t.)

Check for
Updates

An Interpretable, Flexible, and Interactive Probabilistic
Framework for Melody Generation

Stephen Hahn Rico Zhu Simon Mak
stephen.hahn@duke.edu rico.zhu@duke.edu sm769@duke.edu
Duke University Duke University Duke University
Durham, NC, USA Durham, NC, USA Durham, NC, USA
Cynthia Rudin Yue Jiang
cynthia@cs.duke.edu yue.jiang@duke.edu

Duke University
Durham, NC, USA

Duke University
Durham, NC, USA

AN . O U . S B R
0 — S I S—

Figure 1: Schenkerian analysis [15] processed by a computer to generate music.

ABSTRACT

The fast-growing demand for algorithmic music generation is found
throughout entertainment, art, education, etc. Unfortunately, most
recent models are practically impossible to interpret or musically
fine-tune, as they use deep neural networks with thousands of
parameters. We introduce an interpretable, flexible, and interac-
tive model, SchenkComposer, for melody generation that empowers
users to be creative in all aspects of the music generation pipeline
and allows them to learn from the process. We divide the task
of melody generation into steps based on the process that a hu-
man composer using music-theoretical domain knowledge might
use. First, the model determines phrase structure based on form
analysis and identifies an appropriate number of measures. Using
concepts from Schenkerian analysis, the model then finds a fitting
harmonic rhythm, middleground harmonic progression, foreground
rhythm, and melody in a hierarchical, scaffolded approach using
a probabilistic context-free grammar based on musical contours.
By incorporating theories of musical form and harmonic structure,
our model produces music with long-term structural coherence. In
extensive human experiments, we find that music generated with

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

KDD °23, August 6-10, 2023, Long Beach, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08....$15.00
https://doi.org/10.1145/3580305.3599772

4089

our approach successfully passes a Turing test in human experi-
ments while current state-of-the-art approaches fail, and we further
demonstrate superior performance and preference for our melodies
compared to existing melody generation methods. Additionally, we
developed and deployed a public website for SchenkComposer, and
conducted preliminary user surveys. Through analysis, we show
the strong viability and enjoyability of SchenkComposer.

CCS CONCEPTS

+ Applied computing — Sound and music computing; - Com-
puting methodologies — Knowledge representation and rea-
soning; Machine learning approaches; « Information systems
— Web applications.

KEYWORDS

Algorithmic Music Generation; Interpretable Machine Learning;
Schenkerian Analysis; Musical Form; Probabilistic Context-Free
Grammars

ACM Reference Format:

Stephen Hahn, Rico Zhu, Simon Mak, Cynthia Rudin, and Yue Jiang. 2023. An
Interpretable, Flexible, and Interactive Probabilistic Framework for Melody
Generation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD °23), August 6—10, 2023, Long Beach, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3580305.
3599772

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

1 INTRODUCTION

Algorithmic music generation (AMG) is becoming increasingly
important in art and entertainment. For instance, many video games
take advantage of AMG to further engross the player in the game’s
environment [10]. AMG has also been used to enhance visual art
[29] and narratives [27]. Experienced composers use AMG as a
tool for inspiration, collaboration [31] and education [19]. Perhaps
most meaningfully, AMG can empower those who have little or
no musical background with the ability to engage in the creative
process.

Unfortunately, it is practically impossible to interpret and ma-
nipulate many recent AMG models because the vast majority of
them use deep neural networks with thousands of parameters, even
for potentially simple tasks. There have been attempts to “disentan-
gle” deep neural networks using an interpretable latent space [50].
However, it is still practically impossible to understand how the
models move from their latent spaces to their generated products.
Indeed, it has become clear over the last several years of the value
of interpretability in human-centered machine learning design for
scientific and engineering advancements [6, 25, 39].

As we will show, it is possible to create machine learning models
that incorporate general musical domain knowledge that lead to
similar - if not better - results as the deep learning approaches, with
the added benefits of interpretability and flexibility. An additional
benefit of our approach is that it requires much less data than deep
learning, which relies on vast amounts of training data that is
generally not readily available without intensive data cleaning and
processing. Our model is far less complex than the deep learning
models, allowing users to interpret and tinker with the model’s
inner mechanisms to fit their needs and desires. In fact, with enough
domain knowledge to set user-defined parameters, our model can
produce reasonably convincing music with little training data.

One particularly difficult problem in AMG is modeling long-term
structure. Two major branches of music theory coexist to describe
this long-term structure in Western classical music: (1) form theory
[3, 5, 21, 42], which describes music’s structure in terms of section
repetition and variation, and (2) Schenkerian analysis [4, 12, 40, 41],
which aims to understand music’s hierarchical harmonic-melodic
structure. By involving and adapting these music-theoretical con-
cepts of form and harmonic-melodic structure, we show that our
model can produce convincing melodies with structural coherence.

Our model, which we call SchenkComposer, uses a novel grammat-
ical approach that incorporates music-theoretical domain knowl-
edge, yet it is simple enough for a user with little to no musical
background to adjust its components and generate unique, personal
results. In particular, our model defines a probabilistic context-free
grammar (PCFG) for contours between notes at varying levels of
structure. It also incorporates Markovian structures for deeper lev-
els of structure and harmony. A high-level overview of our frame-
work may be seen in Figure 2. The proposed model is novel in its
use of Schenkerian analysis in the three middleground stages as
well as the foreground melody.

Section 2 discusses related works. Section 3 provides background
for music theory and mathematical notation. The framework in
Figure 2 is described in detail in Section 4. We present human

4090

Stephen Hahn, Rico Zhu, Simon Mak, Cynthia Rudin, & Yue Jiang

F\

Phrase Structure

v

Meter and Mlddlegm'.lﬂd Mlddlegrotmd
Hypermeter Harmonic Harmonic
Rhythm Progression

Middleground
Melody
Foreground
Melody

Figure 2: High-level overview of model components and their
dependencies. Foreground melody is the final goal.

Foreground
Melodic
Rhythm

experiments in Section 5. Finally, in Section 6, we describe our
online Web application.

2 RELATED WORK

One of the greatest challenges in music generation for both hu-
mans and computers is to construct pieces with cohesive long-term
structure. Most recent approaches use deep learning architectures
such as the transformer neural network [46]; Huang et al. [17] and
Huang and Yang [18] use transformers to produce expressive piano
performances note by note. Before these transformer-based models,
recurrent neural networks (RNNs) such as long-short-term-memory
(LSTM) networks were most widely used for sequential tasks. Had-
jeres et al. [14] use LSTMs for Bach-ian counterpoint, and Medeot
et al. [28] and Wu et al. [49] generate melodies using LSTMs. Dai
et al. [8] use a combination of both transformers and LSTMs for
melody generation, with a hierarchical music representation used
to generate pieces with coherent structures. Alternatively, Roberts
et al. [37] generates melodies using a deep hierarchical variational
autoencoder (VAE). Recently, the popular transformer-based lan-
guage model, ChatGPT [32], has shown to be capable of writing
music with limited success [11]. However, ChatGPT is still not ca-
pable of generating music anywhere near the level of other models,
and therefore will not be used for comparison.

While nonparametric black box methods (specifically deep learn-
ing approaches) have had successes, they also have key limitations,
both in their ability to capture long-term musical structure and to
incorporate user feedback. Here, we ask the question of whether
simpler, easier-to-use modeling techniques can achieve similar (or
even better) performance. Many semantic models such as Flow
Machines [33] and [47] make extensive use of Markovian models,
which are simple and transparent. In particular, we consider proba-
bilistic context-free grammars (PCFGs) which are commonly used
for music analysis [9, 16, 24, 36, 44, 48]. PCFGs are also used for
music synthesis: Rader [35] uses PCFGs to generate simple musical
rounds, Bel and Kippen [2] for the generation of North Indian tabla
drumming patterns, Assayag and Dubnov [1] for musical improvi-
sation, and Tsushima et al. [45] for part of its model for automatic
harmonization. Most related to our work, Keller and Morrison [19],
Rodriguez et al. [38], and Nakamura et al. [30] use PCFGs for jazz
improvisation, salsa improvisation, and generalized melody syn-
thesis, respectively. None of these works incorporate Schenkerian

A Probabilistic Framework for Melody Generation

analysis to look at deeper levels of musical structure to provide
deeper cohesion.

By incorporating Schenkerian analysis, we directly handle the
problem of incorporating long-term structure. Schenkerian analy-
sis looks at the hierarchical relationships between tones and har-
monies, showing various layers of musical structure. Although
many genres of Western music can be characterized using Schenke-
rian analysis, few computational systems for music analysis and
generation explicitly use it. Nakamura et al. [30] experiment with
music synthesis using a theory of tonal music described by Lerdahl
and Jackendoff [23], which was influenced by natural language pro-
cessing techniques and Schenkerian analysis. Gilbert and Conklin
[13] reduces music to a pseudo-Schenkerian background structure
using a PCFG of intervals. Using a “quasi-grammatical” binary-tree
structure, Marsden [26] provides a proof of concept for computa-
tional Schenkerian analysis, and Kirlin [20] provides a dynamic
programming algorithm for Schenkerian analysis using a combina-
tion of PCFGs and a maximal outerplanar graph representation. One
significant issue with Marsden [26] and Kirlin [20] is an unrealistic
assumption regarding prolongations used to manage the search
space of potential analyses. When generating music, however, such
limitations are not necessary. Note that all previous works incorpo-
rating Schenkerian analysis focus on analysis, not generation, as
we do here.

3 RELEVANT BACKGROUND
3.1 Form Analysis

Form analysis is a field of study that breaks a musical piece into
constituent sections based on similarities in rhythm, melody, and
harmony. Generally, sections are broken into phrases, which may
be broken further into subphrases (or motifs). Sections, phrases, and
subphrases are most commonly labelled using lowercase and upper-
case letters, where relatively larger structures use uppercase letters.
In Figure 3, we show the subphrase structure of a single phrase in
a Beethoven piano sonata in red, based mainly on related rhythms
and melodic contours. Subphrase a is repeated with variation a’ (2
measures each), followed by b and b’ (1 measure each), and ¢ and
¢’ (half a measure each). Subphrase d (1 measure) ends the phrase.

‘ Form: a a’ b

b’ c ¢ d
Schenkerian _—
Analysis:|_- —— —~~_|— —~
01 — — bge — Be® ~ he I |
0 b — — 4ot b
(5T =i la e e e ol
LS SRESTRT SE oo e S T %
L g
] P gopl —— g " .|, 4 g fite |
o 2 T Py Y -y # P »
(B e e e e
= PP : SRS,
I v 1 IV | Im v

Figure 3: Form and Schenkerian analysis of the first phrase
from Beethoven’s Piano Sonata Op. 49/1. Form analysis is in
red and Schenkerian analysis is in blue.

Laitz [21] describes two main categories of common phrase struc-
tures in Western classical music, the sentence and the period, both
of which we use in our experiments. The simplest implementation
of a sentence takes the form of a — a’ — b, where the proportional
length of each subphrase is 1 : 1 : 2 and b ends with a cadence,

4091

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

is often divided into a sentence structure itself. In fact, Figure 3 is
an example of a sentence within a sentence within a sentence. A
period consists of two phrases, an antecedent (A) and a consequent
(B or A’), each ending with a cadence, where the first cadence is
“weaker” than the second. Cadences ending on an “open” harmony
such as V are considered weakest, while “closed” cadences such as
those ending on I are stronger. Phrases that make up a period may
be sentences themselves or made of less organized subphrases.

3.2 Schenkerian Analysis

Named after its inventor, Heinrich Schenker (1868-1935), Schenke-
rian Analysis aims to understand the hierarchical harmonic-melodic
structure of a piece of music. From a Schenkerian perspective, a
piece of music as it is written in the score is the musical fore-
ground. Non-harmonic tones such as passing, neighboring, and
anticipating tones may be pruned from the foreground to find the
next level of structure. This process may be repeated until the back-
ground structure (the Ursatz or “fundamental structure”) is revealed
[34, 41]. The upper voice’s background structure is known as the
Urlinie or “fundamental line” Any and all levels of structure be-
tween the foreground and background are said to be part of the
middleground structure. In Schenkerian terms, the background is
said to be “deeper” than the foreground, with levels of the middle-
ground distinguished by their relative depths.

An important concept in Schenkerian analysis is that of prolon-
gation. A note is “prolonged” when the note “governs” a section of
music at a certain level of depth, even if it is not actually present
at all times. An example is shown in the final four measures of
Figure 3 in blue. In the G minor melody, D-C-Bb-A-G-F, the notes
C (m. 6), Bb (m. 7), A (m. 7), and G (m. 8) may be understood as
structurally subsidiary, prolonging the motion from D (m. 5) to Fff
(m. 8); D is considered structurally “in control” until the occurrence
of Fff. At a shallower depth (towards the foreground), C and Bb
may be understood as prolonging the motion from D to A, and G
prolonging the motion from A to Ff. In Figure 3, longer stems and
darker colors represent deeper levels of structure. The bass line
is vital to the structure; however, only the melody and harmony
are relevant to this paper, so the bass annotations are omitted to
simplify the figure.

3.3 Probabilistic Context Free Grammars

A context-free grammar (CFG) G is defined by four components:
(1) V, a finite set of variables known as nonterminals, where each
nonterminal defines a sub-language of the language defined by G,
(2) =, a finite set of terminals, which exist at the “foreground” of a
language, (3) R, the finite set of production rules, where a nontermi-
nal may “produce” any number of nonterminals and terminals, and
(4) S, the start variable (in V), which represents an entire single
realization of the grammar. Probabilistic CFGs (PCFGs) simply ex-
tend CFGs with the addition of P, a set of probabilities associated
with production rules of R.

4 METHODOLOGY

Here we provide an overview of our model along with detailed
descriptions of individual components. A high-level diagram of
our model is provided in Figure 2. It is designed to imitate the

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

process that a human composer might take when composing music
in a “top-down” approach, thus allowing for interpretable music
generation. At the top, phrase structure is generated independently.
By phrase structure, we refer to a series of alphabetic characters
that describe a series of subphrases and their relationships (Section
4.1). Meter and hypermeter determine the lengths of measures and
subphrases respectively, (Section 4.2.1).

Together with the phrase structure and metrical layout of the
piece, the model can determine the middleground harmonic rhythm
(Section 4.2.2) as shown in Figure 2. Harmonic rhythm describes
where changes from one harmony to another occur. The particular
middleground harmonic progression is then sampled from a Markov
chain or PCFG to satisfy the harmonic rhythm. The middleground
melody is generated via our novel Schenker-inspired PCFG based on
the harmonic progression and rhythm (Section 4.4.3). We then de-
termine the foreground melodic rhythm (Section 4.2.3). Finally, using
the Schenker-inspired PCFG once more, we generate the foreground
melody, completing the generation process (Section 4.4.4).

4.1 Phrase Structure Generation

Our model samples phrase structure from common forms found in
the literature such as the variations of periods and sentences (e.g.,
ab, aa’baa’’c, abac). We use common phrase structures of Western
classical music here, but such structure can naturally be adapted
to fit any musical style. The sampled phrase structures inform the
structure of the generated melody. For our model, we identified 12
phrase structures used in a prior dataset of 41 Schenkerian analyses
collected from textbooks and music theory faculty [20]; our model
chooses any of these as possibilities, weighted by how often they
occur in this repertoire.

4.2 Rhythm Generation

All aspects of rhythm (meter/hypermeter, middleground, and fore-
ground) are sampled from occurrences in the chosen repertoire,
again weighted by how often they occur. In other words, meter/hy-
permeter is chosen from a small set of possibilities, and portions of
middleground and foreground rhythms are sampled and combined
to generate a new rhythmic framework.

4.2.1 Meter and Hypermeter Generation. Meter is generated inde-
pendently as any combination of measure subdivision (duple, triple,
quadruple) and beat subdivision (simple, compound) to form time
signatures @, Z, g, etc.). For instance, Figure 3 is simple duple (i).

Hypermeter refers to the number of measures for each subphrase
or phrase. In Western classical music, sentences (a — a’ — b) are
commonly composed with subphrases of 2, 2, and 4 measures respec-
tively, such as in the main sentence structure of Figure 3. Periods
(A—B) are often composed as two 8-measure phrases. Our model fits
the sampled phrase structure with a proper proportion of measures
for each subphrase (1:1:2 for sentences or 1:1 for periods).

4.2.2 Middleground Harmonic Rhythm Generation. Middleground
harmonic rhythm is determined based on where middleground
harmonic shifts occur. In Figure 3, the harmonic rhythm changes at
the beginning of every measure except the penultimate one, which
also changes halfway through. Our model examines each phrase and
uniformly samples a common harmonic rhythm based on its length

4092

Stephen Hahn, Rico Zhu, Simon Mak, Cynthia Rudin, & Yue Jiang

from all possibilities. For example, Figure 3 shows middleground
harmonic shifts in the darkest blue; harmonic rhythm follows the
pattern 4-4-5-1-2 beats in .

4.2.3 Foreground Melodic Rhythm Generation. For the foreground
melodic rhythm, sections determined by the middleground har-
monic rhythm are subdivided into sample rhythms from the reper-
toire. For instance, many samples from the Beethoven example fill
the space of a half note using combinations of notes with shorter
durations or a half note itself.

4.3 Harmonic Progression Generation

Once we have the middleground harmonic rhythm, the next step is
to fill in the particular harmonic progression. We experiment with
two methods to determine this progression: a simple Markov chain
and a PCFG of harmonic entities.

Harmonic entities can consist of any notes specified by the user
or gathered from a dataset’s harmonies. For instance, Western clas-
sical or pop style may sample from pitch class sets represented by
Roman numerals:

H = {1 (0,47}, ii: {2,5,9),..., 0ii® : {2,5,11}}.

Here, H is the set of possible harmonies, which are represented
as sets of chromatic pitch classes (0 = C, 1 = Cf/Db,..., 11
B). Our implementation makes use of the RomanNumeral class in
the Python package Music21 [7], which can be straightforwardly
manipulated to represent any pitch class set.

4.3.1 Harmonic Markov Chain. A single-order Markov chain makes
a strict assumption that one element depends only on the element
that comes immediately “before” it. That is,

P(hy | ht—1,he—2, ..., ho) = P(ht | hs—1),

where h is a particular harmony in H and at discrete time step ¢. Our
Markov chain generates harmonies backwards from a goal harmony.
This backwards generation produces goal-oriented progressions
within the number of allotted harmonic changes. In most Western
styles of music, a phrase may begin practically anywhere, but lead
towards a limited number of goal harmonies (e.g., I or V).

4.3.2 Harmonic Probabilistic Context-Free Grammar. For our har-
monic PCFG we define a CFG with nonterminal variables V and
terminals ¥ as follows,

’V={fi:i€N22}, S=H, (1

where f € ¥ is a functional category expansion of length i. For
instance, in Western classical music, the set ¥ might include tonic
(T), predominant (PD), and dominant (D) functional categories. The
start variable S might lead to a string of variables based on the
given harmonic rhythm, such as Ty — PDy — D3 — I, which may then
break into the sequence,

[I-1V-V -1 - [IV-ii®lpp - [VE-V7]p - L

We see that the PCFG for harmony imposes long-term harmonic
structure on the generated music (unlike the Markov chain) and
allows for the flexibility to use numerous styles.

A Probabilistic Framework for Melody Generation

4.4 Melody Generation

4.4.1 Contour Probabilistic Context Free Grammar. We define a
simple PCFG of contour sequences. Let the set of variables be

V= { /0Ny 1 i€Ny; and ce {nht,@}},

where each arrow describes the contour (general direction) from one
note to another, superscript ¢ indicates whether the contour leads
to a non-harmonic tone (NHT), and subscript i indicates the number
of contours that are put together to make the larger compound
contour. That is, a note’s pitch can be the same, higher, or lower
in relation to another’s, and a particular sequence of contours may
lead to a broader contour. The set of terminals is defined as

ht ht ht
2={—>1,/'1, N P T NT }

That is, contours with a subscript of 1 cannot be broken down
further into more contours.

To demonstrate, Figure 4 shows three levels of contours from the
first two measures of Figure 3. The larger /" contour is com-
prised of three smaller contours that follow the sequence,
Ny—_". The middle contour, —, is further broken down
into two smaller red contours that follow the sequence, .

e
— —

Figure 4: Toy example of the ,and
foreground contours in the first two measures of Beethoven
Op. 49/1.

The set of production rules for the excerpt may be

={ SN e\

where terminals are arrows with subscript 1. The start variable in
this case is S =,”4. Each production rule is given a probability by
the user or based on its frequency in a given dataset. In the trivial
example in Figure 4, each production rule in R has a probability of
1.

4.4.2 Schenkerian Analysis Dataset. We gather most contour data
from the Schenker41 dataset [20], which consists of 41 Schenkerian
analyses from textbooks and a music theory professor. Other con-
tour data comes from the authors’ own analyses. For each prolonga-
tion, we extract contour information and keep track of production
frequency to be used in our PCFGs. Our data are centered around
Western classical music of the common practice era, as that is the
style Schenkerian analysis was designed for. However, concepts
of Schenkerian analysis can be broadly applied to other genres of
music [22, 43].

4.4.3 Middleground Melody Generation. Given the harmonic rhythm,

the model generates a middleground note at each harmonic change
using a PCFG similar to the one defined in Section 4.4.1. The only
difference is that no terminal may be an NHT. The start variable
produces a contour from the first note to the last, representing

4093

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

a pseudo-Schenkerian Urlinie. Once all contours are determined
by the PCFG, the notes are filled in to satisfy the harmonies and
smoothest voice-leading. Smoothest voice-leading is defined as the
smallest intervallic distance between each consecutive note. In other
words, the smoothest melody uses the fewest semitones necessary
to travel from the first note to the last.

4.4.4 Foreground Melody Generation. Given all other components
for the melody (harmony, middleground melody, foreground rhythm,
and phrase structure), we produce the foreground melody, which
gives the piece its unique character.

Because the foreground rhythm is known, contours derived from
our PCFG can be mapped to notes in our melody. Using these
contours and a measure for smoothness (S), we place melody notes
within the harmonic/rhythmic framework. All harmonic tones are
handled first. If the next note in the melody is native to the harmony
and we set S = 0, the next note will be set as the nearest harmonic
tone in the direction of the contour. Greater values of S offset the
next note as shown in Figure 5; higher S increases the intervallic
distance between consecutive notes.

Contour: \

Possible next notes e

ey S=2 >
50] i ST
~ < S=1 S0 >-
i’ <52 > < Sartnote > ———
C Major: V I 1 \%

Figure 5: Melodic notes are determined by the contour, har-
mony, and smoothness measure. The left half shows a V-I
progression moving from D5 with | contour. shows
the next possible notes depending on smoothness S. The
right half shows a similar action with a rising contour.

On the other hand, if the next note is an NHT, then it is chosen in
relation to its two surrounding notes and the prescribed contour
from a set of common NHT types,

{N, P, IN, SUS, ANT, RET},

which stand for neighboring, passing, incomplete neighbor, suspen-
sion, anticipation, and retardation respectively.

Neighbor tones may occur as the result of a —; contour. Pass-
ing tones occur when notes are a third apart and the contours
are /‘q’ht/'l or /‘q’ht/'q’ht or their inverses. Incomplete neigh-
bors may occur with any interval and either /';lh’ \J1 or \Tht 1
contours, suspensions with —>;’ht \\1 contours, anticipations with
/"llht — or \,g‘ht — contours, and retardations with —>’11ht /" con-
tours.

It should be noted that using contours rather than precise inter-
vals allows the model to be more easily generalized to other styles.
However, using contours rather than precise intervals loses some
of the structural benefits of Schenkerian analysis, which prescribes
that we consider specific notes, and thus, their intervals. If using
precise intervals, large amounts of data from a specific genre are
required to generate the foreground melody. On the other hand,
the foreground of any genre can be generated from very small

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Preference For Pairwise Model Comparisons

ours vs FlowMachines [N I == strongly prefer 1
i Prefer 1
Ours vs MusicVAE _ --- EEm No preference

Prefer 2
Strongly prefer 2

i]
ours vs HRNN-3L [=
ours vs Human [

0 10 20 30 40 50 60 70 80 90 100
Cumulative Percent

Figure 6: Pairwise preferences in model comparisons.
SchenkComposer’s melodies (1) are in orange on the left.
Other models (2) are on the right in blue.

amounts of data by using contours. In the future, we will incorpo-
rate a method that searches for a possible foreground realization
using precise intervals, but falls back to using contours if precise
intervals are not available.

The model generates subphrase variations using a randomly
sampled variation technique. One such technique involves copy-
ing the original subphrase rhythms and contours, but altering the
harmonies. The melody notes are then regenerated to fit the new
harmonies. Another technique follows the same process, but with
altered contours instead of harmonies. We may also vary aspects
such as the final subphrase harmony and contour, the smoothness
factor, and foreground rhythm.

5 EXPERIMENTS

To evaluate the performance of our model’s generated melodies,
we conducted a survey experiment that compared the output of
our model against other state-of-the-art melody generation mod-
els. We also performed a Turing test to see whether our model’s
output was convincingly “human.” Surveys were conducted anony-
mously using the Amazon Mechanical Turk platform. An additional
ablation study may be found in the Supplemental Materials! to de-
termine “effects” and relative importance of each component of
SchenkComposer in successfully generating music.

5.1 Survey Design and Evaluation

We compared SchenkComposer with human-composed melodies
and melodies from three leading melody generation models, HRNN-
3L [49], MusicVAE [37], and Flow Machines [33]. Other methods
[8, 28] with no reproducible code or sample recordings were not
evaluated. We randomly generated over 20 melodies from each
model and uniformly sampled from them to evaluate all pairwise
comparisons between SchenkComposer and comparitors. Each ex-
cerpt was either 8 or 16 measures and lasted between 16-34 seconds,
giving reviewers enough information to make an informed judge-
ment on the quality of the melody. Excerpts were presented in a
randomized order as piano MIDI recordings.

For each pair of melodies we asked the following: 1) On a scale of
0 (not enjoyable) to 10 (very enjoyable), how would you rate melody
X? 2) On a scale of 0 (certain it’s by a computer) to 10 (certain it’s
by a human), what is your degree of belief that a human composed
melody X? 3) Which melody do you prefer? (a) strongly prefer 1,

1 github.com/stephenHahn88/SchenkComposer_Supplement

4094

Stephen Hahn, Rico Zhu, Simon Mak, Cynthia Rudin, & Yue Jiang

Confidence Melody Composed By Human

z 10
g9
5 3
R
Q 5 .- N . RN U . W s
£ .
O
I3
;2
51
& 0

Human FlowMachines HRNN-3L
Composed By

MusicVAE
Figure 7: Turing test results (human included as control).

(b) prefer 1, (c) no clear preference, (d) prefer 2, (e) strongly prefer
2. 4) Were there any parts of melody X that stood out as sounding
weird or bad to you? (yes=1, no=0). The full survey instrument,
reproducible code, and excerpts are available in the Supplemental
Materials.

We compared mean enjoyability for each competing excerpt
vs. SchenkComposer using a paired t-test. For the Turing test, we
evaluated mean confidence that each excerpt was composed by
a human compared to the actual human-composed excerpt using
a paired t-test. We calculated exact (Clopper-Pearson) binomial
confidence intervals for the proportion of participants that strictly
preferred SchenkComposer compared to the competitors; this was
doubly conservative both in the type of confidence interval used as
well as in excluding “no preference” participants from being counted
in favor of SchenkComposer. Finally, we evaluated whether there
was a difference in the proportion of respondents that identified
a “weird or bad” sounding excerpt for each competing excerpt vs.
SchenkComposer using a chi-square test.

Eighty people participated in our study; two were removed for
claiming to have studied music but providing nonsensical answers
for screening questions (see supplement), resulting in a final analy-
sis dataset of n = 78.

5.2 Survey Results

Table 1: Enjoyability (higher is better).

Method Mean 95% CI p-value
SchenkComposer 7.11 (6.85, 7.38) ref.
Human 729 (7.04,755) 0.334
HRNN-3L 6.23 (5.63, 6.82) 0.004
MusicVAE 542 (4.77,6.06) <0.001
FlowMachines 6.22 (5.63, 6.82) 0.008

Table 1 demonstrates similar mean enjoyability for SchenkCom-
poser compared to human-composed excerpts. We additionally find
sufficient statistical evidence suggesting greater enjoyability scores
for our excerpts compared to the current state-of-the-art automated
melody generators. Of particular note in Figure 7 and Table 2 is
that SchenkComposer successfully passed the Turing test whereas
HRNN-3L, MusicVAE, and Flow Machines did not. This can be seen
from the p-values rejecting the hypothesis that the other methods’
melodies were composed by a human. Figure 6 and Table 3 suggest

A Probabilistic Framework for Melody Generation

Table 2: Confidence of being composed by human.

Method Mean 95% CI p-value
Human 6.68 (6.37,7.00) ref.
SchenkComposer 6.45 (6.14, 6.76) 0.300
HRNN-3L 5.80 (5.20, 6.40) 0.007
MusicVAE 484 (4.17,551) <0.001
FlowMachines 5.22 (4.32,6.13) <0.001

Table 3: Proportion of respondents strictly preferring
SchenkComposer (higher is better).

Method Proportion 95% CI

vs. Human 0.47 (0.34, 0.59)
vs. HRNN-3L 0.60 (0.47, 0.72)
vs. MusicVAE 0.60 (0.47,0.72)
vs. FlowMachines 0.47 (0.33, 0.61)

Table 4: Proportion of excerpts identified as containing
“weird or bad” segments (lower is better).

Method Proportion 95% CI p-value
SchenkComposer 0.25 (0.18, 0.31) ref.
Human 0.33 (0.27, 0.40) 0.019
HRNN-3L 0.61 (0.49,0.74) <0.001
MusicVAE 0.52 (0.39, 0.64) <0.001
FlowMachines 0.27 (0.13, 0.40) 0.637

a general preference for our method compared to the current state-of-
the-art, and demonstrate non-inferiority to human-composed excerpts
and Flow Machines. Finally, Table 5 suggests that SchenkComposer
generally has significantly lower incidence of “weird or bad” segments
compared to the current state-of-the-art.

6 DEPLOYMENT

We implemented a Web application? allowing the public to interact
with SchenkComposer and the melody generation process. The
application allows the user to follow the flow of the SchenkCom-
poser model, generating a melody in a top-down style (see Figure 2).
The website allows the user limited manual access to adjust phrase
structure, meter, hypermeter, harmonic rhythm, harmonic transi-
tion matrix, and harmonic progression. This section will discuss the
technology and design of the website (Section 6.1), and preliminary
user feedback and an analysis of user data (Section 6.2).

6.1 Technology and Design

The “deep” structure and flow of the website is depicted in Figure 8.
The website follows a typical Client-Server model, where the client
interacts with a responsive user interface, and the server safely
processes client requests by communicating with the database and
machine learning model.

The MongoDB database stores melodies and user information, in-
cluding survey results. Users may create and login to their accounts

Zhttps://melody.cs.duke.edu:8000

4095

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Vo CLIENT

A
q“SERVER

Flask

@ mongoDB

Figure 8: Architecture of the SchenkComposer website. “A”
represents a human visiting the public website. “B” is the
user interface, which reactively guides the user through the
melody generation process. Throughout this process, http
requests are sent to “C,” representing the Flask server. “C”
processes requests by working with the SchenkComposer
model and MongoDB, represented by “D” and “E” respec-
tively. The server (“C”) responds to the client, providing gen-
erated melodies and records of saved data (“G” and “F” re-
spectively). The user (“A”) can then process the result of “G”
and “F” and update model parameters, repeating the process.

in order to save and return to melodies and model parameters they
produced. Melodies and their parameters are viewable in a table in
the user’s melodies screen (see Figure 13).

The website’s front-end server is implemented using the Vite,
Vue.js, and BootstrapVue frameworks along with the Vexflow, Graphly
D3, and Tone.js libraries. Vexflow is used throughout the applica-
tion to generate professional-grade music notation in the browser.
Graphly D3 makes it simple to generate the interactive Markov
chain found in the Harmonic Progression page (see Figure 12).
Lastly, Tone.js is used to perform the music from the playback
panel (see Figure 10).

The back-end server, written using the Python Flask framework,
handles the log-in procedure, saving and loading information to
the MongoDB database, and interaction with the SchenkComposer
model.

Each step of the melody generation process is explained via an
optionally displayed tutorial panel. Music and machine learning
concepts are explained and visualized using musical scores and
graphs. Tutorial videos and hoverable popup texts help the user
find their way through the website.

6.2 Preliminary User Feedback and Analysis of
User Data

We designed an informal survey to gather opinions on the current
state of the website. The survey consists of four questions or re-
sponses: 1) How would you rate the usability of SchenkComposer,
from 0 (very difficult) to 10 (intuitive)? 2) How likely would you
recommend SchenkComposer to a friend or colleague on a scale of
0 (not likely) to 10 (very likely)? 3) Are there any particular features
that you would like to see added to the website? 4) Please provide
additional comments on the website, such as parts you enjoyed or

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Harmonic Rhythm

Determine
sure to

in your melody by pressing the note buttons below. Be

e e

AEmEmom

Figure 9: Screenshot of the Middleground Harmonic Rhythm
page. Notes are placed in the score (built with Vexflow) mea-
sure by measure by pressing the buttons at the bottom.

Melody Generation

Generate New Replay Melody
Melody

Download Last as Midi Download Last as XML

Choose your layers:

® Melody @@ Harmony @@ Bass

Choose your instrument

Figure 10: Screenshot of the Melody Generation and playback
page. The user can determine their tempo, which layers are
playing, and the instrumental ensemble they wish to use.
The music is played through the browser using the Tone.js
library. The user may also download their melody as a midi
file or a musicXML score.

bugs you encountered, here. We received 10 survey responses from
a range of users from professional musicians to music enthusiasts.

For usability, the mean score was 8.11 with a standard deviation
of 1.79. For likeliness to recommend, the mean score was 9.00 with
a standard deviation of 1.33. Several respondents expressed how
they enjoyed the process and musicality of the outcome. They also
appreciated the tutorial videos that made it very manageable to
figure out how to proceed through the website. Users reported no
major bugs found, except that the model had trouble generating
larger phrases. We have found this occurs with unusual parameter
settings and could be resolved with more contour data. Desired
features included more rhythm and phrase options, improved edu-
cational features for non-musicians, simpler navigation, and use of
non-diatonic harmony. We will continue to work towards including
and improving these features.

We also included a survey that pops up once a melody is gen-
erated. This brief survey, shown in Figure 14, requests the user’s
reaction to the melody in terms of five emojis ranging from upset

4096

Stephen Hahn, Rico Zhu, Simon Mak, Cynthia Rudin, & Yue Jiang

Pentatonic

RERERER-
BERERERES
BEREREEG
BEEERES
<
BEEEEES
BEEEEEN

Figure 11: Screenshot of the transition matrix on the Har-
monic Progression page. The matrix corresponds to the
Markov chain shown in Figure 12. The user may alter the
inputs to the matrix with any non-negative real number,
directly controlling the way harmonies are produced by
SchenkComposer.

refresh Play around with the nodes of your matrix below!

16.7%

0%
3l

o\

&

“ax 0‘,“{\7‘

NS

33,30,

N
[
fo

= 14.3%

1‘%-«“‘“

Figure 12: Screenshot of the Markov chain produced fdrom
the transition matrix in Figure 11. Harmonic labels act as
nodes and links between nodes are weighted with probabil-
ities. Nodes may be dragged around, pulling and pushing
other nodes using the Graphly D3 physics.

to joyous. The emoji scores were encoded as 0 (upset) to 4 (joyous).
Based on 20 responses, the mean score was 3.4 and the standard
deviation, 0.50.

A Probabilistic Framework for Melody Generation

Currently selected melody: 4

Melody Id Composer Phrase Structure Hypermeter (Measures) Harmonic Rhythm

Anonymous ab [HC] cd [AC] a2b2c2d2 a ()b () e O

Anonymous aa'b[HClaa' c[AC] a1 b2 c2d0 a(d)b (4) e (4 J)e) o

Anonymous a[AC] a4 b0 0 d:0 a (LI ddle) b (d

Anonymous a [HC] b [AC] a4 bid 0 d:0 a (3 4. LJ414) bz (U2 4N

Figure 13: Screenshot of the user’s melodies table. The table
displays all parameters and outcomes for each particular
melody. Clicking on a row will load a particular melody into
the system, allowing parameters to be updated.

How would you rate your melody?

o 00
$2 00 00 00
~ ~ = ~ -

Figure 14: Screenshot of the melody reaction popup survey.
Users may choose how they enjoyed their melody by choos-
ing one of five emoji expressions.

7 CONCLUSIONS

Western music generation cannot be complete without structure,
harmony, and melody, which is handled gracefully by SchenkCom-

poser. Our experiments show that SchenkComposer produces melodies

that are structurally coherent and musically preferable over cur-
rent state-of-the-art deep learning models, and successfully pass as
human-composed in a blinded experiment. SchenkComposer is also
vastly less complex, allowing users to fully grasp and manipulate its
inner mechanisms, with simple changes to the model parameters
allowing for melodies of different genres.

REFERENCES

[1] Gérard Assayag and Shlomo Dubnov. 2004. Using factor oracles for machine
improvisation. Soft Computing 8, 9 (2004), 604-610.

Bernard Bel and Jim Kippen. 1992. Modelling music with grammars: formal
language representation in the Bol Processor.

Wallace Berry. 1966. Form in Music. Prentice Hall.

Allen Clayton Cadwallader and David Gagné. 2007. Analysis of Tonal Music: a
Schenkerian Approach.

William E Caplin. 2001. Classical Form: A Theory of Formal Functions for the
Instrumental Music of Haydn, Mozart, and Beethoven. Oxford University Press.
Jialei Chen, Simon Mak, V Roshan Joseph, and Chuck Zhang. 2020. Function-
on-function kriging, with applications to three-dimensional printing of aortic
tissues. Technometrics (2020), 1-12.

Michael Scott Cuthbert and Christopher Ariza. 2010. music21: A toolkit for
computer-aided musicology and symbolic music data. Proceedings of the 11th
International Society for Music Information Retrieval Conference (ISMIR 2010)
(2010).

Shugqi Dai, Zeyu Jin, Celso Gomes, and Roger B Dannenberg. 2021. Controllable
deep melody generation via hierarchical music structure representation. arXiv
preprint arXiv:2109.00663 (2021).

Diana Deutsch and John Feroe. 1981. The internal representation of pitch se-
quences in tonal music. Psychological Review 88 (11 1981), 503-522. https:
//doi.org/10.1037/0033-295X.88.6.503

Alvaro E Lopez Duarte. 2020. Algorithmic interactive music generation

in videogames: A modular design for adaptive automatic music scoring.
SoundEffects-An Interdisciplinary Journal of Sound and Sound Experience 9, 1

(2020), 38-59.

[10]

4097

ey
&

(17]

[18

=
)

[20

[21

[22

[23

[24

[25

[26]

[27]

[28

™
20,

&
2

[38

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Marc Evanstein. 2022. Can ChatGPT write a good melody? https:
//www.youtube.com/watch?app=desktop&v=0gf YRBgzZPU&ab_channel=
MarcEvanstein%2Fmusic%E2%80%A4py

Allen Forte and Steven E Gilbert. 1982. Introduction to Schenkerian analysis.
Norton.

Edouard Gilbert and Darrell Conklin. 2007. A probabilistic context-free grammar
for melodic reduction. In Proceedings of the International Workshop on Artificial
Intelligence and Music, 20th International Joint Conference on Artificial Intelligence.
Citeseer, 83-94.

Gaétan Hadjeres, Francois Pachet, and Frank Nielsen. 2017. Deepbach: a steerable
model for bach chorales generation. In International Conference on Machine
Learning. PMLR, 1362-1371.

Stephen Hahn. 2019. Continuous Harmonic Structure in J.S Bach’s Triple Fugues
in The Well-Tempered Clavier and Art of Fugue. https://digital library.unt.edu/
ark:/67531/metadc1538652/

Daniel Harasim, Martin Rohrmeier, and Timothy J O’'Donnell. 2018. A Generalized
Parsing Framework for Generative Models of Harmonic Syntax.. In ISMIR. 152—
159.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian
Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Din-
culescu, and Douglas Eck. 2018. Music Transformer. https://doi.org/10.48550/
ARXIV.1809.04281

Yu-Siang Huang and Yi-Hsuan Yang. 2020. Pop Music Transformer: Beat-based
Modeling and Generation of Expressive Pop Piano Compositions. https://doi.
org/10.48550/ARXIV.2002.00212

Robert M Keller and David R Morrison. 2007. A grammatical approach to auto-
matic improvisation. In Proceedings of the Sound and Music Computing Conference.
Citeseer, 330-337.

Phillip B Kirlin. 2014. A Probabilistic Model of Hierarchical Music Analysis. Uni-
versity of Massachusetts Amherst.

Steven Geoffrey Laitz. 2012. The Complete Musician: An Integrated Approach to
Tonal Theory, Analysis, and Listening. Oxford University Press New York.

Steve Larson. 1998. Schenkerian analysis of modern jazz: questions about method.
Music Theory Spectrum 20, 2 (1998), 209-241.

Fred Lerdahl and Ray S Jackendoff. 1996. A Generative Theory of Tonal Music.
MIT press.

Bjorn Lindblom and Johan Sundberg. 1970. Towards a Generative Theory of Melody.
Department of Phonetics, Institute of Linguistics, University of Stockholm.
Simon Mak, Chih-Li Sung, Xingjian Wang, Shiang-Ting Yeh, Yu-Hung Chang,
V Roshan Joseph, Vigor Yang, and C.-F. Jeff Wu. 2018. An efficient surrogate
model for emulation and physics extraction of large eddy simulations. J. Amer.
Statist. Assoc. 113, 524 (2018), 1443-1456.

Alan Marsden. 2010. Schenkerian analysis by computer: A proof of concept.
Journal of New Music Research 39, 3 (2010), 269-289.

Ryan Martin. 2018. Generative Music with the Living Machine: Using Rule-
Based Improvisation to Generate Narrative and Soundtrack. Critical Studies in
Improvisation/Etudes Critiques en Improvisation 12, 2 (2018).

Gabriele Medeot, Srikanth Cherla, Katerina Kosta, Matt McVicar, Samer Abdallah,
Marco Selvi, Ed Newton-Rex, and Kevin Webster. 2018. StructureNet: Inducing
Structure in Generated Melodies.. In ISMIR. 725-731.

Maximilian Muller-Eberstein and Nanne van Noord. 2019. Translating visual art
into music. In Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops. 0-0.

Eita Nakamura, Masatoshi Hamanaka, Keiji Hirata, and Kazuyoshi Yoshii. 2016.
Tree-structured probabilistic model of monophonic written music based on the
generative theory of tonal music. In 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 276-280.

Steven Nicholls, Stuart Cunningham, and Richard Picking. 2018. Collaborative
artificial intelligence in music production. In Proceedings of the Audio Mostly
2018 on Sound in Immersion and Emotion. 1-4.

OpenAl 2022. ChatGPT: Optimizing Language Models for Dialogue. https:
//openai.com/blog/chatgpt/. Accessed: 2022-12-20.

Frangois Pachet, Pierre Roy, and Benoit Carré. 2020. Assisted music creation with
Flow Machines: towards new categories of new. https://arxiv.org/abs/2006.09232
Thomas Pankhurst. 2008. SchenkerGUIDE: A Brief Handbook and Website for
Schenkerian Analysis. Routledge.

Gary M Rader. 1974. A method for composing simple traditional music by
computer. Commun. ACM 17, 11 (1974), 631-638.

Curtis Roads and Paul Wieneke. 1979. Grammars as representations for music.
Computer Music Journal (1979), 48-55.

Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. 2018.
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music.
In International Conference on Machine Learning (ICML). http://proceedings.mlr.
press/v80/roberts18a.html

Brayan Rodriguez, Raul Gutiérrez de Pifiérez, and Gerardo M Sarria M. 2017.
Using Probabilistic Parsers to Support Salsa Music Composition. In International
Conference on Mathematics and Computation in Music. Springer, 361-372.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

[39] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and
Chudi Zhong. 2022. Interpretable machine learning: Fundamental principles
and 10 grand challenges. Statistics Surveys 16, none (2022), 1 — 85. https:
//doi.org/10.1214/21-SS133

Carl Schachter. 1999. Unfoldings: Essays in Schenkerian theory and analysis.
Oxford University Press on Demand.

Heinrich Schenker. 2001. Free Composition. Pendragon Press, Hillsdale, NY.
Translated and edited by Ernst Oster.

Arnold Schoenberg, Leonard Stein, and Gerald Strang. 1967. Fundamentals of
Musical Composition. Faber & Faber London.

Jonathan Stock. 1993. The application of Schenkerian Analysis to Ethnomusicol-
ogy: problems and possibilities. Music Analysis 12, 2 (1993), 215-240.

David Temperley. 2009. A unified probabilistic model for polyphonic music
analysis. Journal of New Music Research 38, 1 (2009), 3-18.

Hiroaki Tsushima, Eita Nakamura, Katsutoshi Itoyama, and Kazuyoshi Yoshii.
2017. Function-and Rhythm-Aware Melody Harmonization Based on Tree-
Structured Parsing and Split-Merge Sampling of Chord Sequences.. In ISMIR.
502-508.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).

Gilbert Wassermann and Mark Glickman. 2020. Automated harmonization of
bass lines from Bach chorales: a hybrid approach. Computer Music Journal 43,
2-3 (2020), 142-157.

Terry Winograd. 1968. Linguistics and the computer analysis of tonal harmony.
Journal of Music Theory 12, 1 (1968), 2-49.

Jian Wu, Changran Hu, Yulong Wang, Xiaolin Hu, and Jun Zhu. 2019. A hierarchi-
cal recurrent neural network for symbolic melody generation. IEEE Transactions
on Cybernetics 50, 6 (2019), 2749-2757.

Ruihan Yang, Dingsu Wang, Ziyu Wang, Tianyao Chen, Junyan Jiang, and Gus
Xia. 2019. Deep music analogy via latent representation disentanglement. arXiv
preprint arXiv:1906.03626 (2019).

[40

[41]

[42

[43]

[44

[45

[46

[47]

[48

[49]

[50]

A SUPPLEMENTARY MATERIALS OVERVIEW

Complete supplementary materials may be found in the following
repository:
https://github.com/stephenHahn88/SchenkComposer_Supplement

In our supplementary materials, we provide our full survey in-
strument including all musical excerpts, a discussion of our ablation
experiments with musical excerpts, and a README file describing
the use of SchenkComposer. Here, we provide additional figures
and statistics for our survey experiments in Appendix B. Appendix
C discusses our experiments producing various musical genres.

B ADDITIONAL SURVEY ANALYSIS
_ Enjoyability of melodies
210

29

c”’ 8

=7

2 6

25

g 4

< 3

[

S 2

g1

g0

FlowMachines HRNN-3L
Composed By

MusicVAE

Ours Human

Figure 15: “Enjoyability” of melodies by various models on a
scale of 0-10.

4098

Stephen Hahn, Rico Zhu, Simon Mak, Cynthia Rudin, & Yue Jiang

Proportion Who Heard 'Weird or Bad' Segments in a Melody

100
B Not weird

o &0 . \Weird
o
8 60
3
o 40
Q
a

” - . . .

0 T z

Ours Human FlowMachines MusicVAE HRNN-3L

Composed By

Figure 16: Percentage of participants who heard “weird or
bad” segments in melodies by various models.

l Question ‘ Low Medium High ‘
Years Studied n=40 27 10
Hours Listened 9 43 25

l Question [Nonsense Wrong Correct ‘
Meter 13 21 43
Interval 20 38 19

Table 5: Number of participants who answered background
and knowledge question. For years studied: low="I have not
studied music with a teacher or in school,’ medium="I have
studied music for 5 years or less," high="T have studied music
for more than 5 years." For hours listened: low="I listen to
music less than 1 hour per week,” medium="1I listen to music
between 1 and 15 hours per week," high="I listen to music
more than 15 hours per week."

Binomial Confidence Intervals of SchenkComposer Vs. Baselines

vs FlowMachines

Vs MusicVAE

vs HRNN-3L

vs Human
0.35 0.40 0.45 0.50 0.55 0.60 0.65

Proportion of Strict Preference of SchenkComposer

0.70

Figure 17: Binomial confidence intervals for strict preference
of SchenkComposer over baseline models (higher is better).

Confidence Intervals for Mean Proportion of "Weird or Bad" Melodies
FlowMachines

MusicVAE
HRNN-3L
Human ———
Ours et
0.2 0.3 0.4 0.5 0.6 0.7

Proportion of "Weird or Bad" Melodies

Figure 18: Confidence intervals for “weird or bad” melodies
(lower is better).

A Probabilistic Framework for Melody Generation

Confidence Intervals for Mean "Enjoyability" of Melodies

FlowMachines

MusicVAE

HRNN-3L

Human

Ours
5.0 5.5 6.0 6.5

) 7.0
Enjoyability Score

7.5

Figure 19: Confidence intervals for enjoyability scores
(higher is better).

Confidence Intervals for Mean Turing Score of Melodies

FlowMachines

MusicVAE

HRNN-3L
o e e

Human

e e

6.5

Ours

4.5 5.0 5.5

Turing Score

6.0 7.0

Figure 20: Confidence intervals for Turing scores (higher is
better).

C GENRE EXPERIMENTS

For our genre experiments, we attempt to adjust the parameters
of SchenkComposer to generate melodies of specific genres. We
attempt to generate style-specific melodies without changes to the
contour probabilistic context-free grammar. We are also forced to
use a Markov chain for harmony generation due to our lack of
hierarchical data in other genres. Despite this lack of hierarchical
analyses in other genres, we are able to achieve moderate success.
Recordings can be found in the Genre experiments folder.

C.1 Rock/Pop

For the rock/pop genre we simply change the harmonic transi-
tion matrix, which may be visualized in Figure 21. Additionally,
the foreground rhythms are changed to include more syncopated
patterns.

Figure 21: Rock transition graph. Arrows point to harmonies
that precede the source harmony. Arrow width indicates the
relative probability from one harmony to another.

4099

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

C.2 Pentatonic

Using the major pentatonic scale, we attempted to generate melodies
of the traditional Chinese style. We replace the transition matrix
with a simple four-harmony system that only includes notes of the
pentatonic scale (see Figure 22).

Figure 22: Pentatonic transition graph. Arrows point to har-
monies that precede the source harmony. Arrow width indi-
cates the relative probability from one harmony to another.

C.3 Gagaku

Out of sheer curiosity, we attempted to generate melodies in the
style of Japanese Gagaku music, although it is far from the authors’
expertise. The foreground rhythms were slowed down to last up
to multiple measures. We used a four-harmony transition matrix
including Bo, Otsu, Gyo, and Ichi. Because we are unaware of the
transition probabilities, the weights between all harmonies were
equal. The melody was based on a subset of the Dorian scale. We
based these decisions on the information found in the following
website: https://gagaku.stanford.edu/en/.

	Abstract
	1 Introduction
	2 Related Work
	3 Relevant Background
	3.1 Form Analysis
	3.2 Schenkerian Analysis
	3.3 Probabilistic Context Free Grammars

	4 Methodology
	4.1 Phrase Structure Generation
	4.2 Rhythm Generation
	4.3 Harmonic Progression Generation
	4.4 Melody Generation

	5 Experiments
	5.1 Survey Design and Evaluation
	5.2 Survey Results

	6 Deployment
	6.1 Technology and Design
	6.2 Preliminary User Feedback and Analysis of User Data

	7 Conclusions
	References
	A Supplementary Materials Overview
	B Additional Survey Analysis
	C Genre Experiments
	C.1 Rock/Pop
	C.2 Pentatonic
	C.3 Gagaku

