
865

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS-C60940.2023.00019

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
Q

ua
lit

y,
 R

el
ia

bi
lit

y,
 a

nd
 S

ec
ur

ity
 C

om
pa

ni
on

 (Q
RS

-C
) |

 9
79

-8
-3

50
3-

59
39

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
Q

RS
-C

60
94

0.
20

23
.0

00
19

BayesFLo: Bayesian Fault Localization for Software Testing

Yi Ji1,*, Ryan Lekivetz2, Simon Mak:1 and Joseph Morgan2

1 Department of Statistical Science, Duke University, Durham NC, USA
2JMP Statistical Discovery LLC, SAS Institute Inc., Cary NC, USA

yi.ji@duke.edu, Ryan.Lekivetz@jmp.com, sm769@duke.edu, Joseph.Morgan@jmp.com

*corresponding author

Abstract-Fault localization is a software testing activity

that is critical when software failures occur. We propose a

novel Bayesian fault localization method, yielding a principled

and probabilistic ranking of suspicious input combinations for

identifying the root causes of failures.

Keywords-Fault Localization; Bayesian Modeling; Software

Testing.

1. INTRODUCTION

Combinatorial testing can greatly reduce testing costs while

increasing the likelihood of detecting faults [l]. However,

when failures occur, a test engineer must go through the

arduous task of trying to identify the root cause(s) of such

failures. This is known as the fault localization problem. A

comprehensive review of this problem and existing solutions

is provided in [2]. Relevant methods include [3], who proposed

a "SOBER" method to rank predicates using computed scores

without prior knowledge. [4] further integrated prior beliefs

of test engineers for fault localization by assigning weights to

inputs. Our approach, inspired by [4], provides a principled

and probabilistic ranking of suspicious input combinations via

a novel Bayesian modeling paradigm.

2. METHODOLOGY

BayesFLo consists of three important modeling steps: prior

specification, likelihood evaluation and posterior ranking.

2.1. Prior Specification

We first define notation. Consider a software system with

multiple inputs, denoted by letters A, B, C, • • • . Each input

has multiple levels, denoted by numbers 1, 2, 3, • • •. The j­

th level of input i is denoted as ij, e.g., different levels of

input A are written as Al, A2, • • •. Combinations of multiple

inputs can then be denoted as i1j1 i2j2 • • • , e.g., the two­

input combination of Al and B2 is A1B2. For simplicity, we

use ij(k) to denote an arbitrary k-input combination, and ij

(rather than ij(1l) for an individual input/level. We further use

PijCk) E [O, 1] to denote the prior root cause probability of input

combination ij(k), and the random variable ZijC,.l E {0, 1} to

denote the root cause indicator of ij(k). For k = 1, this is

again simplified to Pij , Zij.

We propose a two-step approach for prior specification,

by first (i) assigning priors to individual inputs and then (ii)

propagating them to multi-input combinations. In step (i), we

adopt independent Beta priors on the root cause probability

Pij for individual input ij:

(1)

where aij, bij are the shape parameters of the Beta distribution.

These parameters can be set to reflect prior know ledge of faults

in the system. For instance, one expects input ij to have rela­

tively higher chance of failure, then the parameters aij and bij

can be set so that the expectation lE(pij) = aij / (aij + bij) is

relatively greater. This provides user flexibility for integrating

prior knowledge for probabilistic fault localization.

The root cause indicator Zij is then modeled as a Bernoulli

distribution with probability Pij, where a "success" here

corresponds to input ij being the root cause of failure. The

distribution of Zij conditioned on Pij can be written as:

(2)

The marginal prior root cause probability for input ij (after

marginalizing out uncertainty in Pij) becomes:

P(Zij = 1) = (1 Pijf(Pij) dpij = lE(Pij) = aij , (3)
lo aij + bij

where f(pij) is the Beta probability density function for Pij•

Step (ii) of prior specification involves propagating the

priors from individual inputs to combinations of multiple

inputs. We adopt the following propagation rule:

Pij(k) = II Pmn,

mnEPa1nd(ij(k))

(4)

where Paind(ij{k)) denote the set of k individual in­

puts mn that are "parent inputs" of ij(k). For example,

Paind(A1B2Cl) = {Al,B2,Cl}. With this, the marginal

prior root cause probability for the combination ij(k) becomes:

lP'(ZijCk) = 1) = II amn . (5)
amn + bmn

mnEPaind(ijCk))

A key appeal for the propagation rule (4) is that it captures

the desired combination principles introduced in [6]. First,

since the prior probability for k-input combinations PijCk) is

the product of those for its parents, it follows that PijCk) ::;

Pmn, Vmn E Paind(ij(k)), which satisfies the combination

hierarchy principle [6]. Second, note that the prior failure

probability of the combination PijCkl is large only when those

for its parents are all large; this thus satisfies the combination

heredity principle [6].

Authorized licensed use limited to: Duke University. Downloaded on June 28,2024 at 21:03:33 UTC from IEEE Xplore. Restrictions apply.

866

2.2. Likelihood Evaluation

After prior specification, we now consider the likelihood of

{ ZijCkJ = 1 }, the event that the k-input combination ijCk) is

indeed the root cause of failure1. Conditioning on the observed

data (i.e., test cases with outcomes), we can then classify the

tested input combinations into 2 disjoint categories:

• TP: Tested and Passed combinations, not root cause,

• TF: Tested and Failed combinations, potential root causes.

We next define C p as the set of all input combinations

covered in the passed test cases, and CF as all combinations

covered in the failed test cases. With this, it follows that:

(6)

2.3. Posterior Calculation

The last step of BayesFLo involves the computation of

posterior root cause probabilities of each input combination.

Let V be the observed data. For TP combinations, at least one

test case containing such combinations has passed, thus:

P(Zij(k) = llV) = 0, ij(k) E TP. (7)

For TF combinations, we define two complementary events:

• E = { at least one TF combination is root cause},

• Ee = { none of the TF combinations is root cause}.

With this, we can calculate each probability as follows2:

ll'(EC) - J mnnTF [l - c ~mn<•>) Pr•)] ,IP, (S)

lP(E) = 1 - lP(Ec),

where dP is the product of Beta densities for parents Prs•

Applying the law of total probability, we get:

lP(ZijCkJ = 1) = lP(E)lP(ZijCkJ = llE) + lP(Ec) • 0
(9)

= lP(E)lP(Zij(k) = llE).

The desired posterior root cause probabilities thus become:

lP(Zi ·(k) = 1)
lP(Zij(k) = llV) = lP(Zij(k) = llE) = ;(E) . (10)

These computed probabilities provide a probabilistic means

for ranking potential root causes for diagnosis, where combi­

nations with greater posterior probabilities are more likely to

cause the failure.

3. ILLUSTRATIVE EXAMPLE

We demonstrate the effectiveness of BayesFLo with a 3-

input, 2-level example, using a 4-run strength-2 covering array

(denoted CA(4, 2, 23)) as test cases. Details of covering arrays

for combinatorial testing can be found in [1], [4], [6]. We

set A1C2 as the (sole) root cause in the system, then assign

outcomes (pass/fail) to each test case (see Table 1).

1 Individual input root causes (Zij = 1) are not considered here since they
are assumed to have been fixed at an earlier stage of development.

2We assume that there is only one failure. The complexity of the calcula­
tions is beyond the scope of this paper if there are multiple failures.

Table 1. Test cases with CA(4, 2, 23) design.
A B C Outcome

1 1 1 Pass

2 2 1 Pass

2 1 2 Pass

1 2 2 Fail

Table 2. Posterior probabilities for potential root causes.
Rank Input Combination Posterior Probability

1 A1C2 0.49

2 A1B2 0.24

2 B2C2 0.24

4 A1B2C2 0.04

Suppose that, based on prior knowledge, test engineers

believe that inputs A and C are more likely to cause failure

than input B. We thus apply different priors (see below), which

gives higher expected prior probabilities on inputs A and C:

PA1,PA2,Pc1,Pc2 ~ Beta(2, 8),

Pm,PB2 ~ Beta(2, 18).
(11)

Table 2 summarizes the posterior root cause probabilities re­

turned by the proposed BayesFLo method. We see that A1C2

(the true root cause combination) has the highest posterior root

cause probability amongst 4 potential root causes. This shows

that our approach indeed provides a reasonable probabilistic

ranking of potential root causes, by leveraging available prior

information within an intuitive Bayesian modeling paradigm.

4. CONCLUSION

We have presented here a novel Bayesian fault localization

method, called BayesFLo, which integrates domain knowledge

of test engineers and provides a principled probabilistic rank­

ing of potential root causes for software testing. Ongoing work

includes the use of the computed posterior probabilities for risk

analysis and sequential test case generation.

REFERENCES

[l] Colbourn, C. J. (2004). Combinatorial aspects of covering

arrays. Le Matematiche, 59(1, 2), 125-172.

[2] Wong, W. E., Gao, R., Li, Y., Abreu, R., Wotawa, F., &

Li, D. (2023). Software Fault Localization: an Overview of

Research, Techniques, and Tools. Handbook of Software

Fault Localization: Foundations and Advances, 1-117.

[3] Liu, C., Fei, L., Yan, X., Han, J., & Midkiff, S. P.

(2006). Statistical debugging: A hypothesis testing-based

approach. IEEE Transactions on software engineering,

32(10), 831-848.

[4] Lekivetz, R., & Morgan, J. (2018, July). Fault localization:

analyzing covering arrays given prior information. In

2018 IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C) (pp. 116-

121). IEEE.

[5] Gelman, A., Carlin, J. B., Stem, H. S., & Rubin, D. B.

(1995). Bayesian data analysis. Chapman and Hall/CRC.

[6] Lekivetz, R., & Morgan, J. (2021). On the Testing of

Statistical Software. Journal of Statistical Theory and

Practice, 15(4), 76.

Authorized licensed use limited to: Duke University. Downloaded on June 28,2024 at 21:03:33 UTC from IEEE Xplore. Restrictions apply.

