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Abstract-Fault localization is a software testing activity 

that is critical when software failures occur. We propose a 

novel Bayesian fault localization method, yielding a principled 

and probabilistic ranking of suspicious input combinations for 

identifying the root causes of failures. 
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1. INTRODUCTION 

Combinatorial testing can greatly reduce testing costs while 

increasing the likelihood of detecting faults [l]. However, 

when failures occur, a test engineer must go through the 

arduous task of trying to identify the root cause(s) of such 

failures. This is known as the fault localization problem. A 

comprehensive review of this problem and existing solutions 

is provided in [2]. Relevant methods include [3], who proposed 

a "SOBER" method to rank predicates using computed scores 

without prior knowledge. [4] further integrated prior beliefs 

of test engineers for fault localization by assigning weights to 

inputs. Our approach, inspired by [4], provides a principled 

and probabilistic ranking of suspicious input combinations via 

a novel Bayesian modeling paradigm. 

2. METHODOLOGY 

BayesFLo consists of three important modeling steps: prior 

specification, likelihood evaluation and posterior ranking. 

2.1. Prior Specification 

We first define notation. Consider a software system with 

multiple inputs, denoted by letters A, B, C, • • • . Each input 

has multiple levels, denoted by numbers 1, 2, 3, • • •. The j­

th level of input i is denoted as ij, e.g., different levels of 

input A are written as Al, A2, • • •. Combinations of multiple 

inputs can then be denoted as i1j1 i2j2 • • • , e.g., the two­

input combination of Al and B2 is A1B2. For simplicity, we 

use ij(k) to denote an arbitrary k-input combination, and ij 

(rather than ij( 1l) for an individual input/level. We further use 

PijCk) E [O, 1] to denote the prior root cause probability of input 

combination ij(k), and the random variable ZijC,.l E {0, 1} to 

denote the root cause indicator of ij(k). For k = 1, this is 

again simplified to Pij , Zij. 

We propose a two-step approach for prior specification, 

by first (i) assigning priors to individual inputs and then (ii) 

propagating them to multi-input combinations. In step (i), we 

adopt independent Beta priors on the root cause probability 

Pij for individual input ij: 

(1) 

where aij, bij are the shape parameters of the Beta distribution. 

These parameters can be set to reflect prior know ledge of faults 

in the system. For instance, one expects input ij to have rela­

tively higher chance of failure, then the parameters aij and bij 

can be set so that the expectation lE(pij) = aij / ( aij + bij) is 

relatively greater. This provides user flexibility for integrating 

prior knowledge for probabilistic fault localization. 

The root cause indicator Zij is then modeled as a Bernoulli 

distribution with probability Pij, where a "success" here 

corresponds to input ij being the root cause of failure. The 

distribution of Zij conditioned on Pij can be written as: 

(2) 

The marginal prior root cause probability for input ij (after 

marginalizing out uncertainty in Pij) becomes: 

P(Zij = 1) = (1 Pijf(Pij) dpij = lE(Pij) = aij , (3) 
lo aij + bij 

where f(pij) is the Beta probability density function for Pij• 

Step (ii) of prior specification involves propagating the 

priors from individual inputs to combinations of multiple 

inputs. We adopt the following propagation rule: 

Pij(k) = II Pmn, 

mnEPa1nd(ij(k)) 

(4) 

where Paind(ij{k)) denote the set of k individual in­

puts mn that are "parent inputs" of ij(k). For example, 

Paind(A1B2Cl) = {Al,B2,Cl}. With this, the marginal 

prior root cause probability for the combination ij(k) becomes: 

lP'(ZijCk) = 1) = II amn . (5) 
amn + bmn 

mnEPaind(ijCk)) 

A key appeal for the propagation rule (4) is that it captures 

the desired combination principles introduced in [6]. First, 

since the prior probability for k-input combinations PijCk) is 

the product of those for its parents, it follows that PijCk) ::; 

Pmn, Vmn E Paind(ij(k)), which satisfies the combination 

hierarchy principle [6]. Second, note that the prior failure 

probability of the combination PijCkl is large only when those 

for its parents are all large; this thus satisfies the combination 

heredity principle [6]. 
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2.2. Likelihood Evaluation 

After prior specification, we now consider the likelihood of 

{ ZijCkJ = 1 }, the event that the k-input combination ijCk) is 

indeed the root cause of failure1. Conditioning on the observed 

data (i.e., test cases with outcomes), we can then classify the 

tested input combinations into 2 disjoint categories: 

• TP: Tested and Passed combinations, not root cause, 

• TF: Tested and Failed combinations, potential root causes. 

We next define C p as the set of all input combinations 

covered in the passed test cases, and CF as all combinations 

covered in the failed test cases. With this, it follows that: 

(6) 

2.3. Posterior Calculation 

The last step of BayesFLo involves the computation of 

posterior root cause probabilities of each input combination. 

Let V be the observed data. For TP combinations, at least one 

test case containing such combinations has passed, thus: 

P(Zij(k) = llV) = 0, ij(k) E TP. (7) 

For TF combinations, we define two complementary events: 

• E = { at least one TF combination is root cause}, 

• Ee = { none of the TF combinations is root cause}. 

With this, we can calculate each probability as follows2: 

ll'(EC) - J mnnTF [ l - c ..... ~mn<•>) Pr•)] ,IP, (S) 

lP(E) = 1 - lP(Ec), 

where dP is the product of Beta densities for parents Prs• 

Applying the law of total probability, we get: 

lP(ZijCkJ = 1) = lP(E)lP(ZijCkJ = llE) + lP(Ec) • 0 
(9) 

= lP(E)lP(Zij(k) = llE). 

The desired posterior root cause probabilities thus become: 

lP(Zi ·(k) = 1) 
lP(Zij(k) = llV) = lP(Zij(k) = llE) = ;(E) . (10) 

These computed probabilities provide a probabilistic means 

for ranking potential root causes for diagnosis, where combi­

nations with greater posterior probabilities are more likely to 

cause the failure. 

3. ILLUSTRATIVE EXAMPLE 

We demonstrate the effectiveness of BayesFLo with a 3-

input, 2-level example, using a 4-run strength-2 covering array 

(denoted CA(4, 2, 23)) as test cases. Details of covering arrays 

for combinatorial testing can be found in [1], [4], [6]. We 

set A1C2 as the (sole) root cause in the system, then assign 

outcomes (pass/fail) to each test case (see Table 1). 

1 Individual input root causes (Zij = 1) are not considered here since they 
are assumed to have been fixed at an earlier stage of development. 

2We assume that there is only one failure. The complexity of the calcula­
tions is beyond the scope of this paper if there are multiple failures. 

Table 1. Test cases with CA(4, 2, 23) design. 
A B C Outcome 

1 1 1 Pass 

2 2 1 Pass 

2 1 2 Pass 

1 2 2 Fail 

Table 2. Posterior probabilities for potential root causes. 
Rank Input Combination Posterior Probability 

1 A1C2 0.49 

2 A1B2 0.24 

2 B2C2 0.24 

4 A1B2C2 0.04 

Suppose that, based on prior knowledge, test engineers 

believe that inputs A and C are more likely to cause failure 

than input B. We thus apply different priors (see below), which 

gives higher expected prior probabilities on inputs A and C: 

PA1,PA2,Pc1,Pc2 ~ Beta(2, 8), 

Pm,PB2 ~ Beta(2, 18). 
(11) 

Table 2 summarizes the posterior root cause probabilities re­

turned by the proposed BayesFLo method. We see that A1C2 

(the true root cause combination) has the highest posterior root 

cause probability amongst 4 potential root causes. This shows 

that our approach indeed provides a reasonable probabilistic 

ranking of potential root causes, by leveraging available prior 

information within an intuitive Bayesian modeling paradigm. 

4. CONCLUSION 

We have presented here a novel Bayesian fault localization 

method, called BayesFLo, which integrates domain knowledge 

of test engineers and provides a principled probabilistic rank­

ing of potential root causes for software testing. Ongoing work 

includes the use of the computed posterior probabilities for risk 

analysis and sequential test case generation. 
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