

Consider next the multi-group eRP®A problem (10),

where there are multiple groups of observed matrices

n

{Mm}’.1_1 ,{MEZ]}T‘E . ,{M@G]} ° that share a com-
i i=1 i i=1 i i=1

mon low-rank structure L but different sparse anoma-

lies Sy, ... ,Sg. We adopt a similar augmented Lagrangian

form for optimization, given by:

+ a||L]|.

G
+ Z{ﬂgusgu1 + (Y0, —~L-S,),.
g=1
H 2
+El0, L8, }. @

Similar to before, Y;, ... ,Ys are Lagrange multiplier
matrices, and u > 0 is a constant.

The optimization problem (21), unfortunately, is
harder to solve than the single-group problem (12). This is
due to the fact that, as the low-rank structure L is shared
over all groups, its optimization, given fixed ®, Sy, ... , S,
is no longer in closed form. We thus adopt the follow-
ing two-stage algorithm to find an approximate solution.
For Stage 1, we obtain an estimate L of the low-rank
matrix L under the approximation S=S; =---=Sg,
that is, all groups have the same sparse anomalies, and
thus ® = ®; = - - - = Og. This can be achieved via a direct
application of the earlier single-stage ADMM algorithm.
The optimization of L (given common parameters ® and
common anomalies S) yields the closed-form SVT update:

" <D, <®m ~si 4 lYm)' .
u

Similarly, the optimization of S (given L and ®) and ©
(given L and S) yields closed-form updates from (15) and
(19), respectively. For Stage 2, with L fixed at this esti-
mated L, we then cyclically optimize the group-dependent
sparse anomaly matrices Sy, ... ,Sg and parameter matri-
ces 04, ... ,0¢ via a similar ADMM algorithm on (21);
such closed-form updates are provided in Algorithm 2.
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Algorithm 2. Multi-group eRF“A optimization via ADMM

Inputs: Data matrices {MP]}?:II,...,{MEG]}?ZGF initial
parameters for Stage 1 {(SI%, Y, ©%)} and Stage 2

{(S[O],Yg)], @Ego])}gzl, penalty parameters «, f, u.

Stage 1: Let L be the low-rank structure with common
anomalies S and parameters ©.
Initialize S = SIY, Y = Y% and ® = @,
Optimize L using Algorithm 1.
Stage 2: FixL = L.
forg=1,...,G
P — qlol — vl0l] — @0l —
Initialize S; =S, , Y, =Y, ,0; =0, . Sett = 0.
while not converge do
t+1 t 1 t
Sg™ < Spu(@' — L+ 1Y)

forj=1,...,pandk=1,...,q
[t+1] . . [+1] 1]
Gg’j‘k « arg mlngjﬁk(:g’j,k <6g,j,k,Lj,k, Sg‘j,k R Yg’j’k>
end for
[+1] _ /1] [t+1] [t+1]
Y =y g™ - L - s
Update t « ¢+ 1.
end while
end for
Outputs: Optimized parameters { (S, 0!) }ngl, L.

The detailed steps for this two-stage optimization proce-
dure are outlined in Algorithm 2.

3.3 | Hyperparameter tuning

Finally, careful tuning of the hyperparameters «, f, and
u is needed for accurate recovery of the low-rank struc-
ture and sparse anomalies. For the standard RPCA, Candeés
etal.(2011) showed thatwitha = 1, f = 1/4/max(p, q) and
u = pq/(4]|0©]|1), one achieves the theoretical recovery of
L and S in an asymptotic sense. We found that such a spec-
ification works reasonably well for the eRFCA as well for
both single-group and multi-group settings, in the absence
of any prior knowledge on the rank of L or the degree
of sparsity in S. We note, however, that this specifica-
tion presumes no noise in the observation of L + S; when
large non-Gaussian noise is present, we found that a larger
choice of 4 may yield improved recovery performance.

In many applications, there may be guiding prior infor-
mation on the rank of L or the sparsity level of S, which can
be integrated for hyperparameter tuning. We illustrate how
this can be done for the single-group setting; a similar strat-
egy can be used for multiple groups. Suppose we have a
desired upper bound on the rank rank(L) < r and the pro-
portion of non-zero entries %nz(S) := #{S;x # 0} /(pq) <
s. Starting with an initial hyperparameter setting /% = 1,

ﬁ[O] — 1/ max(p’ q), and H= pq/(4”®“1), we first

Algorithm 3. Hyperparameter tuning for single-group
eRPCA

Inputs: Hyperparameter step sizes 5, > 0, 73 > 0.
Condition (*): rank(L) < r, %nz(S) < s

Initialize «!” = 1, % = 1/4/max(p, q). Set t = 0.
Optimize (L, S) with a = a[%, g = g% via Algorithm 2.
While (%) is not satisfied do
if rank(L) > r then
alfl — =11 4 na\ﬁ
else o/l « ol
end if
if %nz(S) > s then
P — pUU 4 o/t
else ﬁ[t] - ﬂ[t—ll
end if
Optimize (L,S) with a = a!?l, g = g via
Algorithm 2.
Update t < ¢+ 1.
Stop if ol = !~ and gl = pli-1,
end while
Outputs: Optimized hyperparameters (!, gl1).

perform the eRFCA optimization (Algorithm 1) with

a =al% and p = g% to estimate the low-rank structure
L and corresponding anomalies S. If the rank of the
estimated L exceeds r, we then iteratively increase a. Oth-
erwise, if the proportion of sparse entries in the estimated
S exceeds s, we then iteratively increase f. Algorithm 3
summarizes this hyperparameter tuning procedure.

3.4 | Computational complexity

Another appealing property of the eRFCA is that, in addi-
tion to leveraging the underlying exponential family struc-
ture, it also permits closed-form efficient updates in the
optimization algorithm. We investigate next the compu-
tational complexity of eRFCA optimization algorithm, in
terms of the data matrix dimensions p and g as well as
sample size n.

For the single-group setting (Algorithm 1), each itera-
tive update of L involves an SVD operation that requires
O(pg min(p, q)) work. Each iterative update of S and Y
requires O(pq) work. Each iterative update for the param-
eter 0, x (of which there are pq in total) requires O(1) work,
but this involves a one-shot computation of the sample
mean M = n~' Y7 M; (see the closed-form updates in the
Appendix) that requires O(npq) work. Summarizing the
above, the single-group Algorithm 1 thus requires an ini-
tial O(npq) work for pre-processing, and O(pq min(p, q))
work per optimization iteration. For the multi-group
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setting (Algorithm 2), we need to consider both Stage 1
and Stage 2. For Stage 1, one can follow the above ratio-
nale to show that this requires an initial @(npq) work for
pre-processing, and O(pq min(p, q)) work per optimization
iteration. For Stage 2, the parameter updates within each
group require O(pq) work, thus incurring a total work of
O(Gpq) per optimization iteration.

With a relatively small sample size n and number of
groups G, the key computational bottleneck for eRPCA thus
lies in the SVT updates that each require O(pq min(p, q))
work. This will not be too burdensome for data matri-
ces with large p and small g (or vice versa), but may be
time-consuming when both p and g are large. Luckily,
with modern computing architecture, such operations can
be greatly sped up via multi-thread processing and GPU
acceleration; see, for example, Kontoghiorghes [25]; Fata-
halian et al. [16]. As this is the primary bottleneck for
eRPCA " we have found such tools to be greatly useful in
scaling up this decomposition approach for massive data
matrices.

We also provide next a brief comparison of computa-
tional complexity with the standard RPCA and the ePCA.
For the standard RPCA (1) (with appropriate modifica-
tions for the considered noisy setting with multiple data
matrices; see Section 4 for details), the ALM approach
requires the same running time per optimization iteration
of O(pq min(p, q)). The ePCA incurs much higher compu-
tation relative to the other two methods, particularly for
large data matrices. The key computational bottleneck in
ePCA is the eigendecomposition of a pq X pq covariance
matrix, which requires (9((pq)3) work. Clearly, for mas-
sive data matrices with both p and q large, the eRP“A and
standard RPCA are much more computationally efficient
compared to the ePCA.

4 | NUMERICAL EXPERIMENTS

We now explore the performance of the proposed
eRPCA in a suite of simulation experiments. Here, the
underlying parameter matrix ® € RP*? follows the pre-
sumed low-rank plus sparse decomposition ® = L + S.
The low-rank matrix L is simulated by first generat-
ing a matrix with independent entries from the Gaus-
sian distribution N'(¢,7?), then truncating all but the
largest p/5 singular values via SVD. The sparse matrix
S is simulated with p?/20 uniformly selected non-zero
entries, where non-zero entry values are uniformly sam-
pled from the interval [L,U]. The corresponding data
matrices are then generated from © following several
common non-Gaussian exponential family distributions,
including the Bernoulli, Exponential, and Poisson distri-
butions. Since the entries of ® should be constrained to

specific intervals depending on the choice of exponential
family distribution, the simulation parameters ¢,y2,L, U
need to be carefully chosen to adhere to such constraints;
for brevity, we provided specific settings of these parame-
ters in the Appendix.

For comparison, we adopt two baseline approaches.
The first is the standard RPCA approach [6]. Since multi-
ple data matrices My, ... , M, are observed with noise, the
RPCA formulation (1) can be modified as follows for fair
comparison:

L& (Miji—00)°
min )’ ) N ———"" +|[L|l. + AlISl
LSO Higia 2né’
st. ®©=L+S, (23)

where 6 is the sample standard deviation of the data matri-
ces, and A is set via recommended settings in Candeés
et al. [6]. The formulation (23) makes two modifications
in its first term, which account for standard Gaussian
noise as well as multiple data matrices My, ... ,M,,. This
is analogous to the Stable-PCP formulation (3) from [42];
for which we could not find an implementation online),
where the constraint in (3) is relaxed via the first term
in (23). This is then optimized using the aforementioned
ALM approach ([27, 40]; see Section 2.1), with the recom-

mended step size u =pq/<4||@)||1> in Candés et al. [6],

where © is the maximum likelihood estimator [8] of ©.
The second baseline is the ePCA method [29], which can
leverage the underlying non-Gaussian noise for extracting
low-rank structure, but not for detection of sparse anoma-
lies. These methods are compared with the eRPCA for the
single-group and multi-group settings.

4.1 | Single-group setting

In the single-group experiments, we generated the
low-rank matrix L and sparse anomalies S as described
previously, then simulated n =500 data matrices
My, ... ,M,, from the parameter matrix ® = L +S. We
then compared each method on its recovery of the
low-rank structure L and the sparse anomalies S in terms
of Frobenius error. These experiments are performed for
matrices of dimensions p X p, p = 10,20,30, and 40, with
each setting replicated for 30 trials.

41.1 | Bernoulli distribution

Consider first noise drawn from the Bernoulli distribution,

. indep.
where each matrix entry follows M "~ Bern(6;y).
Figure 3A shows the recovery errors for L and S
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FIGURE 3 Boxplots of recovery errors (in Frobenius norm) for the low-rank matrix L (left), and sparse anomalies S (right) as a
function of matrix dimension p for single-group simulations across different distributions.

compared to RPCA, with this improvement again growing
as dimension p increases. This suggests, that with prior
information on the underlying non-Gaussian noise, the
integration of such information can greatly improve
the joint recovery of both the underlying low-rank struc-

(in Frobenius norm) using the proposed eRFCA the
standard RPCA (with appropriate modifications detailed
earlier) and the ePCA; note that the latter does not pro-
vide an estimate of S. For L, we see that the eRFCA yields
a noticeably improved recovery of the low-rank structure

compared to existing methods, particularly as dimen-
sion p increases. Similarly, for S, we observe an improved
recovery of the underlying sparse anomalies for the eRPCA

ture and sparse anomalies. Figure 4A and B visualizes
the recovery of L and S, respectively, for one simula-
tion experiment in p = 10 dimensions. We see that the
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(A) The true and recovered L.

FIGURE 4
the single-group Bernoulli simulations.
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(A) The true and recovered L.

FIGURE 5
the single-group exponential simulations.

standard RPCA yields a noticeably poorer recovery of the
true L compared to eRPCA, which is unsurprising as it does
not account for the underlying non-Gaussian noise form.
This, in turn, resulted in the erroneous detection of many
“anomalies” that were not truly anomalies. The ePCA,
while providing slightly better recovery of L to the RPCA,
can be seen to be highly sensitive to the underlying sparse
anomalies, resulting in significant deterioration of the
recovery. The proposed eRPCA, by incorporating the under-
lying non-Gaussian noise within the desired low-rank
plus sparse decomposition, yields improved recovery of
both the low-rank structure L and the sparse anomalies S.

4.1.2 | Exponential distribution

Consider the case where noise is drawn from the expo-
nential distribution; thus each entry follows M« nlep-
Exp(6;)) and 0, is its rate parameter. Here, since the
sparse decomposition arises in its rate parameter (which
is inversely proportional to its mean), we performed the
RPCA after taking the entry-wise inverse of the data matri-
ces. Figure 3B shows the reconstruction errors for L and S
(in Frobenius norm) using the eRFCA, the standard RPCA
and the ePCA, where again the latter does not provide an
estimate of S. As before, the eRPCA yields improved recov-
ery of both the low-rank structure L and the sparse anoma-
lies S, with this improvement gap growing as dimen-
sion p increases. Figure 5A and B visualizes the recovery
of L and S, respectively, for a simulation experiment in
p = 10 dimensions. The standard RPCA, which does not

ePCA

(B) The true and recovered S.

Visualizing the true and recovered low-rank matrix L and sparse anomalies S in one simulation in p = 10 dimensions, for
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' l”

02

12 o1

01

. | | N i
|

(B) The true and recovered S.

Visualizing the true and recovered low-rank matrix L and sparse anomalies S in one simulation in p = 10 dimensions, for

factor for non-Gaussian noise, can be seen to yield poorer
recovery of L and erroneous detection of numerous false
“anomalies.” The ePCA offers a slightly better recovery of
L, but this is highly corrupted by the underlying sparse
outliers. By integrating both non-Gaussian noise and
sparse anomalies within an efficient decomposition frame-
work, the eRPCA facilitates an accurate recovery of both
L andS.

4.1.3 | Poisson distribution

Finally, consider noise drawn from the Poisson distribu-

tion, where each matrix entry follows M; ; x ndep- Pois ().
Figure 3C shows the recovery errors for L and S using
the compared methods. Here, we see that the eRPCA and
standard RPCA have comparable performance, with both
having considerably lower errors than the ePCA. In par-
ticular, eRFCA yields slightly lower errors for both L and S
in lower dimensions, while the standard RPCA performs
slightly better in higher dimensions. One likely reason
for this is that, with sufficiently large rate parameters 6,
the resulting Poisson noise can be well-approximated by a
Gaussian distribution [17]. Thus, for Poisson noise, both
the eRPCA and the standard RPCA yield good performance.
Figure 6A and B visualizes the recovered L and S for an
experiment in p = 10 dimensions. We see that the eRFCA
and the standard RPCA both provide good recovery of
both the low-rank structure and sparse anomalies, with the
standard RPCA again erroneously identifying more false
“anomalies.”
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FIGURE 6 Visualizing the true and recovered low-rank matrix L and sparse anomalies S in one simulation in p = 10 dimensions, for

the single-group Poisson simulations.

4.2 | Multi-group setting

Next, we performed multi-group experiments with G = 2
groups. We generated the low-rank matrix L and sparse
anomalies S; and S, as before, then simulated n; = n, =
250 data matrices for each group, with ® =L+ S; and
®, =L+ S,. We then compared methods on its recovery
of the low-rank structure L and the sparse anomalies S in
terms of Frobenius error. These experiments are again per-
formed for p X p matrices, where p = 10,20,30 and 40, with
each setting replicated for 30 trials.

4.2.1 | Bernoulli distribution

Consider first the multi-group setting with Bernoulli noise.
Figure 7A shows the recovery errors for L and S using
the eRPCA| the RPCA, and the ePCA, where again the lat-
ter does not provide an estimate for S. We see that, for
L, the eRPCA offers improved recovery to competing meth-
ods, with the improvement growing larger as dimension p
increases. Furthermore, the eRPCA appears to yield greater
improvement in this multi-group experiment compared to
the earlier single-group experiment. This is not too sur-
prising, as these competing methods do not factor in the
different sparse anomalies between different groups. Sim-
ilar observations can be made for the recovery of sparse
anomalies S.

4.2.2 | Exponential distribution

Consider next the multi-group setting with Exponential
noise. Figure 7B shows the recovery errors for L and S
using eRPCA and competing methods. For L, we again see
a marked improvement for the proposed method, with
this improvement growing as dimension p increases. As
before, these improvements appear more pronounced
for the multi-group set-up compared to the single-group
set-up. Similar observations hold for the recovery of
anomalies in S.

4.2.3 | Poisson distribution

Finally, consider the multi-group setting with Poisson
noise. Figure 7C shows the recovery errors for L and S.
Interestingly, while the earlier single-group experiments
showed comparable results for the eR’CA and RPCA, the
multi-group experiments show a noticeable improvement
for the eRPCA, This can again be explained by the pres-
ence of different sparse anomalies within different groups,
which is not accounted for in the standard RPCA. Similar
conclusions hold for recovering the sparse anomalies S.

4.3 | Recommendations

We provide here a brief recommendation summarizing
when the eRFCA is expected to outperform existing meth-
ods, following the simulation results above. First, when the
underlying noise distribution is known or can be reliably
inferred (e.g., from domain knowledge), the use of such
information can greatly improve performance for struc-
ture recovery and anomaly detection, particularly when
such a distribution is markedly non-Gaussian. Second,
when this distribution is elicited well, the improvement
of the eRFCA over the state-of-the-art can grow larger as
matrix dimensions increase. Finally, when present, the use
of multi-group information (where sparse anomalies may
change from group to group) can greatly improve recovery
performance via the proposed eRFCA,

5 | APPLICATIONS
We now explore the use of the proposed eR*A in two prac-
tical applications. The first is our motivating problem on
steel defect detection, and the second is a crime monitoring
application in the city of Atlanta.
5.1 | Steel defect detection

Consider first the motivating steel defect detection
problem from Section 2.3. Steel manufacturing is essential
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FIGURE 7

Boxplots of recovery errors (in Frobenius norm) for the low-rank matrix L (left), and sparse anomalies S (right) as a

function of matrix dimension p for multi-group simulations across different distributions.

in many facets of modern manufacturing, including the
production of automobiles, electronics, furniture, infras-
tructure, and shipbuilding. The automated monitoring of
steel defects, for example, gashes, dents, or other inho-
mogeneities, thus plays a critical role in maintaining high
product quality at low operation costs. Defects are typi-
cally detected via careful monitoring of images of the steel
sheets taken from high-frequency cameras. Recent stud-
ies, for example, Chan [9], have shown that QIS ([11]) may

offer improved higher frequency imaging with lower read
noise over more conventional multi-bit imaging systems
(e.g., complementary metal-oxide semiconductor imaging
[[11]]). The key challenge in defect detection using QIS
is that its image intensities take the form of binary bits,
which can be well-modeled via i.i.d. Bernoulli noise [9];
this thus presents an appropriate application for the eRFCA,

We adopt the same set-up as Section 2.3 for numerical
experiments. First, an uncorrupted steel sheet image with
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(A) Estimated low-rank structure (background pattern) L.
g RPCA
(B) Estimated sparse anomalies (defects) S.
FIGURE 8 Visualizing (A) the estimated low-rank structure (background pattern) L and (B) the recovered sparse anomalies (defects)

S, using the eRFCA, RPCA and ePCA in the steel defect detection application.

visible defects is taken from Severstal [34] (see Figure 1
left). Next, to mimic QIS, n = 500 binary images are gener-
ated by normalizing the uncorrupted image and sampling
via i.i.d. Bernoulli noise (see Figure 1 right). The com-
pared methods include the proposed (single-group) eRPCA,
the standard RPCA (with modifications as discussed in
Section 4), and the ePCA. For the eR*“A we made use of the
default hyperparameter specification in Section 3.3, that is,
without any prior knowledge of rank or degree of sparsity.

Figure 8A shows the recovered low-rank structure L
using the standard RPCA, ePCA, and the proposed eRFCA,
Here, the desired structure to recover is the underlying
“criss-cross” background pattern. As observed previously,
the first two existing methods yield a visually mediocre
recovery of this criss-cross pattern; one reason may be
that neither method accounts for the joint presence of
sparse anomalies with non-Gaussian noise. The eRCA, by
factoring in both properties, in turn, provides a notice-
ably smoother recovery of the cross-cross pattern without
defects.

Figure 8B shows the recovered sparse anomalies S
using RPCA and eRPCA; note that the ePCA does not pro-
vide an estimate of S. From Figure 1, the desired anomalies
to recover include a large gash on the right and two smaller
inhomogeneous spots in the middle. We see that the RPCA
returns a rather muddled recovery of such defects: while
the large right gash is noticeable visually, the recovered
S also picks up on the background criss-cross structure,
which obfuscates other defects. Comparatively, the eRPCA
yields improved recovery of the underlying defects: it picks
up not only the clear right gash and the more subtle
inhomogeneities in the middle but also darker discol-
orations along the criss-cross structure on the left. The
latter defects were not immediately evident at first glance

from Figure 1, but are indeed present upon further inspec-
tion from this analysis. Thus, by integrating information
on non-Gaussian noise, the proposed eRP“A appears capa-
ble of jointly recovering low-rank structures and identify-
ing sparse defects for steel monitoring.

5.2 | Crime mappingin Atlanta

Next, we investigate the use of the eRFA for a crime moni-
toring application in the city of Atlanta. The identification
of regular (background) and irregular (anomalous) crimi-
nal activities are clearly critical tasks for improving public
safety: it helps inform law enforcement of hotspots and/or
peak times for different crimes [14] and facilitates the diag-
nosis of abnormal crime spikes. As such, a key objective
here is to identify regular and irregular crime patterns over
different geographical regions and times.

Our data consist of reported burglaries from the
Atlanta Police Department over 2years: 2015 and 2016.
Each burglary is recorded along with its hour of occur-
rence, as well as its spatial location in the form of
police “beats” (or zones) for patrol, of which there are
79 beats in total. Given the fine spatiotemporal scales
for the recorded burglaries, there is typically at most
one recorded crime within each spatiotemporal “win-
dow,” that is, a combination of occurrence hour and
police beat. Prior studies [19, 32] suggest that weekly
recurrent trends may be common for burglaries, which
we leverage next for specifying the underlying low-rank
structure.

Since there is no ground truth available for L and S
here, we forgo a full comparison with existing methods
and instead investigate the extraction of useful burglary
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estimated low-rank matrix L from

Visualizing the

eRPCA for the crime monitoring
application. The two red arrows
highlight two police beats: Beat 512
(downtown Atlanta) and Beat 509
(Midtown Atlanta).

Monday Tuesday Wednesday Thursday Friday

Occurrence Hour

patterns (both regular and irregular) from the proposed
eRPCA_ Since there is at most one recorded crime within
nearly all spatiotemporal windows, we thus adopt a bina-
rization of this data (“0” for no burglaries within the
window, “1” for at least one burglary). With this, eR°CA
then proceeds using the Bernoulli distribution, with the
underlying probability matrix ® presumed to follow the
low-rank plus sparse decomposition. We employ here the
multi-group eRPCA set-up, with G = 2 groups for the sum-
mer and winter seasons (more on this next). To incor-
porate information on weekly trends, the data matrices
)

i .
thus of lalimensions 79 X 168, where p = 79 is the num-
ber of police beats, and g = 24 X 7 = 168 is the number of
hours in a week. We then take ny = 24 weeks (12 weeks
per season X 2years) of reported crime data for both
the summer and winter seasons. With this set-up, the
low-rank matrix L models for weekly (regular) crime activ-
ity, and the sparse matrices S; and S, account for irregular
burglary activity over the summer and winter seasons,
respectively.

Figure 9 shows the recovered low-rank matrix L
using the two-group eRFCA. We immediately see seven
bright vertical bands, which suggest the presence of
a daily trend in crime activity. In particular, for most
beats, we observe an increased probability of burglary
after dawn, which peaks during the day and decreases
during the evening. Several beats, such as Beat 512
(downtown Atlanta) or 509 (Midtown Atlanta), have
noticeably higher burglary rates compared to other beats,
which is expected as such areas are highly urban and
dense in terms of population. There also seems to be some

are constructed week-by-week; each matrix is

Saturday

Sunday

(B) Spatial visualization of burglary rates at 10pm.

FIGURE 10 Spatial visualization of the burglary rate from
the estimated L on Monday, Friday, and Sunday at (A) 9 a.m. and
(B) 10 p.m. for the crime monitoring application. Beats 202 and 209
(outlined in blue) have noticeably higher rates on Monday
mornings, whereas Beats 203 or 313 (outlined in green) experience
higher rates in the evenings.

interactions between occurrence hour and police beat, in
that some beats have notably different peak hours than
other beats.

Figure 10 visualizes the spatial distribution of the esti-
mated low-rank matrix L at various hours in the week.
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FIGURE 12

commercial) from eRFCA for the crime monitoring application.

Certain beats, such as Beat 202 and 209 (outlined in
blue), have noticeably higher burglary rates on Mon-
day mornings, whereas other beats, such as Beat 203 or
313 (outlined in green), experience higher rates in the
evenings. Upon further inspection, this is quite intuitive:
the former beats (in blue) are primarily residential areas,
where burglaries are expected to occur more often during
weekday mornings (e.g., when individuals are at work),
whereas the latter beats (in green) are primarily business
districts, where burglaries typically occur more frequently
at night (e.g., when businesses are closed). The estimated
L reflects such intuitive patterns, thus suggesting the
proposed eRFCA can indeed recover useful insights for
diagnosis.

Next, Figure 11 visualizes the estimated sparse matri-
ces S; and S,, which models for anomalous (irregular)
burglary activities over the summer and winter seasons,
respectively. From a quick inspection, there appear to be

Visualizing the absolute values of the estimated anomaly matrices S; (summer) and S, (winter) from eRP°A for the crime

Season
— summer

— winter

i | | ' i |
0 24 48 72 96 120 144 168
Time of a week

Plotting the non-zero entries in S; (summer) and S, (winter) for Beat 403 (left, residential) and Beat 503 (right,

some differences in anomalies between the two seasons,
which supports our multi-group approach. To explore this
difference, Figure 12 plots the non-zero entriesin S; and S,
over Beats 403 (a residential area) and 503 (a commercial
area). For Beat 403, it appears that after factoring in the
weekly trends in L, it experiences more anomalous bur-
glaries in the summer than in the winter during the
evenings. A plausible explanation is that, in residential
areas, burglaries during the daytime become more dif-
ficult due to more people being at home from summer
break or hot weather. Similarly, for Beat 503, one observes
a greater quantity of irregular burglaries in the summer
than in the winter. A likely reason is that commercial
areas typically experience a large influx of tourists and
visitors, which may create greater opportunities for bur-
glaries. Such insights suggest that the proposed e**“A can
indeed extract interpretable and useful insights for crime
monitoring.
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In this work, we proposed a new eRPCA method for
jointly recovering embedded low-rank structures and cor-
responding sparse anomalies from data matrices corrupted
by non-Gaussian noise from the exponential family dis-
tribution. This method is directly motivated by two appli-
cations, the first for steel defect detection and the sec-
ond for crime activity monitoring. The eRPA employs a
novel optimization formulation that leverages the underly-
ing exponential noise structure for performing the desired
low-rank plus sparse decomposition. We then presented an
ADMM algorithm for efficient optimization, both for the
single-group eRPCA (where anomalies are shared over all
data matrices) and the multi-group eR?“A (where anoma-
lies may vary over different groups). We demonstrated the
effectiveness of the proposed eRFCA in a suite of numeri-
cal experiments with varying non-Gaussian noise and in
our two motivating applications for steel defect detection
and crime monitoring. We found that, when the underly-
ing noise distribution is considerably non-Gaussian and
can be reliably inferred from domain knowledge, our
method can yield considerable improvements over the
state-of-the-art.

Given promising results, there are numerous direc-
tions for impactful future work. First, a Bayesian extension
of the eRPCA would be of interest, as in many applica-
tions, it would be useful to have a reliable quantifica-
tion of uncertainty for anomaly detection. Recent work
on Bayesian matrix modeling [41] appears promising on
this front. Another direction is the application of such
methods for high-energy physics [15, 23, 26], where there
has been much recent work on using anomaly detec-
tion techniques to identify new particle activity from
heavy-ion collisions; see, for example, Kasieczka et al.
[24]. A key challenge is the non-Gaussian measure-
ment noise in such systems [18], and the eRPCA can be
highly useful in this setting. The decoupling of shared
and unique features from diverse data sources (see,
e.g., PerPCA [37]) is also of potential interest as future
work.

A publicly-available implementation of our methods
(with detailed documentation) can be found at https:
//github.com/Xiaojzheng/ERPCAhttps://github.com
/Xiaojzheng/ERPCA.

ACKNOWLEDGMENTS

Xiaojun Zheng and Simon Mak gratefully acknowledge
support from NSF CSSI 2004571, NSF DMS 2210729, and
DE-SC0024477. Liyan Xie is supported by UDF01002142
and 2023SC0019 through the Chinese University of Hong
Kong, Shenzhen. Yao Xie is partially supported by an
NSF CAREER CCF-1650913, NSF DMS-2134037, CMMI-

2015787, CMMI-2112533, DMS-1938106, DMS-1830210,
and the Coca-Cola Foundation.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly
available in GitHub at https://github.com/Xiaojzheng
/ERPCA.

ORCID
Simon Mak ‘© https://orcid.org/0000-0002-5693-7076

REFERENCES

1. D. P. Bertsekas, Constrained optimization and Lagrange
multiplier methods, Academic Press, New York, 1982.

2. T. Bouwmans and E. H. Zahzah, Robust PCA via principal com-
ponent pursuit: A review for a comparative evaluation in video
surveillance, Comput. Vis. Image Underst. 122 (2014), 22-34.

3. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers, Found. Trends Mach. Learn. 3
(2011), no. 1, 1-122.

4. S.Boyd and L. Vandenberghe, Convex optimization, Cambridge
University Press, Cambridge, UK, 2004.

5. J.-F.Cai, E. J. Candés, and Z. Shen, A singular value thresholding
algorithm for matrix completion, SIAM J. Optim. 20 (2010), no.
4,1956-1982.

6. E.J. Candes, X. Li, Y. Ma, and J. Wright, Robust principal com-
ponent analysis? Assoc. Comput. Mach. 58 (2011), no. 3, 1-37.

7. Y. Cao and Y. Xie, Poisson matrix recovery and completion, IEEE
Trans. Signal Process. 64 (2015), no. 6, 1609-1620.

8. G. Casella and R. L. Berger, Statistical inference, Duxbury
Advanced Series in Statistics and Decision Sciences, Thomson
Learning, Pacific Grove, CA, 2002.

9. Chan, S. H. (2022). What does a one-bit quanta image sensor
offer? arXiv preprint arXiv:2208.10350.

10. S. H. Chan, X. Wang, and O. A. Elgendy, Plug-and-play ADMM
for image restoration: Fixed-point convergence and applications,
IEEE Trans. Comput. Imaging 3 (2016), no. 1, 84-98.

11. E. Charbon, Single-photon imaging in complementary metal
oxide semiconductor processes, Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci. 372 (2014), no. 2012, 20130100.

12. M. Collins, S. Dasgupta, and R. E. Schapire, A generalization
of principal components analysis to the exponential family, Adv.
Neural Inf. Proces. Syst. 14 (2001), 617-624.

13. X. Ding, L. He, and L. Carin, Bayesian robust principal com-
ponent analysis, IEEE Trans. Image Process. 20 (2011), no. 12,
3419-3430.

14. J.E.Eck,S. Chainey, G.J. Cameron, M. Leitner, and E. R. Wilson,
Mapping crime: Understanding hot spots. 2005. https://www
.ojp.gov/pdffiles1/nij/209393.pdf.

15. D. Everett, W. Ke, J.-F. Paquet, G. Vujanovic, S. A. Bass, L. Du,
C. Gale, M. Heffernan, U. Heinz, D. Liyanage, M. Luzum, A.
Majumder, M. McNelis, C. Shen, Y. Xu, A. Angerami, S. Cao, Y.
Chen, J. Coleman, L. Cunqueiro, T. Dai, R. Ehlers, H. Elfner, W.
Fan, R. J. Fries, F. Garza, Y. He, B. V. Jacak, P. M. Jacobs, S. Jeon,
B. Kim, M. Kordell, A. Kumar, S. Mak, J. Mulligan, C. Nattrass,
D. Oliinychenko, C. Park, J. H. Putschke, G. Rol, B. Schenke, L.
Schwiebert, A. Silva, C. Sirimanna, R. A. Soltz, Y. Tachibana,



ZHENG ET AL.

WI LEY 19 of 20

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

X.-N. Wang, and R. L. Wolpert, Multisystem Bayesian constraints
on the transport coefficients of gcd matter, Phys. Rev. C 103 (2021),
no. 5, 054904.

K. Fatahalian, J. Sugerman, and P. M. Hanrahan,
“Understanding the efficiency of gpu algorithms for matrix-matrix
multiplication,” Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on graphics hardware, HWWS ‘04,
Association for Computing Machinery, New York, 2004, pp.
133-137.

Feller, W. (1968). An introduction to probability theory and its
applications, Volume 1. Wiley, New York.

T. Floss, M. Biagetti, and P. D. Meerburg, Primordial non-
Gaussianity and non-Gaussian covariance, Phys. Rev. D 107
(2023), no. 2, 023528.

M. J. Frith, K. J. Bowers, and S. D. Johnson, Household occupancy
and burglary: A case study using COVID-19 restrictions, J. Crim.
Just. 82 (2022), no. C, 101996.

Q. Gu, Z. Wang, and H. Liu, “Low-rank and sparse structure
pursuit via alternating minimization,” Proceedings of the 19th
international conference on artificial intelligence and statistics,
volume 51 of proceedings of machine learning research, A. Gretton
and C. C. Robert (eds.), PMLR, 2016, pp. 600-609.

C. Guyon, T. Bouwmans, and E.-H. Zahzah, “Foreground detec-
tion based on low-rank and block-sparse matrix decomposition,”
IEEE international conference on image processing, IEEE, New
York, 2012, pp. 1225-1228.

T. Hastie, R. Tibshirani, and H. J. Friedman, The elements of sta-
tistical learning: Data mining, inference, and prediction, Vol. 2,
Springer, New York, 2009.

Y. Ji, S. H. Yuchi, D. Soeder, F. J. Paquet, A. S. Bass, R. V. Joseph,
F.C.Wu, and S. Mak, Conglomerate multi-fidelity Gaussian pro-
cess modeling, with application to heavy-ion collisions, arXiv
preprint arXiv:2209.13748. (2022)

G. Kasieczka, B. Nachman, D. Shih, O. Amram, A. Andreassen,
K. Benkendorfer, B. Bortolato, G. Brooijmans, F. Canelli, and
H. J. Collins, The LHC Olympics 2020 a community challenge
for anomaly detection in high energy physics, Rep. Prog. Phys. 84
(2021), no. 12, 124201.

E. J. Kontoghiorghes, Handbook of parallel computing and
statistics (statistics, textbooks and monographs), Chapman &
Hall/CRC, Boca Raton, FL, 2005.

K. Li, S. Mak, F. J. Paquet, and A. S. Bass, Additive multi-index
Gaussian process modeling, with application to multi-physics
surrogate modeling of the quark-gluon plasma. 2023. arXiv
preprint arXiv:2306.07299.

Z.Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier
method for exact recovery of corrupted low-rank matrices. 2010.
arXiv preprint arXiv:1009.5055.

D. C. Liu and J. Nocedal, On the limited memory BFGS method
for large scale optimization, Math. Program. 45 (1989), no. 1-3,
503-528.

L. Liu, E. Dobriban, and A. Singer, Epca: High dimensional expo-
nential family PCA, Ann. Appl. Stat. 12 (2018), no. 4, 2121-2150.
S. Mohamed, Z. Ghahramani, and K. A. Heller, Bayesian expo-
nential family PCA, Adv. Neural Inf. Proces. Syst. 21 (2008),
1089-1096.

Y. E. Nesterov, “A method of solving a convex programming
problem with convergence rate (9(1 /k2),” Doklady Akademii
Nauk, Vol. 269, Russian Academy of Sciences, Moscow, Rus-
sia, 1983, pp. 543-547.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. R. Nobles, J. T. Ward, and R. Tillyer, The impact of neighbor-
hood context on spatiotemporal patterns of burglary, J. Res. Crime
Deling. 53 (2016), no. 5, 711-740.

J. Nocedal and S. J. Wright, Numerical Optimization, Springer,
New York, 1999.

PAO Severstal (2019). Severstal:
https://www.kaggle.com/competitions/severstal-steel-defect
-detection.

K. Pearson, Liii. On lines and planes of closest fit to systems of
points in space, London Edinburgh Dublin Philos. Mag. J. Sci. 2
(1901), no. 11, 559-572.

Y. Shen, Z. Wen, and Y. Zhang, Augmented Lagrangian alter-
nating direction method for matrix separation based on low-rank
factorization, Optim. Methods Softw. 29 (2014), no. 2, 239-263.
N. Shi and R. A. Kontar. Personalized pca: Decoupling shared
and unique features. 2022. arXiv preprint arXiv:2207.08041.
Z.Xue, J. Dong, Y. Zhao, C. Liu, and R. Chellali, Low-rank and
sparse matrix decomposition via the truncated nuclear norm and
a sparse regularizer, Vis. Comput. 35 (2019), 1549-1566.

B. Yang and L. Zou, Robust foreground detection using
block-based RPCA, Optik 126 (2015), no. 23, 4586-4590.

X. Yuan and J. Yang, Sparse and low rank matrix decomposition
via alternating direction method, Pac.J. Optim. 9 (2013), 167-180.
H. S. Yuchi, S. Mak, and Y. Xie, Bayesian uncertainty quantifi-
cation for low-rank matrix completion, Bayesian Anal. 18 (2023),
no. 2,491-518.

Z.Zhou, X. Li, J. Wright, E. Candes, and Y. Ma, “Stable principal
component pursuit,” In 2010 IEEE international symposium on
information theory, IEEE, New York, 2010, pp. 1518-1522.

Y. Zhu, An augmented ADMM algorithm with application to the
generalized lasso problem, J. Comput. Graph. Stat. 26 (2017), no.
1, 195-204.

Steel defect detection.

How to cite this article: X. Zheng, S. Mak, L. Xie,
and Y. Xie, eRPCA: Robust Principal Component
Analysis for Exponential Family Distributions, Stat.
Anal. Data Min.: ASA Data Sci. J. 17 (2024), e11670.
https://doi.org/10.1002/sam.11670

APPENDIX A

A.1 Closed-form optimization updates for 0

TABLE Al

Closed-form updates of (19) for common

(one-parameter) exponential family distributions.

Distribution

Poisson

9;‘,,(

root of af?, + b6 +c¢=0
with the smallest loss, where
a=pu,

b=—pu(Ljx+Sjk)+ Y +1,

CcC=— Jjik
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TABLE Al

Distribution

Bernoulli

Exponential

Gaussian
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Continued

*

Jk

root of a6? + b7, +c;x+d=0

with the smallest loss, where
a=—u,
b=pu(1+Ljx+Sik) =Yk
c=1-pu(Ljx+Sik) + Y
d=-Mj,

root of ad?, + b, +c=0

with the smallest loss, where

Hs

c=-1
(A_’Ij,k +u(Ljk+ Sjk) — Yj,k)/(l + 1)

a=
b = _H(Lji,k + SjA,k) + ij’k +Mj,k’

A.2 Simulation set-up for L and S

The settings for constructing the low-rank matrix
L are as follows. For the Bernoulli distribution, we
use pu =0.5,0 =0.15. For the exponential distribu-
tion, y = 1,0 = 0.15; and for the Poisson distribution,
u =50,06 =2. When creating the sparse matrix S, the
spike ranges are [0.2,0.3] for Bernoulli distribution and
Exponential distributions, and [2, 5] for the Poisson dis-
tribution. Note that the Bernoulli parameters must lie
between [0, 1], so any out-of-range sampled values are set
to zero or one (whichever is closest). For the exponential
and Poisson distributions, only positive parameters are
permitted, thus negative sampled values are set as zero.
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