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Abstract: The rise of machine learning-driven decision-making has sparked a growing emphasis

on algorithmic fairness. Within the realm of clustering, the notion of balance is utilized as a criterion

for attaining fairness, which characterizes a clustering mechanism as fair when the resulting clus-

ters maintain a consistent proportion of observations representing individuals from distinct groups

delineated by protected attributes. Building on this idea, the literature has rapidly incorporated a

myriad of extensions, devising fair versions of the existing frequentist clustering algorithms, e.g.,

k-means, k-medioids, etc., that aim at minimizing specific loss functions. These approaches lack

uncertainty quantification associated with the optimal clustering configuration and only provide

clustering boundaries without quantifying the probabilities associated with each observation belong-

ing to the different clusters. In this article, we intend to offer a novel probabilistic formulation of

the fair clustering problem that facilitates valid uncertainty quantification even under mild model

misspecifications, without incurring substantial computational overhead. Mixture model-based fair

clustering frameworks facilitate automatic uncertainty quantification, but tend to showcase brittleness

under model misspecification and involve significant computational challenges. To circumnavigate

such issues, we propose a generalized Bayesian fair clustering framework that inherently enjoys

decision-theoretic interpretation. Moreover, we devise efficient computational algorithms that cru-

cially leverage techniques from the existing literature on optimal transport and clustering based on

loss functions. The gain from the proposed technology is showcased via numerical experiments and

real data examples.

Keywords: algorithmic fairness; balance; generalized Bayes; minimum cost flow; optimal transport

1. Introduction

Fairness in algorithmic decision-making aims to mitigate discrimination involving the
unfavorable treatment of individuals based on their membership to specific demographic
sub-groups identified by protected attributes. These protected attributes may encompass
factors such as gender, race, marital status, etc., depending on the specific context, and
are often delineated by local, national, or international legal frameworks. For instance, in
the context of bank loan approvals, the protected attribute marital status might encompass
labels such as married, divorced, and unmarried applicants. Perhaps unsurprisingly,
early research in fairness on machine learning exclusively focused on supervised learning
problems. However, there was a genuine need to understand fairness in unsupervised
learning settings, especially in clustering problems.

In a seminal work, Chierichetti et al. [1] introduced the concept of balance as a cri-
terion for achieving fairness in clustering, defining clustering mechanisms as fair when
resulting clusters maintain a common ratio of observations representing individuals from
different groups identified by protected attributes. This notion was explored in both
the k-center and the k-median problems, particularly in the two-color case. Subsequent
articles extended this framework to the more complex multi-color cases, addressing the
situation where the protected attributes have multiple labels [2]. Esmaeili et al. [3] con-
sidered the case with imperfect knowledge of group membership through probabilistic
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assignments. Bera et al. [4] expanded the scope by enabling users to specify parameters
controlling extent of balance in the clusters, considering the general Lp objective for the
clustering and scenarios where individuals could belong to multiple protected groups.
Fairness mechanisms have been explored in different clustering frameworks, such as spec-
tral clustering [5], correlation clustering [6], and hierarchical clustering [7]. Additionally,
researchers have investigated the notions of individual fairness [8–10] and proportional
fairness [11] in the context of clustering. Fairness in clustering has also been studied in
combination with other critical aspects of modern machine learning, including privacy [12]
and robustness [13]. For a comprehensive review, interested readers are directed to the
website on https://www.fairclustering.com/ (accessed on 30 November 2023).

While the follow-up works [2,3,12,14] greatly increased the scope of fair clustering
from various aspects, uncertainty quantification associated with the optimal clustering
configuration was largely illusive until recently. Chakraborty et al. [15], complementing
the existing literature on fair clustering which is almost exclusively based on optimizing
appropriate objective functions, took a fully Bayesian approach to tackle the problem of
clustering under balance constraints to provide valid uncertainty quantification, developed
a concrete notion of optimal recovery in this problem, and devised a scheme for principled
performance evaluation of algorithms. In this article, we propose an alternative generalized
Bayesian fair clustering framework, embedding common clustering loss functions at the
heart of the likelihood formulation. Generalized Bayesian methodologies, as exemplified in
various works [16,17], are gaining prominence due to their ability to alleviate the necessity
of explicitly specifying the complete data generative mechanism. This characteristic allows
us to circumnavigate the challenges related to the lack of robustness of fully Bayesian
clustering approaches. Moreover, a principled selection of the temperature parameter in the
generalized likelihood guarantees its adherence to valid decision-theoretic justifications.
Finally, ardent care is exercised to devise efficient computational algorithms to carry out
posterior inference, crucially leveraging techniques from the existing literature on clustering
based on loss functions.

Prior to presenting the proposed methodology, we provide a concise overview of perti-
nent concepts in generalized Bayesian inference and fair clustering, laying the groundwork
for subsequent discussions.

1.1. Generalized Bayesian Inference through Gibbs Posterior

In Bayesian inference, the need for likelihood specification introduces a notable ob-
stacle in many practical applications, primarily stemming from apprehensions about the
potential misspecification of the statistical model [18–20]. The non-parametric Bayesian
approaches [21,22] enhance the adaptability of such methodologies, bolstering the robust-
ness of the statistical inferences. Nevertheless, evaluating the trade-off between the added
complexity in adopting a fully non-parametric approach and the acquired robustness ne-
cessitates meticulous consideration tailored to specific applications. Generalized Bayesian
inference [16,23–25] offers an alternative model-free approach to circumvent the risk of
model misspecification bias as well as excessive complexity in problem formulation. We
proceed by recording the definition of generalized Bayesian posteriors, followed by a brief
overview of notable contributions within this domain.

To that end, let u = (u1, . . . , uN)
T be the observed data, θ ∈ Θ be the parameter of

interest, and π(θ) be the prior on θ. Then, the generalized Bayesian posterior is defined as

π(θ | λ, u) ∝ π(θ) exp{−λL(θ | u)}, (1)

where λ > 0 is a temperature parameter, and L(θ | u) > 0 is a loss function of choice. The
posterior in (1) is often referred to as the Gibbs posterior. Standard Bayesian inference is
recovered from (1), when the loss function λL(θ | u) is a negative log-likelihood. While
Gibbs posteriors have found applications in diverse contexts [16,25–29], it is only in recent
times that their role in offering a rational update of beliefs, thus qualifying as genuine
posterior distributions, has been established [30]. Further, Syring and Martin [31] provided
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sufficient conditions for establishing concentration rates for Gibbs posteriors under a sub-
exponential type loss function. Martin and Syring [17], Holmes and Walker [32] presented
significant developments in methodologies for selecting the temperature parameter λ.
Owing to such increasing support for generalized Bayesian inference, we propose a Gibbs
posterior-based framework for uncertainty quantification in fair clustering. We addition-
ally introduce computationally efficient algorithms for point estimation and associated
uncertainty quantification.

1.2. Fairness in Clustering

We shall now formally introduce the notion of balance in the context of fair clustering.
For a positive integer t, denote [t] := {1, . . . , t}. Suppose we observe data {(xi, ai)}

N
i=1,

where xi denotes the d-variate observation for the i-th data unit, and ai the label of the

protected attribute. For each a, let {x
(a)
i }Na

i=1 denote the observations corresponding to the

a-th level of the protected attribute, where Na = ∑
N
i=1 1(ai = a) and ∑

r
a=1 Na = N. The goal

of fair clustering is to assign the data points {(xi, ai)}
N
i=1 into clusters C = (C1, . . . , CK),

⋃K
k=1 Ck = [N], respecting the notion of balance [1].

Definition 1 ([1]). Given {(xi, ai) ∈ X × [2], i ∈ [N]} such that ai = a for i = ∑
a−1
j=1 Nj +

1, . . . , ∑
a
j=1 Nj where a ∈ [2] and N0 = 0, the balance in Ck is defined as

Balance(Ck) = min
1fj1<j2fr

min

{

|Ckj1 |

|Ckj2 |
,
|Ckj2 |

|Ckj1 |

}

where |Ckj| denotes the number of observations in Ck with a = j. The overall balance of the
clustering is Balance(C) = mink=1,...,K Balance(Ck). The higher this measure is for a clustering
configuration, the fairer the clustering is.

Given the aforementioned definition of balance, Chierichetti et al. [1] introduced the
notion of fairlets as minimal fair sets that approximately maintain the selected clustering
objective. The authors illustrated that addressing any fair clustering problem involves
initially obtaining a fairlet decomposition of the data through the solution of a minimum cost
flow problem. Subsequently, classical clustering algorithms, such as k-means or k-center, can
be employed for further processing. As we eluded to earlier, the follow-up literature in fair
clustering [2,3,12,14] involves devising fair versions of the existing frequentist clustering
algorithms, e.g., k-means, k-medioids, etc., that aim at minimizing specific loss functions.
These approaches lack the quantification of uncertainty linked to the optimal fair clustering
configuration, i.e., these approaches only provide clustering boundaries but do not quantify
the probabilities of each of the observations belonging to the different clusters. While
model-based clustering approaches are specifically designed to answer such questions,
they routinely fall prey to even minor model misspecification [19,20]. The generalized
Bayesian approach provides a convenient middle ground that not only is immune to
such minor model misspecifications, but also provides valid uncertainty quantification
associated with the clustering. This article introduces a generalized Bayesian fair clustering
framework with inherent uncertainty quantification and presents efficient computational
algorithms for posterior inference, leveraging techniques from the clustering literature
based on loss functions.

The rest of the article is arranged as follows. In Section 2, we introduce the proposed
generalized Bayesian fair clustering procedure. Section 3 presents an efficient MCEM
and a MCMC scheme to carry out posterior analysis under the proposed framework.
Sections 4 and 5 provide detailed numerical experiments and real data examples to delin-
eate the key gain from the proposed methodology over competing methods. Finally, we
conclude with a discussion.
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2. Methodology

2.1. Preliminaries

Chierichetti et al. [1] introduced the notion of fairlets, minimal sets that adhere to fair
representation while approximately preserving a clustering objective. Given the observed
data {(xi, ai) ∈ X × [2], i ∈ [N]}, fair clustering via fairlets [1] involves first decomposing
data into a set of m fairlets, and calculate the m fairlet centers. Let U (¢ Xm) denote the
class of all such “m fairlet centers”. Let L f : U → R+ denote loss function utilized for the
fairlet decomposition. The optimal fairlet decomposition u⋆ ∈ U is then expressed as

u⋆ = arg min
u∈U

L f (u). (2)

This optimization problem in (2) is often recognized as the minimum cost flow problem [33].
Prior to progressing further, it is imperative to conduct a comprehensive examination

of the constituents comprising the loss function L f . To that end, suppose the two labels of
the protected attribute is represented in a 1 : t ratio in the observed data, i.e., t × N1 = N2.
We wish to find a perfectly balanced clustering of the observed data, i.e., the two labels
of the protected attribute should be represented in a 1 : t ratio in each of the clusters.
The construction of an optimal (1, t)-fairlet decomposition of the observed data involves
solution of a constrained binary optimal transport problem. First, we define the N1 × N2

cost matrix
L = ((lik)) =

((

D(xi, xN1+k))), i ∈ [N1], j ∈ [N2],

where D(w, v) g 0 quantifies the discrepancy between w and v ∈ X . We introduce a
column sum vector c = t × 1N1

and a row sum vector r = 1N2
, where 1s is a vector of s 1 s.

Given the two fixed vectors r, c, we define a polytope of N1 × N2 binary matrices

U(r, c) := {B | B1N′ = r; BT1N′ = c},

with fixed margin r, c and solve the constrained binary optimal transport problem [34]

B′ = argminB∈U(r,c) ïB, Lð,

where ïB, Lð = tr(BTL). The matrix B′ = ((b′ik)) describes an optimal (1, t)-fairlet decom-
position. That is, if b′ik1

= . . . = b′ikt
= 1 for some i ∈ [N1] and 1 f k1 < . . . < kt f N2, then

(xi, xN1+k1
, . . . , xN1+kt

)T , i ∈ [N]1 defines the fairlets. The fairlet centers are represented as
u⋆ = (u⋆

1 , . . . , u⋆

m)
T, acquired through averaging observations within the respective fairlets.

Finally, we define a map

ξ : U(r, c) → U ,

that takes a binary matrix B with fixed margins (r, c), representing a fairlet decomposition
of {(xi, ai) ∈ X × [2], i ∈ [N]} to m-fairlet centers u ∈ U . Then, loss function L f is
represented as

L f (ξ(B)) = ïB, Lð, B ∈ U(r, c).

Efficient off-the-shelf algorithms for optimizing the loss function are routinely available.
Next, given the optimal fairlet decomposition of the observed data u⋆ = (u⋆1, . . . , u⋆m)

T ∈ U ,
Chierichetti et al. [1] proposed to invoke existing machinery for traditional clustering algo-
rithms, e.g., k-means, k-center, etc., to cluster the m-fairlet centers into K groups. We focus
on the flexible class of clustering mechanisms characterized by a factorized loss Lc(C | u⋆).
Throughout the article, we assume that the number of clusters K is fixed, e.g., it is known
or has been selected in an exploration phase. Let u⋆

(k) denote the center of the fairlet centers

{u⋆

i : i ∈ Ck} belonging to cluster Ck, for k ∈ [K]. Then, the clustering is characterized by
factorized loss takes the form
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Lc(C | u⋆) =
K

∑
k=1

∑
i∈Ck

D(u⋆

i , u⋆

(k)), C : |C| = K, (3)

where D(u⋆

i , u⋆

(k)) g 0 is a function of u⋆

i and u⋆

(k) which quantifies the discrepancy of the

i-th unit from the k-th cluster. The formulation in (3) encapsulates a large class of common
clustering costs. For example, suppose we assume that u⋆

(k) represents the arithmetic means

of the vectors u⋆

i , i ∈ CK for any k = 1, . . . , K. Then, the k-means loss function takes
the form

Lc(C | u⋆) =
K

∑
k=1

∑
i∈Ck

||u⋆

i − u⋆

(k)||
2
2.

Importantly, efficient off-the-shelf algorithms [35] for solution of the clustering problem in
(3) are routinely available. In summary, Chierichetti et al. [1] critically exploits the existing
tools in minimum cost flow problem (2) and factorized loss-based clustering (3) to obtain
the optimal fair clustering configuration. In a subsequent work, we shall integrate this
methodology within the generalized Bayesian inference framework to quantify uncertainty
associated with the optimal fair clustering configuration.

2.2. Generalized Bayesian Fair Clustering

Given the observed data {(xi, ai) ∈ X × [2], i ∈ [N]}, we recall that U (¢ Xm) denote
the class of all “m fairlet centers”. We placed a uniform prior on the space of all possible
fairlet decompositions U , i.e., we assume

π(u) =
1

|U |
, u ∈ U . (4)

Our framework is easily modified to consider more elaborate priors, but we focus on
the uniform case throughout the paper. Then, the generalized Bayes posterior for fairlet
decomposition takes the form

π(u | λ f , {(xi, ai)}
N
i=1) ∝

exp
{

−λ fL f (u)
}

∑u∈U exp
{

−λ fL f (u)
} , (5)

where λ f is a temperature parameter.
Given a fairlet decomposition u ∈ U , which may be different from the optimal

fairlet decomposition u⋆, a typical Bayesian model for clustering [36–38] is based on the
assumption that observations follows from

(ui | θk, i ∈ Ck)
ind
∼ π(ui | θk), k ∈ [K], (6)

where θk
iid
∼ π(θ) for k ∈ [K]. Under the above model and prior specification, the posterior

distributions of clustering configurations take the form

π(C | u) ∝ π(C)
K

∏
k=1

[

∫

Θ
∏
i∈Ck

π(ui | θ)π(θ)dθ

]

, (7)

where π(C) is the prior probability of C, π(u | θ) is the within-cluster likelihood, and π(θ)
is the prior distribution on the cluster-specific parameters. While Equation (7) serves as
the foundation for an extensive body of literature on Bayesian clustering, it gives rise to
significant practical challenges. The integral often does not admit a closed form expression,
introducing computational complexities. Furthermore, the posterior of clustering configura-
tions is highly sensitive to the precise specifications of data generating mechanism π(u | θ).
Such model-based clustering frameworks (6) are routinely criticized for various aspects.
Firstly, clustering may just serve as a convenient preprocessing step, and there might not
be distinct groups present in the data. Moreover, even if such groups exist, the distribution
of the data within each cluster is unlikely to precisely adhere to the chosen distribution
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π(u | θ). In terms of computational aspects, even when the data accurately conform
to the selected mixture distribution, we frequently encounter substantial computational
bottlenecks, especially in high dimensions [39–41].

To address these brittleness issues, Rigon et al. [29] implemented a Gibbs posterior
framework tailored for clustering, aiming to navigate around these challenges. Let the loss
function L(C | u) be as in (3). In this article, our attention is directed towards employing
uniform clustering priors of the form

π(C) =
1

S(n, K)
, C : |C| = K, (8)

where S(n, K) = 1/K! ∑
K
k=0(−1)K−kK!{(K− k)!k!}−1kn is the Stirling number of the second

kind. Prior (8) is uniform over partitions having K components. Although the framework
readily accommodates more intricate clustering priors, our emphasis in this paper remains
on the uniform case. The generalized Bayes posterior under a generalized Bayes product
partition model has the form

π(C | λc, u) ∝
K

∏
k=1

exp

{

−λc ∑
i∈Ck

D(ui, u(k))

}

, C : |C| = K,

where λc is a temperature parameter and {u(k), k ∈ [K]} are the K cluster centers. We have
now assembled all the necessary components to introduce a generalized Bayesian posterior
framework for the fair clustering problem.

In this article, we still focus on the uniform clustering prior in (8), and utilize the
uniform prior on the space of all possible fairlet decompositions U , introduced in (4). Then,
the generalized Bayes posterior for fair clustering takes the form

π(C, u | (λ f , λc), {(xi, ai)}
N
i=1) ∝

exp
{

−λ fL f (u)
}

∑u∈U exp
{

−λ fL f (u)
} × exp{−λcLc(C | u)}.

Under the assumption of factorised clustering loss, the posterior simplifies to

π(C, u | (λ f , λc), {(xi, ai)}
N
i=1) ∝

exp
{

−λ fL f (u)
}

∑u∈U exp
{

−λ fL f (u)
} ×

K

∏
k=1

exp

{

−λc ∑
i∈Ck

D(ui, u(k))

}

, (9)

such that C : |C| = K. We employ the methodology proposed in [32] for the selection of
the temperature parameters (λ f , λc).

A natural competitor for the proposed methodology based on the joint posterior in
(9) is the fair clustering with fairlets [1]. Subsequent to [1], many follow up articles pro-
posed suggestions for improved computational scalability of the fair clustering task [42,43].
However, from a methodological perspective, [1] still serves as the primary go-to method.

Proposition 1. Let π(C, u | (λ f , λc), {(xi, ai)}
N
i=1) denote the joint posterior of the fairlet decom-

positions of the observed data and clustering configurations in (9). Then, we denote the posterior
mode by

(CMAP, uMAP) = arg max
C,u

[

π(C, u | (λ f , λc), {(xi, ai)}
N
i=1)

]

.

The clustering configuration CMAP does not coincide with the optimal clustering obtained via fair
clustering via fairlets [1].

Proof. From Equation (9), we note that the quantities (CMAP, uMAP) are computed via solving
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arg max
C,u

[π(C, u | (λ f , λc), {(xi, ai)}
N
i=1)] = arg min

C,u

[λ fL f (u) + λc

K

∑
k=1

∑
i∈Ck

D(ui, u(k))],

where λ f g 0 and λc g 0. On the other hand, the optimal clustering obtained via
fair clustering via fairlets is calculated in a two-step process: first, the optimal fairlet
decomposition u⋆ ∈ U is obtained by

u⋆ = arg min
u∈U

L f (u),

and then, the optimal clustering is obtained by minimizing the factorized loss given u⋆,

CFCF = arg min
C

Lc(C | u⋆) = arg min
C

K

∑
k=1

∑
i∈Ck

D(u⋆

i , u⋆

(k)), C : |C| = K.

This completes the proof.

In Proposition 1, we prove that the maximum a posteriori fair clustering configuration
obtained via maximizing the joint posterior in (9) is different from the optimal clustering
configuration obtained using fair clustering via fairlets. For the purpose of point estimation,
we argue that CMAP should be preferred over CFCF, since it is obtained via maximizing the
posterior with respect to the fairlet decomposition and clustering configuration simultane-
ously. The CFCF estimator, on the other hand, should be considered as an approximation of
our CMAP estimator since CFCF is practically obtained via first solving

u⋆ = arg max
u∈U

[

exp
{

−λ fL f (u)
}

]

,

then, given the optimal fairlet decomposition u⋆ of the observed data, solving

CFCF = arg max
C

[ K

∏
k=1

exp
{

− λc ∑
i∈Ck

D(u⋆

i , u⋆

(k))
}

]

.

In numerical studies, we observed that the maximum a posteriori estimate of the proposed
fair k-means clustering via Gibbs posterior turns out to be very similar to the fair clustering
with fairlets estimator (refer to Figures 1 and 2). The proposed Gibbs posterior-based
approach, unlike a traditional optimization-based approach [3], also provides uncertainty
quantification associated with the clustering configurations along with the maximum a
posteriori estimate.

We conclude this section by discussing some other salient features of the posterior
in (9). Firstly, sampling in the space of all possible fairlet decompositions, rather than
only focusing on the optimal fairlet decomposition, enables us to take into account the
uncertainties arising from this step. This, in turn, crucially enables us to conduct joint
inference on (C, u). Secondly, the suggested formulation for clustering the fairlet centers
avoids specifying an underlying data generation mechanism and adeptly circumvents
the computation of integrals in high-dimensional spaces. Finally, the assumed factorized
loss for the clustering significantly simplifies the posterior computation (refer to Section 3
for details).

As we eluded to earlier, ardent care is required to ensure efficient sampling from the
joint posterior of fairlet decompositions and clustering configurations in (9). To that end,
we first develop an intermediate Monte Carlo expectation maximization (MCEM) scheme,
followed by a subsequent full Markov Chain Monte Carlo (MCMC) scheme to sample from
the posterior.
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Figure 1. Well-specified case. K-means and fair k-means through Gibbs posterior with K = 2. We

plot the maximum a posteriori clustering configurations and misclassification error probabilities

obtained from the posterior samples, via the scheme in Section 3.2.
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Figure 2. Misspecified case (L2 loss). K-means and fair k-means through Gibbs posterior with K = 2.

We plot the maximum a posteriori clustering configurations and misclassification error probabilities

obtained from the posterior samples, via the scheme in Section 3.2.
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3. Posterior Analysis

3.1. Sampling Scheme

We develop a Gibbs sampling scheme to sample from the joint posterior of fairlet
decompositions and clustering configurations in (9). We achieve this via iterating over a
step-by-step scheme, as per the common practice. We first draw a potentially non-optimal
fairlet decomposition of the data and then sample the clustering indices given the specific
fairlet decomposition of the data. We cycle through the steps until convergence.

We now put our computational strategy in concrete terms. Suppose the two labels
of the protected attribute are represented in a 1:t ratio in the observed data, where t is an
integer and assume t × N1 = N2. Our goal is to explore the space of the perfectly balanced
clustering configurations, compute the maximum a posteriori perfectly balanced clustering
configuration, and quantify the uncertainty attached to it. This task can be accomplished
via iterating over two steps: Step 1. sampling in the space of the all possible (1, t)-fairlet
decomposition of the observed data; and Step 2. given a potentially non-optimal (1, t)-
fairlet decomposition of the observed data, sample in the space of all possible clustering
configurations of the fairlet centers. We cycle through Step 1 and Step 2 until convergence.

Step 1 (Sampling the Fairlets). Sampling in the space of the all possible (1, t)-fairlet
decomposition of the observed data is further carried out in two steps. In (i), we simply
obtain the optimal (1, t)-fairlet decomposition of the observed data. However, to accomplish
our goal of quantifying the uncertainty associated with the fair clustering, we first need
to take into account the uncertainty associated with the (1, t)-fairlet decomposition of the
observed data. To that end, in step (ii), we utilize an innovative Metropolis step to explore
other potentially non-optimal (1, t)-fairlet decompositions near the optimal (1, t)-fairlet
decomposition of the observed data. The two steps follow.

(i) We demonstrate how we can utilize discrete optimal transport to obtain the optimal
(1, t)-fairlet decomposition of the observed data. We undertake the following steps. First,
we define the N1 × N2 cost matrix

L = ((lik)) =
((

D(xi, xN1+k))), i ∈ [N1], j ∈ [N2],

column sum vector c = 1N1
, and row sum vectors r = 1N2

, where 1s is a vector of s 1 s.
Next, given the two vectors r, c, we define the polytope of N1 × N2 binary matrices

U(r, c) := {B | B1N′ = r; BT1N′ = c}

and solve the constrained binary optimal transport problem [34]

B′ = argminB∈U(r,c) ïB, Lð, (10)

where ïB, Lð = tr(BTL). The matrix B′ = ((b′ik)) describes an optimal (1, t)-fairlet decomposition.
That is, for any i ∈ [N1], if b′ik1

= . . . = b′ikt
= 1 for some 1 f ki,1 < . . . < ki,t f N2, then

{

(xi, xN1+ki,1
, . . . , xN1+ki,t

)T , i ∈ [N1]

}

defines a fairlet decomposition of the observed data.
(ii) We shall see that a weighted rectangular loop [15] update B′′ = ((b′′ik)) on the B′

matrix provides an alternative, but potentially non-optimal (1, t)-fairlet decomposition of
the observed data. Then, for any i ∈ [N1], if b′′ik1

= . . . = b′′ikt
= 1 for some 1 f ki,1 < . . . <

ki,t f N2, then {(xi, xN1+ki,1
, . . . , xN1+ki,t

)T , i ∈ [N1]} defines a fairlet decomposition of the
observed data.

To describe the weighted rectangular loop scheme, let us denote a non-negative weight
matrix representing the relative probability of observing a count of 1 at the (i, j)-th cell as
Ω = (ωij) = ((exp−λclik)) ∈ [0, ∞). Then, the likelihood associated with the observed
binary matrix H ∈ U(r, c) is
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P(H) = (1/κ)∏
i,j

ω
hij

ij , κ = ∑
H∈U(r,c)

∏
i,j

ω
hij

ij .

Let U′(r, c) = {H ∈ U(r, c) : P(H) > 0} denote the subset of matrices in U(r, c) with
positive probability. Then, for H1, H2 ∈ U′(r, c), the relative probability of the two observed
matrices is

P(H1)

P(H2)
=

∏{i,j:h1,ij=1,h2,ij=0} ω
h1,ij

ij

∏{i,j:h1,ij=0,h2,ij=1} ω
h2,ij

ij

. (11)

With these notations, we are all set to introduce a weighted rectangular loop algorithm (W-RLA)
for non-uniform sampling from the space of fixed margin binary matrices H ∈ U(r, c),
given the weight matrix Ω = (ωij) ∈ [0, ∞). To that end, let us first record that the
identity matrix of order 2, the 2 × 2 matrix with all zero diagonal entries, and all one
off-diagonal entries are referred to as checker-board matrices. W-RLA is then described
in Algorithm 1 in complete generality. The validity of the W-RLA scheme is established
in Chakraborty et al. [15].

Algorithm 1: Weighted rectangular loop algorithm [15]

Input: An initial binary matrix A0 = B′, and total number of iterations T.
for t = 1, . . . , T do

Choose one row and one column (r1, c1) uniformly at random.
if At−1(r1, c1) = 1 then

Choose one column c2 at random among all the 0 entries in r1.
Choose one row r2 at random among all the 1 entries in c2.

else
Choose one row r2 at random among all the 1 entries in c1.
Choose one column c2 at random among all the 0 entries in r2.

end

if The sub-matrix extracted from r1, r2, c1, c2 is a checkerboard unit then
Obtain Bt from At−1 by swapping the checkerboard.

Calculate pt =
P(Bt)

P(Bt)+P(At−1)
.

Draw rt ∼ Bernoulli(pt).
if rt = 1 then

Set At = Bt.
else

Set At = At−1

end

else
At = At−1

end

end

Output: The final binary matrix B′′ = AT .

Step 2 (Sampling Clustering Indices). The fairlet decomposition of the observed data,
{

(xi, xN1+ki,1
, . . . , xN1+ki,t

)T , i ∈ [N1]

}

,

induced by the binary matrix B′′, is summarized by the set of fairlet centers u = (u1, . . . , um)T ∈ U ,
acquired through averaging observations within the respective fairlets. Given a set of fairlet
centers u = (u1, . . . , um)T ∈ U , we adopt a set of strategies developed in Rigon et al. [29]
for sampling the clustering indices. Implementation is generally simpler and more efficient
compared to mixture models. A straightforward Gibbs sampler implementation showcases
favorable mixing properties.
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Here and elsewhere, we refer to each of the fairlet centers as units. Suppose c−i =
(c1, . . . , ci−1, ci+1, . . . , cn) denotes the set of clustering indices without the i-th unit, and let
{C1,−i, . . . , CK,−i} be the induced partition of the fairlet centers. Suppose u(k),−i denotes the
center of the units {ui : i ∈ Ck,−i}. In Gibbs sampling we cyclically reallocate the indicators
ci by sampling from their full conditionals. Then, the conditional distribution of ci given
c−i is

P(ci = k | c−i, λ f , u) ∝ exp







−λ f



 ∑
i′∈Ck

D(ui′ , u(k))− ∑
i′∈Ck,−i

D(ui′ , u(k),−i)











, (12)

for k = 1, . . . , K and for any partition C : |C| = K.
In summary, an MC-EM algorithm to sample from the posterior in Equation (9)

involves first finding the optimal fairlet decomposition via (2) and then sampling the
clustering indices via the scheme described in (12). A complete MCMC scheme to sample
from the posterior needs a bit more work. First, given the observed data {(xi, ai) ∈
X × [2], i ∈ [N]}, the optimal fairlet decomposition is obtained via the optimization
problem in (10). We propose a non-optimal fairlet decomposition of the data-weighted
rectangular loop scheme in Algorithm 1. For given fairlet decomposition, sample the
clustering indices via the scheme described in (12). We repeat the steps until convergence.

The proposed Metropolis within Gibbs sampling algorithm automatically enable us
to obtain asymptotically exact samples from the target joint posterior [44], and hence, we
prefer it over common optimization-based algorithms, such as variational inference [45],
which does not enjoy such guarantees and often provides inadequate uncertainty quan-
tification. Further, while gradient-based MCMC algorithms for discrete spaces [46,47] are
becoming increasingly popular in the literature, development of of such schemes under the
proposed setup involve significant work, since exploring the space of all possible fairlet
decompositions require sampling in constrained spaces.

3.2. Posterior Summaries

Suppose ST = {s1, . . . , sT} is T post burn-in draws from the marginal posterior of
clustering distribution. For each clustering configuration s ∈ ST , one can obtain the
association matrix η(s) of order N × N, whose (i, j)-th element is an indicator whether
the i-th and the j-th observation are clustered together or not. Element-wise averaging of
these T association matrices yields the pairwise clustering probability matrix, denoted by
η̄ = 1

T ∑s∈ST
η(s). To summarize the MCMC draws, we adopt the least square model-based

clustering introduced in Dahl [48] to obtain sLS = argmins∈ST
∑

N
i=1 ∑

N
j=1(ηij(s) − η̄ij)

2.
Since sLS ∈ ST by construction, the notion of balance is retained in the resulting sLS.

We can also the obtain misclassification probabilities 1− η̄ii⋆ of the observations, where
i⋆ denotes the medioid of the cluster to which the i-th observation was allocated in the
maximum a posteriori (MAP) clustering. The quantity 1− η̄ii⋆ approximates the probability
that the i-th unit is allocated to a cluster different from the cluster in the MAP clustering.

3.3. Hyperparameter Tuning

We shall now delve into the considerations regarding the selection of the number
of clusters K and the temperature parameter λ = (λ f , λc)T within the joint posterior of
clustering indices and fairlet decompositions, as expressed in Equation (9). Firstly, aligning
with the approach presented in [29], we conceive the number of clusters denoted as K, not
as an intrinsic attribute of the data to be estimated but rather as a parameter reflecting the
desired level of granularity for partitioning observations. Hence, we propose the subjective
specification of K as intrinsic to the specified loss function, rather than inferring it from
the data. Alternatively, during an exploratory phase, conventional techniques such as the
“elbow” rule may be employed to determine a suitable K.

It is important to recall that a significant advantage of mixture model-based Bayesian
clustering lies in its capacity to automatically deduce the optimal number of clusters (K)
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from the available data. Nonetheless, akin to various model-based methodologies, model-
based clustering is susceptible to even minor misspecifications in the component specific
parametric distributions. Consequently, the derived estimates for the number of clusters (K)
through these procedures exhibit inconsistency [19,20]. Conversely, a notable disadvantage
inherent in Gibbs posterior-based clustering approaches, including the methodology intro-
duced in this article, is the imperative requirement to fix the number of clusters, designated
as K, before initiating the clustering procedure. In developing a Gibbs posterior-based
clustering framework with an undetermined number of clusters, the complexities escalate
concerning the solicitation of loss, the selection of an appropriate temperature parameter,
etc. The direct application of generalized Bayesian clustering with a variable K may result
in undesirable properties in the clustering posterior [29]. This presents a challenging yet
captivating avenue for prospective investigation.

Next, our attention shifts to the calibration of the temperature parameters λ =
(λ f , λc)T. Determining the parameter λ f within the Gibbs posterior of the fairlet de-
composition in (5) is executed by employing the general principles discussed in Holmes
and Walker [32] for assigning a value to a power likelihood in generalized Bayesian models.
With regard to tuning λc in the Gibbs posterior associated with the clustering loss given a
specific fairlet decomposition u ∈ U , we note that [29] highlighted the association between
the generalized Bayes product partition model and mixtures of exponential dispersion
models. These models represent a generalization of regular exponential families, character-
ized by a dispersion parameter. It was further illustrated in [29] that λc in the definition of
the loss function coincides with this dispersion parameter. This alternative probabilistic
representation aids in interpreting the loss and facilitates the elicitation of λc, an otherwise
challenging task as acknowledged in the literature [30,32]. We are now equipped with all
of the necessary components to demonstrate the efficacy of the proposed methodology
through numerical experiments and real data examples.

Noteworthy, the proposed fair clustering approach and computational strategies work
for any factorized clustering loss, e.g., Minkowsski’s loss, Bregman k-means loss, etc. For
the sake of demonstration, we present Gibbs posterior with k-means clustering loss in the
following numerical experiments and real data examples.

4. Experiments

4.1. Well-Specified Case

In this simulation, we consider a generating mechanism such that there are two distinct
groups present in the data. Moreover, each of the attribute specific components precisely
follows an isotropic bivariate normal distribution. Specifically, we consider the following
setup. In the first cluster, 20 individuals with a = 1 are generated from N2(µ11, S) and 30 in-
dividuals with a = 2 are generated from N2(µ21, S). In the second cluster, 30 individuals
with a = 1 are generated from N2(µ12, S), and 20 individuals with a = 2 are generated from
N2(µ22, S), where µ11 = (4, 4)′, µ21 = (2, 2)′, µ12 = (10, 10)′, µ22 = (8, 8)′, and S = 4I2

where I2 is the two-dimensional identity matrix. This data generation mechanism ensures
that individuals with a = 1 and a = 2 are equally represented in the observed sample. The
goal is to obtain two (i.e., we assume K = 2 is known) completely balanced clusters along
with uncertainty quantification associated with the clustering indices.

The maximum a posteriori estimate of the vanilla k-means clustering via Gibbs pos-
terior [29] in Figure 1 coincides with the k-means estimator and provides clusters with
balance 0.62. The maximum a posteriori estimate of the proposed fair k-means clustering
via Gibbs posterior in Figure 1 turns out to be very similar to the fair clustering with
fairlets estimator [1] and provides clusters with balance 1. The Gibbs posterior-based
approaches, unlike the optimization-based approaches Table 1, also provide uncertainty
quantification associated with the clustering configurations along with the maximum a
posteriori estimate.
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Table 1. Overview of Methods.

Method Fairness Uncertainty Quantification

K-means : :

K-means via Gibbs posterior : 6

Fair clustering via fairlets 6 :

Fair clustering via Gibbs
posterior

6 6

4.2. Misspecified Case

In this simulation, we consider a generating mechanism such that there are two distinct
groups present in the data. Moreover, each of the attribute specific components does not
follow an isotropic bivariate normal distribution. Specifically, we consider the following
setup. In the first cluster, 20 individuals with a = 1 are generated from t2(µ11, S) and
30 individuals with a = 2 are generated from t2(µ21, S). In the second cluster, 30 individuals
with a = 1 are generated from t2(µ12, S) and 20 individuals with a = 2 are generated from
t2(µ22, S), where µ11 = (4, 4)′, µ21 = (2, 2)′, µ12 = (10, 10)′, µ22 = (8, 8)′, S = 3I2 where I2

is the two-dimensional identity matrix, tν(µ, S) is the bivariate Student’s t-distribution with
mean µ, scale matrix S, and degrees of freedom ν. This data generation mechanism ensures
that individuals with a = 1 and a = 2 are equally represented in the observed sample.
Note that for ν = 2, the variance of the tν(µ, S) distribution does not exist, and under this
data generation scheme outliers are expected. The goal is to obtain two (i.e., we assume
K = 2 is known) completely balanced clusters along with uncertainty quantification of the
clustering indices.

The maximum a posteriori estimate of the vanilla k-means clustering via the Gibbs
posterior [29] in Figure 2 coincides with the k-means estimator and provides clusters with
balance 0.67. The maximum a posteriori estimate of the proposed fair k-means clustering
via Gibbs posterior in Figure 2 turns out to be very similar to the fair clustering with fairlets
estimator [1] and provides clusters with balance 1. The Gibbs posterior-based approaches,
unlike the k-means and the fair clustering with fairlets estimators, also provide uncertainty
quantification associated with the clustering configurations along with point estimates.

Under the above misspecified data generative mechanism, we further try fair clus-
tering via Gibbs posteriors based on two distinct clustering losses—k-means loss and
Manhattan dissimilarities—to compare them with respect to robustness to outliers. It is
important to underscore that neither of these clustering costs aligns with the underlying
generative process. To ensure the comparability of outcomes, we establish K = 2 for both
methodologies. Subsequently, we compute the corresponding co-clustering matrices, which
are presented graphically in Figure 3. The visual representation strongly suggests superior
performance of the clustering approach based on Manhattan pairwise dissimilarities when
contrasted with the one relying on squared Euclidean loss. In the k-means scenario, the
presence of outliers unreliable uncertainty quantification. These observations align with
expectations, as the historical use of absolute deviations in lieu of squared losses has been a
strategy to enhance the robustness of clustering.
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Figure 3. Misspecified case (fair clustering via Gibbs posteriors with L1 versus L2 loss). Fair k-means

through Gibbs posterior with K = 2. We plot the co-clustering probability matrix obtained from

the posterior samples. The colors are indicative of probabilities, ranging from white indicating low

probability to deep blue indicating a high probability.

5. Benchmark Data Sets

We assess the effectiveness of the proposed approach in comparison to established
methodologies using well-known benchmark data sets from the UCI repository [49]. These
data sets have been previously examined in the fair clustering literature [1–3].

5.1. Credit Card Data

We opted for numerical attributes, including age and credit limit, to characterize data
points within the Euclidean space. Marital status (categorized as married or unmarried) is
designated as the sensitive dimension. We conducted a sub-sampling of 120 individuals
from the data set, ensuring a target balance of 1. The objective is to achieve three completely
balanced clusters (assuming K = 3 is known) while simultaneously quantifying uncertainty
associated with the clustering indices.

The maximum a posteriori (MAP) estimate for vanilla k-means clustering through a
Gibbs posterior aligns with the conventional k-means estimator, yielding clusters with a bal-
ance of 0.27. Conversely, the MAP estimate for fair k-means clustering via a Gibbs posterior
roughly aligns with the fair clustering with fairlets estimator, resulting in clusters with a
balance of 1. Notably, the Gibbs posterior-based approaches in Figure 4, in contrast to both
the k-means and fair clustering with fairlets estimators, additionally provide uncertainty
quantification pertaining to the clustering configurations alongside MAP estimates.

5.2. Diabetes Data

We analyze a data set sourced from the UCI repository consisting of the health out-
comes of patients in relation to diabetes. Numerical attributes such as age and time spent in
the hospital serve as points in Euclidean space, while gender is designated as the sensitive
dimension. Through a sub-sampling process involving 965 individuals from the data set,
a gender ratio of 4:5 is maintained, achieving a target balance of 0.8. The objective is to
derive four completely balanced clusters (assuming K = 4 is known) while concurrently
quantifying uncertainty associated with the clustering indices.

The maximum a posteriori (MAP) estimate for vanilla k-means clustering using the
Gibbs posterior aligns with the conventional k-means estimator, yielding clusters with a
balance of 0.23. In contrast, the MAP estimate for fair k-means clustering through Gibbs
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posterior roughly aligns with the fair clustering with fairlets estimator, resulting in clusters
with a balance of 0.8. Notably, the Gibbs posterior-based approaches in Figure 5, unlike both
the k-means and fair clustering with fairlets estimators, additionally furnish uncertainty
quantification related to the clustering configurations alongside the MAP estimators.
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Figure 4. Credit Card Data. K-means and fair k-means through Gibbs posterior with K = 3. We plot

the maximum a posteriori clustering configurations and misclassification error probabilities obtained

from the posterior samples via the scheme in Section 3.2.
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Figure 5. Diabetes Data. Comparison of k-means, fair clustering via fairlets, and fair k-means

through a Gibbs posterior with K = 4. We plot the maximum a posteriori clustering configurations

and misclassification error probabilities obtained from the posterior samples, via the scheme in

Section 3.2.
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5.3. Portuguese Banking Data

Subsequently, we turn our attention to the Portuguese banking data set, which com-
prises individual records corresponding to each phone call conducted during a marketing
campaign by a Portuguese banking institution. Each record encapsulates information about
the client engaged by the institution. For the representation of points in the Euclidean
space, we have selected numerical attributes such as age, balance, and duration. Our
clustering objective involves achieving balance between married and unmarried clients.
Through a sub-sampling process, we reduced the data set to 939 records, maintaining a
married-to-not-married client ratio of (2, 1), thereby establishing a target balance of 1/2.
The primary aim is to derive four completely balanced clusters (assuming K = 4 is known),
coupled with an assessment of uncertainty in the clustering indices.

The maximum a posteriori (MAP) estimate for vanilla k-means clustering using the
Gibbs posterior aligns with the conventional k-means estimator, resulting in clusters with a
balance of 0.06. Conversely, the MAP estimate for fair k-means clustering through the Gibbs
posterior roughly aligns with the fair clustering with fairlets estimator, yielding clusters
with a balance of 1/2. Importantly, the Gibbs posterior-based approaches, in contrast to
both the k-means and fair clustering with fairlets estimators, offer additional insight by
providing uncertainty quantification associated with the clustering configurations alongside
the MAP estimators.

6. Discussion

Despite recent advancements [2,3,12,14] that significantly expanded the scope of fair
clustering, uncertainty quantification associated with the optimal clustering configuration
remained elusive until recently. In a recent contribution, Chakraborty et al. [15] extended the
current body of literature on fair clustering by adopting a novel model-based approach to
address clustering under balance constraints. Adopting a generative modeling perspective
enabled them to offer valid uncertainty quantification linked to the optimal fair clustering
configuration. However, fair clustering frameworks based on such naive mixture models
often exhibit fragility in the presence of model misspecification and usually entail notable
computational challenges. The main contribution of the current article is the proposed
generalized Bayesian fair clustering framework, that inherently provides valid uncertainty
quantification while avoiding significant complexities in problem formulation. Secondly, we
develop efficient computational algorithms for posterior inference, leveraging techniques
from the prevailing literature on clustering based on loss functions as well as computational
optimal transport.

A significant limitation of Gibbs posterior-based clustering approaches, including the
method proposed in this article, lies in the need to fix the number of clusters, denoted
as K, prior to the clustering process. When considering an indeterminate number of
clusters within a Gibbs posterior-based clustering framework, the challenges intensify with
regard to loss elicitation, the selection of a suitable temperature parameter, and associated
considerations. A straightforward implementation of generalized Bayesian clustering with
a variable K may lead to undesirable behaviors in the resulting posterior [29]. This provides
a challenging yet intriguing avenue for future enquiry.

In conclusion, we reiterate that the generalized Bayesian inference framework presents
a potentially advantageous middle ground in trustworthy machine learning applications,
bridging the gap between traditional Bayesian inference and inference based on loss
functions. This framework allows for valid uncertainty quantification even in the presence
of mild model misspecification, all while potentially maintaining computational scalability.
Important directions for future investigation involve the development of Gibbs posterior
frameworks for various other fair clustering paradigms, including correlation clustering [6],
hierarchical clustering [7], functional data clustering [50], etc. The practical significance of
generalized Bayesian inference in fair clustering in conjunction with other pivotal facets of
modern machine learning such as privacy [12] and robustness [13] is also noteworthy.
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