2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C) | 979-8-3503-5939-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/QRS-C60940.2023.00019

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

BayesFLo: Bayesian Fault Localization for Software Testing

Yi Jil*, Ryan Lekivetz?, Simon Mak! and Joseph Morgan?
1Department of Statistical Science, Duke University, Durham NC, USA
2JMP Statistical Discovery LLC, SAS Institute Inc., Cary NC, USA
yi.ji@duke.edu, Ryan.Lekivetz@jmp.com, sm769@duke.edu, Joseph.Morgan@jmp.com
*corresponding author

Abstract—Fault localization is a software testing activity
that is critical when software failures occur. We propose a
novel Bayesian fault localization method, yielding a principled
and probabilistic ranking of suspicious input combinations for
identifying the root causes of failures.

Keywords—Fault Localization; Bayesian Modeling; Software
Testing.

1. INTRODUCTION

Combinatorial testing can greatly reduce testing costs while
increasing the likelihood of detecting faults [1]. However,
when failures occur, a test engineer must go through the
arduous task of trying to identify the root cause(s) of such
failures. This is known as the fault localization problem. A
comprehensive review of this problem and existing solutions
is provided in [2]. Relevant methods include [3], who proposed
a “SOBER” method to rank predicates using computed scores
without prior knowledge. [4] further integrated prior beliefs
of test engineers for fault localization by assigning weights to
inputs. Our approach, inspired by [4], provides a principled
and probabilistic ranking of suspicious input combinations via
a novel Bayesian modeling paradigm.

2. METHODOLOGY

BayesFLo consists of three important modeling steps: prior
specification, likelihood evaluation and posterior ranking.

2.1. Prior Specification

We first define notation. Consider a software system with
multiple inputs, denoted by letters A, B, C,---. Each input
has multiple levels, denoted by numbers 1,2,3,---. The j-
th level of input ¢ is denoted as ij, e.g., different levels of
input A are written as Al, A2,---. Combinations of multiple
inputs can then be denoted as i1j1i2j2---, e.g., the two-
input combination of A1 and B2 is A1B2. For simplicity, we
use ij*) to denote an arbitrary k-input combination, and i;j
(rather than ¢ j(”) for an individual input/level. We further use
Dijm € [0, 1] to denote the prior root cause probability of input
combination ij(*), and the random variable Z;;x, € {0,1} to
denote the root cause indicator of ij(k’>. For k£ = 1, this is
again simplified to p;;, Z;;.

We propose a two-step approach for prior specification,
by first (i) assigning priors to individual inputs and then (ii)
propagating them to multi-input combinations. In step (i), we

adopt independent Beta priors on the root cause probability
p;; for individual input 4j:

pij ~ Beta(aij, bij), (D

where a;;, b;; are the shape parameters of the Beta distribution.
These parameters can be set to reflect prior knowledge of faults
in the system. For instance, one expects input ¢j to have rela-
tively higher chance of failure, then the parameters a;; and b;;
can be set so that the expectation E(p;;) = a;;/(a;; + bij) is
relatively greater. This provides user flexibility for integrating
prior knowledge for probabilistic fault localization.

The root cause indicator Z;; is then modeled as a Bernoulli
distribution with probability p;;, where a “success” here
corresponds to input ¢j being the root cause of failure. The
distribution of Z;; conditioned on p;; can be written as:

Zij |pij ~ Bernoulli(pij). (2)

The marginal prior root cause probability for input ¢5 (after
marginalizing out uncertainty in p;;) becomes:

aij

w3
aij—l—bij 3

1
P(Zij=1)= /o pi; [(pij) dpij = E(pij) =
where f(p;;) is the Beta probability density function for p;;.

Step (ii) of prior specification involves propagating the
priors from individual inputs to combinations of multiple
inputs. We adopt the following propagation rule:

pij(k) = H Pmn, (4)

mnEPaind(ij(k">)

where Pajnq(ij*)) denote the set of k individual in-
puts mn that are “parent inputs” of ij*). For example,
Pajna(A1B2C1) = {Al,B2,C1}. With this, the marginal
prior root cause probability for the combination ij(*) becomes:
amn
P(Zyw=1)=] a b (5)
mn€Pajg(ij (%))

A key appeal for the propagation rule (4) is that it captures
the desired combination principles introduced in [6]. First,
since the prior probability for k-input combinations p;;) is
the product of those for its parents, it follows that Dijo <
P, Vmn € Pajg(ij®)), which satisfies the combination
hierarchy principle [6]. Second, note that the prior failure
probability of the combination p; ;) is large only when those
for its parents are all large; this thus satisfies the combination
heredity principle [6].

2693-9371/23/$31.00 ©2023 IEEE 865

DOI 10.1109/QRS-C60940.2023.00019

Authorized licensed use limited to: Duke University. Downloaded on June 28,2024 at 21:03:33 UTC from IEEE Xplore. Restrictions apply.

2.2. Likelihood Evaluation

After prior specification, we now consider the likelihood of
{Z;joo = 1}, the event that the k-input combination ij(*) is
indeed the root cause of failure'. Conditioning on the observed
data (i.e., test cases with outcomes), we can then classify the
tested input combinations into 2 disjoint categories:

e TP: Tested and Passed combinations, not root cause,
o TF: Tested and Failed combinations, potential root causes.

We next define Cp as the set of all input combinations
covered in the passed test cases, and Cr as all combinations
covered in the failed test cases. With this, it follows that:

TP =Cp, TF=Cp\(CpNCr). (6)

2.3. Posterior Calculation

The last step of BayesFLo involves the computation of
posterior root cause probabilities of each input combination.
Let D be the observed data. For TP combinations, at least one
test case containing such combinations has passed, thus:

ij®) e TP. (7

P(Zij(k) =1/D) =0,
For TF combinations, we define two complementary events:

o E = {at least one TF combination is root cause},
o EY = {none of the TF combinations is root cause}.

With this, we can calculate each probability as follows?:

II II

mn(F) eTF rs€Pajg(mn(k))

P(E) =1—P(E°),

P(E®) = 1— prs | | dP,

®)

where dP is the product of Beta densities for parents ps.
Applying the law of total probability, we get:

P(Zij = 1) = P(E)P(Z; ;0 = 1|E) + P(EC) -0

?

9
= P(E)P(Zij(k) =1|E). ©)

The desired posterior root cause probabilities thus become:
P(E)

These computed probabilities provide a probabilistic means

for ranking potential root causes for diagnosis, where combi-

nations with greater posterior probabilities are more likely to
cause the failure.

]P’(Zij(m =1|D) =]P’(Zij(m =1|F) = (10)

3. ILLUSTRATIVE EXAMPLE

We demonstrate the effectiveness of BayesFLo with a 3-
input, 2-level example, using a 4-run strength-2 covering array
(denoted CA(4,2,23)) as test cases. Details of covering arrays
for combinatorial testing can be found in [1], [4], [6]. We
set A1C?2 as the (sole) root cause in the system, then assign
outcomes (pass/fail) to each test case (see Table 1).

ndividual input root causes (Z;; = 1) are not considered here since they
are assumed to have been fixed at an earlier stage of development.

2We assume that there is only one failure. The complexity of the calcula-
tions is beyond the scope of this paper if there are multiple failures.

866

Table 1. Test cases with CA(4,2,23) design.

A | B | C | Outcome
11111 Pass
2121 Pass
21112 Pass
11212 Fail

Table 2. Posterior probabilities for potential root causes.

Rank | Input Combination | Posterior Probability
1 AlC2 0.49
2 Al1B2 0.24
2 B2C2 0.24
4 A1B2C2 0.04

Suppose that, based on prior knowledge, test engineers
believe that inputs A and C' are more likely to cause failure
than input B. We thus apply different priors (see below), which
gives higher expected prior probabilities on inputs A and C:

PAL,PA2,Pc1,Pc2 ~ Beta(2,8),
pB1,PB2 ~ Beta(2,18).

Table 2 summarizes the posterior root cause probabilities re-
turned by the proposed BayesFLo method. We see that A1C2
(the true root cause combination) has the highest posterior root
cause probability amongst 4 potential root causes. This shows
that our approach indeed provides a reasonable probabilistic
ranking of potential root causes, by leveraging available prior
information within an intuitive Bayesian modeling paradigm.

(1)

4. CONCLUSION

We have presented here a novel Bayesian fault localization
method, called BayesFLo, which integrates domain knowledge
of test engineers and provides a principled probabilistic rank-
ing of potential root causes for software testing. Ongoing work
includes the use of the computed posterior probabilities for risk
analysis and sequential test case generation.

REFERENCES

[1] Colbourn, C. J. (2004). Combinatorial aspects of covering
arrays. Le Matematiche, 59(1, 2), 125-172.

[2] Wong, W. E., Gao, R,, Li, Y., Abreu, R., Wotawa, F,, &
Li, D. (2023). Software Fault Localization: an Overview of
Research, Techniques, and Tools. Handbook of Software
Fault Localization: Foundations and Advances, 1-117.

[3] Liu, C., Fei, L., Yan, X., Han, J., & Midkiff, S. P.
(2006). Statistical debugging: A hypothesis testing-based
approach. IEEE Transactions on software engineering,
32(10), 831-848.

[4] Lekivetz, R., & Morgan, J. (2018, July). Fault localization:
analyzing covering arrays given prior information. In
2018 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C) (pp. 116-
121). IEEE.

[5] Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B.
(1995). Bayesian data analysis. Chapman and Hall/CRC.

[6] Lekivetz, R., & Morgan, J. (2021). On the Testing of
Statistical Software. Journal of Statistical Theory and
Practice, 15(4), 76.

Authorized licensed use limited to: Duke University. Downloaded on June 28,2024 at 21:03:33 UTC from IEEE Xplore. Restrictions apply.

