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Abstract: We consider the estimation of the marginal likelihood in Bayesian statistics, with primary

emphasis on Gaussian graphical models, where the intractability of the marginal likelihood in high

dimensions is a frequently researched problem. We propose a general algorithm that can be widely

applied to a variety of problem settings and excels particularly when dealing with near log-concave

posteriors. Our method builds upon a previously posited algorithm that uses MCMC samples to

partition the parameter space and forms piecewise constant approximations over these partition

sets as a means of estimating the normalizing constant. In this paper, we refine the aforementioned

local approximations by taking advantage of the shape of the target distribution and leveraging an

expectation propagation algorithm to approximate Gaussian integrals over rectangular polytopes.

Our numerical experiments show the versatility and accuracy of the proposed estimator, even as the

parameter space increases in dimension and becomes more complicated.

Keywords: deterministic approximation; expectation propagation; graphical model; junction tree;

marginal likelihood; partition function

1. Introduction

In Bayesian inference, many tasks, such as model selection, averaging, and comparison,
rely on being able to compute the marginal likelihood (or model evidence) in order to
form the Bayes factor. The marginal likelihood is the normalizing constant of a posterior
distribution, which plays a particularly important role in probabilistic graphical models.
Suppose γ is a general Gibbs distribution defined on U ⊆ Rd, γ(u) = Z−1e−Ψ(u), with

Z =
∫

U
e−Ψ(u)du < +∞, U ⊆ R

d. (1)

In a Bayesian setup, Ψ : Rd → R is the negative log posterior. Since Ψ is typically
complicated, and the space over which we are integrating tends to be high-dimensional,
the resulting integral is usually intractable. This calculation is exacerbated further for
Gaussian graphical models (GGM) [1,2] because the integral is taken over a specialized
subset of positive definite matrices.

Generic algorithms for approximating the marginal likelihood include Laplace’s
method [3], the harmonic mean estimator [4,5], the corrected arithmetic mean estima-
tor [6], annealed importance sampling [7], Chib’s method [8], (warp) bridge sampling [9,10],
and nested sampling [11]. More recent developments include the integrated nested Laplace
approximation [12] and the expectation propagation±approximate Bayesian computation
algorithm [13]. While these methods can be applied to many marginal likelihood estimation
problems, they do not provide a straightforward way to deal with the specificity of GGMs
and the positive definite restriction on the precision matrices. Additionally, many of these
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aforementioned methods tend to rely on high-quality MCMC samples and have numerous
problem-specific model settings that limit the overall practicality.

While there have been developments that specifically target the marginal likeli-
hood of GGMs [14], the stringent prior restrictions (inverse-Wishart and hyper-inverse
Wishart) prevent many of these approaches from being used in broader contexts. Fur-
thermore, there exists substantial literature on inference for both decomposable [15] and
non-decomposable [16±18] graphs; however, the need for more general and scalable algo-
rithms is ever present. This has consequently led to dedicated methods for sampling from
the G-Wishart distribution and conducting model comparison [19±21]. Also relevant is the
availability of the G-Wishart normalizing constant in closed form [22], but the viability of
these results is limited when considering most high-dimensional graphs of practical interest.
Bhadra et al. [23] propose an application of Chib’s method and a telescoping decomposition
of the precision matrix that simplifies the ensuing marginal likelihood calculations, but the
main advantages of this approach are seen with element-wise priors, and in most cases,
the time complexity is on par with other GGM-specific methods.

A recent approach that combines some of the probabilistic ideas from MCMC-based
methods while drawing inspiration from quadrature is the hybrid estimator [24]. This
method moves away from an over-reliance on MCMC samples, as these can be time-
consuming to obtain if the likelihood is expensive to evaluate. Rather, the MCMC samples
are utilized during a preliminary step to learn a partition of the parameter space in order to
identify regions of posterior concentration. By making local approximations to the negative
log posterior over these partition sets, the the hybrid algorithm simplifies the integral
and forms a piecewise estimate of the marginal likelihood. The high-probability partition
of the parameter space yields multiple benefits. First, the areas of the parameter space
that admit finer partitions encourage precise approximations to the log posterior. More
importantly, this partitioning routine redirects attention away from regions that have little
to no contribution to the posterior distribution, saving both time and computation.

The hybrid estimator establishes the foundation for a promising way to estimate the
marginal likelihood, and the experimental results demonstrate its competitiveness with
other well-known estimators in various problem settings [24]. Moreover, the methodology’s
generality makes it convenient to refine the algorithm so that it can be applied to more
specific problem setups. With the ultimate goal of accurately computing the marginal
likelihood for GGMs, we introduce an alternative parametrization of precision matrices
and restrict our scope to target the normalizing constants of a specific class of densitiesÐ
unimodal densities that are approximately log-concave around the mode. In this paper, we
leverage core ideas of the hybrid estimator in conjunction with higher order approximations
to the negative log posterior for accuracy, as well as expectation propagation techniques for
scalability. This results in a novel estimator that is suitably equipped for high-dimensional
problems. We call the estimator that arises from these modifications the EP-guided second-
order modified hybrid estimator (EPSOM-Hyb).

After verifying the accuracy of EPSOM-Hyb in initial experiments for decomposable
graphs, we further extend the methodology to better handle non-decomposable GGMs.
By incorporating junction tree (JT) representations of connected graphs, we enhance the
computational efficiency of the marginal likelihood calculation. This leads to a GGM-
specific estimator, denoted EPSOM-HybJT. Our contribution is multifaceted; despite the
introduction of higher-order terms that inherently bring additional computational chal-
lenges to the hybrid estimator framework, we maintain practical utility in the EPSOM-Hyb
methodology. This approach leads to an estimator that not only excels in highly specific
problem settings, but also outperforms well-established estimators. Our experiments
indicate that EPSOM-HybJT is more accurate and more than 100 times faster in higher
dimensions than other viable estimators.

The outline of the paper is as follows. In Section 2, we provide the background for the
hybrid estimator so that the modifications that we propose in Section 3 to formulate the
EPSOM-Hyb estimator have relevant context. In Section 4, we investigate the performance
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of the EPSOM-Hyb estimator for GGMs, and we also develop the EPSOM-HybJT estimator.
In Section 5, we conclude and briefly discuss future work.

2. The Hybrid Estimator

We first review the salient details of the hybrid estimator as a means of providing
background on the existing work and establishing context for our development of the
EPSOM-Hyb estimator. As an initial step, the hybrid algorithm learns a dyadic partition of
the parameter space that helps identify high-probability regions of the target distribution.
In order to accomplish this, we form covariate±response pairs, {

(
uj, Ψ

(
uj

))
}1≤j≤J , using

MCMC samples from the target distribution γ and evaluating them with Ψ. Clearly, we
make the assumption of being able to sample from γ and evaluate Ψ, but both of these are
basic requirements in many MCMC-based algorithms. We can then use a regression tree
algorithm to obtain optimal splits of the parameter space, where each of the partition sets is
the hyper-rectangle that defines the corresponding leaf node in the fitted tree. The hybrid
estimator uses the classification and regression tree (CART) algorithm [25], which returns
a partition of the parameter space that can be further restricted to the compactification
A of U by setting A to be bounding box defined by the range of the posterior samples:

A = ∏
d
l=1[minj{u(l)

j }, maxj{u(l)
j }], where u

(l)
j is the l-th coordinate of the j-th sample.

Thus, the resulting partition A is a dyadic partition of the compact set A. We work with a
compactification of the parameter space as a means of eliminating low-probability regions
of the domain whose contributions to the integral in Equation (1) are negligible. This is
particularly useful in Bayesian contexts where the posterior concentrates with increasing
sample size [26,27].

Next, we formulate the piecewise estimator to Ψ defined over the compact set A ⊆ U ,

Ψ(u) ≈ Ψ̂(u) =
K

∑
k=1

Ψ̂k(u)1Ak
(u). (2)

whereA = {A1, . . . , AK}, A =
⋃K

k=1 Ak, and Ak ∩ Ak′ = ∅ for all k ̸= k′. We set Ψ̂k(u) = c⋆k ,

a representative point in Ak that is constant in u. Since each Ak = ∏
d
l=1[a

(l)
k , b

(l)
k ] is a hyper-

rectangle, the hybrid estimator reduces to

∫

A
e−Ψ(u) du ≈

∫

A
e−Ψ̂(u) du =

K

∑
k=1

e−c⋆k · µ(Ak) = : ẐHyb (3)

Here, µ(B) =
∫

B 1 du denotes the d-dimensional volume of a set B.

3. The Epsom-Hyb Estimator

In the discourse that follows, we propose some key modifications to the hybrid algo-
rithm to develop a novel estimator better suited for tackling higher-dimensional problems.
For the initial development, we do not restrict our analysis to posterior distributions and
illustrate the modified algorithm in the general case of log-concave target densities. Our
additional assumption about the shape of Ψ is employed only to ensure that the Hessian
is positive definite everywhere and can, in fact, be relaxed to unimodal densities that are
approximately log-concave in a suitable neighborhood around the mode. This assumption
is widely satisfied by Bayesian posteriors in regular parametric models, and due to the
Bernstein±von Mises phenomenon, most regular posterior distributions are approximately
log-concave with sufficiently large sample size [28].

As before, we work with a compactification of the parameter space, for which we have
a dyadic partition A obtained through the same tree-fitting procedure as before. However,
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instead of the constant approximation to Ψ within each partition set Ak in A, we first retain
the general estimator given in Equation (2),

Z ≈
∫

A
e−Ψ(u) du ≈

∫

A
e−Ψ̂(u) du =

K

∑
k=1

∫

Ak

e−Ψ̂k(u)du. (4)

Below, we highlight three fundamental features of the EPSOM-Hyb algorithm that dis-
tinguish it from the hybrid algorithm, followed by detailed discussions of each step. See
Algorithm 1 for a formal statement of the EPSOM-Hyb estimation procedure.

• In Equation (2), we take Ψ̂k to be a local approximation to Ψ constructed using a
second-order Taylor expansion of Ψ around a representative point uk ∈ Ak.

• The second-order Taylor approximation complicates the calculation of the integrals in
Equation (4). We address the intractability of the resulting integral using an expectation
propagation (EP) algorithm that targets high-dimensional Gaussian integrals.

• We exploit the unimodality of γ to identify suitable points within each partition set

around which we perform the Taylor expansion required for Ψ̂k.

Algorithm 1: EPSOM-Hyb

Input : Sampler for γ, functions for evaluating Ψ, ∇Ψ, ∇2Ψ.
Output : Estimate of the logarithm of the normalizing constant of γ.

Sample u1, . . . , uJ ∼ γ.

Fit a CART model, T , to (u1, Ψ(u1)), . . . , (uJ , Ψ(uJ)).

Extract the partition A = {A1, . . . , AK} from T of the bounding box A of U .

Calculate the global mode, u0, of γ.

for k ∈ {1, . . . , K} do

uk ← argminu∈Ak
||u− u0||1.

λk ← ∇Ψ(uk).

Hk ← ∇2Ψ(uk).

Ck ← (2π)d/2|Hk|−1/2 exp
(

1
2

(
u′k H−1

k uk − 2λ′kuk + λ′k H−1
k λk

))
.

bk ← Hkuk − λk.

Gk ←
∫

Ak
N
(

u | H−1
k bk, H−1

k

)
du.

Ẑk ← Ck · Gk.

end

return log Ẑ = log-sum-exp
(
log Ẑ1, . . . , log ẐK

)
.

3.1. Local Approximation Using a Taylor Expansion

We revisit Equation (2) and consider the following piecewise quadratic approximation
to Ψ,

Ψ(u) ≈∑
k

[
Ψ(uk) + (u− uk)

′∇Ψ(uk) +
1

2
(u− uk)

′∇2Ψ(uk)(u− uk)
]
1Ak

(u), (5)

where uk is a representative point of Ak. This improves upon the initial idea of the piecewise
constant approximation in the hybrid methodology by introducing a second-order Taylor
approximation. By introducing higher-order terms, we trade the convenient simplification
of the integral in Equation (3) for increased local accuracy of the approximation. Upon



Algorithms 2024, 17, 213 5 of 21

exponentiating the approximation in Equation (5), we observe that the second exponential
in the summation below is proportional to a Gaussian density,

e−Ψ̂(u) = ∑
k

exp
{
−Ψ(uk) + u′kλk − 1

2 u′k Hkuk

}
exp

{
− 1

2 u′Hku + (Hkuk − λk)
′u
}
1Ak

(u),

where λk := ∇Ψ(uk) and Hk := ∇2Ψ(uk) represent the gradient vector and the Hessian
matrix of Ψ evaluated at uk, respectively. Since γ is log-concave, the Hessian matrix is
positive definite, and hence invertible. Integrating the exponential above, we arrive at the
following approximation to Z :

∫

A
e−Ψ(u)du ≈

∫

A
e−Ψ̂(u)du = ∑

k

Ck

∫

Ak

N
(

u | H−1
k bk, H−1

k

)
du = : ẐEPSOM−Hyb. (6)

Here, Ck = exp
(
−Ψ(uk) + λ′kuk − 0.5u′k Hkuk + 0.5m′k Hkmk

)
, bk = Hkuk − λk, and mk =

H−1
k bk. Before ẐEPSOM−Hyb can serve as a viable estimator for Z , we must address the

remaining questions of how to determine the value of each uk ∈ Ak and how to compute
the intractable Gaussian integrals in Equation (6). In the next two sections, we provide
scalable methods to accomplish these tasks. It is worth noting that the original hybrid
estimator does not face the same intractability issue due to the simplistic nature of the
constant approximation used in Equation (3). Our incorporation of higher-order terms
complicates the subsequent calculation, which necessitates a scalable algorithm like EP to
compute the truncated Gaussian integrals.

3.2. Estimating Truncated Gaussian Probabilities

Despite the prevalence of Gaussian densities in statistical modeling, multivariate Gaus-
sian probabilities remain difficult to compute, as they typically require high-dimensional
integration. Numerical integration [29] is a common solution, but it is prohibitively expen-
sive in the number of points required, thus preventing it from being a scalable solution
in the high-dimensional space in which we wish to operate. A more recent alternative
that specifically targets truncated normal distributions is the minimax tilting method [30],
and while we used this method in the initial development of our algorithm, it failed to
produce accurate results beyond trivial settings. This ultimately led us to consider more
computationally efficient integration techniques, such as expectation propagation [31],
which is widely used to compute approximate integrals. To better understand how the
expectation propagation (EP) algorithm can be applied to the intractable Gaussian integral
in the previous section, we lay out some preliminary groundwork for the EP algorithm.
Starting with the Gaussian distribution p0(x) = N (x | m, K), we define the un-normalized
truncated distribution p(x) = p0(x)1A(x). The Gaussian probability of interest can be
written as:

F(A) =
∫

A
p0(x)dx =

∫
p(x)dx. (7)

Cunningham et al. [32] propose a framework for approximating F(A) that consists of
two main approximations. The first approximation is a tractable distribution q that mini-
mizes the Kullback±Leibler (KL) divergence between p and q, denoted D(p || q). However,
the intractability of p complicates the minimization and subsequently requires another
approximation, for which we instead work with a simplified representation of p. Namely,
we replace p(x) with the product of a prior distribution p0(x) and factors ti(x), such that

p(x) = p0(x)∏
i

ti(x).
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In order to facilitate tractability, we assume ti(x) = 1{ai < xi < bi}, where xi is the i-th
coordinate of x, and ai, bi are simply the lower and upper bounds of integration, respectively.
Then, the target integral in Equation (7) can be written as

F(A) =
∫

p(x)dx =
∫

p0(x)
d

∏
i=1

ti(xi)dxi.

We proceed to approximate each of the intractable factors ti with a tractable, un-normalized
Gaussian t̃i(x), which produces the final approximation q of p. More specifically, we take q
to mirror the product form of p,

q(x) = p0(x)∏
i

t̃i(x) = p0(x)∏
i

Z̃iN
(

x | µ̃i, σ̃2
i

)
= ZN (x | µ, Σ),

where the parameters of these unnormalized Gaussian distributions, {µ̃i, σ̃2
i , Z̃i}, admit

closed form updates that are the result of an iterative moment matching scheme. From this,
we observe that by estimating the normalizing constant of q, we also obtain an approxi-
mation for the normalizing constant of the target distribution p. See Equations (21)±(23)
from Cunningham et al. [32] for the closed-form updates for each of these parameters
and more details regarding the relevant notation. Essentially, the EP algorithm iteratively

constructs the approximating distribution q(x) to minimize D
(

tiq
\i || t̃iq

\i
)

, which in turn

approximately minimizes D(p || q). Here, q\i(x) = q(x)/ t̃i(x) is defined as the cavity
distribution. By running the EP algorithm to convergence, we can calculate the following
mean and covariance parameters of the normal distribution q,

µ = Σ

(
K−1m +

d

∑
i=1

µ̃i

σ̃2
i

ei

)
, Σ =

(
K−1 +

d

∑
i=1

1

σ̃2
i

cic
′
i

)−1

,

where ei is the i-th standard basis vector. With this, we also obtain a closed-form expression
for the normalizing constant of q,

log Z =− 1

2

(
m′K−1m + log |K|

)
+

d

∑
i=1

(
log Z̃i −

1

2

(
µ̃2

i

σ̃2
i

+ log σ̃2
i + log(2π)

))

+
1

2

(
µ′Σ−1µ + log |Σ|

)
,

which approximates the Gaussian probability F(A) in Equation (7). It is worth noting that
the algorithm is still valid for arbitrary factors ti(x), albeit with different parameter updates.
Our simplistic choice of ti(x) to be the indicator function defined over the constant lower
and upper limits of integration reflects the rectangular nature of the partition sets used in
the Hybrid-EP estimator.

With this, recall the Gaussian integral in Equation (6),

∫

Ak

N
(

u | H−1
k bk, H−1

k

)
du. (8)

Taking p0(u) ≡ N
(

u | H−1
k bk, H−1

k

)
, we observe that the above integral is exactly the

one given in Equation (7). Thus, we can directly use the EPMGP algorithm to obtain an
estimate for the Gaussian probability in Equation (8). Another benefit of using the EPMGP
algorithm is its exceptional accuracy when the constraint set is rectangular, which coincides

with our setup, where Ak = ∏
d
l=1[a

(l)
k , b

(l)
k ] is a d-dimensional hyper-rectangle.
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3.3. Selecting the Candidate Point in Each Partition Set

The final piece of EPSOM-Hyb is the point uk used in the piecewise Taylor approxi-
mation Ψ̂ in Equation (5). In our unimodal setup, a natural choice for each partition set’s
representative point is one that is closest to the global mode of γ. More specifically, if u0 is
the global mode, then uk = argminu∈Ak

∥u− u0∥1. Conveniently, we can obtain the global
mode of γ using Newton’s method with little additional effort because we already have
expressions for the gradient and Hessian of Ψ as part of the approximation in Equation (6).
With this, all components of EPSOM-Hyb are accounted for and can be summarized in
Algorithm 1.

4. Application to Gaussian Graphical Models

Next, we investigate the performance of EPSOM-Hyb on marginal likelihood estima-
tion for GGMs. Let G = (V, E) be an undirected graph with vertex set V = {1, . . . , p}
and edge set E. Define Sp as the set of symmetric p × p matrices and S

p
≻0 as the cone

of positive definite p × p matrices in Sp. Let X ∼ N (µ, Σ), Σ−1 ∈ S
p
≻0(G), where

S
p
≻0(G) = {M =

(
Mij

)
∈ S

p
≻0 | Mij = 0, ∀(i, j) /∈ E}. Then, the likelihood can be

written as follows,

L(Σ) = (2π)−np/2 det(Σ)−n/2e− tr(Σ−1B)/2, B =
n

∑
i=1

xix
′
i . (9)

Further, X satisfies the GGM with graph G, where G dictates the conditional dependence
structure and restricts the sparse concentration matrix Ω = (ωij)p×p = Σ−1 so that (i, j) ∈ E

if and only if ωij ̸= 0, and x(i) and x(j) are conditionally independent if and only if ωij = 0.
Hence, an undirected graphical model corresponding to G restricts the inverse covariance
matrix Ω to a linear subspace of the cone of positive definite matrices.

We first consider decomposable GGMs where the tractability of the marginal likeli-
hood makes it easy to evaluate estimates. In Section 4.2, we broaden our focus to general,
non-decomposable graphs. To address the additional computational challenges that ac-
company non-decomposable graphs and high-dimensional parameter spaces, we propose
an extension to EPSOM-Hyb that facilitates dimension reduction and drastically reduces
the time complexity of the normalizing constant calculation. In the following GGM experi-
ments, we refer to the estimator from Atay-Kayis and Massam [17] as GNORM, which is
well-established for general graphs and can be computed easily using BDgraph [33].

4.1. Hyper Inverse-Wishart Induced Cholesky Factor Density

We first consider the case where G is decomposable. The hyper-inverse Wishart (HIW)
distribution [34] for Σ = Ω−1 and the corresponding induced class of distributions [14]
for Ω are attractive choices for priors. Given G, we place a hyper-inverse Wishart prior
HIWG(δ, Λ) on Ω = Σ−1, where δ > 2 is the degrees of freedom and Λ ∈ S

p
≻0 is fixed.

The HIW distribution is defined over the cone of p× p positive definite matrices, with the
corresponding density:

f (Ω | G) ∝ |Ω|(δ−2)/2e− tr(ΩΛ)/2. (10)

Despite being able to sample from the posterior distribution, HIWG(δ + n, Λ + B), we
cannot directly carry out the EPSOM-Hyb algorithm. Since samples are drawn from a
sub-manifold of Rp×p, proceeding to obtain a partition over Rp×p does not guarantee that a
given point in the partition can be reconstructed to form a valid covariance matrix. As such,
we circumvent this issue by working with an alternative representation of Σ given by the
Cholesky decomposition Σ−1 = Ω = ϕ′ϕ. Provided that the vertices of G are enumerated
according to a perfect vertex elimination scheme, the upper triangular matrix ϕ observes
the same sparsity as Ω. Consequently, we need only compute the induced prior on the
nonzero elements of ϕ, which, together with the likelihood in Equation (9), gives us an
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explicit expression for the negative log posterior Ψ. The determinant of the Jacobian matrix

J of the transformation Ω → ϕ is given by |J| = 2p ∏
p
i=1 ϕ

νi+1
ii , where the i-th row of ϕ

has exactly νi + 1 nonzero elements [14]. Further, the distribution of Σ has the strong
hyper-Markov property [35], so we can ascertain mutual independence of the rows of ϕ.
Then, we can specify the joint density of the free elements of ϕ as follows,

π(ϕ) =

[ p

∏
i=1

2−(δ+νi)/2

Γ((δ + νi)/2)
ϕ

δ+νi−2
ii e−

1
2 ϕ2

ii (2ϕii)

]
×
[

∏
(r,s):s>r,(vs ,vr)∈E

1√
2π

e−
1
2 ϕ2

rs

]
. (11)

Recall that we also require expressions for the gradient and Hessian of Ψ, both of which are
provided in Appendix D. Putting these ideas together, we can employ the EPSOM-Hyb
estimation framework by drawing samples from the posterior distribution, taking the
Cholesky factor of each sample, and computing Ψ(ϕ) using the likelihood in Equation (9)
and the prior in Equation (11). While this procedure appears to be quite simple, the impli-
cations are significant; if we have a different prior on Σ for which we can do the posterior
computation, all other aspects of the algorithm would remain the same. All that is required
is a way to sample from the posterior of Ω and an expression for the Jacobian of the
corresponding transformation.

In our simulations, we emulate a high-dimensional setting by stacking the adjacency
matrix of the decomposable graph G9 in Figure 1 multiple times along a block diagonal
to construct larger graphs, e.g., AGp

= Ir ⊗ AG9
, where AGp

is the adjacency matrix of Gp

and r is the number of times we stack the graph. For r = 8, 10, we form the graphs G72

and G90, which have d = 200, 250 free elements, respectively. Drawing data that satisfy
their corresponding GGMs and taking δ = 3, n = 100, and Λ = Ip, we can sample from
the posterior distribution and compute the marginal likelihood estimates. Among the
generic methods mentioned in Section 1, only the bridge sampling estimator (BSE) and the
warp bridge sampling estimator (WBSE) are viable and accurate methods for computing
the marginal likelihood. As seen in Table 1, both BSE and WBSE are competitive with
EPSOM-Hyb when d = 200, but the quality of the former two estimators deteriorates when
d = 250. The relatively small error of EPSOM-Hyb in this high-dimensional graphical
models setting is particularly encouraging. Interestingly, GNORM fails to produce sensible
estimates for these high-dimensional graphs.

8 7 4 3

9 6 5

1

2

5 4

3

1

2

Figure 1. G9 (left) , an undirected, decomposable graph, and G5 (right), an undirected, non-

decomposable graph.

Table 1. Mean, average error (AE), and root mean squared error (RMSE) for the approximations to the

log normalizing constant of the HIWG

(
δ + n, Ip + B

)
distribution. G72 has 72 vertices with 200 pa-

rameters and G90 has 90 vertices and 250 parameters. Estimates are reported over 100 replications,

each using 1000 samples from the true posterior.

Dimension Method Mean AE RMSE

p = 72, d = 200
EPSOM-HybJT −6230.59 0.41 0.45
BSE −6230.56 −0.74 1.93
WBSE −6230.59 −0.70 2.22

p = 90, d = 250
EPSOM-HybJT −7881.46 0.51 0.56
BSE −7875.70 −5.26 6.31
WBSE −7875.76 −5.19 6.09
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4.2. G-Wishart Prior for General Graphs

In contrast with the previous section, we now broaden the scope of examples and
consider general, non-decomposable graphs. For the conditional general graph G, a popular
choice for the prior is the G-Wishart prior on Ω, GW(δ, Λ), which has the following density,

f (Ω | G) ∝ |Ω|(δ−2)/2e−tr(ΩΛ)/2. (12)

Here, Ω, Λ are p× p positive definite matrices, and δ > 2. While the density expression is
similar to that of the HIW density, the tractability of the normalizing constant is no longer
assumed. The normalizing constant that we wish to compute is of the form

CG(δ, Λ) = 2
1
2 pδ+|E| · IG((δ− 2)/2, Λ), (13)

where IG(δ, Λ) =
∫
S

p
≻0
|Ω|δ exp(−tr(ΩΛ)) dΩ. Here, dΩ = ∏

p
i=1 dωii ·∏i<j,(i,j)∈E dωij.

G-Wishart-Induced Cholesky Factor Density

We first establish some of the notations relevant to the GW density. For G = (V, E),
define V = {(i, j) : i ≤ j where i = j, i ∈ V or (i, j) ∈ E} and W = {(i, j) : i, j ∈ V, i ≤ j}.
Then, let ÅV = W \ V , and Ap×p = (aij), where aij = 0 if (i, j) ∈ ÅV or if i = j, and aij = 1
otherwise. Set ki to be the number of 1’s in the i-th column of A. Proceeding in a similar
fashion as in the HIW example, we take the Cholesky decomposition of Ω = ϕ′ϕ and
Λ = (T′T)−1, where T = (tij)1≤i≤j≤p. We make an additional change of variable ζ = ϕT−1.
The Jacobian of the first transformation Ω→ ϕ is identical to the one given in Section 4.1,
and the determinant of the Jacobian of the second transformation ϕ → ζ is given by

∏
p
i=1 t

ki+1
ii . Putting this all together, we can rewrite the normalizing constant as an integral

over the free variables of ζ = (ζij)1≤i≤j≤p,

CG(δ, Λ) = 2p
p

∏
i=1

(t2
ii)

(δ+bi−1)/2
∫

exp


−1

2 ∑
(i,j)∈ ÅV

ζ2
ij




p

∏
i=1

(ζ2
ii)

(δ+νi−1)/2 exp

(
−1

2

p

∑
i=1

ζ2
ii

)

× exp


−1

2 ∑
(i,j)∈V ,i ̸=j

ζ2
ij




p

∏
i=1

dζii ∏
(i,j)∈V ,i ̸=j

dζij, (14)

where bi = νi + ki + 1, νi = |ne(i)∩ {i + 1, . . . , p}|, and ne(i) = {j ∈ V : (i, j) ∈ E}. Taking
the logarithm of the integrand above, we can write the following expression for Ψ(ζ),

Ψ(ζ) = C +
p

∑
i=1

(δ + νi − 1) log ζii −
1

2

p

∑
i=1

ζ2
ii −

1

2 ∑
(i,j)∈ ÅV

ζ2
ij −

1

2 ∑
(i,j)∈V ,i ̸=j

ζ2
ij, (15)

where C = p log(2) + ∑
p
i=1(δ + bi − 1) log tii. Another key difference between the GW and

HIW setups is how the non-free elements interact with the objective function Ψ. In the
case of decomposable G, the Cholesky factor ϕ observes the same sparsity pattern as the
adjacency matrix of G. This simplifies the evaluation of Ψ, as Ψ can then be evaluated over
the nonzero elements of ϕ. However, in the case of non-decomposable G, the sparsity in G
is not necessarily reflected in the Cholesky factors. Therefore, Ψ has nonzero contribution
from the non-free elements, denoted as ζij, (i, j) ∈ ÅV . Using Lemma 2 [17], we can express
the non-free elements, ζrs for (r, s) ∈ ÅV and r < s, recursively in terms of the free elements,

ζrs =
s−1

∑
j=r

(
−ζrj

λjs

λss

)
−

r−1

∑
i=1




ζir + ∑
r−1
j=i ζij

λjr

λrr

ζrr



(

ζis +
s−1

∑
j=i

ζij

λjs

λss

)
. (16)

Subsequent expressions for the gradient and Hessian of Ψ(ζ) can be found in Appendix E.
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4.3. Junction Tree Representation

In order to combat the computational overhead associated with larger graphs, we
modify EPSOM-Hyb to first break down the graph into subgraphs according to its topology
using a junction tree representation, which exists for all connected graphs. By leveraging
the attractive properties of junction tree representations, we not only achieve significant
computational speedup in the marginal likelihood calculation, but we can also more
adequately handle general graphs. We briefly discuss the properties of decomposable
versus non-decomposable graphs and how their respective junction tree representations
can simplify the normalizing constant calculation. A junction tree representation of a graph
decomposes the graph into a sequence of interconnecting subgraphs separated by complete
subgraphs [36], which has the following form:

G 7→ JG = {P1, S2, P2, S3, . . . , Pm−1, Sm, Pm}. (17)

In JG, each prime component Pi is a proper subgraph of G, each separator Si is a complete
subgraph of G, and each Si is the intersection of Pi with all the previous components
{P1, P2, . . . , Pi−1}. If any of the prime components found by this decomposition procedure
is not complete and cannot be further decomposed, then G is non-decomposable [37]. With
these concepts in place, we recall the original goal of marginal likelihood estimation but
look to include the intermediate step of obtaining the junction tree representation of the
graph. By working with the smaller prime components, we can overcome the complexity
associated with the original high-dimensional graph. Moreover, we can take advantage of
the distributional properties of the complete prime components.

Concretely, suppose we have data X = {x1, . . . , xn} satisfying the GGM with a graph
G and corresponding junction tree JG, as given in Equation (17). Let P and S represent the
prime component and separator sequences, respectively. If all of the prime components are
complete (cliques), we denote the clique sequence as C . Regardless of the decomposability
of G, we can use JG to express the joint density of X given Σ,

p(X | Σ) =
∏P∈P p(XP | ΣP)

∏S∈S p(XS | ΣS)
, (18)

where ΣP and ΣS represent the submatrices corresponding to the subgraphs P and S,
respectively. We first consider the case where G is decomposable, with Σ−1 ∼ HIWG(δ, Λ).
Then, the prior density factorizes over the cliques and separators,

p(Σ | G) =
∏C∈C p(ΣC | G)

∏S∈S p(ΣS | G)
. (19)

The completeness of the prime components admits distributional properties that make the
normalizing constants tractable. In particular, the prior density on ΣC is the inverse-Wishart
(IW). Putting this together with the likelihood given in Equation (18), we deduce that the
marginal likelihood also factorizes over the cliques and separators as follows,

p(X | G) =
∫

Σ|G
p(X | G)p(Σ | G)dΣ

= (2π)−
np
2

h(G, δ, Λ)

h(G, δ + n, Λ + B)
(20)

= (2π)−
np
2

∏C∈C w(C)

∏S∈S w(S)
. (21)

Here, B = ∑i xix
′
i . For a decomposable graph, the factorization of the likelihood and IW

prior over the cliques and separators yields a product of tractable normalizing constants.
Exact formulae for h(G, δ, Λ), w(C) and w(S) can be found in Equations (A4) and (A5).
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We can easily generalize the calculations above to accommodate non-decomposable
graphs with GW priors. Since the GW density in Equation (12) has a similar form to the
HIW density, the marginal likelihood calculation also factorizes over prime components
and separators. The difference from the previous calculation is that for decomposable
G, the product in Equation (21) is taken over the cliques C , whereas in the GW case,
the product is taken over prime components P , which may or may not be complete. Since
normalizing constants for the non-complete prime components are generally intractable,
they typically require MCMC estimation.

Essentially, the factorized representation of the marginal likelihood induced by the
junction tree representation of G splits the original calculation involving the entire graph G
into sub-problems involving the prime components and separators. When P ∈P is com-
plete, we can rely on the closed form IW normalizing constant. For non-complete P ∈ P ,
we take the corresponding parameters, Σ−1

P = ΩP, BP, ΛP, and write the normalizing
constant for the non-complete prime component as

h(P, δ, ΛP) =
∫
|ΩP|

δ−2
2 exp(− tr(ΩPΛP)/2)dΩP.

Although this quantity remains intractable, it poses a lower dimensional problem for which
we can use the procedure outlined in Section 4.2 along with the EPSOM-Hyb algorithm.
The posterior normalizing constant h(P, δ + n, ΛP + BP) can be similarly computed. Af-
ter computing the normalizing constants for each of the prime components and separators,
the individual approximations are summed together to form the log normalizing con-
stant approximation corresponding to the original graph G. These steps make up the
EPSOM-HybJT algorithm, which is outlined in Algorithm 2.

4.3.1. Experiment 1: Block Diagonal Graph Structure

Consider a graph Gp formed by stacking the adjacency matrix AG5
of G5 (given in

Figure 1) r times along a block diagonal. Using the notation in Section 4.1, AGp
= Ir ⊗ AG5

,

for r = 1, 10, 20, 30. Similarly, for a randomly generated scale matrix Λ ∈ R5×5, the corre-
sponding scale matrix for Gp is Λp = Ir ⊗Λ, where p = 5r denotes the dimension of the
vertex set of Gp. For specific graphs, the corresponding GW normalizing constants can
be computed analytically. In particular, for G5, we can use the formula in Equation (4.1)
from Uhler et al. [22] to compute IG5

(δ, Λ), which can then be plugged into Equation (13) to
obtain the normalizing constant of GWG5

(δ, Λ). Since Gp explicitly uses G5 to create its de-
pendence structure, we can then easily calculate the normalizing constant of GWGp(δ, Λr).

The results in Table 2 indicate that both GNORM and EPSOM-HybJT produce accurate
estimates, with EPSOM-HybJT having a slightly lower relative error. However, the time
savings that accompany EPSOM-HybJT are substantial. In the case of GWG5

(δ, Λ), GNORM
is notably faster, but for high-dimensional graphs, there is a dramatic slowdown. Indeed,
for p = 150, GNORM is more than 100 times slower than EPSOM-HybJT.
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Algorithm 2: EPSOM-HybJT

Input : Graph G, prior parameters (δ, Λ) for the GWG density.
Output : Estimate of the logarithm of the normalizing constant of GWG(δ, Λ).
Obtain the JT representation of G 7→ JG = {P1, S2, P2, S3, . . . , Pm−1, Sm, Pm}.
for i ∈ {1, . . . , m} do

if i > 1 then

log ẐSi
← log h

(
Si, δ, ΛSi

)
.

end

if Pi is complete then

log ẐPi
← log h

(
Pi, δ, ΛPi

)
.

else

Compute the Cholesky decomposition, Λ−1
Pi

= T′i Ti.

for j ∈ {1, . . . , J} do

Sample Ω(j) ∼ GWPi

(
δ, ΛPi

)
.

Compute the Cholesky decomposition, Ω(j) = ϕ′(j)ϕ(j).

ζ(j) ← ϕ(j)T
−1
i .

Extract the free parameters uj from ζ(j).

end

Fit a CART model, Ti, to (u1, ΨPi
(u1)), . . . , (uJ , ΨPi

(uJ)).

Extract the partition A = {Ak}1≤k≤K from Ti of the bounding box A of U .

Calculate the global mode, u0, of ΨPi
.

for k ∈ {1, . . . , K} do

uk ← argminu∈Ak
||u− u0||1.

λk ← ∇ΨPi
(uk).

Hk ← ∇2ΨPi
(uk).

Ck ← (2π)d/2|Hk|−1/2 exp
(

1
2

(
u′k H−1

k uk − 2λ′kuk + λ′k H−1
k λk

))
.

bk ← Hkuk − λk.

Gk ←
∫

Ak
N
(

u | H−1
k bk, H−1

k

)
du.

Ẑk ← Ck · Gk.

end

log ẐPi
← log-sum-exp

(
log Ẑ1, . . . , log ẐK

)
.

end

end

return log Ẑ = ∑i log ẐPi
−∑i log ẐSi

.
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Table 2. Mean estimate, mean relative error (MRE), and relative runtime of EPSOM-HybJT and

GNORM approximations to the log normalizing constant of the GWGp

(
δ, Λp

)
density. Gp has p = 5r

vertices and d = 12r free elements. Here, δ = 100 and Λp = Ir ⊗ Λ. Estimates are reported over

20 replications, each using 1000 samples from the target distribution. The runtime of the GNORM

algorithm is calculated relative to the runtime of the EPSOM-HybJT algorithm.

Dimension Method Mean MRE Runtime

p = 5, d = 12
EPSOM-HybJT 920.16 6.46× 10−4 1

GNORM 920.17 6.63× 10−4 0.03

p = 50, d = 120
EPSOM-HybJT 9201.55 6.44× 10−4 9.60

GNORM 9201.74 6.63× 10−4 35.94

p = 100, d = 240
EPSOM-HybJT 18,403.14 6.45× 10−4 19.26

GNORM 18,403.46 6.63× 10−4 796.07

p = 150, d = 360
EPSOM-HybJT 27,604.72 6.46× 10−4 28.92

GNORM 27,605.18 6.63× 10−4 4587.46

4.3.2. Experiment 2: Normalizing Constants of General Graphs

Next, we investigate the performance of the two estimators for more general graphs.
The results of the previous experiment showed that both GNORM and EPSOM-HybJT
are very close to the true normalizing constants. For general graphs that do not satisfy
the conditions that previously allowed us to calculate the exact GW normalizing constant,
we compare the values of the GNORM and EPSOM-HybJT estimates against each other
and keep track of the runtime relative to that of the EPSOM-HybJT algorithm when
p = 10. In Table 3, for p ≤ 50, very little separates the log normalizing constant estimates,
and GNORM even demonstrates its strength in low dimensions with a runtime that is
about 50 times faster than EPSOM-HybJT for p = 10. However, EPSOM-HybJT flips the
script in all subsequent experiments and scales better as p grows. For p = 60, the GNORM
estimator fails to give a finite estimate for the log normalizing constant.

Table 3. Mean estimate, standard deviation, and relative runtime of EPSOM-HybJT and GNORM

approximations to the log normalizing constant of the GWGp
(δ, Λ). Here, Λ is not block-diagonal.

Estimates are reported over 20 replications, each using 1000 samples from the corresponding G-

Wishart distribution. The runtime of the GNORM algorithm is calculated relative to the runtime of

the EPSOM-HybJT algorithm.

# Vertices Method Mean SD Runtime

p = 10
EPSOM-HybJT −2477.40 0.003 1
GNORM −2468.19 0 0.02

p = 30
EPSOM-HybJT −7450.69 0.012 2.99
GNORM −7428.00 0.773 12.34

p = 40
EPSOM-HybJT −10,030.95 0.015 4.68
GNORM −10,003.81 1.596 42.76

p = 50
EPSOM-HybJT −12,563.87 0.014 6.76
GNORM −12,528.42 2.385 108.87

p = 60
EPSOM-HybJT −15,170.05 0.017 15.26
GNORM -Inf Ð 231.32

In these experiments, each graph is generated using Bernoulli draws to determine the
existence of its edges and checked to ensure that the graph is non-decomposable; otherwise,
this would simply reduce the problem to a summation of tractable IW constants and
would be unable to fairly assess the approximating ability of EPSOM-HybJT. Contrast these
results with the examples from the previous section where the scale matrix was assumed to
be block-diagonal and the dependence structure was relatively simple. In those simpler
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settings, GNORM retains its accuracy even for high-dimensional graphs, albeit with a much
slower runtime. Evidently, the added complexity induced by a nontrivial dependence
structure contributes to the computational burden that cannot be easily overcome using
standard methods.

4.4. Software Contribution

With the architecture in place for both the EPSOM-Hyb algorithm and its junction tree
extension, we are equipped with the necessary tools for computing normalizing constants
for general cases, as well as GGM-specific examples. For ease of use, EPSOM-Hyb is
implemented in the hybrid package. Note that the hyperparameter initialization in line 26
of Figure A1 refers to problem-specific hyperparameters, rather than algorithm-specific
hyperparameters or settings. We emphasize that other than supplying a sampler for the
target distribution and functions to evaluate Ψ and its gradient and Hessian, the EPSOM-
Hyb methodology does not require hyperparameter tuning or convergence monitoring,
beyond Newton’s method for finding the global mode of the unimodal target distribution,
as described in Section 3.3. Recognizing the intricacy of the EPSOM-HybJT algorithm and
the difficulty of having to manually combine the EPSOM-Hyb and the junction tree method-
ologies, we have developed an additional package dedicated specifically to estimating the
normalizing constant of G-Wishart densities. The R package graphml serves as a black box
method that seamlessly integrates the junction tree algorithm into the existing EPSOM-
Hyb methodology without any user input other than the adjacency matrix representation
of the graph and the G-Wishart density parameters. See Appendixes A and B for more
details regarding the installation and use of these packages. Additionally, in the package
repositories, we provide the R programs that replicate the experimental results reported in
this paper.

5. Discussion

Our methodological contributions are twofold: firstly, we developed EPSOM-Hyb
as a general algorithm for computing the normalizing constant of log-concave densities,
and secondly, we extended this methodology to specifically target the marginal likelihood of
non-decomposable GGMs. While the GNORM estimator from Atay-Kayis and Massam [17]
is a valuable tool that performs well for simpler and lower-dimensional graph structures,
it is evident that more scalable and robust solutions are needed in the nontrivial problem
settings presented in this paper. By taking advantage of junction tree representations of
connected graphs and pairing them with the EPSOM-Hyb methodology, we significantly
simplify the normalizing constant calculation for GGMs. The resulting EPSOM-HybJT
algorithm is not only able to compete with other widely accepted estimators, but it also
presents itself as a scalable solution for high-dimensional scenarios where other methods
either fail to produce sensible results or succumb to time complexity constraints.

We recognize that the junction tree representation of a connected graph can be in-
tegrated into the GNORM methodology to create a more robust algorithm, leading to
substantial time savings in subsequent normalizing constant calculations. However, such
an implementation is presently unavailable. In the meantime, our contributions represent a
universal method for marginal likelihood estimation that can be easily adapted to be as
accurate and significantly faster than specialized methods for graphical models. Finally,
while our methodologies empirically demonstrate their competitiveness across a variety
of examples, many popular and long-established marginal likelihood estimation methods
are accompanied by strong theoretical guarantees. As such, this remains an area of future
work and development.
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Abbreviations

The following abbreviations are used in this manuscript:

GGM Gaussian Graphical Model

JT Junction Tree

KL Kullback±Leibler

IW Inverse Wishart

HIW Hyper-Inverse Wishart

GW G-Wishart

MCMC Markov Chain Monte Carlo

EP Expectation Propagation

CART Classification and Regression Tree

EPSOM-Hyb EP-guided Second-Order Modified Hybrid

EPSOM-HybJT EP-guided Second-Order Modified Hybrid Junction Tree

BSE Bridge Sampling Estimator

WBSE Warp Bridge Sampling Estimator

AE Average Error

MRE Mean Relative Error

Appendix A. General Use of the hybrid Package

We developed hybrid [38], an R package that allows practitioners to easily compute
estimates of the log-marginal likelihood. In Figure A1, we provide a snippet of code to
demonstrate how both the hybrid approximation and the EPSOM-Hyb approximation can
be used in practice. For the hybrid method, users only need to provide a way to evaluate
the negative log posterior Ψ and a sampler for the target distribution γ. After drawing
the samples using a user-defined sample_post() function and evaluating them using the
hybrid::preprocess() function, we can calculate the log-marginal likelihood estimate
with the hybrid::hybml_const() function.

For EPSOM-Hyb, users will need to supplement the input of the hybrid method
with function definitions for the gradient vector and Hessian matrix of Ψ. These function
definitions, along with the posterior samples, are then passed into the hybrid::hybml()

function. Optionally, a representative point (typically the global mode) can be supplied to
the function call to play the role of u0 as defined in Section 3.3, but in the case where no
point is given, the implementation will take u0 to be the point with the highest posterior
mass. We emphasize that beyond specifying the model and supplying a sampler, which is
typically required in all other competing methods, there are no hyperparameters to tune
and no problem-specific settings that require modification or attention. This makes our
solution one of the few black box marginal likelihood estimation methods that has been em-
pirically shown to scale well with dimension and accommodate complex parameter spaces.
The repository that contains the source code for these algorithm implementations can be
found at https://github.com/echuu/hybrid, accessed on 12 May 2024. The repository also
contains installation instructions and a working example.
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1 #### ------------------ HYBRID , EPSOM -Hyb DEMO ------------------ ####

2

3 ## In the functions below , ‘params ’ is an object that stores

4 ## any miscellaneous values (hyperparameters , sample size , dimensions)

5 ## that may be necessary to compute the corresponding~functions.

6

7 library(hybrid)

8

9 #### -- The following 4 functions must be supplied by the user -- ####

10

11 # sample_post(): returns a (J x d) matrix of samples from the

12 # target distribution

13 sample_post = function(J) { ... }

14

15 # psi(): returns the (scalar) negative log posterior evaluated at u

16 psi = function(u, params) { ... }

17

18 # grad(): returns the (d x 1) gradient vector of psi evaluated at u

19 grad = function(u, params) { ... }

20

21 # hess(): returns the (d x d) Hessian matrix of psi evaluated at u

22 hess = function(u, params) { ... }

23

24 #### ------------- Problem -specific initializations ------------- ####

25

26 params = init( ... ) # initialize any hyperparameters

27 J = 5000 # number of posterior samples to draw

28 samps = sample_post(J) # (J x d) samples from the target~distribution

29

30 # evaluate posterior samples using psi()

31 psi_df = hybrid :: preprocess(samps , d, params)

32

33 # compute hybrid estimate for the log Z

34 hybrid ::hybml_const(psi_df)$logz

35

36 # compute EPSOM -Hyb estimate for the log Z

37 hybrid ::hyb(psi_df, params , grad , hess)$logz

Figure A1. Demonstration of how to use hybrid package in R. This package contains the implemen-

tation for both the Hybrid and EPSOM-Hyb algorithms for estimating the log normalizing constant

of a target distribution.

Appendix B. General Use of the graphml Package

While the graphical modeling examples can be adapted to be used with the hybrid pack-
age, we have also developed a package specific to graphical models that further simplifies the
process of weaving together the EPSOM-Hyb methodology with the junction tree representation
of general graphsÐas discussed in Section 4.3 and presented in Algorithm 2Ðbecause of the
importance of the normalizing constant calculation in graphical modeling literature. With the
graphml [39] package, we can easily use the EPSOM-HybJT methodology to compute the
normalizing constant of the G-Wishart density given the adjacency matrix for a general graph,
the scale matrix, the degrees of freedom, and the number of MCMC samples to be drawn from
the corresponding G-Wishart density.



Algorithms 2024, 17, 213 17 of 21

1

2 #### ------------------ EPSOM -Hyb ALGORITHM DEMO ------------------ ####

3

4 library(graphml)

5

6 #### ----- Initialize G-Wishart parameters ----- ####

7

8 G = ... # initialize adj. matrix representation of graph

9 delta = ... # degrees of freedom , delta > 2

10 V = ... # non -negative definite scale matrix

11 J = ... # number of samples to draw from target~density

12

13 # Compute the edge matrix for the JT part of the algorithm

14 EdgeMat = graphml :: getEdgeMat(G)

15

16 # --- Compute the log normalizing constant of the GW(b, V) density --- #

17

18 # Compute the log normalizing constant using Atay ’s algorithm

19 BDgraph :: gnorm(G, delta , V, J)

20

21 # Compute the log normalziing constant using the EPSOM -HybJT algorithm

22 graphml :: hybridJT(G, EdgeMat , delta , V, J)

Figure A2. Demonstration of how to use graphml package in R. This package contains the imple-

mentation of the EPSOM-HybJT algorithm for estimating the log normalizing constant of G-Wishart

densities. Atay’s estimator can similarly be computed using the gnorm function from the BDgraph

package.

We juxtapose the code necessary for computing the GNORM estimate via the BDgraph
package to demonstrate the comparable ease of use of the graphml package. We use
the C++ implementation of junction tree representation [40], which can be found at
https://www2.stat.duke.edu/~mw/mwsoftware/GGM/index.html (accessed on 10 April
2024). We adapt their implementation into the graphml package since the original C++
implementation is not directly importable in R. Recall that for the general hybrid pack-
age, we require user-defined functions for the objective function, gradient, and Hessian,
whereas, in this package, all of these functions are already optimally implemented. In the
case of the G-Wishart density, these functions are quite cumbersome to write because of
the recursive structure, so removing this from the list of user responsibilities is especially
convenient. The Github repository that contains the source code for this package can be
found at https://github.com/echuu/graphml (accessed on 12 May 2024).

Appendix C. Hyper-Inverse Wishart Density

We introduce some notation to help us obtain a closed form for the marginal likelihood
in the case of a decomposable graph G. For an n× p matrix X, XC is defined as the sub-
matrix of X consisting of columns with indices in the clique C. Let (X1, X2, . . . , Xp) =
(x1, x2, . . . , xn)′, where Xi is the ith column of Xn×p. If C = {i1, i2, . . . , i|C|}, where 1 ≤ i1 <

i2 < . . . < i|C| ≤ p, then XC = (Xi1 , Xi2 , . . . , Xi|C|). For any square matrix A = (aij)p×p
,

define AC = (aij)|C|×|C| where i, j ∈ C, |C| is the cardinality of the clique C, and the order

of entries carries into the new sub-matrix AC. Therefore, X′CXC = (X′X)C.
Decomposable graphs correspond to a special kind of sparsity pattern in Σ, henceforth

denoted ΣG. Suppose we have a HIWG(b, D) distribution on the cone of p× p positive
definite matrices with b > 2 degrees of freedom and a fixed p× p positive definite matrix D
such that the joint density factorizes on the junction tree of the given decomposable graph
G as

p(ΣG | b, D) =
∏C∈C p(ΣC | b, DC)

∏S∈S p(ΣS | b, DS)
, (A1)
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where for each C ∈ C, ΣC ∼ IWC(b, DC) has the density

p(ΣC | b, DC) ∝ |ΣC|−(b+2|C|)/2etr
{
− 1

2
Σ−1

C DC

}
, (A2)

where etr(·) = exp
{

tr(·)
}

. Here, IW(b, D) denotes the inverse-Wishart distribution with
degrees of freedom b and a fixed p× p positive definite matrix D with normalizing constant

∣∣∣∣
1

2
D

∣∣∣∣
(b+p−1)/2

Γ−1
d

(
b + p− 1

2

)
.

Note that we can establish equivalence to the parametrization used in Section 4.1 by taking
δ = b + p− 1. Since the joint density in Equation (9) factorizes over cliques and separators
in the same way as in Equations (A1) and (A2),

f (X | ΣG) = (2π)−
np
2

∏C∈C |ΣC|−
n
2 etr

(
− 1

2 Σ−1
C X′CXC

)

∏S∈S |ΣS|−
n
2 etr

(
− 1

2 Σ−1
S X′SXS

) .

Using the above equations, we can obtain the marginal likelihood,

f (X | G) = (2π)−
np
2

h(G, b, D)

h(G, b + n, D + S)
= (2π)−

np
2

∏C∈C w(C)

∏S∈S w(S)
, (A3)

where

h(G, b, D) =
∏C∈C

∣∣∣ 1
2 DC

∣∣∣
b+|C|−1

2
Γ−1
|C|
(

b+|C|−1
2

)

∏S∈S
∣∣∣ 1

2 DS

∣∣∣
b+|S|−1

2
Γ−1
|S|
(

b+|S|−1
2

) , (A4)

w(C) =
|DC|

b+|C|−1
2
∣∣DC + X′CXC

∣∣− b+n+|C|−1
2

2−
n|C|

2 Γ|C|
(

b+|C|−1
2

)
Γ−1
|C|
(

b+n+|C|−1
2

) . (A5)

Appendix D. Hyper-Inverse Wishart Objective Function

Recall that we take the Cholesky decomposition of Ω = ϕ′ϕ, where ϕ is upper triangu-
lar. Using Equations (9) and (11), we define Ψ(ϕ) = − log L(ϕ)− log π(ϕ). Even though Ψ

is expressed as a function of the upper Cholesky factor ϕ, it is inherently a function of only
the free elements of ϕ. As a result, the gradient of Ψ is defined element-wise,

∂Ψ

∂ϕij
=

{
− 1

ϕii
(ηi + n) + ϕii + ∑

p
m=i ϕimbmi i = j,

ϕij + ∑
p
m=i ϕimbmj i ̸= j.

Similarly, the Hessian can be computed element-wise,

∂2Ψ

∂ϕij∂ϕkl
=





0 i ̸= k,
1

ϕ2
ii

(n + ηi) + bii + 1 i = j = k = l,

bli i = j, i = k, l > j,

1 + bl j i ̸= j, i = k, l = j,

bl j i ̸= j, i = k, l > j,

where (i, j), (k, l) ∈ V , ηi = δ + νi − 1, and B = (bij)1≤i,j≤p.
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Appendix E. G-Wishart Objective Function

Next, we provide the calculation details for the derivation of the gradient and Hessian
of Ψ(ζ), as defined in Equation (15). First, we can compute the terms of the gradient
element-wise by taking the derivative of Ψ with respect to the free elements of ζ,

∂Ψ(ζ)

∂ζij
=





∑
(r,s)∈ ÅV

ζrs
∂ζrs

∂ζii
− (δ + νi − 1)

ζii
+ ζii i = j,

∑
(r,s)∈ ÅV

ζrs
∂ζrs

∂ζij
+ ζij i ̸= j, (i, j) ∈ V .

(A6)

Note that because the non-free elements are functions of the free elements, each gradient
term involves additional recursive derivative calculations. As given in Equation (16),
for (r, s) ∈ ÅV and r < s,

ζrs =
s−1

∑
j=r

(
−ζrj

λjs

λss

)
−

r−1

∑
i=1




ζir + ∑
r−1
j=i ζij

λjr

λrr

ζrr



(

ζis +
s−1

∑
j=i

ζij

λjs

λss

)
. (A7)

Finally , using the expression for the gradient in Equation (A6), we can perform a similar
calculation for the Hessian. The elements on and above the diagonal are defined as follows,

∂2Ψ(ζ)

∂ζij∂ζkl
=





∑
(r,s)∈ ÅV

[(
∂ζrs

∂ζii

)2

+ ζrs
∂2ζrs

∂ζ2
ii

]
+

(δ + νi − 1)

ζ2
ii

+ 1, i = j = k = l,

∑
(r,s)∈ ÅV

[
∂ζrs

∂ζkl

∂ζrs

∂ζij
+ ζrs

∂2ζrs

∂ζij∂ζkl

]
+

∂ζij

∂ζkl
, i ̸= j, (i, j), (k, l) ∈ V .

(A8)

Below, we provide the derivation for the partial derivative terms of the non-free
elements taken with respect to the free elements by again starting with the recursive defini-
tion of ζrs in Equation (16). In the following calculations, we define ξks = λks/λss, where
Λ = (λij), where 1 ≤ i, j ≤ p. We consider two cases.

Case 1: for (r, s) ∈ ÅV , r < s, i ̸= j, and (r, s) coming after (i, j), we have

∂ζrs

∂ζij
= −

s−1

∑
k=r

ξks
∂ζrk

∂ζij

− 1

ζrr

∂

∂ζij

r−1

∑
k=1

[
ζksζkr + ζkr

s−1

∑
l=k

ζklξls + ζks

r−1

∑
l=k

ζklξlr +

(
k−1

∑
l=k

ζklξkr

)(
s−1

∑
l=k

ζklξks

)]
. (A9)

Case 2: for r = i = j, and s > r, we obtain the derivative:

∂ζrs

∂ζrr
= −

s−1

∑
k=r

ξks
∂ζrk

∂ζrr

+
1

ζ2
rr

r−1

∑
k=1

[
ζksζkr + ζkr

s−1

∑
l=k

ζklξls + ζks

r−1

∑
l=k

ζklξlr +

(
k−1

∑
l=k

ζklξkr

)(
s−1

∑
l=k

ζklξks

)]
.
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In case 1, each term in the outer summation in Equation (A9) can be computed as:

∂

∂ζij

[
ζksζkr

]
=

∂ζkr

∂ζij
ζks + ζkr

∂ζks

∂ζij
,

∂

∂ζij

[
ζkr

s−1

∑
l=k

ζklξls

]
=

∂ζkr

∂ζij

s−1

∑
l=k

ζklξls + ζkr

s−1

∑
l=k

∂ζkl

∂ζij
ξls,

∂

∂ζij

[
ζks

r−1

∑
l=k

ζklξlr

]
=

∂ζks

∂ζij

r−1

∑
l=k

ζklξlr + ζks

r−1

∑
l=k

∂ζkl

∂ζij
ξlr,

∂

∂ζij

[(
r−1

∑
l=k

ζklξkr

)(
s−1

∑
l=k

ζklξks

)]
=

[
r−1

∑
l=k

ξkr
∂ζkl

ζij

][
s−1

∑
l=k

ζklξks

]
+

[
r−1

∑
l=k

ζklξkr

][
s−1

∑
l=k

ξks
∂ζkl

∂ζij

]
.

These scalar, element-wise quantities can be substituted back into the piecewise definitions
of the gradient and Hessian matrices, as given in Equations (A6) and (A8), respectively.
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