
On Length-Sensitive Fréchet Similarity

Kevin Buchin1[0000−0002−3022−7877], Brittany Terese Fasy2[0000−0003−1908−0154],
Erfan Hosseini Sereshgi3[0000−0003−2548−7428], and Carola

Wenk3[0000−0001−9275−5336]

1 TU Dortmund, Germany
kevin.buchin@tu-dortmund.de

2 Montana State University, United States
brittany.fasy@montana.edu

3 Tulane University, United States
{shosseinisereshgi,cwenk}@tulane.edu

Abstract. Taking length into consideration while comparing 1D shapes
is a challenging task. In particular, matching equal-length portions of
such shapes regardless of their combinatorial features, and only based on
proximity, is often required in biomedical and geospatial applications. In
this work, we define the length-sensitive partial Fréchet similarity (LSFS)
between curves (or graphs), which maximizes the length of matched por-
tions that are close to each other and of equal length. We present an
exact polynomial-time algorithm to compute LSFS between curves un-
der L1 and L∞. For geometric graphs, we show that the decision problem
is NP-hard even if one of the graphs consists of one edge.

Keywords: Fréchet distance, partial matching, curves, graphs in R
2

1 Introduction

Measuring the similarity between geometric objects is a fundamental task with
many applications. One way to measure similarity is to take the reciprocal of a
distance measure, such as the Fréchet distance for curves [7]. While the Fréchet
distance matches the entire curves to each other, many situations require only
matching parts of the curves. For instance, if we want to evaluate whether one
curve is a subset of the other, a perfect matching makes little sense. For such
situations, partial Fréchet similarity has been proposed [11], which aims to match
curves to each other so that the total length of the portions that are close to
each other is maximized.

When maximizing lengths, the matching may be skewed towards noisier por-
tions of a curve, as noise makes a curve longer. While this may be acceptable if
the noise occurs on both curves, it should not be possible to increase the similar-
ity score by adding noise on one of the curves, such as in the example of Fig. 1,
where the partial Fréchet similarity matches the spiral of g to the middle of f . To

2 Supported by the National Science Foundation grant CCF 2046730
3 Supported by the National Science Foundation grant CCF 2107434

2 Buchin et al.

g

f

Curves Partial Fréchet Similarity Length-Sensitive Fréchet Similarity

Fig. 1: Two curves f, g with different matchings, illustrated in blue.

mitigate this issue, we introduce the length-sensitive Fréchet similarity (LSFS),
where only equal-length portions of curves that are close to each other may be
matched. as in Fig. 1 (right).

Non-partial length-sensitive Fréchet matchings have been considered previ-
ously. Buchin, Buchin, and Gudmundsson consider speed constraints on Fréchet
matchings [10], and Maheshwari et al. study the Fréchet distance with speed
limits [19]. Similar speeds on the curves result in matching similar lengths to
each other. However, all of these approaches restrict to matching the whole
curves within a given distance, which is very different from the setting of partial
matchings, and makes the techniques non-applicable in our setting.

Our motivation for studying length-sensitive partial Fréchet matchings stems
from the problem of comparing paths [18] and geometric networks [2,3,5,6,13],
more specifically from the map reconstruction problem. To evaluate different re-
construction algorithms that construct road networks from movement trajecto-
ries (e.g., [4,9,12,15,16]), one needs to evaluate how similar the reconstructions
are to the underlying network. Usually trajectories only cover portions of the
network, and therefore a partial similarity is desired. However, to avoid favor-
ing algorithms that build noisy reconstructions, length-sensitive matchings are
desirable. In this context, length-sensitive Fréchet matchings can be seen as a
continuous version of the commonly used graph-sampling technique [1, 8].

Our Contributions In this paper, we define length-sensitive partial Fréchet simi-
larity (LSFS) for curves and geometric graphs. Specifically, the LSFS maximizes
the length of matched portions that are close to each other and of equal length.
In Section 3, we define LSFS for curves and graphs, providing a clean mathe-
matical definition for this intuitive concept. For geometric graphs we show in
Section 5 that LSFS is NP-hard even if one of the graphs consists of only one
edge. In Section 4, we present a polynomial-time algorithm to compute LSFS
for curves under L1; the same approach generalizes to L∞ as well.4

2 Preliminaries

A polygonal curve f in R
d is a finite sequence of line segments (or edges)

in R
d. Its length, len(f) = Lf , is the sum of the lengths of the edges. Another

way to represent f is as an arc-length parameterized map f : [0, Lf] → R
d,

4 We do not consider L2, since we expect to encounter the same algebraic obstacles
that make partial Fréchet similarity unsolvable over the rational numbers [14].

On Length-Sensitive Fréchet Similarity 3

where len(f([0, t])) = t for all t ∈ [0, Lf]. A geometric graph (G,φ) in R
d is

a finite abstract graph G = (VG, EG) along with a continuous map φ : G → R
d

such that for each edge e ∈ E, the restriction φ|e is a polygonal curve. The
length of G is len(G) =

∑
e∈E len(φ|e). G denotes the set of all geometric

graphs in R
d, up to reparameterization, i.e., (G,φG) and (H,φH) are equivalent

in G if there exists a homeomorphism h : G → H such that φG = φH ◦ h. Let
(G,φG), (H,φH) ∈ G and let h : H → G be a function that is homeomorphic
onto its image. If, for each path π in (H,φH), the path h(π) in (G,φG) has the
same (intrinsic) length, we say that h is length-preserving.

The Fréchet distance between two curves f and g in R
d is

dF (f, g) = inf
h:[0,Lf]→[0,Lg]

max
t∈[0,Lf]

||f (t)− g (h(t)) ||p, (1)

where h is an homeomorphism such that h(0) = 0, and ||.||p is the p-norm. In
this paper, we focus on the case when p = 1 or p = ∞.

For polygonal curves f and g and threshold ε > 0, Alt and Godau [7] pro-
vided a polynomial time dynamic programming algorithm based on the free-
space diagram. The free-space diagram Dε(f, g) is a binary function defined
over [0, Lf]× [0, Lg]. For a point (x, y) ∈ [0, Lf]× [0, Lg], Dε(f, g) is free (colored
white) if ||f(x)− g(y)||p ≤ ε; otherwise, it is infeasible (colored gray). The set
of all free points is the free-space. See Fig. 2. If f, g are polygonal curves with
m and n edges, respectively, then [0, Lf]× [0, Lg] can be decomposed into cells
of an m × n grid, where the i-th column corresponds to the i-th edge of f and
the j-th row corresponds to the j-th edge of g. By convexity of the Lp-norm,
free space within a cell is convex; if p = 2 it is the intersection of an ellipse with
the cell, if p = 1 or p = ∞ it is the intersection of a parallelogram with the cell.
There exists a bi-monotone path in the free space from (0, 0) to (Lf , Lg) if and
only if dF (f, g) ≤ ε. The dynamic program marches through Dε(f, g) cell-by-cell
propagating reachability information from (0, 0).

f

g

ε2

h(e)

e

ε1

a

a

(a) Two Curves.

e

h(e)

len(g)

len(f)0
0

(b) FSD with ε1.

e

h(e) l

len(g)

len(f)0

0

(c) LSFS with ε2.

Fig. 2: The free-space diagram Dε(f, g), for p = 2, for two threshold values, ε1
and ε2. In (b), there is a path from (0, 0) to (Lf , Lg), so dF (f, g) ≤ ε1. In
(c), the slope-one line segments (shown in blue) correspond to length-preserving
matchings. e is a line segment on f that was matched with h(e) on g.

4 Buchin et al.

3 Defining Length-Sensitive Fréchet Similarity

Here, we introduce the length-sensitive Fréchet similarity (LSFS), a notion of
similarity between curves (or between graphs).

3.1 LSFS For Curves

Let f, g be two curves and let ε > 0. To define length-sensitive Fréchet similar-
ity, we consider the homeomorphisms h in Equation (1), which correspond to
paths γh in the free-space diagram Dε(f, g) from (0, 0) to (m,n). We maximize
the length of the portions of γh that are free and length-preserving. As before,
free portions of γh are exactly the points such that ||f(x)− g(h(x))||p ≤ ε. The
length-preserving matchings between sub-curves of f and g correspond to slope-
one segments of γh. Putting this together, we get Iε

h
=

{x ∈ [0, Lf] | (x, h(x)) is free and ∃δ > 0: h|(x−δ,x+δ) is length-preserving.}

Here, Iεh is the portion of (the parameter space of) f that hmaps to g in a length-
preserving way while staying within distance ε. We quantify this by defining the
length-sensitive Fréchet similarity (LSFS) as:

Fε(f, g) = sup
h:[0,Lf]→[0,Lg]

len(Iεh) ,

where h ranges over all homeomorphisms such that h(0) = 0. We interpret Iεh
as a set of (maximal) intervals, which means that f(Iεh) is a set of subcurves in
R

d. Then len(Iεh) measures the total length of these subcurves of f , since f is
arc-length parameterized.5 Note that the definition above only requires h to be
locally length-preserving (i.e., only within δ of x). However, this is actually a
global property, as proven in Corollary 1 in Appendix A.

We note that the condition of equal length is less harsh than it might seem
at first: sub-curves that are close and have similar lengths can still be matched;
the score is the length of the shorter portion. As an example of LSFS, consider
Fig. 2. We are looking for a bi-monotone path from bottom-left to top-right
that maximizes the total length of slope-one segments in the free (white) space.
The line segment l, which has slope one, indicates a length-preserving matching
because the corresponding matched line segments, e and h(e) on the two curves.

3.2 LSFS For Graphs

Let (G,φG), (H,φH) ∈ G and ε > 0. We extend the definition of LSFS to a
similarity measure between graphs. Let G be a graph, let C be a connected
subgraph of G, and let h : C → H be a continuous map that is homeomorphic
onto its image. We define Cε

h
=

{x ∈ C | ||φG(x)− φH(h(x))||p ≤ ε and ∃δ > 0: h|Bp(x,δ) is length-preserving}.
5 For LSFS it suffices to measure lengths of subcurves on f . Partial Fréchet similar-
ity [11] measures lengths of subcurves on f and g, but is not length-preserving.

On Length-Sensitive Fréchet Similarity 5

Here, Bp(x, δ) is the open ball centered at x with radius δ ∈ R≥0. Fig. 3
shows an example. The set Cε

h is a subgraph of (G,φG), and so (Cε
h, φG|Cε

h
) is

in G. While C is a connected graph, we note that Cε
h need not be connected.

The restriction to connected components of G is important. For example,
consider Fig. 4, which demonstrates what can happen if we do not enforce this re-
quirement.

C

Ch

G

H

ε

C
ε

h

Inputs Homeomorphic subgraph Output

Fig. 3: Computing Cε
h on two given graphs, G (in magenta) and H (orange).

First, we take C, a connected subgraph of G. Then, we find h : C → H, a map
such that C is homeomorphic onto its image. For a given ε, dark blue segments
are Cε

h. The total length of those segments is the LSFS, Fε(G,H).

F

G

G

F

G

G

Fig. 4: Two graphs, F (in magenta) and G (orange). Blue represents the matched
portions of the graphs. Although the total length matched is the same for both
examples, the right is more preferable, as it matches one connected component
of G to an entire interval instead of breaking it up into four connected matchings.

Given this setup, the length-sensitive Fréchet similarity is the maximum
matched length that can be obtained through such homeomorphisms:

Fε(G,H) = sup
C⊂G

sup
h:C→H

len(Cε
h).

4 Computing LSFS for Curves

In this section, we present a polynomial-time dynamic programming algorithm
for computing the LSFS for two curves in R

2 under the L1 and L∞ norms. To
enable efficient propagation of the score function (defined in Section 4.2), we first
refine each cell of the free-space diagram (Section 4.1). We then concentrate on
a single refined cell and show in Section 4.4 how to propagate the score function
based on the lemmas and observations from Section 4.3. Moreover, we show the
complexity of the score function in each refined cell. Finally, in Section 4.5, we
describe the overall dynamic programming algorithm and its total complexity.

6 Buchin et al.

4.1 Refining the Free-Space Diagram

To compute the score function using dynamic programming, we refine the free-
space diagram as follows: Consider Dε(f, g), using p = 1 or p = ∞. Then the free
space of a diagram grid cell C′ = Dε[i][j] is the intersection of a parallelogram
with the cell. Thus, the free space in C′ is defined by a polygon with up to eight
vertices, and the infeasible space can have up to four connected components
which may not be convex. For every vertex v of the free-space polygon in C′, we
extend a horizontal and a vertical line from v to the boundaries of the cell. This
results in a subdivision of C′ that splits all polygons in the cell into (simpler)
triangles, quadrilaterals, and pentagons; see Fig. 5. In addition, each sub-cell now
has at most two connected components of the infeasible space, each of which is
a convex polygon defined by at most five vertices.

Fig. 5: Refining a cell C′ in Dε(f, g). The left shows C′ after extending the hor-
izontal and vertical lines through each vertex of the white polygon. The red
pentagons (one in free space and one in infeasible space) result from these lines
intersecting edges of the white polygon. We split these pentagons into two prop-
agatable polygons by drawing the horizontal blue lines from those intersections
(blue points). The resulting green polygons on the right are all propagatable.

All of the new polygons (in both the free and infeasible regions), except
the pentagons, share a property that we call propagatability.6 A propagatable
polygon is a polygon with at most four edges, at least two of which are horizontal
or vertical. For each (non-propagatable) pentagon we add an additional split
by finding a vertex v that does not lie on a horizontal line, and then extend
a horizontal line through v to the boundaries of C′. After this split, even the
pentagons are now split into propagatable polygons. The arrangement of all
horizontal and vertical lines subdivides C′ into a set of refined cells, and every
free-space polygon inside a refined cell is propagatable, see Fig. 6:

Observation 1 (Refined Cells Contain Propagatable Polygons) The free-
space polygons inside refined cells are propagatable. The set of possible configu-
rations of the refined cells are:

6 We use the term propagatable, as these regions allow for easier propagation of a score
function in the dynamic program, which we elaborate on in the next sub-sections.

On Length-Sensitive Fréchet Similarity 7

a) All free. b) Free space on right; dividing line has positive slope. c) Free
space on left; dividing line has positive slope. d) Free space on right; dividing line
has negative slope. e) Free space on left; dividing line has negative slope. f) Two
components of infeasible space; dividing lines have positive slopes. g) Two com-
ponents of infeasible space; dividing lines have negative slopes. h) All infeasible.

(b)(a) (c) (d) (e) (f) (g) (h)

Fig. 6: All possible configurations of a cell in the refined free-space diagram.

Since there are a constant number of dividing lines per cell, each diagram
cell contains a constant number of refined cells, which yields:

Lemma 1 (Cell Complexity). Given two polygonal curves f and g with m
and n segments respectively, the total number of refined cells in Dε(f, g) is Θ(nm).

4.2 Score Function in a Cell

To compute LSFS using dynamic programming in Dε(f, g), we define a score
function that maps (x, y) ∈ Dε(f, g) to the LSFS defined for the corresponding
prefixes of f and g. The score function S : [0, Lf]× [0, Lg] → R is defined as

S(x, y) = Fε(f |[0,x], g|[0,y]) = sup
h:[0,x]→[0,y]

len(Iεh) . (2)

The dynamic program in Section 4.5 computes the score function on the cell
boundaries, by propagating from the left and bottom of a refined cell to the top
and right of the cell. Let C = [xL, xL + xR] × [yB , yB + yT] ⊆ [0, Lf] × [0, Lg]
be a refined cell, and denote with L,R,B, T the left, right, bottom, and top
boundaries of C, respectively. For ease of exposition we represent C using the local
coordinate system [0, xR] × [0, yT] and use the following notation (see Fig. 7).
The score functions restricted to L,R,B, T are:

SL(l) = S(xL, yB + l) SR(r) = S(xR, yB + r)
SB(b) = S(xL + b, yB) ST (t) = S(xL + t, yT)

Any bi-monotone path from (0, 0) in Dε(f, g) to a point in C has to go
through L or B. We can therefore express ST and SR as

ST (t) = max(SL→T (t),SB→T (t)) and SR(r) = max(SL→R(r),SB→R(r)) . (3)

Here, SL→T models the propagation from L to T . It is a restriction of LSFS
on T that considers only those homeomorphisms h that pass through L. Such a
homeomorphism corresponds to a bi-monotone path in Dε(f, g) that is comprised

8 Buchin et al.

0
0

yT

xR

L R

T

B
0
0

len(g)

len(f)

L

T

R

B

xL xL + xR

yB

yB + yT

l

t

r

b

Fig. 7: A refined cell C shown in Dε(f, g) (left) and in local coordinates (right).

of a path from (0, 0) to a point on L concatenated with a path from this point to
a point on T. SB→T ,SL→R,SB→R model the remaining types of propagations
from L or B to T or R and are defined as:

SL→T (t) = sup
l∈[0,yT]

SL(l) + L((0, l), (t, yT)) SB→T (t) = sup
b∈[0,xR]

SB(b) + L((b, 0), (t, yT))

SL→R(r) = sup
l∈[0,yT]

SL(l) + L((0, l), (xR, r)) SB→R(r) = sup
b∈[0,xR]

SB(b) + L((b, 0), (xR, r)) ,

where L((x1, y1), (x2, y2)) = Fε(f |[xL+x1,xL+x2], g|[yB+y1,yB+y2]) measures the
LSFS between points (x1, y1), (x2, y2) in the local coordinate system of C. Note
that a bi-monotone path from (x1, y1) to (x2, y2) is not necessarily unique, how-
ever L((x1, y1), (x2, y2)) is, see Fig. 8.

b

t

π1
π2

π3

b

t

b

t

L R

T

B

L R

T

B

L R

T

B

Fig. 8: π1,π2 and π3 are different monotone paths from (b, 0) to (t, yB + yT)
that have the same slope-one length, L((b, 0), (t, yB + yT)) (blue). Other edges
in these paths are horizontal or vertical.

In the remainder, we extensively use the following observation:

Observation 2 Let (x, y) and (x + ∆x, y + ∆y) be points in Dε(f, g). Then
the maximum length-preserving portion that can be achieved between those two
points is min(∆x,∆y). Therefore L((x, y), (x+∆x, y +∆y)) ≤ min(∆x,∆y).

4.3 Properties of the Score Function

To compute the score function restricted to the top and right boundaries ST

and SR of a refined cell C, one has to take the maximum of SB→T and SL→T for

On Length-Sensitive Fréchet Similarity 9

a point (t, yT) on T or SB→R and SL→R for (xR, r) on R. We show finding such
maximum is a simple operation using the following observation and lemmas:

Observation 3 (Optimal Substructure) Let (x, y), (x′, y′) ∈ Dε(f, g). If (x
′, y′)

is on an optimal path from bottom left of Dε(f, g) to (x, y), then S(x, y) ≤
S(x′, y′) + min(y − y′, x− x′)

Lemma 2 (Single Breakpoint). For all refined cells there is a point (x0, y0)
on the top or right boundary such that one of the following holds:

1. if (x0, y0) ∈ T :

ST (x) =

{
SL→T (x) for x < x0

SB→T (x) for x ≥ x0
, and SR(y) = SB→R(y) (4)

2. if (x0, y0) ∈ R:

ST (x) = SL→T (x) , and SR(y) =

{
SL→R(y) for y > y0
SB→R(y) for y ≤ y0

(5)

Lemma 3 (Slope Upper-Bound). The score function on a refined cell bound-
ary is piecewise lienar, with each piece of slope less than or equal to 1.

We provide proofs for Lemmas 2 and 3 in Appendix B.

4.4 Score Function Propagation Within a Cell

In this section, we demonstrate how to compute the score function from a cell
boundary to another. In particular, we seek the functions SL→R, SB→R, SL→T ,
and SB→T for all cases of the refined cells. To compute such functions, finding
the maximum slope-one length that can be gained in a cell is essential. Since the
free polygons in all cases are propagatable, such a slope-one line segment has to
intersect one of the vertices of the free space. In the majority of the cases we
determine the optimal path using Observation 3.

Case (a): We explore the propagation from L to R and B to R. Since going
from L and B to T are symmetrical to these, one can compute them in a similar
manner. For every point (xR, r) on R there is a path with maximum slope-one
length that reaches it through L. We aim to find corresponding points (0, l)
on L for every point (xR, r) on R such that SL→R(r) = SL(l) +L((0, l), (xR, r))
is maximal. SL(l) is a non-decreasing piecewise linear function and all the pieces
have slopes less than or equal to one. Therefore, finding (0, l) and (xR, r) that
result in a maximal L((0, l), (xR, r)) is crucial.

Consider cell C in Fig. 9, since C is free, L((0, l), (xR, r)) = min(yT , xR) and
this value can be achieved by drawing slope-one line segment from (0, 0). Any
point (xR, r1) on R below this line segment can be reached from (0, 0) on L
while L((0, 0), (xR, r1)) = r1. Any point (xR, r2) above this line segment on R
can be reached from (0, r2−xR) while achieving the maximum slope-one length.

10 Buchin et al.

0

0

yT

xR

L R

T

B

xR

r1

r2

r2 − xR

xR − r1

L R

T

B
0

0 xR

r1

xR − r1

yT

xR − yT

Fig. 9: Case (a), when xR < yT on the left, and when xR > yT on the right.
The blue line shows the maximum slope-one length possible. Maximal slope-one
segments to r1 and r2 are shown in magenta and orange, respectively.

Note that if xR > yT , a slope-one line through (0, 0) does not intersect with R
within C hence there is technically no point on R above such a line.

SL→R(r) =

{
SL(0) + r for r ≤ xR

SL(r − xR) + xR for r ≥ xR

For constructing SB→R(r), note that L((b, 0), (xR, r)) is maximal when a slope-
one line segment going through (xR, yT) intersects B. If such line does not
exist the maximal slope-one length is achieved by drawing a slope-one line
from (0, 0). For any point (xR, r1) below this line we draw a slope-one line
segment from (xR, r1) that cuts B on (xR − r1, 0). For any point (xR, r2) above
such a line (if only xR < yT), the optimal path from B starts at (0, 0).

SB→R(r) =

{
SB(xR − r) + r for r ≤ xR

SB(0) + xR for r ≥ xR

Theorem 1. The propagation within Case (a) adds O(1) breakpoints/complexity.

Proof. Assuming SL has n breakpoints, we want to determine the number of
breakpoints on SL→R, which consists of two pieces. In the first piece, SL(l) is
added to an increasing linear function r so the resulting function has at most n
breakpoints. The second piece of SL→R(r) is a constant function without break-
points. Thus, SL→R(r) has at most n+1 breakpoints. Similarly, SB→R(r), SL→T (t),
and SB→T (t) each also have at most n+ 1 breakpoints.

Case (c)–Case (h): We illustrate the rest of the cases in details in Appendix C.

4.5 Dynamic Programming Algorithm

The length-sensitive Fréchet similarity between two polygonal curves f and g
for a given threshold ε can be computed using a dynamic programming (DP)

On Length-Sensitive Fréchet Similarity 11

algorithm on the corresponding free-space diagram. Let m and n be the number
of edges in f and g, respectively. As a pre-processing step, we refine the cells
of the free-space diagram using the method in Section 4.1. Then, we process
diagram cells row by row starting from the bottom left. The refined cells also
have a local order within their diagram cell that is row by row, starting from
the bottom left refined cell. The following operations are performed on every
diagram cell C′ in the DP algorithm:

1. Initialization (of the input functions): The score functions SC′

L , SC′

B on the
left and bottom boundaries of C′ are divided and assigned to the correspond-
ing score functions SC

L, S
C
B on those refined cells C that lie on the left and

bottom boundary of C′.
2. Propagation: For each refined cell C, in bottom up order within C′, we:

(a) Compute SC
L→R, SC

B→R, SC
B→T , and SC

L→T using the methods in Sec-
tion 4.4 and Appendix C

(b) Compute SC
R and SC

T based on Equation (3).
3. Concatenation: After all refined cells in the current diagram cell C′ have

been processed, we find the score function on the right boundary SC′

R by
concatenating the corresponding SR functions on the refined cells. Similarly,
we can compute the score function on the top boundary of the diagram cell.

As the DP algorithm finishes processing the last diagram cell, the LSFS be-
tween f and g can be found in the top right corner of the free-space diagram.

Theorem 2. The Length-Sensitive Fréchet similarity between two curves f and g
with m and n pieces, respectively, can be computed in O(m2n2).

Proof. The DP algorithm is nested and processes all refined cells within all dia-
gram cells. The total number of refined cells O(mn); see Lemma 1. The initializa-
tion and concatenation steps take time linear in the complexity of the involved
score functions. As demonstrated in Theorems 1-10, computing SC

L→R, SC
B→R,

SC
B→T , and SC

L→T in each cell adds 1 breakpoint to SC
L and SC

B . Construct-
ing SC

R and SC
T adds at most 1 breakpoint to one of these functions according to

Lemma 2. Thus, the number of breakpoints in cell D[i][j] is in O(ij), i.e., linear
in the number of previous cells. Hence, the complexity of the score functions on
the top right cell is O(mn) and the total runtime of the DP is O(m2n2).

5 Hardness of LSFS for Graphs

Unfortunately, deciding whether an optimal Length-Sensitive Fréchet similarity
measure is above a given threshold is NP-hard.

Theorem 3 (Maximum LSFS is NP-hard). Deciding if Fε(G,H) > L is
NP-hard, even if G consists of only one edge and H is a plane graph.

Proof. We reduce from the Hamiltonian path problem in grid graphs, which
is known to be NP-hard [17], even for induced grid graphs of degree at most

12 Buchin et al.

three [20]. Let H ′ = (V ′, E′) be a grid graph; that is, the vertex set is a finite
subset of Z2 and there is an edge between two vertices u, v if and only if ‖u −
v‖ = 1. We construct the graph H as follows: for every vertex, we add an edge
to a new degree-one vertex at distance > 1; see Fig. 10. Formally, let V ′′ =
V ′ + (3/4, 3/4) be the set V ′ translated by (3/4, 3/4) and E′′ = {(v′, v′′) ∈
V ′×V ′′ | v′′ = v′+(3/4, 3/4)}. The edges in E′′ have length

√
2 ·3/4 ≈ 1.06. We

choose H = (V ′ ∪ V ′′, E′ ∪ E′′). Without loss of generality, we assume that the
coordinates of the vertices of H are between 0 and n = |V ′| > 1, since we assume
that H ′ is connected. Let G consist of only one edge (0, n). We choose ε = n. We
claim that if H ′ has a Hamiltonian path then Fε(G,H) = n+ 1, and otherwise
Fε(G,H) < n+ 1/5, as desired.

H
′

H

Fig. 10: A grid graph H ′ with Hamiltonian path in green. The graph H and the
image of G corresponding to the Hamiltonian path.

We have chosen ε sufficiently large such that h (defined in Section 3.2) mapsG
onto any simple path in H (not necessarily ending at vertices). If H ′ has a
Hamiltonian path, then we map G length-preserving onto the corresponding
path in H extended by parts (of length 1) of edges in E′′ at the beginning and
end. Thus, Fε(G,H) is the length of the edge (0, n), i.e, n + 1. If H ′ does not
have a Hamiltonian path, then the longest simple path in H ′ that starts and
ends at vertices has length at most n − 2. Thus, the longest simple path in H
has length at most n− 2 + 2

√
2 · 3/4 ≈ n+ 0.12 < n+ 1/5.

6 Conclusions and Discussion

We defined length-sensitive Fréchet similarity as a natural partial similarity mea-
sure for geometric graphs and curves in R

d. We presented an efficient algorithm
for computing it under the L1 norm for curves, and showed that the corre-
sponding decision problem for geometric graphs is NP-hard. However, there are
several directions that can be explored in this area. Can our similarity measure
be transformed into a distance measure that is a metric?

For curves in R
d, we conjecture that the running time in Theorem 2 might

not be optimal. In [11], a faster running time is achieved by making use of the
fact that the score functions are piecewise concave, which is not the case for our
functions. For geometric graphs, finding an approximation algorithm to compute
LSFS could lead to a practical similarity measure between road networks. A first
step might be to consider restricted graph classes. A natural next question is
whether there is a polynomial time algorithm for trees.

On Length-Sensitive Fréchet Similarity 13

References

1. Aguilar, J., Buchin, K., Buchin, M., Hosseini Sereshgi, E., I. Silveira, R., Wenk,
C.: Graph sampling for map comparison. In: 3rd ACM SIGSPATIAL International
Workshop on Spatial Gems (2021)

2. Ahmed, M., Fasy, B.T., Hickmann, K.S., Wenk, C.: Path-based distance for street
map comparison. ACM Transactions on Spatial Algorithms and Systems (28 pages,
2015)

3. Ahmed, M., Fasy, B.T., Wenk, C.: Local persistent homology based distance be-
tween maps. In: Proceedings of the 22nd ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems. pp. 43–52. ACM (2014)

4. Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: Map Construction Algorithms.
Springer (2015)

5. Akitaya, H.A., Buchin, M., Kilgus, B., Sijben, S., Wenk, C.: Distance measures for
embedded graphs. Computational Geometry: Theory and Applications 95(101743)
(2021)

6. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. Journal of Algo-
rithms 49(2), 262–283 (nov 2003). https://doi.org/10.1016/s0196-6774(03)00085-3

7. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
IJCGA 5(1–2), 75–91 (1995)

8. Biagioni, J., Eriksson, J.: Inferring road maps from global positioning system
traces. Transportation Research Record: Journal of the Transportation Research
Board 2291(1), 61–71 (2012)

9. Buchin, K., Buchin, M., Gudmundsson, J., Hendriks, J., Sereshgi, E.H., Sacristan,
V., Silveira, R., Staals, F., Wenk, C.: Improved map construction using subtrajec-
tory clustering. In: Proc. 4th ACM SIGSPATIAL LocalRec Workshop. pp. 5:1–5:4
(2020), https://doi.org/10.1145/3423334.3431451

10. Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a tool
for trajectory analysis. International Journal of Geographical Information Science
24(7), 1101–1125 (2010). https://doi.org/10.1080/13658810903569598

11. Buchin, K., Buchin, M., Wang, Y.: Exact algorithms for partial curve matching
via the Fréchet distance. In: Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms. p. 645–654. SODA ’09, Society for Industrial
and Applied Mathematics, USA (2009)

12. Chen, C., Lu, C., Huang, Q., Yang, Q., Gunopulos, D., Guibas, L.: City-scale map
creation and updating using gps collections. In: Proc./ 22nd ACM SIGKDD. p.
1465–1474 (2016). https://doi.org/10.1145/2939672.2939833

13. Cheong, O., Gudmundsson, J., Kim, H.S., Schymura, D., Stehn, F.: Measuring
the similarity of geometric graphs. In: International Symposium on Experimental
Algorithms. pp. 101–112. Springer (2009)

14. De Carufel, J.L., Gheibi, A., Maheshwari, A., Sack, J.R., Scheffer, C.: Similarity
of polygonal curves in the presence of outliers. Computational Geometry 47(5),
625–641 (2014). https://doi.org/10.1016/j.comgeo.2014.01.002

15. Duran, D., Sacristán, V., Silveira, R.: Map construction algorithms: a local evalu-
ation through hiking data. GeoInformatica 24, 633–681 (2020)

16. He, S., Bastani, F., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S., Mad-
den, S.: Roadrunner: improving the precision of road network inference from GPS
trajectories. In: Proc. 26th ACM SIGSPATIAL GIS. pp. 3–12 (2018)

17. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM Journal on Computing 11(4), 676–686 (1982)

14 Buchin et al.

18. Koide, S., Xiao, C., Ishikawa, Y.: Fast subtrajectory similarity search in road
networks under weighted edit distance constraints. Proc. VLDB Endow. 13(12),
2188–2201 (sep 2020). https://doi.org/10.14778/3407790.3407818

19. Maheshwari, A., Sack, J.R., Shahbaz, K., Zarrabi-Zadeh, H.: Fréchet dis-
tance with speed limits. Computational Geometry 44(2), 110–120 (2011).
https://doi.org/10.1016/j.comgeo.2010.09.008, special issue of selected papers from
the 21st Annual Canadian Conference on Computational Geometry

20. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
travelling salesman problem. Journal of Algorithms 5(2), 231–246 (1984)

A LSFS is Length-Preserving on Connected Components

By definition, Cε
h only requires the restriction of h to small balls to be length-

preserving, we show that indeed all connected components are length-preserving.

Lemma 4 (Path-Connected Components Are Length-Preserving). Each
restriction of h to the preimage of a path-connected component of Cε

h is a length-
preserving map.

Proof. Let C̃ be a path-connected component of Cε
h. Let x, y ∈ C̃. Since C̃ is

path-connected, let γ : [0, 1] → C̃ be a path that starts at x and ends at y. Then,
by the definition of Cǫ

h, for each t ∈ [0, 1], there exists a δt > 0 such that h re-
stricted to Bt := Bp(h

−1(γ(t)), δt) is length-preserving. Let U := {γ (Bt)}t∈[0,1].
Since Im(γ) is a compact subspace of R2 and since U covers Im(γ), there exists

a finite sub-cover Û of U . Then, there exists a decomposition of γ into sub-paths
such that each sub-path lies entirely in at least one open set in Û . Let {γi}ni=1

be one such decomposition. Then, we know that len(γ) =
∑

i len(pi).

Since each Im pi is contained in some U ∈ Û and since h restricted to U is
length-preserving, we know that len(γi) = len(h(γi)). Taking the sum over all
sub-paths, we find len(γ) = len(h(γ)). Thus, we have shown that h restricted

to C̃ is length-preserving.

Noting that a curve f : [0, Lf] → R
d is simply a directed graph in R

d, we
obtain:

Corollary 1. Each restriction of h to the preimage of a path-connected compo-
nent of Hε is a length-preserving map.

B Proof of Lemmas 2 and 3

In this section we discuss the proofs for Lemmas 2 and 3.

B.1 Proof of Lemma 2

Proof. First we show that for any two points (x1, y1) and (x2, y2) on the top
or right boundary, there exist optimal paths to (x1, y1) and (x2, y2) that might

On Length-Sensitive Fréchet Similarity 15

overlap but do not cross each other. Assuming that the optimal paths to (x1, y1)
and (x2, y2) cross at a point a0, there is another optimal path to (x1, y1) that
goes through a0 and overlaps with the optimal path to (x2, y2) before reaching a0
(as shown in Fig. 11b).

a0

L R

T

B

(x1, y1)

(x2, y2)

(a) Optimal paths intersect transversally.

(x1, y1)

(x2, y2)a0

L R

T

B

(b) Optimal paths have initial overlap.

Fig. 11: A refined cell C in the free-space diagram Dε(f, g). In each sub-figure,
we see two optimal paths to (x1, y1) ∈ T and to (x2, y2) ∈ R. (a) The two paths
intersect transversally, at a0. (b) The two paths first overlap, then separate at a0.

Therefore, the optimal path to any point on the top or right boundary of
a cell cuts the cell into two parts such that for all points on the top or right
boundary in one part there is an optimal path going through them within that
part. Considering the example in Fig. 11b with the purple path being an optimal
path to (x2, y2), without loss of generality, we can say any point (x, y) such
that y > y2 has an optimal path that comes from the left boundary (more
specifically, above the purple path) which means all points on the top boundary
have an optimal path coming from the left boundary, hence (4) applies. Similarly,
consider (x1, y1) and the orange path in Fig. 11a to be optimal. In this case, all
the points (x, y) such that x > x1 have an optimal path that comes from the
bottom boundary (the right side of the orange path) which results in (5).

B.2 Proof of Lemma 3

Proof. Let C be a refined cell in Dε(f, g). Let (x1, yB + yT), (x2, yB + yT) be
two points on T of C. We want to show: ST (x2) − ST (x1) = S(x2, yB + yT) −
S(x1, yB + yT) ≤ x2 − x1. Consider the vertical line ℓ = {(x, y) ∈ D | x = x1}.
The optimal monotone path from (0, 0) to (x2, yB +yT) has to cross ℓ at a point
(x1, y0). Note that (x1, y0) does not have to be inside C, see Fig. 12. We know
S(x1, yB+yT) ≥ S(x1, y0) and from Observation 3 follows that S(x2, yB+yT)−
S(x1, y0) ≤ min(yB+yT −y0, x2−x1). Thus we can conclude: ST (x2)−ST (x1) =
S(x2, yB+yT)−S(x1, yB+yT) ≤ min(yB+yT −y0, x2−x1) ≤ x2−x1. Similarly
we can show the equation above for other boundaries of C as well.

C Score Function Propagation Within a Cell, Continued

We discuss the remainder of the cases and score functions. Due to symmetric
nature of Case (b),Case (c), Case (d), and Case (e) with regard to SL→T and

16 Buchin et al.

x1 x2

ℓ

(x1, y0)

(x1, y0)

L R

T

B

yB + yT

yB

Fig. 12: A cell C in Dε(f, g). (x1, y0) is on the optimal path to (x2, yT).

SB→R (likewise, for Case (f) and Case (g)), we do not explain SL→T for these
cases to avoid repetition.

Case (b): Consider Fig. 13 and the cell C that is divided into two propagatable
polygons by a line with a positive slope. The maximum value for L((0, l), (xR, r))
in this case is xR − j if xR < yT , and yT if xR > yT . Such value can be achieved
by drawing a slope-one line from (j, 0) and if the divider’s slope is less than one
(see Fig. 13, right), by drawing a slope-one line from (xR, yT). For SL→R, for
any point (xR, r1) on R, below the maximum line, the optimal path goes from
(0, 0) to (xR − r1, 0) horizontally and then to (xR, r1) via a slope-one segment
(red dashed line).

0
0

yT

xR

L R

T

B

xR − j

r1

r2

xR − r1

L R

T

B
0
0 xR

r1

xR − r1

yT

xR − yT

i

j

i

j

yT (
xR−r2−j

i−j−yT
)

Fig. 13: Case (b) when yT

i−j
> 1 on the left, and when yT

i−j
< 1 on the right. The

blue line shows the maximum slope-one length possible. Maximum slope-one
segments to r1 and r2 are shown in magenta and orange, respectively.

For all points (xR, r2) above the maximum, the start point of the optimal
path depends on SL(l). In other words, taking the longest slope-one path to
(xR, r2) in C does not necessary yield the maximum score for (xR, r2) in this
case. This is due to the fact that L((0, l), (xR, r)) over l (and r) has negative

On Length-Sensitive Fréchet Similarity 17

slope. In Theorem 4, we demonstrate how this decision is made and why the
number of start-point candidates is at most the number of breakpoints on SL(l).

SL→R(r) =





SL(0) + r for r ≤ xR − j

max
l∈[0,yT (

xR−r−j

i−j−yT
)]

SL(l) + L((i−j
yT

(l + j), l), (xR, r)) for r ≥ xR − j

Propagation from B to R can be done similar to Case (a), yielding:

SB→R(r) =

{
SB(xR − r) + r for r ≤ xR − j
SB(j) + xR − j for r ≥ xR − j

SB→T (t) =

{
SB(t) for t ≤ j
SB(j) + (t− j) for t ≥ j

Theorem 4. The propagation within Case (b) adds O(1) complexity.

Proof. Assuming SL has n breakpoints, we want to determine the number of
breakpoints on SL→R, which consists of two pieces. The first piece, SL(0) + r is
a linear function. The second piece, is the upper-envelope of the summation of
a non-decreasing piecewise linear and a decreasing linear function. See Fig. 14
for an example. To compute SL→R, one can find the summation on the break-
points of SL and connect them, which results in at most n breakpoints. Taking
the upper-envelope makes the resulting function non-decreasing and can only re-
duce the number of breakpoints. Therefore, there are at most n+1 breakpoints
on SL→R, and the complexity of SL→R is equal to the complexity of SL. The
complexity for SB→R, SB→T , and SL→T can be shown similar to Theorem 1.

SR(r)

0
0 yTxR − j

SR(xR − j)

SR(0)
SL(l)SL(l)

max
l∈[0,yT (

xR−r−j

i−j−yT
)]

SL(l) + L((i−j

yT
(l + j), l), (xR, r))

L((0, l), (xR, r))

SL(l) + L((i−j

yT
(l + j), l), (xR, r))

Y

Fig. 14: The score function for SL→R(r) when r ≥ xR − j.

18 Buchin et al.

Case (c): Case (c) represents a cell divided by a positive-slope line with free
space on the left, therefore, the maximum length slope-one segment goes through
(i, yT), if the divider’s slope is greater than one (yT

i−j
> 1). Otherwise the maxi-

mum segment intersects B at (j, 0).

The divider’s slope is greater than one: Consider Fig. 15, we first explore
the paths from L to R. We draw a slope-one segment starting at (0, 0) to find
the score function’s breakpoint. For any point below (xR,

j
yT
i−j

−1
) the optimal

path starts from (0, 0). For all points (xR, r) above the breakpoint, the optimal
path starts from (0, (1− i−j

yT
)r − j).

SL→R(r) =





SL(0) + r for r ≤ j
yT
i−j

−1

SL((1− i−j
yT

)r − j) + i−j
yT

r + j for r ≥ j
yT
i−j

−1

Similarly for paths from B to R we have:

SB→R(r) =





SB((
i−j
yT

− 1)r + j) + r for r ≤ j
yT
i−j

−1

SB(0) +
i−j
yT

r + j for r ≥ j
yT
i−j

−1

0
0

yT

xR

L R

T

B

r1

r2

L R

T

B
0
0 xR

r1

yT

(1− i−j

yT
)r2 − j

j

i

j
yT
i−j

−1

(i−j

yT
− 1)r1 + j

j

i

yT − i

Fig. 15: Case (c), when yT

i−j
> 1 on the left, and when yT

i−j
< 1 on the right.

The blue line shows the maximum slope-one length possible. Maximal slope-one
segments to r1 and r2 are shown in magenta and orange, respectively.

SB→T (t) =

{
SB(0) + t for t ≤ i
max(SB(0) + t,SB(t)) for t ≥ i

The divider’s slope is less than one: Consider the right picture in Fig. 15.
Since the maximum of L can be achieved from (j, 0), we do not have a breakpoint
in the score functions:

SL→R(r) = SL(0) + r and SB→R(r) = SB(j) + r

On Length-Sensitive Fréchet Similarity 19

However for SB→T (t) we have:

SB→T (t) =





SB(0) + t for t ≤ yT
SB(t− yT) + yT for yT ≤ t ≤ j + yT
max(SB(t− yT) + yT ,SB(t)) for t ≥ j + yT

Theorem 5. The propagation within Case (c) adds O(1) complexity.

Proof. The O(1) complexity follows in a similar way to Theorem 1. Note that
for SB→T the max function adds at most one breakpoint.

Case (d):

SL→R(r) =





SL(0) + r for r ≤ j
yT
i−j

−1

max
l∈[0,(1− i−j

yT
)r−j]

SL(l) + L((0, l), (i−j
yT

r + j, r)) for r ≥ j
yT
i−j

−1

SB→R(r) =





SB((
i−j
yT

− 1)r + j) + r for r ≤ j
yT
i−j

−1

SB(0) +
j

yT
i−j

−1
for r ≥ j

yT
i−j

−1

0
0

yT

xR

L R

T

B

r1

r2

L R

T

B
0
0 xR

r1

yT

j

i

j

i

r2

(1− i−j

yT
)r2 − j

(i−j

yT
− 1)r2 + j

j
yT
i−j

−1
j

yT
i−j

−1

Fig. 16: Case (d), when yT

i−j
< −1 on the left, and when yT

i−j
> −1 on the right.

The blue line shows the maximum slope-one length possible. Maximal slope-one
segments to r1 and r2 are shown in magenta and orange, respectively.

Theorem 6. The propagation within Case (d) adds O(1) complexity.

Proof. The O(1) complexity can be discussed in a similar way to Theorem 4

20 Buchin et al.

Case (e):

SL→R(r) =

{SL(0) + r for r ≤ xR

SL(yT (
xR−r−j
i−j−yT

)) + r − yT (
xR−r−j
i−j−yT

) for r ≥ xR

SB→R(r) =





SB(xR − r) + r for r ≤ xR − j

SB(
xR−r−

jyT
i−j

1−
yT
i−j

) + xR − xR−r−
jyT
i−j

1−
yT
i−j

for r ≥ xR − j

SB→T (t) =

{SB(t) for r ≤ t ≤ i
SB(

yT

i−j
+ t− j) + t− yT

i−j
+ t− j for t ≥ i

0
0

yT

xR

L R

T

B

r1

r2

L R

T

B
0
0 xR

r1

yT

j

i

j

i

r2

xR − r1

xR − j

xR − r1

yT (
xR−r2−j

i−j−yT
)

yT (
xR−r2−j

i−j−yT
)

xR−r2−
jyT
i−j

1−
yT
i−j

xR−r2−
jyT
i−j

1−
yT
i−j

Fig. 17: Case (e), when yT

i−j
< −1 on the left, and when yT

i−j
> −1 on the right.

The blue line shows the maximum slope-one length possible. Maximal slope-one
segments to r1 and r2 are shown in magenta and orange, respectively.

Theorem 7. The propagation within Case (e) adds O(1) complexity.

Proof. The O(1) complexity can be discussed in a similar way to Theorem 1

Case (f): As mentioned in Case (c), when a divider has a positive slope and
is located on the right side of a free space, extra care is required. Suppose a
divider’s slope is less than one, a slope-one segment can be drawn above it,
starting at (k, 0). This segment can be a part of the optimal path from B to R.
Therefore, we have four possibilities for this case:

Both dividers’ slopes are greater than one: When both slopes are greater
than one, the optimal path between two points does not necessarily have at most
three segments. Consider Fig. 18 (right) and point (xR, r

′
2). The longest slope-

one path to (xR, r
′
2) is shown in orange, and has multiple slope-one segments. By

On Length-Sensitive Fréchet Similarity 21

Lemma 3, this path is always maximal when going through B. The same cannot
be said for paths going through L in this case, since there are vertical segments
in such a path. Therefore, for a point (xR, r) above (xR,

j+k

1−w−k
yT

), SL→R(r) is the

maximum over l of SL(l) and the length of slope-one segments in the feasible
space between l and r.

SL→R(r) =





SL(0) + r for r ≤ j+k

1−w−k
yT

max

l∈[0,
(1−w−k

yT
)r2−k+j

1−
i−j
yT

]

SL(l) + L(((i−j)
yT

l + (i− j)j, l), (w−k
yT

r + k, r)) for r ≥ j+k

1−w−k
yT

SB→R(r) =





SB((
i−j
yT

− 1)r + j) + r for r ≤ j+k

1−w−k
yT

SB(j) +
w−k
yT

r + k − j for r ≥ j+k

1−w−k
yT

0
0

yT

xR

L R

T

B
0
0

yT

xR

L R

T

B

i i

j jk k

w w

r1

r2

r1

j+k

1−w−k
yT

j+k

1−w−k
yT

(1−w−k
yT

)r2−k+j

1− i−j

yT

(w−k
yT

− 1)r1 + k (w−k
yT

− 1)r1 + k

r2

(1−w−k
yT

)r2−k+j

1− i−j

yT r′2

Fig. 18: Case (f) when both dividers have slope greater than one. The blue line
shows the maximum slope-one length possible. Maximal slope-one segments to
r1, r2 and r′2 are shown in magenta and orange.

Theorem 8. The propagation within Case (f) adds O(1) complexity.

The proof is omitted, as it is similar to Theorem 4 and Theorem 5.

Left divider’s slope is greater than one: Since a divider can only have
slope less than one if xR > yT , the maximum length slope-one segment that can
obtained in this case is yT . This amount can be achieved by simply drawing a
slope-one line from (K, 0) (see Fig. 19) because the right divider’s slope is less
than one. We have:

22 Buchin et al.

SL→R(r) = SL(0) + r

SB→R(r) = SB(k) + r

Right divider’s slope is greater than one: Similar to the previous sub-case,
the maximum length slope-one segment is achievable. However, since the right
divider’s slope is greater than one, the maximum can be gained by drawing a
slope-one line from (w, yT) (Fig. 19).

SL→R(r) = SL(0) + r

SB→R(r) = SB((
w − k

yT
− 1)r + k) + r

L R

T

B
0
0 xR

r1

yT

L R

T

B
0
0 xR

r1

yT

(w−k
yT

− 1)r + k

i

j k

w i

j k

w

Fig. 19: Case (f) when one divider’s slope is less than one and the other’s is
greater than one.

Both dividers’ slopes are less than one:

SL→R(xR, r) = SL(0) + r

SB→R(r) =





SB(k) + r for r ≤ (i−j)(j−k)
(i−j)−yT

max

b∈[k,
(w−k)((1−

i−j
yT

)r+kyT −j(i−j))

yT −w+k
]

SB(b) + L((b, yT

w−k
b− kyT), (

i−j
yT

r + j(i− j), r)) for r ≥ (i−j)(j−k)
(i−j)−yT

Case (g): Case (g) consists of two dividers with negative slope. Naturally, there
are three possibilities for this case:

On Length-Sensitive Fréchet Similarity 23

Two parallel dividers (II):

SL→R(r) =





SL(0) + r for r ≤ j+k

1−w−k
yT

SL(
(1−w−k

yT
)r−k+j

1− i−j
yT

) +
(w−k−i+j

yT
)r+k−j

1− i−j
yT

for r ≥ j+k

1−w−k
yT

SB→R(r) =





SB((
w−k
yT

)r + k) + r for r ≤ j+k

1−w−k
yT

SB(j) +
j+k

1−w−k
yT

for r ≥ j+k

1−w−k
yT

Theorem 9. The propagation within Case (g) adds O(1) complexity.

Proof. The O(1) complexity for sub-case II follows in a way similar to Theo-
rem 1. Likewise, for V and Λ we can use the same approach as in Theorem 4.

V -shaped and Λ-shaped cases share some functions and properties with the
parallel case II. We discuss their corresponding functions below:

The left divider’s slope is greater than the right divider’s (V): The
score function on R coming from L is identical to the parallel case (II), since
L((0, l), (xR, r)) is non-decreasing over l and r (see Fig. 20). However, L((0, b), (xR, r))
is decreasing over b, so for SB→R(r) we have:

SB→R(r) =





SB(j) + r for r ≤ j+k

1−w−k
yT

max
B∈[0,(w−k

yT
−1)r+k]

SB(b) + L((b, yT

i−j
b− jyT), (

w−k
yT

r + k, r)) for r ≥ j+k

1−w−k
yT

The right divider’s slope is greater than the left divider’s (Λ): The
score function on R coming from B is identical to the parallel case (II) because
L((0, b), (xR, r)) is non-decreasing over b.7 However, that is not the case with
L((0, l), (xR, r)):

SL→R(r) =





SL(0) + r for r ≤ j+k

1−w−k
yT

max

l∈[0,
(1−w−k

yT
)r−k+j

1−
i−j
yT

]

SL(l) + L(((i−j)
yT

l + (i− j)j, l), (w−k
yT

r + k, r)) for r ≥ j+k

1−w−k
yT

Case (h) Here, the cell is filled with infeasible space; therefore, for any pair of
points p1 and p2 on the boundaries, L(p1, p2) = 0. Hence, going from L to R (or
B to T) is simply: SL→R(r) = SL(r) (and SB→T (t) = SB(t)). Since the score
functions on the boundaries are non-decreasing (by Observation 3), we have:
SB→R(r) = SB(xR) (and SL→T (t) = SL(yT)).

7 Note that in both sub-cases, if SB(xR) > SB(k) +
j+k

1−
t−k
yT

, then SR(r) = SB(xR)

24 Buchin et al.

0
0

yT

xR

L R

T

B
0
0

yT

xR

L R

T

B

i i

j jk k

w w

r1

r2

r1

j+k

1−w−k
yT

j+k

1−w−k
yT

(1−w−k
yT

)r2−k+j

1− i−j

yT

(w−k
yT

− 1)r1 + k (w−k
yT

− 1)r1 + k

r2
(1−w−k

yT
)r2−k+j

1− i−j

yT

Fig. 20: Case (g) with V on the left and Λ on the right side. The blue line shows
the maximum slope-one length possible. Maximal slope-one segments to r1 and
r2 are shown in magenta and orange.

Theorem 10. The propagation within Case (h) adds no complexity.

Proof. Since SL→R(r) = SL(l) directly, there is no additional breaking point
on SL→R. Furthermore, SB→R is a constant function, which means it does not
transfer any complexity from SB . We have similar explanations for SB→T and
SL→T .

