
Improving Node Classification Accuracy of GNN through Input and Output
Intervention

ANJAN CHOWDHURY, Indian Statistical Institute, India

SRIRAM SRINIVASAN, Bowie State University, USA

ANIMESH MUKHERJEE, IIT Kharagpur, India

SANJUKTA BHOWMICK, University of North Texas, USA

KUNTAL GHOSH, Indian Statistical Institute, India

Graph Neural Networks (GNNs) are a popular machine learning framework for solving various graph processing applications. This
framework exploits both the graph topology and the feature vectors of the nodes. One of the important applications of GNN is in the
semi-supervised node classification task. The accuracy of the node classification using GNN depends on (i) the number and (ii) the
choice of the training nodes. In this paper, we demonstrate that increasing the training nodes by selecting nodes from the same class
that are spread out across non-contiguous subgraphs, can significantly improve the accuracy. We accomplish this by presenting a novel
input intervention technique that can be used in conjunction with different GNN classification methods to increase the non-contiguous
training nodes and, thereby, improve the accuracy. We also present an output intervention technique to identify misclassified nodes
and relabel them with their potentially correct labels. We demonstrate on real world networks that our proposed methods, both
individually and collectively, significantly improve the accuracy in comparison to the baseline GNN algorithms. Both our methods are
agnostic. Apart from the initial set of training nodes generated by the baseline GNN methods, our techniques do not need any other
extra knowledge about the classes of the nodes. Thus, our methods are modular and can be used as pre-and post-processing steps with
many of the currently available GNN methods to improve their accuracy.

CCS Concepts: • Computing methodologies→Machine learning; Machine learning approaches; Neural networks; Modeling

methodologies;

Additional Key Words and Phrases: GNN, PaRWalk, DeepWalk, K-NN, K-Means

ACM Reference Format:
AnjanChowdhury, Sriram Srinivasan, AnimeshMukherjee, Sanjukta Bhowmick, and Kuntal Ghosh. 2024. ImprovingNode Classification
Accuracy of GNN through Input and Output Intervention. 1, 1 (June 2024), 30 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Node classification, which involves identifying nodes of the same class in a complex network, is a fundamental problem
in data mining. With the advent of information rich datasets, features associated with nodes also contribute to the

Authors’ addresses: Anjan Chowdhury, anjan_r@isical.ac.in, Indian Statistical Institute, CSCR, BT Road, Kolkata, West Bengal, India, 700108; Sriram
Srinivasan, Bowie State University, 14000 Jericho Park Rd, Bowie, Maryland, 20715, USA, ssrinivasan@bowiestate.edu; Animesh Mukherjee, IIT Kharagpur,
Computer Science Department, Kharagpur, West Bengal, India, 721302, animeshm@cse.iitkgp.ac.in; Sanjukta Bhowmick, University of North Texas,
Department of Computer Science and Engineering, 1155 Union Circle 311366, Denton, TX, 76203-5017, USA, sanjukta.bhowmick@unt.edu; Kuntal Ghosh,
Indian Statistical Institute, MIU, BT Road, Kolkata, West Bengal, 700108, India, kuntal@isical.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0003-1056-1568
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0003-1056-1568

2 Chowdhury et. al.

classification. Therefore, semi-supervised techniques such as graph neural networks (GNN [21, 25, 36, 44, 45, 84, 94,
99]), that can incorporate both structural as well as node feature information, have become popular tools for node
classification.

Beginning with a training set of nodes whose true class (or label) is known, the features of the nodes are updated
based on the features of their neighbors using a form of Laplacian smoothing. Nodes having similar features after
smoothing are assigned to the same class.

After implementing any GNN model, the primary focus is to change the hyperparameters to achieve better accuracy.
Two naive approaches for increasing the accuracy of a neural network model consists of (i) increasing the number of
hidden layers and (ii) increasing the the number of training nodes.
Increasing the number of hidden layers. Sometimes, a neural network model with low representational capacity [32]
may struggle to fit the training set. By increasing the number of layers, we can increase the representational capacity of
the model. However, increasing the number of hidden units incurs increasing of time and memory cost. Moreover, in
the case of some GNN models, increasing the number of hidden units often leads to the over-smoothing problem. As
discussed in [47], a large number of hidden layers in the GCN [44] (a GNN variant) can result in nodes from different
classes having almost indistinguishable features after the final smoothing operation.
Extending training nodes agnostically using random walks. Increasing the number of training nodes results in
increasing the accuracy (see Fig. 1). Nevertheless, simply increasing the number of training nodes defeats the purpose of
semi-supervised learning. Instead, a recent method [47] has focused on agnostically increasing the number of training
nodes by applying random walks from small set of initial training nodes of known labels. This method extends the
training set using (a) the label information of a few seed nodes and (b) the structure of the network. No additional label
information is needed and the methods are analogous to an unsupervised set expansion technique [74, 86].

Fig. 1. Accuracy increases with percentage of training nodes used. This experiment was conducted on the Cora Network [71] using
the GCN as implemented in Kipf et. al. [44].

Issues with extending training nodes. Methods for increasing the training set using random walks suffer from two

main issues as follows.
First, these methods tend to produce training nodes that are localized in the neighborhood of the seed nodes. The

initial set of training nodes are selected to represent each class. However, in cases, where the same class is distributed
Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 3

across non-contiguous subgraphs, some of these subgraphs may not be represented in the training set. If the nodes in
the extended training set come from the same subgraph, then other subgraphs will remain unrepresented and their
nodes will be prone to misclassification. It is important to apply pre-processing to ensure that the training nodes
are spread out across the network and not localized at certain regions. We illustrate this idea through a hypothetical
example in Fig. 2.

Fig. 2. Collection of training nodes of same class but non-contiguous sub-graphs improves accuracy. Top (i), the correct labels of
the nodes. Bottom left (ii), training nodes are {A, B} and {I, G} from the two different classes. The subgraph {K,L,M,N} is erroneously
subsumed into the green class. Bottom right (iii), training nodes are {A, M} and {G, I}. The yellow class has representative from two of
its subgraphs, and correct classification is obtained.

Second, the nodes visited through a random walk from a set of seed nodes are all assigned the label of the respective
seed nodes. However, in practice, several nodes can come from different classes. These misclassified nodes, when used
as training nodes, can reduce the accuracy. In particular, we have observed that the output consists of localized regions
of wrongly classified nodes. It is important to apply post processing to identify potentially misclassified nodes and
correct their labels.

Our main contribution in this paper is to develop novel input and output intervention methods to address these two
issues by (i) selecting a set of training nodes distributed along various non-contiguous subgraphs of same class and (ii)
identifying misclassified nodes and correcting their labels.
Input intervention: For this, we leverage the structure of the graph using variations of random walks, as well as the
feature vector associated with each node.
Output intervention: For this, we leverage the confidence vector associated with each node at the output to identify nodes
with low confidence in classification, and then relabel the low confidence nodes with the labels of their nearest high
confidence nodes.

To summarize, our main contributions are –
• Develop input intervention schemes based on a combination of randomwalk [90]/node embedding technique [63]
and clustering/grouping techniques like 𝐾-means [30] and 𝐾-NN [28] to create a large set of training nodes
collected from various non-contiguous sub-graphs of a graph using structural and feature vector information.
• Develop output intervention schemes to correctly relabel nodes predicted with low confidence, based on nearest
neighbors labeled with high confidence.

Manuscript submitted to ACM

4 Chowdhury et. al.

Our results show that our input and output intervention techniques together can significantly improve the accuracy in
comparison to baseline GNN methods, as well as GNN where the training set is extended using variations of random
walk. Our performance gains over the most competing baseline on six benchmark networks of sizes varying between
2.7K–2.5M nodes range between 2%–141%1. Finally, our intervention methods are modular and any advanced GNN
method can be fitted seamlessly into the pipeline to obtain improved accuracy.

2 SOME PRELIMINARIES

2.1 Formal definitions

Consider a graph 𝐺 (𝑉 , 𝐸, 𝐹) where 𝑉 is the set of nodes, 𝐸 is the set of edges, 𝐹 = [𝑓1, 𝑓2, ..., 𝑓 |𝑉 |]𝑇 ∈ R |𝑉 |×𝑚 is the
feature matrix and 𝑓𝑣 is the𝑚 dimensional feature vector corresponding to node 𝑣 . We can write 𝑉 = 𝑉𝑙 ∪𝑉𝑢 where 𝑉𝑙
is the set of nodes of known class label and 𝑉𝑢 is the set of nodes of unknown class label. Also let 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑘 } be
the set of 𝑘 class labels, i.e., there are |𝐿 | = 𝑘 classes and class 𝑐 has label 𝑙𝑐 and each node belongs to a certain class. We
also denote 𝑑𝑖 as the degree of node 𝑖 and 𝑑𝑎𝑣𝑔 =

∑ |𝑉 |
𝑖=1 𝑑𝑖/|𝑉 | as the average degree of the graph 𝐺 .

2.2 Training set expansion

In [47], the authors showed that adding more hidden layers in GCN (a GNN variant) can lead to over-smoothing, which
in turn makes the features indistinguishable and hence reduces classification accuracy. The authors further improved
the accuracy of the GCN by first taking small sets of training nodes for each class and then extending these small sets
using PaRWalk [90], a variant of random walk, starting with the training nodes in each set as seeds. In this section, we
briefly discuss the workings of PaRWalk. In addition, we have observed that extending training nodes using a popular
node embedding technique (DeepWalk [63]) in the graph also results in increasing the accuracy. Thus, in addition to
PaRWalk, we also discuss the DeepWalk method.
PaRWalk. Although basic random walks can globally explore the graph, they may fail to capture non-local graph
structure [53]. In order to tackle this Wu et. al. [90] suggest partially absorbing random walks (PaRWalk) - a variant of
random walk. PaRWalk is a second-order Markov chain and in each state, it has partial absorption. If the absorption is
properly set, then the absorption probabilities can capture the non-local graph structure. An absorption probability 𝑎𝑖 𝑗
defines the probability of a random walk starting from node 𝑖 , being absorbed in node 𝑗 in any finite number of steps.
All pair of absorption probabilities can be represented as a matrix A.
DeepWalk. DeepWalk [63], is an unsupervised feature learning technique that leverages the latent information of
nodes in a network. DeepWalk uses basic random walks to gather local information to learn latent representations.
Similar to a language modeling tool, it requires a corpus and a vocabulary as its input, where the corpus is a set short of
truncated simple random walks and the vocabulary is the set of nodes𝑉 . The algorithm iterates a few numbers of times
(W𝑃), and in each iteration, for every node 𝑣 , it produces a short random walk𝑊𝑣 of a given lengthW𝐿 . This𝑊𝑣 is
used to update the node representations. Finally it produces a matrix of node representations Φ ∈ R |𝑉 |×𝑑 , where |𝑉 |
denotes the number of nodes, R is the set of real numbers and 𝑑 is the size of embedding.

3 PROPOSED FRAMEWORK

Our goal is starting from a very few nodes in 𝑉𝑙 as seed nodes, and with the help of input level and output level
interventions, to improve the accuracy of the prediction of the label of the nodes in 𝑉𝑢 .

1We compute % gain as [(acc. for new method - acc. for baseline)/(acc. for baseline)]*100

Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 5

Fig. 3. Our proposed input and output interventions to GNN-based node classification.

We now present our main contributions, namely the (i) input level intervention to increase the spatial diversity of
the training set and the (ii) output level intervention to identify and relabel the misclassified nodes. Figure 3 gives a
pictorial representation of these steps.

3.1 Input level intervention

We consider the two methods ParWalk and DeepWalk, both of which extend the set of training nodes through different
versions of random walk. However, merely extending training nodes can miss capturing the instances of the same class
that are part of different non-contiguous sub-graphs in a graph. We leverage the well known clustering (𝐾-means) and
classification (𝐾-NN) methods to track down the training nodes with same class label from different non-contiguous sub-
graphs. Below we describe the steps of our algorithms (see Algorithm 1 for PaRWalk implementation and Algorithm 2
for DeepWalk implementation). We follow the same steps as in [47] for the selection of seed nodes. Our modification
begins from Step 1 of the algorithm.
Seed nodes selection: The initial input is a set of seed nodes (𝐼𝑐) selected from each class 𝑐 ∈ {1, 2, ..., 𝑘}. We choose two
seeds per class. In Figure 3 we show this example for two classes, class A and class B.
Step 1: In this step, first we extend the set of training nodes using either a variant of basic random walk (PaRWalk) or a
node embedding method (DeepWalk). Then we aim to identify the nodes that contain the same label as the seed nodes.
Lines 4 − 9 in Algorithm 1, Lines 5 − 13 in Algorithm 2 and the Step 1 in Figure 3 demonstrate this step.

In Algorithm 1, random walk using ParWalk is defined by the transition probability matrix A. Given, a graph
Laplacian Γ, the transition probability matrix A can be calculated as A = (Γ + 𝛼Λ)−1, where Γ = 𝐷 − 𝐴, 𝐷 is the
degree matrix 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, ..., 𝑑 |𝑉 |), 𝑑𝑖 is the degree of node 𝑣𝑖 and 𝐴 is the adjacency matrix, 𝛼 > 0 is a scalar value,
Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ..., 𝜆 |𝑉 |) is known as the regularizer, and 𝜆𝑖 ≥ 0 is some arbitrary value. Line 2 in Algorithm 1 shows
the necessary step. More details about the absorption probability are in section A.2.

Manuscript submitted to ACM

6 Chowdhury et. al.

In Algorithm 2 graph embedding using DeepWalk can be achieved by, implementing the DeepWalk algorithm stated
in [63]. We have written the DeepWalk algorithm using two simple steps - first, we build the model using the required
parameters, as given in the code associated with [63], then we obtain the node embeddings by fitting the graph𝐺 inside
the model. Lines 2 − 3 in Algorithm 2 show the necessary steps.

For each seed node 𝑖 ∈ 𝐼𝑐 , using PaRWalk or DeepWalk, we agnostically capture a set 𝑋 of at most 𝑡 most similar
nodes that are therefore likely to belong to the set 𝐼𝑐 . The value of 𝑡 is obtained as per [47] where, 𝑡 = |𝐼𝑐 |×𝑏×𝜂∑𝑘

𝑐=1 |𝐼𝑐 |
, 𝑏 is a

constant (we set 𝑏 to 3), 𝜂 = |𝑉 |/(𝑑𝑎𝑣𝑔)𝜏 , 𝑑𝑎𝑣𝑔 is the average degree of the graph 𝐺 and 𝜏 is the number of layers of the
GNN.

For ParWalk, corresponding to node 𝑖 , node 𝑗1 is more similar than node 𝑗2 if 𝑎𝑖 𝑗1 > 𝑎𝑖 𝑗2 , where 𝑎𝑖 𝑗1 and 𝑎𝑖 𝑗2 are
the absorption probabilities corresponding to node pairs (𝑖 , 𝑗1) and (𝑖 , 𝑗2) respectively. For the set 𝐼𝑐 , to extract the 𝑡
most similar nodes, first the column vector A:,𝑖 = [𝑎1𝑖 , 𝑎2𝑖 , ..., 𝑎 |𝑉 |𝑖]𝑇 is taken from the transition probability matrix of
PaRWalk A for all nodes 𝑖 ∈ 𝐼𝑐 . Then we add them and make a final vector A𝑆 =

∑
𝑖∈𝐼𝑐 A:,𝑖 and select the 𝑡 highest

valued nodes.
For DeepWalk, for a node 𝑖 , node 𝑗1 is more similar than node 𝑗2 if 𝐶𝑆 (Φ(𝑖),Φ(𝑗1)) > 𝐶𝑆 (Φ(𝑖),Φ(𝑗2)). 𝐶𝑆 (𝑓1, 𝑓2) is

the Cosine Similarity [75] between vector 𝑓1 and vector 𝑓2, Φ(𝑛) ∈ R𝑑 represents the embedded vector of a node 𝑛 of
size 𝑑 (we set 𝑑 to 100). For the set 𝐼𝑐 , to capture at most 𝑡 most similar nodes, 𝑡/|𝐼𝑐 | closest nodes are extracted for all
𝑖 ∈ 𝐼𝑐 . Then the union of the newly extracted nodes are taken to produce the final set of at most 𝑡 most similar nodes.

Given this extended set of training nodes𝑋 , we then perform an unsupervised classification using𝐾-means algorithm
to divide the set 𝑋 into two clusters 𝐶1 and 𝐶2, as per the feature vector of the nodes. We assume that the larger
cluster will contain more nodes of the same class as the seed while the smaller cluster will aggregate the nodes from
other classes. This assumption is based on the intuition that most of the nodes at short distances from the seed will be
of the same class, and therefore will be part of the larger cluster (𝐶1). Indeed, as shown in the results, this heuristic
significantly improves the classification results.
Step 2: In this step we replace the potentially correct locally clustered nodes (set𝐶1) with spatially diverse ones. Line 10
in Algorithm 1, Line 14 in Algorithm 2, and Step 2 in Figure 3 illustrate this step.

We apply the 𝐾-Nearest Neighbors (𝐾-NN) method to the feature vector space of the nodes and find |𝐶1| nodes that
are nearest to the centroid of the nodes in set 𝐶1. These new nodes are selected from the set of unvisited nodes 𝑉 − 𝑋 .
This new set of nodes form the set 𝐶1′, and is the set of extended nodes obtained from the initial seed from which the
random walk was initiated.
Including set𝐶2: In practice, we can apply only the𝐶1′ set of training nodes. However, our goal is to compare the benefit
of using spatially diverse nodes with those obtained through random walk methods. Therefore we combine the set 𝐶1′

with the set𝐶2 (potentially mislabeled nodes), to create our final training set 𝑋 ′ (Line 11 and Line 15 in Algorithm 1 and
Algorithm 2 respectively). Note that the potentially mislabeled nodes are spatially local and the potentially correctly
labeled ones are spatially diverse.
Relabeling the nodes 𝑋 : As a final sub-step, we relabel the nodes in the extended set 𝑋 to the label of the starting seed
nodes as described in Lines 12 − 14 in Algorithm 1 and Lines 16 − 18 in Algorithm 2.
Building the final training set: Finally we merge the relabelled extended nodes obtained corresponding to all classes to
make the final training set (Line 15 in Algorithm 1 and Line 19 in Algorithm 2).

Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 7

Algorithm 1: Algorithm for input level intervention with PaRWalk
Input :The network 𝐺 (𝑉 , 𝐸), Graph Laplacian Γ, scalar value 𝛼 , regularizer Λ, set size 𝑡 , set of initial seed

nodes’ set I = {𝐼1, 𝐼2, .., 𝐼𝑘 }
Output :Extended training set S

1 S ← ∅;
2 A ← (Γ + 𝛼Λ)−1;
3 for each class 𝑐 ∈ {1, 2, ..., 𝑘} do
4 A𝑆 ←

∑
𝑖∈𝐼𝑐 A:,𝑖 ;

5 𝑋 ← select the 𝑡 highest valued indices from A𝑆 ;
6 𝐶𝑙𝑢𝑠1,𝐶𝑙𝑢𝑠2← 𝐾-means(𝑋 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒 = 2);
7 𝐶1← max(𝐶𝑙𝑢𝑠1, 𝐶𝑙𝑢𝑠2);
8 𝐶2← min(𝐶𝑙𝑢𝑠1, 𝐶𝑙𝑢𝑠2);
9 𝐶1𝑐𝑒𝑛𝑡 ← centroid of 𝐶1;

10 𝐶1′ ← using 𝐾-NN, select |𝐶1| nearest nodes to 𝐶1𝑐𝑒𝑛𝑡 from (𝑉 − 𝑋);
11 𝑋 ′ ← 𝐶1′ ∪𝐶2;
12 for each node 𝑥 ∈ 𝑋 ′ do
13 𝐿𝑎𝑏𝑒𝑙 [𝑥] ← 𝑙𝑐 ;
14 end
15 S ← S ∪ 𝑋 ′;
16 end

3.2 Output level intervention

Our second contribution is to identify misclassified nodes and relabel them to their potentially correct labels in an
agnostic manner. The steps are shown in Algorithm 3 (for PaRWalk) and Algorithm 4 (for DeepWalk).

The final layer in the GNN is usually passed through a softmax layer to obtain the vector of probabilities 𝐶𝑉𝑖 =
[𝑝𝑖1, 𝑝𝑖2, ..., 𝑝𝑖𝑘] of a node 𝑖 belonging to each class, where, 𝑝𝑖 𝑗 is the probability that node 𝑖 has class label 𝑙 𝑗 ∈ 𝐿. We
term this vector as confidence vector and define the confidence of a node 𝑖 as: 𝐶𝑜𝑛𝑓 (𝑖) = max(𝐶𝑉𝑖). We then calculate
the mean (𝜇) and standard deviation (𝜎) of the distribution of the confidence score of all the nodes (𝐶𝑜𝑛𝑓). A node 𝑖 is
defined as a high confidence node if 𝐶𝑜𝑛𝑓 (𝑖) ≥ 𝜇 + 𝛼 ∗ 𝜎 and a low confidence node if 𝐶𝑜𝑛𝑓 (𝑖) < 𝜇 + 𝛼 ∗ 𝜎 .

We create a set of sets 𝐻𝐶𝑁 of high confidence nodes for each class. Thus, 𝐻𝐶𝑁 = {𝐻𝐶𝑁1, 𝐻𝐶𝑁2, ..., 𝐻𝐶𝑁𝑘 }, where
𝐻𝐶𝑁𝑐 represents set of high confidence nodes of class 𝑐 . Then, for each class 𝑐 , we find the set of high confidence nodes
(𝐻𝐶𝑁𝑐) from 𝐻𝐶𝑁 . Starting from 𝐻𝐶𝑁𝑐 , i.e., the set of high confidence nodes, we perform PaRWalk or DeepWalk to
fetch a set of nodes (𝑅𝑊𝑁) of size atmost 𝑡 . Here the size of 𝑡 is set to the ratio of the number of nodes in 𝐺 to the
number of classes in 𝐺 (Lines 3 − 5 in Algorithm 3 and Lines 4 − 9 in Algorithm 4).

For each node in 𝑅𝑊𝑁 , if the node is a low confidence node, we change its label using the following rule. We create a
set formed of the union of the nodes in (𝐻𝐶𝑁𝑐) and the neighbors (𝑁𝑏𝑑) of the current node, we choose the label (𝑙𝑐) of
the node whose confidence is maximum, and relabel the low confidence node with that label (Lines 6 − 19 in Algorithm 3
and Lines 10 − 23 in Algorithm 4).

Note that our methods are completely agnostic. Other than the class of the initial seed nodes, we do not have any
external knowledge of the class per node. We simply estimate the class based on randomwalks and clustering techniques
such as 𝐾-means and 𝐾-NN.

Manuscript submitted to ACM

8 Chowdhury et. al.

Algorithm 2: Algorithm for input level intervention with DeepWalk
Input :The network 𝐺 (𝑉 , 𝐸), walks per nodeW𝑃 , walk lengthW𝐿 , set size 𝑡 , set of initial seed nodes’ set

I = {𝐼1, 𝐼2, .., 𝐼𝑘 }
Output :Extended training set S

1 S ← ∅;
2 𝑀𝑜𝑑𝑒𝑙 ← 𝐷𝑒𝑒𝑝𝑊𝑎𝑙𝑘 (W𝑃 ,W𝐿);
3 𝐸𝑚𝑏 ← Fit 𝐺 in the Model to get the node embedding;
4 for each class 𝑐 ∈ {1, 2, ..., 𝑘} do
5 𝑋 ← ∅;
6 for each node 𝑛 ∈ 𝐼𝑐 do
7 𝑋𝑛 ← get nearest 𝑡

|𝐼𝑐 | nodes of 𝑛 using 𝐸𝑚𝑏;
8 𝑋 ← 𝑋 ∪ 𝑋𝑛 ;
9 end

10 𝐶𝑙𝑢𝑠1,𝐶𝑙𝑢𝑠2← 𝐾-means(𝑋 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒 = 2);
11 𝐶1← max(𝐶𝑙𝑢𝑠1, 𝐶𝑙𝑢𝑠2);
12 𝐶2← min(𝐶𝑙𝑢𝑠1, 𝐶𝑙𝑢𝑠2);
13 𝐶1𝑐𝑒𝑛𝑡 ← centroid of 𝐶1;
14 𝐶1′ ← using 𝐾-NN, select |𝐶1| nearest nodes to 𝐶1𝑐𝑒𝑛𝑡 from (𝑉 − 𝑋);
15 𝑋 ′ ← 𝐶1′ ∪𝐶2;
16 for each node 𝑥 ∈ 𝑋 ′ do
17 𝐿𝑎𝑏𝑒𝑙 [𝑥] ← 𝑙𝑐 ;
18 end
19 S ← S ∪ 𝑋 ′;
20 end

3.3 Rationale and Discussion

We now provide a rationale of why our intervention methods improves the classification. For both algorithms, the
random walks aim to identify the local structures based on the assumption that nodes that are structurally local belong
to the same class. However, the structural properties and the distribution of class in nodes need not always correspond.

Our input intervention aims to ameliorate the discrepancies between the structure of the graph and labeling of the
nodes by first selecting the set of nodes that are most likely to be in the correct class and then extending this set via
comparing similar feature vectors, rather than locally close nodes. Thus we combine both structural as well as feature
properties. Further in our output intervention, we check if the nodes in the neighborhood of high-confidence nodes
have low confidence and alter the label of its high-confidence neighbor(s). This output intervention allows us to further
refine the classification.

3.3.1 Number of nodes in the expanded training set. We now discuss how large should we make the extended training
set. We set the lower bound of the size of the extended training set as 𝜂;

𝜂 = |𝑉 |/(𝑑𝑎𝑣𝑔)𝜏

where 𝑑𝑎𝑣𝑔 is the average degree of the graph𝐺 and 𝜏 is the number of layers of the GNN. We now estimate the number
of training nodes required for a GNN with 𝜏 layers to propagate their labels to cover the entire graph. Thus, for a
Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 9

Algorithm 3: Algorithm for output level intervention using PaRWalk
Input :The network 𝐺 (𝑉 , 𝐸), Predicted label of all nodes 𝑃𝑟𝑒𝑑𝐿𝑎𝑏𝑒𝑙 , set size 𝑡 , Confidence of each node 𝐶𝑜𝑛𝑓 ,

Hyper parameter 𝛼 , mean (𝜇) and standard deviation (𝜎) of the distribution of confidence of all the
nodes, graph laplacian Γ, scalar value 𝛼 , regularizer Λ,.

Output :Modified 𝑃𝑟𝑒𝑑𝐿𝑎𝑏𝑒𝑙 .
1 A ← (Γ + 𝛼Λ)−1;
2 𝐻𝐶𝑁 ← select a set of high confidence nodes for every class using 𝐶𝑜𝑛𝑓 , 𝜇 and 𝛼 ∗ 𝜎 ;
3 for each class 𝑐 ∈ {1, 2, ..., 𝑘} do
4 A𝑆 ←

∑
𝑖∈𝐻𝐶𝑁𝑐

A:,𝑖 ;
5 𝑅𝑊𝑁 ← select the 𝑡 highest valued indices from A𝑆 ;

/* change the label of the low confidence nodes */

6 for each node 𝑢 ∈ 𝑅𝑊𝑁 do
7 S ← 𝐻𝐶𝑁𝑐 ∪ 𝑁𝑏𝑑 (𝑢);
8 𝑓 ← select a node in S;
9 𝑚𝑎𝑥𝐶𝑜𝑛𝑓 ← 𝐶𝑜𝑛𝑓 (𝑓);

10 if 𝐶𝑜𝑛𝑓 (𝑢) ≤ 𝜇 - 𝛼 ∗ 𝜎 then
11 for each node 𝑣 ∈ S do
12 if 𝐶𝑜𝑛𝑓 (𝑣) >𝑚𝑎𝑥𝐶𝑜𝑛𝑓 then
13 𝑚𝑎𝑥𝐶𝑜𝑛𝑓 ← 𝐶𝑜𝑛𝑓 (𝑣);
14 𝑙 ← argmax𝑖 (𝐶𝑉𝑣);
15 end
16 end
17 𝑃𝑟𝑒𝑑𝐿𝑎𝑏𝑒𝑙 [𝑢] ← 𝑙

18 end
19 end
20 end

particular class 𝑐 , the size of the extended set would become,

𝑡 =
|𝐼𝑐 | × 𝜂∑𝑘
𝑥=1 |𝐼𝑥 |

where 𝑘 is the number of classes and 𝐼𝑥 is the set of initial seed nodes of a class 𝑥 . Now, using the random walk (here,
the transition probability matrix A), one can obtain the 𝑡 most similar nodes of a set of seed nodes 𝐼𝑐 of a class 𝑐 .

3.3.2 Error calculation on the expanded training set. Now we calculate the probability of error while extending the
training set. Let the final set of extended training nodes be S =

⋃𝑘
𝑖=1 S𝑖 , where S𝑖 be the set of extended nodes for

class 𝑖 . Note that the label of all the nodes in an extended set S𝑐 is changed to 𝑙𝑐 . Thus, the label of the nodes from
other classes will also be relabelled to the class label 𝑙𝑐 . This results in an error in the extended set.

Now assume that𝑉𝑐 be the set of nodes with class label 𝑙𝑐 . Thus it is easy to verify that,
⋃𝑘

𝑖=1𝑉𝑖 = 𝑉 and𝑉𝑖 ∩𝑉𝑗 = Φ

for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1, 2, ..𝑘}. Therefore the number of nodes having the correct class label 𝑙𝑐 within set S𝑐 will be

N𝑐 = |S𝑐 ∩𝑉𝑐 |

Thus, the number of unwanted nodes (nodes from another class) within S𝑐 or the error associated with S𝑐 will be:

E𝑐 = |S𝑐 | − N𝑐 = |S𝑐 | − |S𝑐 ∩𝑉𝑐 |
Manuscript submitted to ACM

10 Chowdhury et. al.

Algorithm 4: Algorithm for output level intervention using DeepWalk
Input :The network 𝐺 (𝑉 , 𝐸), Predicted label of all nodes 𝑃𝑟𝑒𝑑𝐿𝑎𝑏𝑒𝑙 , set size 𝑡 , Confidence of each node 𝐶𝑜𝑛𝑓 ,

Hyper parameter 𝛼 , mean (𝜇) and standard deviation (𝜎) of the distribution of confidence of all the
nodes, walks per nodeW𝑃 , walk lengthW𝐿

Output :Modified 𝑃𝑟𝑒𝑑𝐿𝑎𝑏𝑒𝑙 .
1 𝑀𝑜𝑑𝑒𝑙 ← 𝐷𝑒𝑒𝑝𝑊𝑎𝑙𝑘 (W𝑃 ,W𝐿);
2 𝐸𝑚𝑏 ← Fit 𝐺 in the Model to get the node embedding;
3 𝐻𝐶𝑁 ← select a set of high confidence nodes for every class using 𝐶𝑜𝑛𝑓 , 𝜇 and 𝛼 ∗ 𝜎 ;
4 for each class 𝑐 ∈ {1, 2, ..., 𝑘} do
5 𝑅𝑊𝑁 ← ∅;
6 for each node 𝑛 ∈ 𝐻𝐶𝑁 do
7 𝑋 ← get nearest 𝑡

|𝐻𝐶𝑁𝑐 | nodes of 𝑛 using 𝐸𝑚𝑏;
8 𝑅𝑊𝑁 ← 𝑅𝑊𝑁 ∪ 𝑋 ;
9 end

/* change the label of the low confidence nodes */

10 for each node 𝑢 ∈ 𝑅𝑊𝑁 do
11 S ← 𝐻𝐶𝑁𝑐 ∪ 𝑁𝑏𝑑 (𝑢);
12 𝑓 ← select a node in S;
13 𝑚𝑎𝑥𝐶𝑜𝑛𝑓 ← 𝐶𝑜𝑛𝑓 (𝑓);
14 if 𝐶𝑜𝑛𝑓 (𝑢) ≤ 𝜇 - 𝛼 ∗ 𝜎 then
15 for each node 𝑣 ∈ S do
16 if 𝐶𝑜𝑛𝑓 (𝑣) >𝑚𝑎𝑥𝐶𝑜𝑛𝑓 then
17 𝑚𝑎𝑥𝐶𝑜𝑛𝑓 ← 𝐶𝑜𝑛𝑓 (𝑣);
18 𝑙 ← argmax𝑖 (𝐶𝑉𝑣);
19 end
20 end
21 𝑃𝑟𝑒𝑑𝐿𝑎𝑏𝑒𝑙 [𝑢] ← 𝑙

22 end
23 end
24 end

Therefore, the probability of error associated with S𝑐 will be:

P𝑐 =
E𝑐
|S𝑐 |

=
|S𝑐 | − |S𝑐 ∩𝑉𝑐 |

|S𝑐 |
=
𝑡 − |S𝑐 ∩𝑉𝑐 |

𝑡
= 1 − |S𝑐 ∩𝑉𝑐 |

𝑡
, as |S𝑐 | = 𝑡,∀𝑐 ∈ {1, 2, ..., 𝑘}

Also, the probability of error associated with S will be:

P =

∑𝑘
𝑐=1 E𝑐∑𝑘
𝑐=1 |S𝑐 |

=

∑𝑘
𝑐=1 (|S𝑐 | − |S𝑐 ∩𝑉𝑐 |)∑𝑘

𝑐=1 |S𝑐 |
=
𝑘𝑡 −∑𝑘

𝑐=1 |S𝑐 ∩𝑉𝑐 |
𝑘𝑡

= 1 −
∑𝑘
𝑐=1 |S𝑐 ∩𝑉𝑐 |

𝑘𝑡
, as |S𝑐 | = 𝑡,∀𝑐 ∈ {1, 2, ..., 𝑘}

The value of the probability depends on how accurately the input level intervention technique collects the nodes having
the same label as that of the initial seed nodes. As an example, if we assume that the classes are uniformly distributed
and for each class, the input intervention method captures 3

4
𝑡ℎ correct nodes (nodes having same class label as with

𝑐) then, |S𝑐 ∩𝑉𝑐 | = 3𝑡
4 implying P𝑐 = 1 − 3𝑡

4𝑡 = 1 − 3
4 = 1

4 . In our study, we have taken 𝑡 as, 𝑡 = 𝑏 |𝐼𝑐 |×𝜂∑𝑘
𝑥=1 |𝐼𝑥 |

, where 𝑏
is an integer. Tuning 𝑏 results in increasing or decreasing the set size 𝑡 . When the value of 𝑡 is large, then too many
nodes from other classes come into S𝑐 thereby increasing the error and thus reducing the test accuracy of the GNN.
Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 11

Cora Citeseer Pubmed

0

20

40

13
20

8

22
17

9
2

28
21

10
14

28 3132

50

18

Er
ro
ri
n
S 𝑐

(%
)

c1 c2 c3 c4 c5 c6 c7

Fig. 4. Percentage of error for each class while extending the training set using input level intervention technique. In the legend, c1,
c2, ... c7 are the different classes (𝑏 = 3)

.

0 200 400 600 800
20

40

60

80

𝑡

(a) Cora

0 1,000 2,000

40

60

80

𝑡

% Error in S % Test accuracy of GCN

(b) Citeseer

0 0.5 1
·104

20

40

60

80

𝑡

(c) Pubmed

Fig. 5. Percentage of error in the extended set S and test accuracy of GCN when tuning the set size 𝑡
.

Conversely, when 𝑡 is small, too few nodes from the actual class 𝑐 come into S𝑐 , resulting in low test accuracy of the
GNN. Experimental results capturing the probability of error for each class are provided in Figure 4. We also present
the plot of error associated with the fully extended set S and the test accuracy of GCN while tuning the set size 𝑡 in
Figure 5. In our study, we set 𝑏 to 3.

4 EXPERIMENTAL SETUP

4.1 Datasets

Our experiments are conducted on the datasets in Table 1. Cora [71], CiteSeer [71], PubMed [71] and Cora-ml [10] are
citation networks. On each network, the documents are represented by nodes and the citation links are represented by
edges. The node feature (a 0/1-valued vector) represents the absence/presence of a certain word in the corresponding
document, and, classes represent subjects, labelled starting from 0 to (number of subjects - 1). Amazon Photo [72] and
Amazon Computers [72] are subsets of the Amazon co-purchase network [57], where the goods are represented by
nodes. If two goods are often purchased together then there is a link (edge) between them. The features of the nodes
represent absence/presence of a certain word in the corresponding product reviews. In these two datasets above, the
nodes (goods) are divided into several classes (product categories); for example, the goods in the Amazon photo can be
classified as: ‘Digital Concepts’, ‘File Photography’, ‘Flashes’, ‘Lenses’, ‘Video’ ‘Surveillance’, ‘Binoculars & Scopes’,
‘Tripods & Monopods’, and ‘Lighting & Studio’.

In the category of the larger networks, ogbn-arxiv [85] is a citation network among all computer science arXiv papers.
A node represents an arXiv computer science paper and a link between a pair of nodes represents the citation. Each
node is associated with a feature vector obtained by taking the embeddings of words in the corresponding paper’s title

Manuscript submitted to ACM

12 Chowdhury et. al.

and abstract. Each node in this dataset is associated with a label representing the subject area such as cs.LG, cs.AI, cs.OS
etc. There are 40 such subject areas available in the dataset. The ogbn-products [85] dataset is a graph that represents
an Amazon product co-purchasing network and is undirected and unweighted. Products are represented by nodes on
Amazon, and edges between two products show that they were bought together. Labels associated with each node
represent the product categories. A portion of the Microsoft Academic Graph makes up the heterogeneous network
named ogbn-mag [85] (MAG). Papers (736,389 nodes), authors (1,134,649 nodes), institutions (8,740 nodes), and fields of
study (59,965 nodes) are among the four types of entities present in the graph. There are also four types of directed
relations connecting the four types of entities: an author is “affiliated with” an institution, an author “writes” a paper,
a paper “cites” a paper, and a paper “has a topic of” the field of study. Similar to ogbn-arxiv, each publication has a
128-dimensional word2vec feature vector connected with it, although input node features are not linked to any of the
other types of entities. The labels associated with each data represent the venue.

Network nodes Edges Features Classes Distribution of Nodes in Each Class
Citeseer [71] 3327 4732 3703 6 0: 7%, 1: 18%, 2: 20%, 3: 21%, 4: 18%, 5: 16%
Cora [71] 2708 5429 1433 7 0: 13%, 1: 8%, 2: 15%, 3: 30%, 4: 16%, 5: 11%, 6: 6%
Cora-ml [10] 2995 8416 2879 7 0: 12%, 1: 13%, 2: 15%, 3: 15%, 4: 29%, 5: 6%, 6: 9%
Pubmed [71] 19717 44338 500 3 0: 20%, 1: 40%, 2: 40%
Amazon Photo [72] 7487 119043 745 8 0: 5%, 1: 23%, 2: 9%, 3: 12%, 4: 12%, 5: 10%, 6: 26%, 7: 4%
Amazon Computers [72] 13381 245778 767 10 0: 3%, 1: 16%, 2: 11%, 3: 4%, 4: 39%, 5: 2%, 6: 4%, 7: 6%, 8: 16%, 9: 2%
ogbn-arxiv [85] 169,343 1,166,243 128 40 Can be found in Appendix A.1
ogbn-products [85] 2,449,029 61,859,140 100 47 Can be found in Appendix A.1
ogbn-mag [85] 1,939,743 21,111,007 128 349 Can be found in Appendix A.1

Table 1. The test suite of real-world networks.

4.2 Baseline methods

We use the following baseline GNN methods for comparison: (i) GCN, the popular GCN method as implemented
in [44] which is a linear approximation of spectral graph convolution, (ii) GAT [84], where each neighbourhood
of a node gets a different attention (weights) during the aggregation step. (iv) ChebyNet [25], ChebyNet is based
on Chebyshev polynomials to implement the approximation of spectral convolution. It directly uses Laplacian as a
filter. (v) APPNP [45], that combines the graph convolutional networks (GCN) and personalized PageRank to derive
an improved message propagation technique. (vi) GPR-GNN [21] which is just like APPNP; however instead of
personalized PageRank, GPR-GNN uses generalized PageRank. (vii) JK-Nets [94], In Jumping Knowledge Networks
(JK-Nets), layer-wise jump connections and selective aggregations are implemented. (viii) GraphSAGE [36], It mainly
works in an inductive setting, but can be tuned to work in a transductive setting also.

In addition, we also compared our intervention methods with the following seven methods for training set expan-
sion [47, 96]. These techniques were used in conjunction with GCN – (a) Co-training, in which the training set is
extended using PaRWalk [90]. The normalized absorption probability matrix 𝐴 is computed first, then, the confidence of
a node belonging to class 𝑐 is measured. The top𝑚 nodes with the highest confidence measure are added to the training
set with label 𝑙𝑐 ; (b) Self-training where after training GCN with initial training nodes, for each class, the top𝑚 nodes
with with highest confidence, as determined by the softmax scores are added to the training nodes; and combination
of co-training and self-training where the combination of the above two methods are tested by taking (c) the union
(Co-Self-union) and (d) intersection (Co-Self-intersection) of the extended training sets returned by the co-training
and self-training methods. (e) Training Node Augmentation (TNA) [96], in which intersection of nodes obtained from
several already trained GNNs having confidence greater than a particular threshold are collected to expand the training
Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 13

set. (f) Random sampling, in which for each class, rather than using the random walk, the training sets are expanded
using random sampling of nodes. (g) Hi-deg-path, in which for each class, a path of high-degree nodes is picked (like
meta-path in heterogeneous graph [49]). Starting from each of the training nodes, we search for its neighbor(s) having
the highest degree, then we pick the highest degree neighbor, relabel it with the label of the starting node, put it into
the set, and continue the process from this highest degree neighbor until the set of high-degree nodes stops extending.

4.3 Hyperparameter settings

For all the models we have kept the following hyperparameters fixed: In our input level intervention we have used
two training nodes from each class. A random set of 1000 nodes (other than the training nodes) are taken for testing
purposes for all the models. We are not using any validation set. The number of hidden layers used is two. We have
set the learning rate to 0.01 and epochs to 200. We have used 16 hidden units and 𝐿2 regularization whose weight
has been set to 5 × 10−4. For the smaller graphs (Cora, Citeseer, Pubmed, Amazon Computers, Amazon Photo, and
Cora-ml), we set walks per nodeW𝑃 to 30 and walk lengthW𝐿 to 50. For the larger graphs (ogbn-arxiv, ogbn-product
and ogbn-mag), we set walks per nodeW𝑃 to 10 and walk lengthW𝐿 to 50.

4.4 Time complexity analysis

In this section, we shall provide the time complexity of our algorithms. In both the input and output intervention
methods, we have used random walks. So, before calculating the exact time complexity of both algorithms, we calculate
the time complexity of the random walk first.
Time requirement using PaRWalk: PaRWalk algorithm requires the computation of absorption probability matrix
A = (Γ + 𝛼Λ)−1, where, Γ is the graph laplacian defined as Γ = 𝐷 −𝐴, 𝐷 is the degree matrix 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, ..., 𝑑 |𝑉 |),
𝑑𝑖 is the degree of node 𝑣𝑖 and 𝐴 is the adjacency matrix, 𝛼 > 0 is a scalar value, Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ..., 𝜆 |𝑉 |) is the known
regularizer and 𝜆𝑖 ≥ 0 is some arbitrary value. The computation of Γ is linear. Computation of (Γ + 𝛼Λ) is also linear.
A can be computed using Williams algorithm [2] in 𝑂 (|𝑉 |2.373) time.
Time requirement using DeepWalk: In the case of DeepWalk, as per the algorithm given in [63], the time complexity
can be calculated as 𝑂 (W𝑃 |𝑉 | (W𝐿 + 𝑙𝑜𝑔(|𝑉 |))), where,W𝑃 is the walk per node,W𝐿 is the walk length, |𝑉 | is the
number of nodes. The term 𝑙𝑜𝑔(|𝑉 |) is due to the time complexity of SkipGram [63] method.

4.4.1 Time complexity of input level intervention. It is evident from Algorithm 1 and 2 that the major computations
are contributed by (i) the random walk, (ii) 𝐾-means and (iii) 𝐾-NN algorithms. Therefore, we shall discuss the time
complexity one by one and then aggregate the total time complexity.
(i) Time requirement using random walk has been discussed in the previous section.
(ii) Time requirement using 𝐾-means [58]: For 𝑡 samples of dimension𝑚 each and 𝛿 clusters the time taken by 𝐾-means
algorithm is 𝑂 (𝑡𝛿𝑚𝑗), where 𝑗 is the number of iterations until convergence of the 𝐾-means algorithm.
(iii) Time requirement using 𝐾-NN: For a cluster of average size |𝐶𝑎𝑣𝑔 |, 𝐾-NN [28] requires 𝑂 (|𝐶𝑎𝑣𝑔 |𝑚), where𝑚 is the
dimension of each sample in the cluster 𝐶𝑎𝑣𝑔 .
Time requirement of Algorithm 1: Upon aggregating these above three, total time taken is the time taken by (i) +
for each class, time taken using (ii) and (iii). Therefore, for |𝐿 | number of class labels, total time taken

𝑇𝑖𝑝_𝑝𝑎𝑟 = 𝑂 (|𝑉 |2.373) + |𝐿 | (𝑂 (𝑡𝛿𝑚𝑗) +𝑂 (|𝐶𝑎𝑣𝑔 |𝑚)) .

Manuscript submitted to ACM

14 Chowdhury et. al.

The above expression can be further written as:

𝑇𝑖𝑝_𝑝𝑎𝑟 = 𝑂 (|𝑉 |2.373) + (𝑂 (|𝑉 |𝑚𝑗(𝑑𝑎𝑣𝑔)𝜏
) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚))

Details of the derivation can be found in Appendix A.3.
Time requirement of Algorithm 2: In the case of DeepWalk, applying a similar approach, the total time complexity
for the input level intervention is:

𝑇𝑖𝑝_𝑑𝑒𝑒𝑝 = 𝑂 (W𝑃 |𝑉 | (W𝐿 + 𝑙𝑜𝑔(|𝑉 |))) + (𝑂 (
|𝑉 |𝑚𝑗
(𝑑𝑎𝑣𝑔)𝜏

) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) .

4.4.2 Time complexity of Output level intervention: From Algorithm 3 and 4, the time complexity can be calculated as:
time taken by (i) the random walk, and (ii) rest of the operations.
(i) Time requirement using random walk has already been discussed.
(ii) Time requirement to relabel the selected low confidence nodes, as computed in the respective algorithms:
Time requirement of Algorithm 3: Line 2 requires O(|𝑉 |) time. For each class, Line 4 and 5 both need O(𝑡) time +
Lines 6 − 19 requires O(𝑡 (|𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔)) time (considering average degree as 𝑑𝑎𝑣𝑔 and the average number of high
confidence nodes as |𝐻𝑎𝑣𝑔 |). So, the total time required is (using PaRWalk):

𝑇𝑜𝑝_𝑝𝑎𝑟 = 𝑂 (|𝑉 |2.373) +𝑂 (|𝑉 | + |𝐿 | (𝑡 + 𝑡 (|𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔)))

This can be further written as:

𝑇𝑜𝑝_𝑝𝑎𝑟 = 𝑂 (|𝑉 |2.373) +𝑂 (|𝑉 | + |𝑉 | (1 + |𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔))

The detailed derivation can be found in Appendix A.4
Time requirement of Algorithm 4: Similarly, the total time required is (using DeepWalk):

𝑇𝑜𝑝_𝑑𝑒𝑒𝑝 = 𝑂 (W𝑃 |𝑉 | (W𝐿 + 𝑙𝑜𝑔(|𝑉 |))) +𝑂 (|𝑉 | + |𝑉 | (1 + |𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔))

Time requirement of both the input and output intervention: When we use both the input and output intervention
techniques, the randomwalk is computed only once, which is then used in both interventions. Therefore, the computation
time in the case of PaRWalk for both interventions can be written as:

𝑇𝑖𝑝_𝑜𝑝_𝑝𝑎𝑟 = 𝑂 (|𝑉 |2.373) + (𝑂
(
|𝑉 |𝑚𝑗
(𝑑𝑎𝑣𝑔)𝜏

)
+𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) +𝑂 (|𝑉 | + |𝑉 | (1 + |𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔))

and in the case of DeepWalk:

𝑇𝑖𝑝_𝑜𝑝_𝑑𝑒𝑒𝑝 = 𝑂 (W𝑃 |𝑉 | (W𝐿 + 𝑙𝑜𝑔(|𝑉 |))) +
(
𝑂 (|𝑉 |𝑚𝑗(𝑑𝑎𝑣𝑔)𝜏

)
+𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) +𝑂 (|𝑉 | + |𝑉 | (1 + |𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔))

Approximation for large graphs: In the case of PaRWalk, for the larger graph (ogbn-arxiv, ogbn-mag, and ogbn-
products), computation of the absorption probability matrix is infeasible. Therefore for the larger graphs, we approximate
(linear) the absorption probability matrix calculation. In our study, we set all 𝜆𝑞 = 1, for 𝑞 ∈ {1, 2, ..|𝑉 |}, or in other
words, we set Λ = 𝐼 = Identity matrix. Thus the absorption probability becomes A = (𝐿 + 𝛼𝐼)−1. Applying the concept
of binomial theorem: A = (𝐿 + 𝛼𝐼)−1 = 𝛼−1 (𝛼−1𝐿 + 𝐼)−1 = 𝛼−1 (𝐼 + 𝛼−1𝐿)−1 = 𝛼−1 (𝐼 − 𝛼−1𝐿 + (𝛼−1𝐿)2 − ...) inspired
by the following formula, (1 + 𝑥)−1 = 1 − 𝑥 + 𝑥2 + We further approximate the absorption probability matrix A
as 𝛼−1 (𝐼 − 𝛼−1𝐿) by removing the higher order terms. Thus, with this linear approximation, the time required for

Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 15

obtaining the absorption probability becomes 𝑂 (|𝑉 |). In the case of DeepWalk, we have reduced the hyper-parameters
(number of walks per node and walk length) as discussed in section 4.3 to reduce the time.

5 EMPIRICAL RESULTS

As stated earlier, our main goals are to increase the accuracy of GNNs by (a) applying input level intervention and (b)
applying output level intervention. In the input level intervention, we use two methods for training set expansion –
ParWalk and DeepWalk. These two methods are also used in the output level intervention for capturing the nodes that
are most similar to the high confidence nodes for each class. For this reason, we grouped our results into two categories:
one corresponding to ParWalk and the other corresponding to DeepWalk. For each group, we have shown results for
applying (i) only input intervention (ip + GNN variant), (ii) only output intervention (GNN variant + op), and (iii) both
input and output interventions (ip + GNN variant + op).

5.1 Results using PaRWalk

Table 2 shows the results of all the three combinations of interventions along with the baselines using PaRWalk. We see
that with only input level intervention, the accuracy increased in every case compared to the baselines (highest gain
= (68-31)/31% = 119%, for cora network and ChebyNet model) For only output intervention, the accuracy increased
a little compared to the baselines (highest gain = (44-37)/37% = 19%, for cora network and SAGE model). When we
plug-in both the input and output interventions, as expected, the combination gives maximum gains compared over the
baselines (highest gain = (70-31)/31% = 126%, for cora network and ChebyNet model). For each intervention, including
baselines, we have boldfaced the maximum accuracies (mean and standard deviation) in the table.

5.2 Results using DeepWalk

Table 3 presents the results of only input intervention, only output intervention, and both input and output interventions,
respectively, using DeepWalk as the training node expansion method. As with the previous results (PaRWalk), we
can see that plugging the intervention methods improves the accuracies compared to the baseline method. For input
intervention, highest gain = (67-31)/31% = 116% (ChebyNet model and cora network), for output intervention, highest
gain = (29-23)/23% = 26% (JKNet model and cora-ml network).

5.3 Comparison with training set expansion baselines

In Fig. 6, we compare the proposed input intervention method with other baselines that uses training set expansion,
viz., (i) co-training, (ii) self-training, (iii) co-self-union, (iv) co-self-intersection, (v) Training Node Augmentation (TNA),
(vi) Random Sampling and (vii) High-deg-path. For each network, the leftmost bar represents the accuracy for GCN
(base model). Next seven bars represents seven baselines (i)–(vii) and the last two bars represent the input intervention
methods with ParWalk and DeepWalk respectively. It is evident from Fig. 6 that in almost all cases (except Amazon
Photo) our methods outperform the other training set expansion baselines. This result is representative and holds true
for all other GCN variants noted in Tables 2 and 3.

5.4 Significance test on output level intervention

In order to verify if the results of the output level interventions are statistically significant we report in Tables 4 and 5 the
𝑝-values for the Mann-Whitney significance test [55]. For all cases 𝑝 < 0.05 which indicates that the output intervention
indeed produces results that are significantly different from the results produced by the base GNN variant.

Manuscript submitted to ACM

16 Chowdhury et. al.

GNN model Networks

Cora Citeseer Pubmed Photo Computer Cora-ml ogbn-arxiv ogbn-product ogbn-mag

Ba
se
lin

es

GCN 0.45±0.05 0.33±0.06 0.52±0.05 0.32±0.09 0.21±0.09 0.36±0.04 0.12±0.04 0.15±0.03 0.02±0.04
GAT 0.44±0.04 0.35±0.04 0.54±0.05 0.47±0.10 0.41±0.10 0.41±0.08 0.09±0.02 0.17±0.02 0.02±0.03

ChebyNet 0.31±0.05 0.26±0.03 0.47±0.04 0.35±0.11 0.27±0.09 0.24±0.09 0.09±0.02 0.11±0.05 0.03±0.06
GPR-GNN 0.48±0.06 0.38±0.05 0.62±0.08 0.54±0.13 0.44±0.17 0.52±0.09 0.14±0.02 0.21±0.02 0.05±0.03
APPNP 0.50±0.05 0.36±0.04 0.59±0.04 0.23±0.11 0.10±0.10 0.36±0.10 0.14±0.03 0.20±0.04 0.05±0.03
JKNet 0.35±0.04 0.27±0.05 0.57±0.04 0.17±0.10 0.32±0.10 0.23±0.11 0.08±0.03 0.12±0.02 0.02±0.03
SAGE 0.37±0.05 0.30±0.05 0.56±0.05 0.42±0.11 0.32±0.10 0.31±0.11 0.04±0.03 0.11±0.06 0.02±0.07

In
pu

t
in
te
rv
en
tio

n

ip+GCN 0.71±0.03 0.56±0.05 0.65±0.00 0.39±0.01 0.62±0.02 0.64±0.03 0.22±0.03 0.27±0.04 0.09±0.04
ip+GAT 0.63±0.02 0.57±0.03 0.75±0.01 0.52±0.02 0.59±0.02 0.64±0.03 0.19±0.03 0.28±0.03 0.09±0.04

ip+ChebyNet 0.68±0.01 0.62±0.03 0.85±0.00 0.50±0.03 0.51±0.01 0.60±0.03 0.20±0.02 0.20±0.07 0.11±0.05
ip+GPR-GNN 0.68±0.01 0.60±0.03 0.83±0.01 0.57±0.03 0.50±0.08 0.67±0.03 0.24±0.01 0.24±0.07 0.08±0.04
ip+APPNP 0.69±0.01 0.56±0.03 0.75±0.00 0.34±0.03 0.54±0.04 0.66±0.04 0.23±0.03 0.23±0.07 0.08±0.08
ip+JKNet 0.52±0.01 0.43±0.03 0.75±0.01 0.27±0.01 0.48±0.03 0.45±0.02 0.19±0.07 0.18±0.08 0.04±0.07
ip+SAGE 0.63±0.04 0.60±0.03 0.78±0.01 0.55±0.02 0.46±0.03 0.57±0.01 0.12±0.05 0.14±0.07 0.06±0.04

O
ut
pu

t
in
te
rv
en
tio

n

GCN+op 0.50±0.05 0.36±0.05 0.54±0.05 0.33±0.09 0.25±0.08 0.39±0.04 0.15±0.03 0.16±0.03 0.02±0.03
GAT+op 0.46±0.04 0.38±0.05 0.53±0.05 0.48±0.07 0.49±0.08 0.45±0.07 0.12±0.04 0.17±0.04 0.03±0.03

ChebyNet+op 0.35±0.04 0.27±0.03 0.48±0.04 0.36±0.10 0.28±0.09 0.27±0.08 0.11±0.04 0.12±0.04 0.03±0.03
GPR-GNN+op 0.50±0.05 0.39±0.04 0.62±0.05 0.55±0.09 0.47±0.11 0.54±0.11 0.15±0.05 0.22±0.03 0.05±0.03
APPNP+op 0.51±0.15 0.39±0.15 0.60±0.05 0.24±0.04 0.15±0.04 0.39±0.10 0.14±0.04 0.20±0.03 0.06±0.07
JKNet+op 0.37±0.10 0.29±0.09 0.59±0.04 0.18±0.04 0.32±0.04 0.29±0.09 0.11±0.04 0.13±0.03 0.02±0.03
SAGE+op 0.44±0.05 0.32±0.05 0.58±0.05 0.44±0.10 0.33±0.09 0.35±0.08 0.06±0.03 0.12±0.04 0.03±0.03

Bo
th

in
te
rv
en
tio

n

ip+GCN+op 0.74±0.01 0.63±0.02 0.67±0.01 0.40±0.04 0.64±0.05 0.68±0.02 0.24±0.04 0.28±0.03 0.09±0.04
ip+GAT+op 0.65±0.01 0.63±0.03 0.77±0.02 0.54±0.06 0.63±0.08 0.67±0.01 0.21±0.05 0.28±0.03 0.09±0.04

ip+ChebyNet+op 0.70±0.02 0.65±0.03 0.86±0.01 0.51±0.01 0.52±0.08 0.63±0.01 0.21±0.04 0.21±0.03 0.12±0.04
ip+GPR-GNN+op 0.69±0.02 0.63±0.01 0.83±0.01 0.58±0.07 0.51±0.09 0.70±0.01 0.27±0.03 0.24±0.03 0.09±0.04
ip+APPNP+op 0.71±0.01 0.59±0.01 0.78±0.01 0.35±0.06 0.53±0.08 0.69±0.01 0.24±0.04 0.24±0.03 0.09±0.04
ip+JKNet+op 0.54±0.02 0.44±0.01 0.76±0.01 0.27±0.06 0.57±0.09 0.47±0.01 0.21±0.04 0.19±0.03 0.04±0.04
ip+SAGE+op 0.65±0.01 0.65±0.01 0.78±0.01 0.43±0.06 0.56±0.10 0.60±0.01 0.13±0.04 0.16±0.03 0.09±0.06

Table 2. Accuracy of different baselinemethods with andwithout applying interventions. ip: input intervention, op: output intervention.
Here we use PaRWalk in the intervention technique. Photo: Amazon Photo and Computer: Amazon Computer.

Cora Citeseer Pubmed Photo Computer Cora-ml

20

40

60

45

33

52

32

21

36
41

30

42

26
18

28

50
44

49

36 38

54
48

41
47

32 32

42

65

43

61

39

48

59
51

44

57

36

50
46

62

47

61

39

51
57

53

41

60

38

50 49

71

56

65

39

62 64
69

54

64

38

63 62

GCN Random TNA Hi-deg Co-training Self-training Co-Self-union Co-Self-intersection ip(Par)+GCN ip(Deep)+GCN

ogbn-arxiv ogbn-product ogbn-mag

0

10

20

12
15

2

9
11

1

18
20

5

13
16

3

18
22

5

16
19

4

20
24

7

21
23

7

22

27

9

21
24

7

Fig. 6. Comparison of % accuracy (Y-axis) for different training set expansion methods: Training Node Augmentation (TNA), random
sampling (Random), High-deg-path (Hi-deg), Co-training, Self-training, Co-Self-union, Co-Self-intersection and our proposed input
interventions. ip (Par): input intervention with PaRWalk, ip (Deep): input intervention with DeepWalk, Photo: Amazon Photo and
Computer: Amazon Computer.

5.5 Compute time on standard datasets

Tables 6 and 7 compares the time to execute all the different baseline methods while using PaRWalk and DeepWalk in
the intervention pipeline respectively. The time to classify using the intervention methods will naturally be higher
since more steps are required. In addition with various GNN baselines, it is evident from the tables that if the network
Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 17

GNN model Networks

Cora Citeseer Pubmed Photo Computer Cora-ml ogbn-arxiv ogbn-product ogbn-mag
Ba

se
lin

es

GCN 0.45±0.05 0.33±0.06 0.52±0.05 0.32±0.09 0.21±0.09 0.36±0.04 0.12±0.04 0.15±0.03 0.02±0.04
GAT 0.44±0.04 0.35±0.04 0.54±0.05 0.47±0.10 0.41±0.10 0.41±0.08 0.09±0.02 0.17±0.02 0.02±0.03

ChebyNet 0.31±0.05 0.26±0.03 0.47±0.04 0.35±0.11 0.27±0.09 0.24±0.09 0.09±0.02 0.11±0.05 0.03±0.06
GPR-GNN 0.48±0.06 0.38±0.05 0.62±0.08 0.54±0.13 0.44±0.17 0.52±0.09 0.14±0.02 0.21±0.02 0.05±0.03
APPNP 0.50±0.05 0.36±0.04 0.59±0.04 0.23±0.11 0.10±0.10 0.36±0.10 0.14±0.03 0.20±0.04 0.05±0.03
JKNet 0.35±0.04 0.27±0.05 0.57±0.04 0.17±0.10 0.32±0.10 0.23±0.11 0.08±0.03 0.12±0.02 0.02±0.03
SAGE 0.37±0.05 0.30±0.05 0.56±0.05 0.42±0.11 0.32±0.10 0.31±0.11 0.04±0.03 0.11±0.06 0.02±0.07

In
pu

t
in
te
rv
en
tio

n

ip+GCN 0.69±0.02 0.54±0.05 0.64±0.00 0.38±0.01 0.63±0.02 0.62±0.03 0.21±0.04 0.24±0.03 0.07±0.05
ip+GAT 0.62±0.03 0.53±0.03 0.74±0.02 0.53±0.03 0.61±0.02 0.61±0.03 0.20±0.03 0.23±0.03 0.07±0.08

ip+ChebyNet 0.67±0.01 0.61±0.03 0.85±0.00 0.50±0.03 0.51±0.01 0.58±0.03 0.19±0.03 0.18±0.05 0.09±0.04
ip+GPR-GNN 0.68±0.01 0.60±0.03 0.81±0.01 0.60±0.03 0.50±0.08 0.66±0.03 0.23±0.03 0.24±0.05 0.07±0.04
ip+APPNP 0.69±0.01 0.57±0.03 0.74±0.02 0.32±0.03 0.55±0.04 0.65±0.04 0.23±0.03 0.24±0.07 0.08±0.07
ip+JKNet 0.53±0.01 0.41±0.03 0.75±0.01 0.28±0.01 0.47±0.03 0.43±0.02 0.17±0.03 0.18±0.06 0.06±0.06
ip+SAGE 0.62±0.04 0.58±0.02 0.78±0.01 0.54±0.05 0.46±0.09 0.58±0.04 0.12±0.02 0.15±0.06 0.06±0.04

O
ut
pu

t
in
te
rv
en
tio

n

GCN+op 0.49±0.05 0.36±0.05 0.55±0.06 0.33±0.10 0.23±0.09 0.38±0.05 0.13±0.03 0.16±0.03 0.02±0.03
GAT+op 0.45±0.03 0.39±0.04 0.54±0.06 0.48±0.10 0.43±0.12 0.45±0.07 0.11±0.04 0.17±0.05 0.03±0.08

ChebyNet+op 0.35±0.04 0.27±0.03 0.48±0.04 0.38±0.10 0.28±0.09 0.27±0.08 0.10±0.06 0.13±0.03 0.04±0.05
GPR-GNN+op 0.50±0.05 0.40±0.04 0.62±0.05 0.55±0.09 0.47±0.11 0.53±0.11 0.16±0.04 0.22±0.02 0.05±0.03
APPNP+op 0.54±0.15 0.37±0.15 0.60±0.05 0.24±0.04 0.13±0.04 0.39±0.10 0.15±0.03 0.22±0.06 0.05±0.03
JKNet+op 0.37±0.10 0.29±0.09 0.59±0.04 0.18±0.04 0.32±0.04 0.29±0.09 0.12±0.05 0.13±0.06 0.03±0.04
SAGE+op 0.42±0.05 0.32±0.05 0.58±0.05 0.44±0.10 0.33±0.09 0.35±0.08 0.05±0.07 0.13±0.06 0.03±0.04

Bo
th

in
te
rv
en
tio

n

ip+GCN+op 0.71±0.03 0.57±0.02 0.66±0.03 0.40±0.04 0.63±0.05 0.66±0.05 0.23±0.03 0.25±0.05 0.07±0.04
ip+GAT+op 0.64±0.01 0.56±0.03 0.77±0.03 0.54±0.07 0.62±0.10 0.64±0.02 0.22±0.05 0.23±0.04 0.08±0.03

ip+ChebyNet+op 0.68±0.03 0.63±0.04 0.85±0.01 0.51±0.01 0.52±0.08 0.62±0.01 0.22±0.04 0.18±0.06 0.09±0.03
ip+GPR-GNN+op 0.70±0.03 0.62±0.03 0.83±0.01 0.61±0.06 0.52±0.06 0.69±0.03 0.25±0.03 0.25±0.05 0.09±0.04
ip+APPNP+op 0.70±0.02 0.60±0.03 0.74±0.01 0.33±0.06 0.56±0.07 0.68±0.01 0.25±0.03 0.24±0.06 0.08±0.04
ip+JKNet+op 0.56±0.04 0.42±0.03 0.76±0.01 0.29±0.06 0.57±0.09 0.44±0.01 0.19±0.07 0.19±0.06 0.07±0.05
ip+SAGE+op 0.64±0.02 0.62±0.02 0.78±0.01 0.55±0.07 0.47±0.09 0.61±0.02 0.14±0.03 0.16±0.03 0.08±0.05

Table 3. Accuracy of different baselinemethods with andwithout applying interventions. ip: input intervention, op: output intervention.
Here we use DeepWalk in our intervention techniques. Photo: Amazon Photo and Computer: Amazon Computer.

GNN vs GNN+op Networks

cora citeseer pubmed photo computer cora-ml ogbn-arxiv ogbn-product ogbn-mag
GCN vs GCN+op 0.002 0.001 0.002 0.011 0.012 0.004 0.002 0.01 0.02
GAT vs GAT+op 0.001 0.005 0.0001 0.001 0.011 0.004 0.004 0.02 0.04

ChebyNet vs ChebyNet+op 0.002 0.004 0.003 0.002 0.007 0.002 0.003 0.01 0.03
GPRGNN vs GPRGNN+op 0.001 0.03 0.002 0.005 0.02 0.004 0.002 0.01 0.04
APPNP vs APPNP+op 0.002 0.005 0.009 0.003 0.01 0.01 0.004 0.02 0.02
JKNet vs JKNet+op 0.01 0.002 0.0003 0.010 0.034 0.003 0.002 0.01 0.04
SAGE vs SAGE+op 0.0006 0.0007 0.001 0.0001 0.008 0.003 0.001 0.01 0.04

Table 4. Significance tests with output interventions plugged in. ParWalk is used in the intervention methods.

GNN vs GNN+op Networks

cora citeseer pubmed photo computer cora-ml ogbn-arxiv ogbn-product ogbn-mag
GCN vs GCN+op 0.003 0.001 0.001 0.013 0.02 0.001 0.002 0.02 0.02
GAT vs GAT+op 0.003 0.002 0.001 0.002 0.01 0.005 0.004 0.01 0.02

ChebyNet vs ChebyNet+op 0.001 0.002 0.003 0.01 0.02 0.012 0.002 0.02 0.01
GPRGNN vs GPRGNN+op 0.004 0.002 0.002 0.001 0.02 0.002 0.001 0.02 0.03
APPNP vs APPNP+op 0.001 0.005 0.003 0.002 0.02 0.012 0.006 0.01 0.03
JKNet vs JKNet+op 0.001 0.004 0.004 0.002 0.03 0.001 0.002 0.02 0.03
SAGE vs SAGE+op 0.002 0.0008 0.004 0.001 0.08 0.001 0.002 0.02 0.02

Table 5. Significance tests with output interventions plugged in. DeepWalk is used in the intervention methods.

Manuscript submitted to ACM

18 Chowdhury et. al.

is large (such as computer), then more time is needed for our intervention method. In case of PaRWalk, the actual time
requirement is due to the calculation of the absorption probability and in case of DeepWalk, the actual time requirement
is mainly due to two parameters: random walk length and number of times the random walk is required.

GNN model Networks

cora citeseer pubmed photo computer cora-ml ogbn-arxiv ogbn-product ogbn-mag
Ba

se
lin

es

GCN 3s 5s 24s 36s 73s 5s 88s 32015s 1608s
GAT 35s 72s 207s 300s 601s 57s 626s 35393s 2551s

ChebyNet 15s 44s 51s 117s 248s 38s 261s 33265s 1987s
GPRGNN 9s 18s 38s 67s 147s 17s 166s 32965s 1843s
APPNP 9s 17s 37s 66s 147s 16s 163s 32958s 1839s
JKNet 8s 11s 64s 40s 85s 10s 93s 32329s 1679s
SAGE 9s 26s 46s 98s 187s 23s 253s 32768s 1983s

Random-sample 4s 6s 26s 38s 78s 6s 90s 32037s 1629s
TNA 8s 14s 50s 62s 156s 11s 95s 32048s 1641s

Hi-deg-Path 4s 8s 31s 46s 92s 9s 93s 32037s 1631s
Co-training 10s 13s 241s 131s 756s 11s 345s 33135s 2369s
Self-training 9s 18s 161s 86s 547s 10s 324s 33124s 2213s
Co-Self-union 15s 27s 347s 185s 922s 18s 548s 51567s 3516s

Co-Self-intersection 16s 27s 347s 185s 922s 18s 537s 51769s 3532s

In
pu

t
in
te
rv
en
tio

n

ip+GCN 11s 15s 248s 160s 880s 13s 940s 47763s 37593s
ip+GAT 44s 75s 432s 424s 1416s 71s 1788s 51194s 38566s

ip+ChebyNet 22s 56s 278s 241s 967s 47s 1164s 49094s 37989s
ip+GPRGNN 16s 27s 261s 193s 957s 30s 1025s 48794s 37856s
ip+APPNP 18s 29s 259s 191s 956s 27s 1022s 48781s 37849s
ip+JKNet 17s 18s 283s 167s 898s 19s 947s 48091s 37687s
ip+SAGE 19s 37s 269s 225s 1003s 33s 1116s 48534s 37973s

O
ut
pu

t
in
te
rv
en
tio

n

GCN+op 5s 9s 240s 144s 792s 9s 731s 37266s 5127s
GAT+op 36s 74s 422s 408s 1320s 66s 1582s 40649s 6079s

ChebyNet+op 18s 45s 270s 227s 1060s 43s 983s 38526s 5506s
GPRGNN+op 10s 20s 252s 188s 864s 26s 834s 38253s 5373s
APPNP+op 10s 18s 250s 186s 863s 25s 830s 38244s 5368s
JKNet+op 9s 12s 274s 161s 804s 15s 757s 37562s 5207s
SAGE+op 12s 28s 263s 209s 919s 32s 996s 39037s 5723s

Bo
th

in
te
rv
en
tio

n

ip+GCN+op 12s 19s 468s 270s 1604s 18s 1586s 52989s 41126s
ip+GAT+op 46s 77s 651s 534s 2135s 81s 2748s 56486s 42122s

ip+ChebyNet+op 23s 59s 497s 351s 1785s 52s 1889s 54361s 41566s
ip+GPRGNN+op 19s 33s 477s 314s 1676s 40s 1695s 54082s 41427s
ip+APPNP+op 19s 30s 474s 312s 1673s 39s 1693s 54072s 41405s
ip+JKNet+op 20s 23s 495s 288s 1620s 24s 1613s 53378s 41233s
ip+SAGE+op 22s 40s 481s 343s 1749s 43s 1868s 54785s 41798s

Table 6. Time requirement for different methods. PaRWalk is used in the intervention methods.

5.6 Effects on increasing the number of hidden layers

In this section, we describe how the number of layers affects the accuracy of the GNN in the input intervention. Figs. 7
and 8 shows the results of the GNNs equipped with only input intervention on cora network (the trends for the other
networks are similar). Except for GPRGNN and APPNP, we can see that the accuracy does not get affected much as we
increase the number of layers. For GPRGNN and APPNP, transition from layer 3 to layer 4 results in a sudden drop in
the accuracy.

5.7 Sensitivity analysis

Both the PaRWalk and DeepWalk have certain parameters that might affect the accuracy of our results. In this section
we study the influence of such parameters by varying a certain parameter while keeping others fixed. We did this
study for three networks: cora, citeseer and pubmed (results for other networks not shown for brevity). As a specific
Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 19

GNN model Networks

cora citeseer pubmed photo computer cora-ml ogbn-arxiv ogbn-product ogbn-mag
Ba

se
lin

es
GCN 3s 5s 24s 36s 73s 5s 88s 32015s 1608s
GAT 35s 72s 207s 300s 601s 57s 626s 35393s 2551s

ChebyNet 15s 44s 51s 117s 248s 38s 261s 33265s 1987s
GPRGNN 9s 18s 38s 67s 147s 17s 166s 32965s 1843s
APPNP 9s 17s 37s 66s 147s 16s 163s 32958s 1839s
JKNet 8s 11s 64s 40s 85s 10s 93s 32329s 1679s
SAGE 9s 26s 46s 98s 187s 23s 253s 32768s 1983s

Random-sample 4s 6s 26s 38s 78s 6s 90s 32037s 1629s
TNA 8s 14s 50s 62s 156s 11s 95s 32048s 1641s

Hi-deg-Path 4s 8s 31s 46s 92s 9s 93s 32037s 1631s
Co-training 10s 13s 241s 131s 756s 11s 345s 33135s 2369s
Self-training 9s 18s 161s 86s 547s 10s 324s 33124s 2213s
Co-Self-union 15s 27s 347s 185s 922s 18s 548s 51567s 3516s

Co-Self-intersection 16s 27s 347s 185s 922s 18s 537s 51769s 3532s

In
pu

t
in
te
rv
en
tio

n

ip+GCN 8s 11s 213s 138s 683s 11s 1123s 49567s 38251s
ip+GAT 41s 78s 398s 401s 1201s 68s 1969s 52963s 31998s

ip+ChebyNet 21s 51s 246s 192s 854s 42s 1347s 50823s 38639s
ip+GPRGNN 14s 24s 229s 171s 776s 26s 1208s 50492s 38486s
ip+APPNP 15s 23s 227s 169s 774s 26s 1205s 50483s 38482s
ip+JKNet 13s 17s 254s 143s 702s 13s 1128s 49862s 38327s
ip+SAGE 16s 33s 246s 206s 805s 32s 1293s 50331s 38632s

O
ut
pu

t
in
te
rv
en
tio

n

GCN+op 5s 8s 202s 123s 608s 8s 921s 38127s 5632s
GAT+op 37s 74s 389s 385s 1133s 54s 1764s 41625s 6591s

ChebyNet+op 17s 47s 237s 174s 781s 41s 1144s 39395s 6042s
GPRGNN+op 10s 19s 217s 156s 699s 20s 1004s 39097s 5883s
APPNP+op 10s 19s 217s 154s 699s 20s 1002s 39085s 5875s
JKNet+op 9s 13s 245s 127s 625s 12s 922s 38484s 5021s
SAGE+op 13s 30s 227s 193s 725s 30s 1093s 38880s 6018s

Bo
th

in
te
rv
en
tio

n

ip+GCN+op 12s 16s 391s 230s 1221s 15s 1956s 55682s 42283s
ip+GAT+op 45s 80s 583s 486s 1743s 69s 3107s 59203s 36025s

ip+ChebyNet+op 25s 54s 435s 248s 1395s 52s 2230s 56967s 42698s
ip+GPRGNN+op 18s 28s 411s 293s 1346s 30s 2048s 56582s 42539s
ip+APPNP+op 18s 28s 408s 291s 1341s 30s 2044s 56571s 42522s
ip+JKNet+op 17s 22s 439s 231s 1249s 17s 1959s 56029s 41713s
ip+SAGE+op 23s 38s 431s 307s 1361s 41s 2153s 56461s 42683s

Table 7. Time requirement for different input intervention methods. DeepWalk is used in the intervention methods.

GCN+ip GAT+ip ChebyNet+ip GPRGNN+ip APPNP+ip JKNet+ip

20

40

60

71

63
68 68 69

52

71

62
68 67 65

52

70

61
66

34 33

48

68

60
64

28
22

43

L = 2 L = 3 L = 4 L = 5

Fig. 7. Effects on the % accuracy (Y-axis) for different GNN models while varying the number of layers in cora network. L: Number of hidden layers in the GNN. PaRWalk is
used for input intervention.

GCN+ip GAT+ip ChebyNet+ip GPRGNN+ip APPNP+ip JKNet+ip
20

40

60

69
62

67 68 69

53

69

61
65 67

63

49

68

60
63

34 34

45

65
60 61

28
23

43

L = 2 L = 3 L = 4 L = 5

Fig. 8. Effects on the % accuracy (Y-axis) for different GNN models while varying the number of layers in cora network. L: Number of hidden layers in the GNN. DeepWalk is
used for input intervention.

Manuscript submitted to ACM

20 Chowdhury et. al.

GNN model, we picked GCN since it is faster among all and investigate only the input level intervention for both these
random walk methods.
Tuning PaRWalk’s parameters: The only parameter in ParWalk is the absorption probability 𝛼 . We tune it to 10 values
starting from 10−6 to 10−1 and plot the results in Figure 9. As can be seen, the change in accuracy is negligible as we
increase 𝛼 from 10−6 to 10−1. This observation states that the accuracy of GCN is not much sensitive to the absorption
probability.
Tuning DeepWalk’s parameters: Set of important parameters in DeepWalk method includes (i) window sizeW𝑆 , (ii)
walks per nodeW𝑃 , (iii) walk lengthW𝐿 . Figure 10 shows the accuracy of the GCN while tuning various parameters.
In Figure 10(a), we can see that the accuracy slowly increases as we increase the window size while keeping walks per
node to 1 and walk length to 2. In Figure 10(b), the accuracy first suddenly increases and then stabilizes as number of
walks per node increases from 1, while keeping other two parameters fixed to 2. In Figure 10(c), the trends are similar
to Figure 10(b) (we keep the other parameters - window size and walks per node to 2 and 1 respectively). For all the
parameters, the accuracy quickly stabilizes showing that the random walk has converged and any change in the node
embeddings after this point is extremely rare.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1
55

60

65

70

𝛼

A
cc
ur
ac
y(
%)

Cora
Citeseer
Pubmed

Fig. 9. Sensitivity analysis on ParWalk by tuning various parameters while performing input intervention. The absorption probability
𝛼 is varied from 0.1 to 10−6

6 RELATEDWORK

Random walks. A random walk is a random process of moving from one node to another node and creating a path.
According to to [52], every Markov chain can be thought of as a random walk on a directed graph, whereas, a random
walk in an undirected graph is a time-reversible Markov chain. [60] investigated random walks on complex networks
and derived the exact expression for the mean first-passage time between two nodes. Variants include random walk
with restart [62], lazy random walk [73], personalized PageRank [29], PaRWalk [90], etc. In [81] random walk is used to
extend the original node2vec node-neighborhood sampling method and generate a second-order random walk sampling
for heterogeneous multi-graphs. Multiple applications are built using random walk based algorithms including link
prediction [51], recommendation system [33, 34], computer vision [73], semi-supervised learning [110, 111], network
embedding [35, 63], complex social network analysis [69] etc. Several surveys on random walk include [11, 69, 92].
Node embedding techniques based on random walks. Node embedding techniques are popular graph represen-
tation learning methods [37]. Few popular random walk based node embedding techniques include DeepWalk [63],
Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 21

0 20 40 60
35

40

45

50

55

60

Window size

A
cc
ur
ac
y(
%)

(a)

0 10 20 30

40

50

60

70

Walks per node

(b)

0 20 40 60

40

50

60

70

Walk length

Cora
Citeseer
Pubmed

(c)

Fig. 10. Sensitivity analysis on DeepWalk by tuning various parameters while performing input intervention. (a) Varying window size,
while fixing walks per node = 1 and walk length = 2. (b) Varying walks per node, while fixing window size = 2 and walk length = 2. (c)
Varying Walk length, while fixing window size = 2 and walks per nodes = 1

Node2Vec [35], Large-scale Information Network Embedding (LINE) [80], Asymmetric Proximity Preserving (APP) [104]
etc. DeepWalk applies standard random-walks, while Node2Vec considers biased random walks and APP adopts rooted
PageRank, among others. LINE operates by optimising an objective function that keeps both the global and local
network structures intact. Huang et. al. [41] broadly categorizes the random walk based node embedding process into
two categories: Pointwise Mutual Information (PMI) and Auto-covariance. DeepWalk [63], WalkLets [64], NetMF [66],
Node2Vec [35], LINE [80] and NetSMF [65] fall into the PMI group whereas, Multiscale [70] and their (Huang et. al.’s)
proposed method [41] falls in the auto-covariance group. Further surveys on node embedding techniques based on
random walk can be found in the following articles [12, 16, 24, 88].
Graph-based semi-supervised learning. Semi-supervised learning (SSL) [17, 82] and more specifically, graph-based
SSL (GSSL) [22, 105, 111] have become popular over the last few years. It deals with spreading labels from a small set of
labeled data points to a wider number of unlabeled data. In order to learn from both labeled and unlabelled data, some
GSSL [8] exploited the pairwise correlations among the nodes in the min-cut technique. Some approach takes into
account the cluster assumption [18], which specifies that the decision boundary should not intersect densely populated
areas. Authors in [5, 42] used the spectral method for the semi-supervised learning task. [40] discussed the consistency
of optimization-based techniques for the GSSL, with the assumption that the labels that have small noise and the
unlabelled data are well clustered. Other works include the inclusion of label propagation method using Gaussian field
and harmonic functions [111], random walk [79, 90], transductive SVM [23], combination of label propagation and
bipartite graph construction [89] etc.

It is crucial to reduce the burden of computational and storage costs for GSSL approaches given the rapidly rising data
volume. By utilizing the convergence of the eigenvectors of the normalised graph Laplacian to the eigen-functions of
weighted Laplace-Beltrami operators, Fergus et. al. [27] provided a method for constructing numerical approximations
to the eigenvectors of normalized graph Laplacian. Few GSSL methods consider the feature vectors associated with
the data along with the graph structure that includes regularization tasks. For example, Zhang et. al. [101] suggested
employing prototype vectors in order to approximate the graph-based regularizer in GSSL with the assumption of
low-rank approximation and little information loss. Belkin et. al. [4] proposed some algorithms for regularization on
graphs. The suggested algorithms are fairly straightforward and solve a single system of linear equations, which is
typically sparse. Zhou et. al. [107] proposed GSSL by higher order regularization where they used Iterated Laplacian

Manuscript submitted to ACM

22 Chowdhury et. al.

regularisation, which is comparable to a higher order Sobolev semi-norm. Li et.al. [46] used preconditioned conjugate
gradient descent and Nystrom subsampling to boost the effectiveness of Laplacian Regularized Least Squares. Belkin et.

al. [6] presented a methodology for data-dependent regularisation that takes advantage of the probability distribution’s
geometry. Recent surveys on GSSL can be found in [77, 78].
Graph neural networks for node classification.GNN [91] is a powerful tool for various graph-based semi-supervised
tasks such as node classification [25], link prediction [48], graph classification [25, 93], graph embedding [13], and so on.
Node classification is one of the major tasks in the network domain since it has a lot of applications in several areas such
as text classification [98], neural machine translation [56], molecular fingerprints learning [26] etc. Apart from [25],
other tools for node classification tasks include [36, 44, 84], etc. The development of GNN for node categorization is
hampered by over-fitting and over-smoothing. Therefore current works on GNNmostly focus on alleviating these issues.
For example, in [47], the authors improved the accuracy of the GCN by extending the training set using PaRWalk [90].
Jumping Knowledge Networks (JKNet) [94] is another alternative, where for each node, the neighborhood features
are weighted differently during aggregation. Mutual Teaching for Graph Convolutional Networks (MT-GCN) [99] is
inspired by knowledge distillation [39] and label smoothing [59]. The model uses both the temperature of the softmax
layer and the ground truth labels for training label expansion as well as teaching the peer network.

However, knowledge distillation techniques typically suffer from either subpar distillation brought on by insufficient
use of unlabeled data or overconfident and biased pseudo-labels. To circumvent this problem, Luo et. al. [54] offers
DualGraph, a guiding framework to more efficiently use unlabeled graphs for semi-supervised graph classification,
motivated by current developments in contrastive learning [15] and dual learning [38]. Approximate personalized
propagation of neural predictions (APPNP) [45] utilizes PageRank [61] along with GCN [44] to derive an improved
message passing scheme in the graph. Generalized PageRank Graph Neural Network (GPRGNN) [21] has been inspired
by the APPNP model that proposed a generalized PageRank GNN that overcomes the problems of over-fitting and
over-smoothing. DropEdge [67] acts as a data augmenter and a message passing reducer by randomly removing a specific
number of edges from the input graph during each training epoch. Iterative Deep Graph Learning (IDGL) [20] learns
graph structure and graph embedding jointly and iteratively and, thereby, improves the accuracies. Deep Graph Infomax
(DGI) [83] is based on maximising mutual information between patch representations and corresponding high-level
graph summaries, both of which are derived using well-established graph convolutional network architectures.

The Graph Harmonic Neural Network (GHNN) [43] which consists of two modules: a graph kernel network (GKN)
module [19] and a graph convolutional network (GCN) module that examines graph topology data from contrasting
angles. By providing emphasis to high-quality unlabeled data during the training of two modules, they created a novel
harmonic contrastive loss and a harmonic consistency loss to harmonise the training of two modules and reconcile the
consistency of their predictions.

7 DISCUSSIONS AND FUTUREWORK

We present methods for input and output level intervention on GNN to improve its accuracy. In the input intervention,
we extend the training set with a set of other training nodes of the same class by carefully selecting nodes from different
non-contiguous subgraphs. We use variations of random walks or node embedding techniques to extend the training
sets and 𝐾-means followed by 𝐾-NN to increase the diversity of the nodes. In the output intervention, we use a random
walk or node embedding technique in a similar vein to identify the misclassified nodes and relabel them to correct class
labels using the confidence of the nodes. We now discuss some of the possible extensions of our work.

Manuscript submitted to ACM

Improving Node Classification Accuracy of GNN through Input and Output Intervention 23

Application in inductive setting. Our research is focused on transductive scenarios in which we are aware of the
testing nodes throughout training. Another situation is referred to as an inductive setting [7], in which we are unaware
of which nodes are the training nodes during training. Inductive learning makes the assumption that there are some
rules that can be applied by the model and that allow us to categorize a pattern given its attributes. In contrast to the
transductive setting, the inductive node embedding problem is particularly challenging because, in order to generalize
to unseen nodes, freshly observed subgraphs must be “aligned” to the node embeddings that the algorithm has been
already optimized for. A node’s neighborhood’s structural characteristics that disclose both the node’s local function in
the graph and its global position must be recognized through an inductive framework.

Both of our intervention methods use random walk which is used to pick up the set of nodes very similar to the
original nodes but is agnostic of the node type. Therefore to extend our methods to the inductive framework we have to
incorporate the random walk into the inductive functions. Note that the subsequent steps of clustering using 𝐾-means
and 𝐾-NN do not depend on the knowledge of which nodes are the training nodes.
Application to hypergraphs. A hypergraph is a generalization of a graph in which multiple nodes can be connected
by an edge (relationship). There are datasets with relationships between the nodes that are not pairwise, such as email,
co-citation, co-authorship, correspondence, etc. Hypergraphs enable us to model linkages in such cases. Some popular
works based on hypergraph can be found in [76, 100, 106]. Some works based on the application of the GNNs on
the hypergraph can be found in [3, 95, 102]. Bai et. al. [3] demonstrated mathematically that when a non-pairwise
relationship degenerates into a pairwise one, graph convolution is a specific case of hypergraph convolution. Therefore,
our suggested intervention methodology, which is based on GNNs for ordinary graph settings, can be applied to
hypergraph settings, where the random walks (on the ordinary graph) that we now utilize in our intervention technique
need to be converted to random walks on hypergraph [14].
Application to heterophily graphs. A heterophily graph has a very low homophily value, where the homophily of a
node 𝑣 can be defined as the ratio of the number of neighbors having same labels as 𝑣 to the number of neighbors of 𝑣 .
The homophily value of a graph is the sum of the homophily values of all the nodes normalised by the number of nodes.
Typically, in a heterophily graph, a large number of edges exist whose two terminals have different class labels. In this
paper, only the homophily graphs are studied. But there exist real world graphs such as Chameleon [68], Squirrel [68],
Cornell [31], Texas [31] that are heterophily in nature. Existing works on applying the GNN on heterophily networks
include [9, 21, 97, 108]. A recent survey on heterophily network can be found in [103]. As our future work, we plan
to integrate some non-local neighborhood extension methods such as high-order neighborhood mixing [1, 109] or
potential neighborhood discovery [50, 87] methods with our input intervention technique, so that not only we can
extend the training set (with the help of the input intervention), but also the model can correctly choose the neighbors
(with the help of these non-local neighbor extension methods) of each node in the network for the feature aggregation
and updation steps. In similar lines, the output intervention technique can also be modified so that it can correctly
recognise the class labels of the neighbours of a node even in the heterophily environment and relabel them properly.

In this paper, we have concentrated on input and output interventions. In the future, we aim to introduce in-process
interventions, making changes to the GNN architecture itself, as well as extend the model for the inductive and
hypergraph settings. We also plan to introduce parallelism in the entire pipeline so that the methods can scale to very
large networks faster.
Reproducibility. All our datasets are public. The code is available at: https://github.com/anjangit000/inputGCN/tree/
master

Manuscript submitted to ACM

https://github.com/anjangit000/inputGCN/tree/master
https://github.com/anjangit000/inputGCN/tree/master

24 Chowdhury et. al.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan.

2019. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In international conference on machine learning.
PMLR, 21–29.

[2] Josh Alman and Virginia Vassilevska Williams. 2021. A Refined Laser Method and Faster Matrix Multiplication. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, Dániel Marx (Ed.). SIAM, 522–539. https:
//doi.org/10.1137/1.9781611976465.32

[3] Song Bai, Feihu Zhang, and Philip H.S. Torr. 2021. Hypergraph convolution and hypergraph attention. Pattern Recognition 110 (2021), 107637.
https://doi.org/10.1016/j.patcog.2020.107637

[4] Mikhail Belkin, Irina Matveeva, and Partha Niyogi. 2004. Regularization and semi-supervised learning on large graphs. In International Conference
on Computational Learning Theory. Springer, 624–638.

[5] Mikhail Belkin and Partha Niyogi. 2004. Semi-supervised learning on Riemannian manifolds. Machine learning 56, 1 (2004), 209–239.
[6] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold Regularization: A Geometric Framework for Learning from Labeled and

Unlabeled Examples. Journal of Machine Learning Research 7, 85 (2006), 2399–2434. http://jmlr.org/papers/v7/belkin06a.html
[7] Monica Bianchini, Anas Belahcen, and Franco Scarselli. 2016. A comparative study of inductive and transductive learning with feedforward neural

networks. In Conference of the Italian Association for Artificial Intelligence. Springer, 283–293.
[8] Avrim Blum and Shuchi Chawla. 2001. Learning from Labeled and Unlabeled Data Using GraphMincuts. In Proceedings of the Eighteenth International

Conference onMachine Learning (ICML ’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 19–26. https://doi.org/10.1184/R1/6606860.v1
[9] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency information in graph convolutional networks. In Proceedings of

the AAAI Conference on Artificial Intelligence, Vol. 35. 3950–3957.
[10] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. In

International Conference on Learning Representations. https://openreview.net/forum?id=r1ZdKJ-0W
[11] Raffaella Burioni and Davide Cassi. 2005. Random walks on graphs: ideas, techniques and results. Journal of Physics A: Mathematical and General

38, 8 (2005), R45.
[12] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A comprehensive survey of graph embedding: Problems, techniques, and

applications. IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.
[13] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for Learning Graph Representations (access date: 07-Aug-2023). AAAI

(2016), 1145–1152. https://doi.org/10.1609/aaai.v30i1.10179
[14] Timoteo Carletti, Federico Battiston, Giulia Cencetti, and Duccio Fanelli. 2020. Random walks on hypergraphs. Physical review E 101, 2 (2020),

022308.
[15] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. 2020. Unsupervised Learning of Visual Features by

Contrasting Cluster Assignments. Advances in Neural Information Processing Systems 33 (2020), 9912–9924. https://proceedings.neurips.cc/paper_
files/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf

[16] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. 2022. Machine learning on graphs: A model and comprehensive
taxonomy. Journal of Machine Learning Research 23, 89 (2022), 1–64.

[17] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (Eds.). 2006. Semi-Supervised Learning (access date: 07-Aug-2023). (2006). http:
//dblp.uni-trier.de/db/books/collections/CSZ2006.html

[18] Olivier Chapelle and Alexander Zien. 2005. Semi-supervised classification by low density separation. In International workshop on artificial
intelligence and statistics. PMLR, 57–64.

[19] Dexiong Chen, Laurent Jacob, and Julien Mairal. 2020. Convolutional kernel networks for graph-structured data. In International Conference on
Machine Learning. PMLR, 1576–1586.

[20] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.). Proceedings of the 34th International Conference on Neural Information Processing
Systems 33, Article 1620, 19314–19326 pages. https://proceedings.neurips.cc/paper_files/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-
Paper.pdf

[21] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal Generalized PageRank Graph Neural Network. In International
Conference on Learning Representations. https://openreview.net/forum?id=n6jl7fLxrP

[22] Yanwen Chong, Yun Ding, Qing Yan, and Shaoming Pan. 2020. Graph-based semi-supervised learning: A review. Neurocomputing 408 (2020),
216–230. https://doi.org/10.1016/j.neucom.2019.12.130

[23] Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. 2006. Large Scale Transductive SVMs. Journal of Machine Learning Research 7, 62
(2006), 1687–1712. http://jmlr.org/papers/v7/collobert06a.html

[24] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network embedding. IEEE transactions on knowledge and data engineering 31, 5
(2018), 833–852.

[25] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering. Proceedings of the 30th International Conference on Neural Information Processing Systems 29, 3844–3852. https://doi.org/10.5281/zenodo.

Manuscript submitted to ACM

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1016/j.patcog.2020.107637
http://jmlr.org/papers/v7/belkin06a.html
https://doi.org/10.1184/R1/6606860.v1
https://openreview.net/forum?id=r1ZdKJ-0W
https://doi.org/10.1609/aaai.v30i1.10179
https://proceedings.neurips.cc/paper_files/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf
http://dblp.uni-trier.de/db/books/collections/CSZ2006.html
http://dblp.uni-trier.de/db/books/collections/CSZ2006.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://openreview.net/forum?id=n6jl7fLxrP
https://doi.org/10.1016/j.neucom.2019.12.130
http://jmlr.org/papers/v7/collobert06a.html
https://doi.org/10.5281/zenodo.1318406
https://doi.org/10.5281/zenodo.1318406

Improving Node Classification Accuracy of GNN through Input and Output Intervention 25

1318406
[26] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P.

Adams. 2015. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 2224–2232.

[27] Rob Fergus, Yair Weiss, and Antonio Torralba. 2009. Semi-Supervised Learning in Gigantic Image Collections. In Advances in Neural Information
Processing Systems, Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (Eds.), Vol. 22. Curran Associates, Inc., 522–530. https:
//proceedings.neurips.cc/paper_files/paper/2009/file/1651cf0d2f737d7adeab84d339dbabd3-Paper.pdf

[28] Fix, Evelyn, and J. L. Hodges. 1989. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. International Statistical
Review 57, 3 (1989), 238–247. https://doi.org/10.2307/1403797

[29] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards scaling fully personalized PageRank: algorithms, lower bounds,
and experiments. Internet Math. 2, 3 (2005), 333–358. http://www.ams.org/mathscinet-getitem?mr=2212369

[30] E. Forgy. 1965. Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification. Biometrics 21, 3 (1965), 768–769.
[31] Rayid Ghani. 2001. CMU World Wide Knowledge Base (WebKB) project. https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/.

(2001).
[32] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning (access date: 07-Aug-2023). MIT Press, Cambridge, MA, USA.

http://www.deeplearningbook.org.
[33] Marco Gori and Augusto Pucci. 2006. Research paper recommender systems: A random-walk based approach. In 2006 IEEE/WIC/ACM International

Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI’06). IEEE, 778–781.
[34] Marco Gori, Augusto Pucci, V Roma, and I Siena. 2007. Itemrank: A random-walk based scoring algorithm for recommender engines.. In IJCAI,

Vol. 7. 2766–2771.
[35] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining. 855–864.
[36] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In Advances in Neural Information

Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates,
Inc., 1024–1034. https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

[37] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40, 3
(2017), 52–74. http://sites.computer.org/debull/A17sept/p52.pdf

[38] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual Learning for Machine Translation. In Proceedings
of the 30th International Conference on Neural Information Processing Systems (Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY,
USA, 820–828.

[39] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowledge in a Neural Network. In NIPS Deep Learning and Representation
Learning Workshop. http://arxiv.org/abs/1503.02531

[40] Franca Hoffmann, Bamdad Hosseini, Zhi Ren, and Andrew M. Stuart. 2020. Consistency of Semi-Supervised Learning Algorithms on Graphs:
Probit and One-Hot Methods. J. Mach. Learn. Res. 21, 1, Article 186 (jan 2020), 55 pages.

[41] Zexi Huang, Arlei Silva, and Ambuj Singh. 2021. A broader picture of random-walk based graph embedding. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining. 685–695.

[42] Thorsten Joachims. 2003. Transductive learning via spectral graph partitioning. In Proceedings of the 20th international conference on machine
learning (ICML-03). 290–297.

[43] Wei Ju, Xiao Luo, Zeyu Ma, Junwei Yang, Minghua Deng, and Ming Zhang. 2022. GHNN: Graph Harmonic Neural Networks for semi-supervised
graph-level classification. Neural Networks 151, C (2022), 70–79. https://doi.org/10.1016/j.neunet.2022.03.018

[44] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International
Conference on Learning Representations (Palais des Congrès Neptune, Toulon, France) (ICLR ’17). https://openreview.net/forum?id=SJU4ayYgl

[45] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Predict then Propagate: Graph Neural Networks meet Personalized
PageRank. 7th International Conference on Learning Representations, ICLR (Poster) 2019, New Orleans, LA, USA, May 6-9, 2019. https://openreview.
net/forum?id=H1gL-2A9Ym

[46] Jian Li, Yong Liu, Rong Yin, and Weiping Wang. 2019. Approximate Manifold Regularization: Scalable Algorithm and Generalization Analysis.. In
IJCAI. 2887–2893.

[47] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence, Article 433, 8 pages. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16098

[48] Zhao Li, Zhanlin Liu, Jiaming Huang, Geyu Tang, Yucong Duan, Zhiqiang Zhang, and Yifan Yang. 2019. MV-GCN: Multi-View Graph Convolutional
Networks for Link Prediction. IEEE Access 7 (2019), 176317–176328. https://doi.org/10.1109/ACCESS.2019.2957306

[49] Xingxing Liang, Yang Ma, Guangquan Cheng, Changjun Fan, Yuling Yang, and Zhong Liu. 2022. Meta-path-based heterogeneous graph neural
networks in academic network. International Journal of Machine Learning and Cybernetics 13, 6 (2022), 1553–1569.

Manuscript submitted to ACM

https://doi.org/10.5281/zenodo.1318406
https://doi.org/10.5281/zenodo.1318406
https://doi.org/10.5281/zenodo.1318406
https://proceedings.neurips.cc/paper_files/paper/2009/file/1651cf0d2f737d7adeab84d339dbabd3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/1651cf0d2f737d7adeab84d339dbabd3-Paper.pdf
https://doi.org/10.2307/1403797
http://www.ams.org/mathscinet-getitem?mr=2212369
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
http://arxiv.org/abs/1503.02531
https://doi.org/10.1016/j.neunet.2022.03.018
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://doi.org/10.1109/ACCESS.2019.2957306

26 Chowdhury et. al.

[50] Meng Liu, ZhengyangWang, and Shuiwang Ji. 2021. Non-local graph neural networks. IEEE transactions on pattern analysis and machine intelligence
44, 12 (2021), 10270–10276.

[51] Weiping Liu and Linyuan Lü. 2010. Link prediction based on local random walk. EPL (europhysics Letters) 89, 5 (2010), 58007.
[52] László Lovász. 1993. Random walks on graphs. Combinatorics, Paul erdos is eighty 2, 1-46 (1993), 4.
[53] L. Lovasz and M. Simonovits. 1990. The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume. In Proceedings

[1990] 31st Annual Symposium on Foundations of Computer Science. 346–354 vol. 1. https://doi.org/10.1109/FSCS.1990.89553
[54] Xiao Luo, Wei Ju, Meng Qu, Chong Chen, Minghua Deng, Xian-Sheng Hua, and Ming Zhang. 2022. DualGraph: Improving Semi-supervised

Graph Classification via Dual Contrastive Learning. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). 699–712. https:
//doi.org/10.1109/ICDE53745.2022.00057

[55] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of
Mathematical Statistics 18, 1 (1947), 50 – 60. https://doi.org/10.1214/aoms/1177730491

[56] Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov. 2018. Exploiting Semantics in Neural Machine Translation with Graph Convolutional
Networks. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). Association for Computational Linguistics, New Orleans, Louisiana, 486–492. https://doi.org/10.18653/v1/N18-
2078

[57] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. 2015. Image-Based Recommendations on Styles and Substitutes.
Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 43–52. https://doi.org/10.1145/
2766462.2767755

[58] James B McQueen. 1967. Some methods of classification and analysis of multivariate observations. In Proc. of 5th Berkeley Symposium on Math. Stat.
and Prob. 281–297.

[59] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. 2019. When Does Label Smoothing Help? Curran Associates Inc., Red Hook, NY, USA.
[60] Jae Dong Noh and Heiko Rieger. 2004. Random Walks on Complex Networks. Physical Review Letters 92, 11 (Mar 2004), 1–4. https://doi.org/10.

1103/physrevlett.92.118701
[61] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank citation ranking: Bringing order to the web. Technical

Report. Stanford InfoLab.
[62] Jia-Yu Pan, Hyung-jeong Yang, Christos Faloutsos, and Pinar Duygulu. 2004. Automatic Multimedia Cross-modal Correlation Discovery. KDD-2004

- Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (07 2004). https://doi.org/10.1145/
1014052.1014135

[63] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning of Social Representations. Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining (Aug 2014). https://doi.org/10.1145/2623330.2623732

[64] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. 2017. Don’t walk, skip! online learning of multi-scale network embeddings. In
Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. 258–265.

[65] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. 2019. Netsmf: Large-scale network embedding as sparse
matrix factorization. In The World Wide Web Conference. 1509–1520.

[66] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018. Network embedding as matrix factorization: Unifying deepwalk,
line, pte, and node2vec. In Proceedings of the eleventh ACM international conference on web search and data mining. 459–467.

[67] Yu Rong,Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification.
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. https://openreview.net/forum?id=
Hkx1qkrKPr

[68] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.
[69] Purnamrita Sarkar and AndrewWMoore. 2011. Random walks in social networks and their applications: a survey. In Social Network Data Analytics.

Springer, 43–77.
[70] Michael T Schaub, Jean-Charles Delvenne, Renaud Lambiotte, and Mauricio Barahona. 2019. Multiscale dynamical embeddings of complex

networks. Physical Review E 99, 6 (2019), 062308.
[71] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad. 2008. Collective Classification in Network

Data. AI Magazine 29, 3 (2008), 93–106. http://www.cs.iit.edu/~ml/pdfs/sen-aimag08.pdf
[72] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. In

Relational Representation Learning Workshop, Advances in Neural Information Processing Systems (NeurIPS) (2018).
[73] Jianbing Shen, Yunfan Du, Wenguan Wang, and Xuelong Li. 2014. Lazy Random Walks for Superpixel Segmentation. IEEE transactions on image

processing : a publication of the IEEE Signal Processing Society 23, 4 (04 2014), 1451–1462. https://doi.org/10.1109/TIP.2014.2302892
[74] Jiaming Shen, Zeqiu Wu, Dongming Lei, Jingbo Shang, Xiang Ren, and Jiawei Han. 2017. SetExpan: Corpus-Based Set Expansion via Context

Feature Selection and Rank Ensemble. In Machine Learning and Knowledge Discovery in Databases, Michelangelo Ceci, Jaakko Hollmén, Ljupčo
Todorovski, Celine Vens, and Sašo Džeroski (Eds.). Springer International Publishing, Cham, 288–304.

[75] Amit Singhal. 2001. Modern Information Retrieval: A Brief Overview. IEEE Data Eng. Bull. 24, 4 (2001), 35–43. http://dblp.uni-trier.de/db/journals/
debu/debu24.html#Singhal01

Manuscript submitted to ACM

https://doi.org/10.1109/FSCS.1990.89553
https://doi.org/10.1109/ICDE53745.2022.00057
https://doi.org/10.1109/ICDE53745.2022.00057
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1103/physrevlett.92.118701
https://doi.org/10.1103/physrevlett.92.118701
https://doi.org/10.1145/1014052.1014135
https://doi.org/10.1145/1014052.1014135
https://doi.org/10.1145/2623330.2623732
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
http://www.cs.iit.edu/~ml/pdfs/sen-aimag08.pdf
https://doi.org/10.1109/TIP.2014.2302892
http://dblp.uni-trier.de/db/journals/debu/debu24.html#Singhal01
http://dblp.uni-trier.de/db/journals/debu/debu24.html#Singhal01

Improving Node Classification Accuracy of GNN through Input and Output Intervention 27

[76] Tasuku Soma and Yuichi Yoshida. 2019. Spectral sparsification of hypergraphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 2570–2581.

[77] Yunsheng Song, Jing Zhang, and Chao Zhang. 2022. A survey of large-scale graph-based semi-supervised classification algorithms. International
Journal of Cognitive Computing in Engineering 3 (2022), 188–198. https://doi.org/10.1016/j.ijcce.2022.10.002

[78] Zixing Song, Xiangli Yang, Zenglin Xu, and Irwin King. 2022. Graph-Based Semi-Supervised Learning: A Comprehensive Review. IEEE Transactions
on Neural Networks and Learning Systems PP (2022), 1–21. https://doi.org/10.1109/TNNLS.2022.3155478

[79] Martin Szummer and Tommi Jaakkola. 2001. Partially labeled classification with Markov random walks, T. Dietterich, S. Becker, and Z. Ghahra-
mani (Eds.). Advances in Neural Information Processing Systems 14, 945–952. https://proceedings.neurips.cc/paper_files/paper/2001/file/
a82d922b133be19c1171534e6594f754-Paper.pdf

[80] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. LINE: Large-Scale Information Network Embedding. In
Proceedings of the 24th International Conference on World Wide Web (Florence, Italy) (WWW ’15). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE, 1067–1077. https://doi.org/10.1145/2736277.2741093

[81] Giorgio Valentini, Elena Casiraghi, Luca Cappelletti, Vida Ravanmehr, Tommaso Fontana, Justin T. Reese, and Peter N. Robinson. 2021. Het-
node2vec: second order random walk sampling for heterogeneous multigraphs embedding. CoRR abs/2101.01425 (2021). arXiv:2101.01425
https://arxiv.org/abs/2101.01425

[82] Jesper E Van Engelen and Holger H Hoos. 2020. A survey on semi-supervised learning. Machine Learning 109, 2 (2020), 373–440.
[83] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. 2019. Deep Graph Infomax. ICLR (Poster) 2, 3

(2019), 4.
[84] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2017. Graph Attention Networks. 6th

International Conference on Learning Representations (2017).
[85] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia. 2020. Microsoft academic graph: When experts

are not enough. Quantitative Science Studies 1, 1 (2020), 396–413.
[86] Richard C. Wang and William W. Cohen. 2008. Iterative Set Expansion of Named Entities Using the Web. In 2008 Eighth IEEE International

Conference on Data Mining. 1091–1096. https://doi.org/10.1109/ICDM.2008.145
[87] Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. 2022. Powerful graph convolutional networks with adaptive propagation mechanism

for homophily and heterophily. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4210–4218.
[88] Yaojing Wang, Yuan Yao, Hanghang Tong, Feng Xu, and Jian Lu. 2018. A brief review of network embedding. Big Data Mining and Analytics 2, 1

(2018), 35–47.
[89] Zhen Wang, Long Zhang, Rong Wang, Feiping Nie, and Xuelong Li. 2023. Semi-Supervised Learning via Bipartite Graph Construction With

Adaptive Neighbors. IEEE Transactions on Knowledge and Data Engineering 35, 5 (2023), 5257–5268. https://doi.org/10.1109/TKDE.2022.3151315
[90] Xiao-Ming Wu, Zhenguo Li, Anthony Man-Cho So, John Wright, and Shih-Fu Chang. 2012. Learning with Partially Absorbing Random Walks.

Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, 3077–3085.
[91] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2021. A comprehensive survey on graph neural

networks. IEEE Transactions on Neural Networks and Learning Systems 32, 1 (Jan. 2021), 4–24. https://doi.org/10.1109/TNNLS.2020.2978386
[92] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie Kong. 2019. Random walks: A review of algorithms and applications.

IEEE Transactions on Emerging Topics in Computational Intelligence 4, 2 (2019), 95–107.
[93] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks? 7th International Conference on

Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. https://openreview.net/forum?id=ryGs6iA5Km
[94] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In International Conference on Machine Learning. PMLR, 5453–5462.
[95] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha Talukdar. 2019. Hypergcn: A new method for

training graph convolutional networks on hypergraphs. Proceedings of the 33rd International Conference on Neural Information Processing Systems
32, Article 135 (2019), 1509-1520 pages.

[96] Han Yang, Xiao Yan, Xinyan Dai, Yongqiang Chen, and James Cheng. 2021. Self-Enhanced GNN: Improving Graph Neural Networks Using Model
Outputs. In International Joint Conference on Neural Networks.

[97] Liang Yang, Mengzhe Li, Liyang Liu, bingxin niu, Chuan Wang, Xiaochun Cao, and Yuanfang Guo. 2021. Diverse Message Passing for Attribute
with Heterophily, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.). Advances in Neural Information Processing
Systems 34, 4751–4763. https://proceedings.neurips.cc/paper_files/paper/2021/file/253614bbac999b38b5b60cae531c4969-Paper.pdf

[98] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph Convolutional Networks for Text Classification. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence (Honolulu, Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19). AAAI Press, Article 905, 8 pages. https:
//doi.org/10.1609/aaai.v33i01.33017370

[99] Kun Zhan and Chaoxi Niu. 2021. Mutual Teaching for Graph Convolutional Networks. Future Generation Computer Systems 115, 2 (2021), 837–843.
https://doi.org/10.1016/j.future.2020.10.016

[100] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and TH Hubert Chan. 2017. Re-revisiting learning on hypergraphs: confidence interval and
subgradient method. In International Conference on Machine Learning. PMLR, 4026–4034.

Manuscript submitted to ACM

https://doi.org/10.1016/j.ijcce.2022.10.002
https://doi.org/10.1109/TNNLS.2022.3155478
https://proceedings.neurips.cc/paper_files/paper/2001/file/a82d922b133be19c1171534e6594f754-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a82d922b133be19c1171534e6594f754-Paper.pdf
https://doi.org/10.1145/2736277.2741093
https://arxiv.org/abs/2101.01425
https://arxiv.org/abs/2101.01425
https://doi.org/10.1109/ICDM.2008.145
https://doi.org/10.1109/TKDE.2022.3151315
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper_files/paper/2021/file/253614bbac999b38b5b60cae531c4969-Paper.pdf
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1016/j.future.2020.10.016

28 Chowdhury et. al.

[101] Kai Zhang, James T Kwok, and Bahram Parvin. 2009. Prototype vector machine for large scale semi-supervised learning. In Proceedings of the 26th
Annual International Conference on Machine Learning. 1233–1240.

[102] Ruochi Zhang, Yuesong Zou, and Jian Ma. 2020. Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. https://openreview.net/forum?id=ryeHuJBtPH

[103] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S. Yu. 2022. Graph Neural Networks for Graphs with Heterophily: A Survey.
ArXiv abs/2202.07082 (2022). https://api.semanticscholar.org/CorpusID:246863422

[104] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable graph embedding for asymmetric proximity. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 31.

[105] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf. 2003. Learning with Local and Global Consistency.
In Proceedings of the 16th International Conference on Neural Information Processing Systems (Whistler, British Columbia, Canada) (NIPS’03). MIT
Press, Cambridge, MA, USA, 321–328.

[106] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with hypergraphs: Clustering, classification, and embedding. Advances
in neural information processing systems 19 (2006), 1601–1608. https://doi.org/10.7551/mitpress/7503.003.0205

[107] Xueyuan Zhou and Mikhail Belkin. 2011. Semi-supervised learning by higher order regularization. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 892–900.

[108] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra. 2021. Graph neural networks with heterophily.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 11168–11176.

[109] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. 2020. Beyond homophily in graph neural networks:
Current limitations and effective designs. Proceedings of the 34th International Conference on Neural Information Processing Systems 33, Article 653
(2020), 12 pages.

[110] Xiaojin Zhu. 2005. Semi-Supervised Learning Literature Survey (accessed 07-08-2023). Technical Report 1530. Computer Sciences, University of
Wisconsin-Madison.

[111] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. 2003. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. Proceedings
of the Twentieth International Conference on International Conference on Machine Learning 8 (2003), 912–919.

A APPENDIX

A.1 Dataset table

The details about all the datasets are given in Table 8.

A.2 Absorption probability in ParWalk

Given a graph𝐺 (𝑉 , 𝐸), a random walk can be defined as a markov chain over𝑉 . The transition probability of a standard
random walk jumping to a node 𝑣 from a node 𝑢 can be given as:

𝑝𝑢𝑣 =
𝐴(𝑢, 𝑣)
𝑑𝑢

Thus, the transition probability matrix of a standard random walk can be given as:

𝑃 = 𝐷−1𝐴

where 𝐷 is the degree matrix 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, ..., 𝑑 |𝑉 |), 𝑑𝑖 be the degree of node 𝑣𝑖 and 𝐴 is the adjacency matrix of
graph 𝐺 . PaRWalk is a variant of the standard random walk. The transition probability of a PaRWalk can be given
as [90]:

𝑝𝑎𝑟𝑢𝑣 =


𝛼𝜆𝑢

𝛼𝜆𝑢+𝑑𝑢 𝑢 = 𝑣

𝐴(𝑢,𝑣)
𝛼𝜆𝑢+𝑑𝑢 𝑢 ≠ 𝑣

The absorption probability of a PaRWalk can be given as:

𝑎𝑢𝑣 =


𝛼𝜆𝑢

𝛼𝜆𝑢+𝑑𝑢 +
∑
𝑥≠𝑢

𝐴(𝑢,𝑥)
𝛼𝜆𝑢+𝑑𝑢 𝑎𝑥𝑢 𝑢 = 𝑣∑

𝑘≠𝑢
𝐴(𝑢,𝑣)
𝛼𝜆𝑢+𝑑𝑢 𝑎𝑘𝑣 𝑢 ≠ 𝑣

Manuscript submitted to ACM

https://openreview.net/forum?id=ryeHuJBtPH
https://api.semanticscholar.org/CorpusID:246863422
https://doi.org/10.7551/mitpress/7503.003.0205

Improving Node Classification Accuracy of GNN through Input and Output Intervention 29

Network nodes Edges Features Classes Distribution of Nodes in Each Class
Citeseer [71] 3327 4732 3703 6 0: 7%, 1: 18%, 2: 20%, 3: 21%, 4: 18%, 5: 16%
Cora [71] 2708 5429 1433 7 0: 13%, 1: 8%, 2: 15%, 3: 30%, 4: 16%, 5: 11%, 6: 6%
Cora-ml [10] 2995 8416 2879 7 0: 12%, 1: 13%, 2: 15%, 3: 15%, 4: 29%, 5: 6%, 6: 9%
Pubmed [71] 19717 44338 500 3 0: 20%, 1: 40%, 2: 40%
Amazon Photo [72] 7487 119043 745 8 0: 5%, 1: 23%, 2: 9%, 3: 12%, 4: 12%, 5: 10%, 6: 26%, 7: 4%
Amazon Computers [72] 13381 245778 767 10 0: 3%, 1: 16%, 2: 11%, 3: 4%, 4: 39%, 5: 2%, 6: 4%, 7: 6%, 8: 16%, 9: 2%
ogbn-arxiv [85] 169,343 1,166,243 128 40 0: 0.33%, 1: 0.40%, 2: 2.85%, 3: 1.22%, 4: 3.46%, 5: 2.92%, 6: 0.95%, 7: 0.34%, 8: 3.68%, 9: 1.66%, 10: 4.64%, 11: 0.44%, 12:

0.017%, 13: 1.39%, 14: 0.35%, 15: 0.23%, 16: 16%, 17: 0.30%, 18: 0.44%, 19: 1.69%, 20: 1.22%, 21: 0.23%, 22: 1.12%, 23:
1.67%, 24: 13%, 25: 0.74%, 26: 2.71%, 27: 2.83%, 28: 12.64%, 29: 0.24%, 30: 6.97%, 31: 1.67%, 32: 0.24%, 33: 0.75%, 34:
4.64%, 35: 0.07%, 36: 2.08%, 37: 1.39%, 38: 0.88%, 39: 1.19% Can be found in Appendix

ogbn-products [85] 2,449,029 61,859,140 100 47 0: 4.67%, 1: 4.48%, 2: 4.74%, 3: 6.17%, 4: 27.31%, 5: 1.66%, 6: 6.48%, 7: 7.03%, 8: 4.52%, 9: 2.75%, 10: 2.14%, 11: 1.34%, 12:
5.39%, 13: 4.15%, 14: 0.13%, 15: 1.1%, 16: 3.41%, 17: 1.73%, 18: 2.0%, 19: 0.71%, 20: 0.92%, 21: 3.3%, 22: 0.04%, 23: 0.15%,
24: 1.85%, 25: 0.12%, 26: 0.02%, 27: 0.01%, 28: 0.08%, 29: 0.06%, 30: 0.01%, 31: 0.02%, 32: 0.02%, 33: 0.0%, 34: 0.01%, 35:
0.0%, 36: 0.03%, 37: 0.02%, 38: 0.0%, 39: 0.0%, 40: 0.0%, 41: 0.0%, 42: 1.33%, 43: 0.06%, 44: 0.02%, 45: 0.0%, 46: 0.0%

ogbn-mag [85] 1,939,743 21,111,007 128 349 0: 0.3%, 1: 4.2%, 2: 0.03%, 3: 0.06%, 4: 0.03%, 5: 0.96%, 6: 0.15%, 7: 0.6%, 8: 0.03%, 9: 2.02%, 10: 0.04%, 11: 0.1%, 12:
0.19%, 13: 0.3%, 14: 0.07%, 15: 0.03%, 16: 0.12%, 17: 0.12%, 18: 0.52%, 19: 0.11%, 20: 0.18%, 21: 0.12%, 22: 0.34%, 23:
0.16%, 24: 0.04%, 25: 0.22%, 26: 0.03%, 27: 0.05%, 28: 0.3%, 29: 0.17%, 30: 0.03%, 31: 0.42%, 32: 0.12%, 33: 0.67%, 34:
0.35%, 35: 1.32%, 36: 0.03%, 37: 0.29%, 38: 0.62%, 39: 0.03%, 40: 0.04%, 41: 0.2%, 42: 0.11%, 43: 0.17%, 44: 0.16%, 45:
1.04%, 46: 0.07%, 47: 0.04%, 48: 0.76%, 49: 0.09%, 50: 0.11%, 51: 0.56%, 52: 0.88%, 53: 0.06%, 54: 0.12%, 55: 0.05%, 56:
0.1%, 57: 0.1%, 58: 0.24%, 59: 0.08%, 60: 0.03%, 61: 0.14%, 62: 0.06%, 63: 0.07%, 64: 0.1%, 65: 0.05%, 66: 0.11%, 67: 0.04%,
68: 0.26%, 69: 0.07%, 70: 0.2%, 71: 0.06%, 72: 0.7%, 73: 0.03%, 74: 0.04%, 75: 0.36%, 76: 0.07%, 77: 0.67%, 78: 0.2%, 79:
0.09%, 80: 0.16%, 81: 0.15%, 82: 0.19%, 83: 0.45%, 84: 1.36%, 85: 0.3%, 86: 0.33%, 87: 0.05%, 88: 0.03%, 89: 0.26%, 90:
0.09%, 91: 0.12%, 92: 0.2%, 93: 0.1%, 94: 0.06%, 95: 0.2%, 96: 0.42%, 97: 0.16%, 98: 0.04%, 99: 0.29%, 100: 0.22%, 101:
0.09%, 102: 0.05%, 103: 0.11%, 104: 0.05%, 105: 0.16%, 106: 0.64%, 107: 0.2%, 108: 0.13%, 109: 0.21%, 110: 0.36%, 111:
0.04%, 112: 1.24%, 113: 0.24%, 114: 0.28%, 115: 0.74%, 116: 0.46%, 117: 0.06%, 118: 0.09%, 119: 0.07%, 120: 0.05%, 121:
0.05%, 122: 0.26%, 123: 0.36%, 124: 0.03%, 125: 0.03%, 126: 0.44%, 127: 0.12%, 128: 0.27%, 129: 0.09%, 130: 0.24%, 131:
0.15%, 132: 0.63%, 133: 0.04%, 134: 4.17%, 135: 0.08%, 136: 0.21%, 137: 0.05%, 138: 0.36%, 139: 0.41%, 140: 0.33%, 141:
0.46%, 142: 0.06%, 143: 0.03%, 144: 0.78%, 145: 0.38%, 146: 0.38%, 147: 0.07%, 148: 0.12%, 149: 0.15%, 150: 0.03%, 151:
0.03%, 152: 0.08%, 153: 0.04%, 154: 0.51%, 155: 0.09%, 156: 0.12%, 157: 0.1%, 158: 0.03%, 159: 0.12%, 160: 0.37%, 161:
0.23%, 162: 0.08%, 163: 0.13%, 164: 0.09%, 165: 0.66%, 166: 0.39%, 167: 0.29%, 168: 0.09%, 169: 0.2%, 170: 0.74%, 171:
0.22%, 172: 0.37%, 173: 0.04%, 174: 0.03%, 175: 0.03%, 176: 0.03%, 177: 0.08%, 178: 0.1%, 179: 0.06%, 180: 0.32%, 181:
0.37%, 182: 0.23%, 183: 0.28%, 184: 0.19%, 185: 0.23%, 186: 1.05%, 187: 0.07%, 188: 0.28%, 189: 2.11%, 190: 0.09%, 191:
0.21%, 192: 0.36%, 193: 1.7%, 194: 0.05%, 195: 0.03%, 196: 0.16%, 197: 0.11%, 198: 0.11%, 199: 0.15%, 200: 0.2%, 201:
0.2%, 202: 0.08%, 203: 0.04%, 204: 0.23%, 205: 0.13%, 206: 0.03%, 207: 0.24%, 208: 0.05%, 209: 0.07%, 210: 0.05%, 211:
0.11%, 212: 0.03%, 213: 0.05%, 214: 0.89%, 215: 0.03%, 216: 0.03%, 217: 0.06%, 218: 0.18%, 219: 0.88%, 220: 0.06%, 221:
0.82%, 222: 0.06%, 223: 0.24%, 224: 0.12%, 225: 0.04%, 226: 0.26%, 227: 0.05%, 228: 0.2%, 229: 0.2%, 230: 0.04%, 231:
0.03%, 232: 0.64%, 233: 0.6%, 234: 0.1%, 235: 0.23%, 236: 1.17%, 237: 0.08%, 238: 0.47%, 239: 0.05%, 240: 0.22%, 241:
0.09%, 242: 0.06%, 243: 0.16%, 244: 0.07%, 245: 0.27%, 246: 0.05%, 247: 0.5%, 248: 0.27%, 249: 0.51%, 250: 0.13%, 251:
0.13%, 252: 0.24%, 253: 0.28%, 254: 0.06%, 255: 0.09%, 256: 0.37%, 257: 0.09%, 258: 3.37%, 259: 0.12%, 260: 0.05%, 261:
0.17%, 262: 1.23%, 263: 0.03%, 264: 0.04%, 265: 0.37%, 266: 1.53%, 267: 0.22%, 268: 0.09%, 269: 0.03%, 270: 0.04%, 271:
0.05%, 272: 0.06%, 273: 0.08%, 274: 0.04%, 275: 0.04%, 276: 0.28%, 277: 1.02%, 278: 0.19%, 279: 0.08%, 280: 0.09%, 281:
2.53%, 282: 0.03%, 283: 3.32%, 284: 0.07%, 285: 0.05%, 286: 0.04%, 287: 0.04%, 288: 0.04%, 289: 0.79%, 290: 0.11%, 291:
0.56%, 292: 0.07%, 293: 0.24%, 294: 0.21%, 295: 0.13%, 296: 0.3%, 297: 0.1%, 298: 0.03%, 299: 0.15%, 300: 3.74%, 301:
0.04%, 302: 0.45%, 303: 0.05%, 304: 0.86%, 305: 0.15%, 306: 0.09%, 307: 0.09%, 308: 0.13%, 309: 0.11%, 310: 0.06%, 311:
2.29%, 312: 0.43%, 313: 0.07%, 314: 0.21%, 315: 0.13%, 316: 0.03%, 317: 0.09%, 318: 0.14%, 319: 0.05%, 320: 0.04%, 321:
0.03%, 322: 0.26%, 323: 0.08%, 324: 0.27%, 325: 0.04%, 326: 0.04%, 327: 0.03%, 328: 0.03%, 329: 0.03%, 330: 0.04%, 331:
0.03%, 332: 0.04%, 333: 0.09%, 334: 0.04%, 335: 0.03%, 336: 0.05%, 337: 0.04%, 338: 0.06%, 339: 0.04%, 340: 0.05%, 341:
0.03%, 342: 0.06%, 343: 0.04%, 344: 0.03%, 345: 0.04%, 346: 0.04%, 347: 0.06%, 348: 0.04%

Table 8. The test suite of real-world networks.

In matrix form, the transition probability matrix of PaRWalk can be written as:

A = (Γ + 𝛼Λ)−1

where, Γ be the graph laplacian defined as Γ = 𝐷 −𝐴, 𝛼 > 0 is a scalar value, Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ..., 𝜆 |𝑉 |) is known to be as
regularizer, 𝜆𝑖 ≥ 0 be some arbitrary value.

A.3 Detail time complexity analysis of Algorithm 1

Time requirement of Algorithm 1: Total time taken is time taken by using (i) + for each class, time taken using
(ii) and (iii). Therefore, for |𝐿 | number of class labels, total time taken = 𝑂 (|𝑉 |2.373) + |𝐿 | (𝑂 (𝑡𝛿𝑚𝑗) +𝑂 (|𝐶𝑎𝑣𝑔 |𝑚)) =
𝑂 (|𝑉 |2.373) + (𝑂 (|𝐿 |𝑡𝛿𝑚𝑗) + 𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) = 𝑂 (|𝑉 |2.373) + (𝑂 (|𝐿 | |𝐼𝑐 |𝑏𝜂∑𝑘

𝑐=1 |𝐼𝑐 |
𝛿𝑚𝑗) + 𝑂 (|𝐿𝐶𝑎𝑣𝑔 |𝑚)), since, 𝑡 =

|𝐼𝑐 |𝑏𝜂∑𝑘
𝑐=1 |𝐼𝑐 |

(from discussion in section 3.1) = 𝑂 (|𝑉 |2.373) + (𝑂 (|𝐿 | |𝐼𝑐 |𝑏𝜂2 |𝐿 | 𝛿𝑚𝑗) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) as,
∑𝑘
𝑐=1 |𝐼𝑐 | = 2𝐿, since we choose

two nodes per class. = 𝑂 (|𝑉 |2.373) + (𝑂 (|𝐼𝑐 |𝑏𝜂2 𝛿𝑚𝑗) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) = 𝑂 (|𝑉 |2.373) + (𝑂 (2𝑏𝜂2 𝛿𝑚𝑗) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) =
𝑂 (|𝑉 |2.373) + (𝑂 (𝑏𝜂𝛿𝑚𝑗) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) = 𝑂 (|𝑉 |2.373) + (𝑂 (|𝑉 |𝑏𝛿𝑚𝑗

(𝑑𝑎𝑣𝑔)𝜏) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)) , 𝑑𝑎𝑣𝑔 is the average degree

of the graph𝐺 and 𝜏 is the number of layers of the GNN. =𝑂 (|𝑉 |2.373) + (𝑂 (|𝑉 |𝑚𝑗

(𝑑𝑎𝑣𝑔)𝜏) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)), for 𝑏 = 3, 𝛿 = 2

are constant. = 𝑂 (|𝑉 |2.373) + (𝑂 (|𝑉 |𝑚𝑗

(𝑑𝑎𝑣𝑔)𝜏) +𝑂 (|𝐿 | |𝐶𝑎𝑣𝑔 |𝑚)), for 𝑏 = 3, 𝛿 = 2 are constant.

Manuscript submitted to ACM

30 Chowdhury et. al.

A.4 Detail time complexity analysis of Algorithm 3

Time requirement of Algorithm 3: line 2 needs O(|𝑉 |) time + Looking at line 3 − 20, for each class, line 4 and
5 both needs O(𝑡) time + line 6 − 19 requires O(𝑡 (|𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔)) time (considering average degree as 𝑑𝑎𝑣𝑔 and the
average number of high confidence nodes as |𝐻𝑎𝑣𝑔 |). So, total time required is (using PaRWalk as the random walk):
𝑂 (|𝑉 |2.373) +𝑂 (|𝑉 | + |𝐿 | (𝑡 + 𝑡 (|𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔))) = 𝑂 (|𝑉 |2.373) + 𝑂 (|𝑉 | + |𝐿 |𝑡 (1 + |𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔)). Since we have taken
𝑡 =

|𝑉 |
|𝐿 | , thus, time complexity of Algorithm 3 will be: 𝑂 (|𝑉 |2.373) + 𝑂 (|𝑉 | + |𝐿 | |𝑉 ||𝐿 | (1 + |𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔)) = 𝑂 (|𝑉 |2.373) +

𝑂 (|𝑉 | + |𝑉 | (1 + |𝐻𝑎𝑣𝑔 | + 𝑑𝑎𝑣𝑔)).

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Some preliminaries
	2.1 Formal definitions
	2.2 Training set expansion

	3 Proposed Framework
	3.1 Input level intervention
	3.2 Output level intervention
	3.3 Rationale and Discussion

	4 Experimental setup
	4.1 Datasets
	4.2 Baseline methods
	4.3 Hyperparameter settings
	4.4 Time complexity analysis

	5 Empirical results
	5.1 Results using PaRWalk
	5.2 Results using DeepWalk
	5.3 Comparison with training set expansion baselines
	5.4 Significance test on output level intervention
	5.5 Compute time on standard datasets
	5.6 Effects on increasing the number of hidden layers
	5.7 Sensitivity analysis

	6 Related work
	7 Discussions and future work
	References
	A Appendix
	A.1 Dataset table
	A.2 Absorption probability in ParWalk
	A.3 Detail time complexity analysis of Algorithm 1
	A.4 Detail time complexity analysis of Algorithm 3

